Стабилизатор от сети от генератора: Использование стабилизатора с бензиновым генератором

Содержание

Стабилизаторы напряжения для генераторов — зачем это нужно?

Не раз и не два мне попадались предложения типа «давайте включим два стабилизатора напряжения параллельно, если не хватает выходного тока одного». В том числе и здесь: Тут — в авторском тексте о ПК Специалист (Spectrum) (в итоге — автор применил двухканальный импульсный источник питания). Тут — в комментариях И тут — в комментариях Да тысячи их: electronics.stackexchange.com/questions/261537/dc-dc-boost-converter-in-parallel forum.allaboutcircuits.com/threads/paralleling-lm317ts.16198 forum.arduino.cc/index.php?topic=65327.0 (обсуждение довольно показательное с точки зрения пренебрежения схемотехникой и энергосбережением мобильного робота). Вспомнив немного ТОЭ и воспользовавшись симулятором TINA-TI, покажем несбыточность малую обоснованность надежд на благоприятный исход этого чита.

О параллельном соединении стабилизаторов напряжения с точки зрения наличия в них обратной связи.

Как известно, чуть более чем все современные стабилизаторы напряжения строятся как компенсационные — обратная связь отслеживает напряжение на выходе стабилизатора и поддерживает его постоянным либо меняя внутреннее сопротивление между входом и выходом, либо меняя соотношение замкнутого и разомкнутого состояний между входом и выходом. Из этого вытекает тот факт, что если подать на выход стабилизатора напряжение превышающее его выходное, то ОС должна будет отключить регулирующие элементы и данный стабилизатор выйдет из борьбы за жизнь нагрузки. Не будем рассматривать здесь случаи линейного стабилизатора с push-pull выходом (используются как источники питания терминаторов DDR-памяти) и импульсных стабилизаторов с синхронным выпрямлением. Первые — должны, а вторые, теоретически, — могут пытаться снижать напряжение на своём выходе.
В случае применения импульсных стабилизаторов — можно рассмотреть и такие гипотетические вещи, как биение частот преобразования или их самосинхронизация… Но это выходит за рамки моих текущих интересов. Для закрытия теоретической части добавлю, что если кто-то предложит использовать внешнее тактирование импульсных стабилизаторов со сдвигом фаз, то Вы опоздали. Микропроцессоры Intel и AMD уже многие годы питаются от многофазных конвертеров, а если есть готовый двух- и более фазный контроллер, то городить внешнюю синхронизацию для отдельных стабилизаторов — бессмысленно. А теперь — перейдём к симуляции реальности.

Как правильно подключить стабилизатор напряжения

Написано 3 января 2018от generator-prosto. Нет комментариев

Качество поставляемой электроэнергии и определенные параметры выходного напряжения должны соответствовать требованиям, подключаемых к сети приборов. Но так как добиться таких показателей без соответствующего оборудования практически невозможно, то приходится прибегать к его помощи. Лучше всего с такой задачей справляются стабилизаторы напряжения.

Однако при подборе таких устройств необходимо учитывать их основные характеристики и стоимость. Но даже правильно выбранный прибор не сможет решить поставленную задачу без грамотно выполненного монтажа. Поэтому к поиску ответа на вопрос как подключить правильно стабилизатор напряжения следует подходить со всей ответственностью. Для начала не помешает ознакомиться с устройством и принципом работы оборудования.

О параллельном соединении стабилизаторов напряжения в симуляторе.

Первый пример — вариация простенького линейного стабилизатора из app. note на регулируемый источник опорного напряжения типа 431. Он применялся, например, в некоторых ранних блоках питания ATX для стабилизации напряжения 3.3 В. На сток регулирующего транзистора подавалось 5 В, а резистор в цепи затвора питался от 12 В.
Поскольку в симуляции нас не волнует КПД, то для простоты на входе один единственный источник питания. Также — с ходу я не нашёл средства внести погрешность в опорное напряжение TL431, кроме как добавить генератор напряжения G1 в цепь управляющего электрода. Вот результат расчёта (меню «Анализ постоянного тока», раздел «Переходные характеристики»):

Как видим — достаточно разбаланса опорных напряжений в 3 мВ, чтобы один из стабилизаторов превратился в тыкву. А это всего 0,12% от номинального, да ещё отнюдь не каждая 431 имеет точность лучше 0.5%. Предложение «поставим в цепь обратной связи триммер и подгоним правильное деление тока нагрузки» я отметаю на том основании, что типичные подстроечные резисторы (Bourns и muRata, керметные, одно и многооборотные) — имеют вибростойкость до 1% (изменение зафиксированного отношения напряжений или сопротивлений после воздействия вибрации с ускорением 20..30 G). Упомянутые в ссылках на зарубежные ресурсы пляски с последовательными резисторами на выходах стабилизаторов — я даже рассматривать не буду. Просто потому, что этим убивается то, для чего собственно и ставится стабилизатор напряжения — постоянство напряжения на нагрузке при изменении её тока потребления. Потом я вспомнил, что на выходе обычно есть конденсаторы… Добавление на выходы конденсаторов по 1000 мкФ с ESR 100 мОм не внесло кардинальных отличий в результаты симуляции параллельной работы этих стабилизаторов (меню «Анализ переходных процессов»).

Возможно, кто-то скажет: «Сработает ограничение по току у первого стабилизатора и второй тоже подключится». Но очевидно, что даже если это произойдёт, то первый всё равно продолжит работать с перегрузкой, что не прибавит надёжности нашей системе. Вот пример работы пары LP2951 (максимальный ток нагрузки — 100 мА, ограничение тока в модели — около 160 мА) с общим током нагрузки около 180 мА. Почему такое старье? Потому, что они есть у меня в удобном для втыкания в «бредовую борду» DIP’е и, если кто-то из читателей пожелает пойти путём Фомы, то я смогу измерить всё IRL.

Результаты симуляции (меню «Анализ переходных процессов»):

Как видите — второй и не думает деятельно участвовать в спасении нагрузки от голода. А благодаря бóльшему коэффициенту усиления — выход из игры происходит при меньшем разбалансе.

На этом — всё. Питайтесь правильно!

Работа генератора

По принципу действия генераторы разделяют на виды:

  1. С ручным управлением.
  2. С автоматическим управлением.

Генераторы ручного управления приводятся в действие человеком при обнаружении проблем в основной сети питания. Этот метод не обладает достаточной эффективностью, так как при подключении высокочувствительных устройств проходит много времени между отключением электроэнергии и пуском генератора. Предотвратить скачки напряжения с помощью генератора не получится. Поэтому ручные генераторы не очень популярны.

Сегодня особенно широко используются генераторы с автоматическим срабатыванием, путем отслеживания работы электрической сети. Он запускается автоматически при перебоях в сети. При нормализации работы сети, генератор сразу отключается самостоятельно, а работа всех электрических устройств переключается на основную сеть.

Такая автоматическая система дает возможность обеспечения постоянным питанием различных устройств. Однако она имеет недостаток: генератор может запуститься даже тогда, когда основная сеть исправна. Такое включение возможно, когда резко снижается напряжение в сети на короткое время. Автоматика ошибочно срабатывает и принимает это снижение питания за отключение сети.

Применение генератора совместно со стабилизатором, включенным в сеть перед генератором, решает эту задачу. Теперь генератор запустится только при действительном отключении электроэнергии. Стабилизатор не даст генератору запуститься при малых колебаниях питания в сети.

Вывод.

Если максимальный выходной ток стабилизатора напряжения не обеспечивает потребности питаемой схемы, то есть только два выхода — заменить стабилизатор на модель с бóльшим выходным током или использовать схемотехническую балансировку выходных токов нескольких стабилизаторов.
P.S. «Всякое лыко — в строку». Во время подготовки статьи на глаза попалась широко растиражированная в документации на стабилизатор типа 1117 схема переключателя «батарея — сеть» с параллельным включением их выходов. К ней есть вопросы о практической применимости, но тему статьи она подтверждает чуть более, чем полностью. Привожу фрагмент из документации , который снабжён текстовыми пояснениями:

The 50 Ohm resistor that is in series with the ground pin of the upper regulator level shifts its output 300 mV higher than the lower regulator. This keeps the lower regulator off until the input source is removed.

P.P.S. Дописал вывод. Точнее — скопировал его из синопсиса.

Synopsis: You can’t boost output current of weak voltage regulators by simple parallel connection. You must use tougest one or special schematic for properly current sharing.

Выбор стабилизатора для генератора

Перед покупкой стабилизатора напряжения необходимо сделать правильный расчет мощности прибора. В таком случае складывают мощности всех приборов, планируемых к подключению, и добавляют резерв около 25%. Также нельзя забывать и о разнице между реактивной и активной нагрузке.

Активная нагрузка возникает в сети от устройств, выделяющих тепло. Это такие устройства, как обогреватели, плиты, духовки, утюги и другие устройства. Реактивная нагрузка возникает в сети от приборов, решающих другие задачи, кроме выделения тепла. Для них мощность рассчитывается сложнее. Полученную первым способом мощность делят на cos φ. Единица измерения также меняется. Мощность устройств с реактивной нагрузкой измеряют в вольт-амперах, а не в Ваттах.

Генераторы разделяют на разновидности по применяемому топливу. Некоторые из них работают на дизельном топливе, а другие только на бензине. Генераторы с дизельным двигателем имеют высокую стоимость, по сравнению с бензиновыми, однако меньше потребляют топлива, и надежнее в работе. Какой генератор подходит для вас – это каждый решает сам. При возникших трудностях с выбором лучше обратиться за консультацией к специалистам.

Ваши затраты на для генератора быстро окупятся, так как стабилизатор обеспечивает работу ваших устройств при любых режимах и предотвращает их выход из строя при аварийных режимах.

В настоящее время прослеживается тенденция снижения спроса на электрогенераторы с ручным управлением и роста – на генераторы с автоматической системой запуска. Такие устройства более современны и оперативно срабатывают при отключении электроэнергии, обеспечивая бесперебойное электропитание подключенной нагрузки, будь то жилой дом или сооружение промышленных масштабов. Но, если совместно с генератором не установить стабилизатор напряжения, то в реалиях российской энергосистемы функция автоматического включения может стать причиной повышенного расхода топлива и быстрого износа генератора.

Некоторые схемы с использованием линейного стабилизатора напряжения

Кроме целевого использования микросхем в качестве СН, можно расширить область их применения. Некоторые варианты таких схем на базе интегральной микросхемы L7805.

Включение стабилизаторов в параллельном режиме


Чтобы увеличить ток нагрузки, СН включают параллельно друг к другу. Для обеспечения работоспособности такой схемы дополнительно в нее устанавливают резистор небольшого номинала между нагрузкой и выходом стабилизатора.

Стабилизатор тока на базе СН


Есть нагрузки, питание которых необходимо осуществлять постоянным (стабильным) током, например, светодиодная цепочка.

Схема регулирования оборотов вентилятора в компьютере


Регулятор этого типа построен таким образом, что при первоначальном включении на куллер поступает все 12 В (для его раскрутки). Далее по окончании заряда конденсатора C1 переменным резистором R2 можно будет регулировать величину напряжения.

Какая последовательность подключения стабилизатора и генератора правильная?

Следует понимать, что генератор и стабилизатор, как и любые электроприборы – изделия повышенной опасности, неверный монтаж которых может привести к повреждению оборудования, серьезным травмам или смертельному исходу. Поэтому настоятельно рекомендуем доверять установку и подключение такой техники только профессиональному – сертифицированному специалисту!

Если стабилизатор необходим для решения проблемы реагирования автоматической системы запуска на кратковременные отключения и перепады напряжения, то правильная последовательность подключения:

  • 1) электросчетчик;
  • 2) стабилизатор напряжения;

Установка стабилизатора после генератора не избавит последнего от лишних запусков, так как сетевое напряжение будет сначала попадать на генератор, а уже затем проходить через стабилизатор. Однако может сложиться ситуация, при которой выходное напряжение генератора не будет удовлетворять требования к качеству электропитания подключенной нагрузки. В таком случае, на выход генератора возможно подключать ещё один стабилизатор, который отрегулирует напряжение, передаваемое непосредственным потребителям, но не напряжение входной сети!

Обратите внимание – не все типы стабилизаторов смогут корректно функционировать при подключении после генератора!

Правильность выбора стабилизатора напряжения также важна, как и покупка самого генератора, т.к. для работы в паре данные устройства должны не мешать друг другу, а наоборот повышать надежность и бесперебойность энергоснабжения объекта. Подбирая стабилизатор нужно обратить внимание на его мощность, точность стабилизации, диапазон работы, тип.

Мощность

Рекомендуется чтобы мощность стабилизатора была не меньше, чем у бензогенератора при схеме подключения «счетчик-стабилизатор-генератор». В противном случае при пуске генератора, а также нагрузок, которые в него подключены возможна перегрузка стабилизатора и как следствие аварийно-защитное отключение.

При установке генератора до стабилизатора мощность последнего должна быть соразмерна с мощностью нагрузки, напряжение на входе которой он должен нормализировать. Также нужно не забывать про оборудование с высокими пусковыми токами, работа которых возможна после стабилизатора. Запас мощности для таких устройств нужно брать до 30%. Если мощность генератора будет меньше, чем стабилизатора с нагрузкой, то возможна некорректная работа двигателя вплоть до его остановки.

Точность стабилизации

Данный параметр немаловажен для чувствительного оборудования, которому необходимо напряжение максимально близкое к эталонным 220 (230В). Как правило, большинство генераторов выдают нестабильное напряжение из-за плавающих оборотов двигателя при включении/отключении мощной нагрузки. Поэтому для высокоточного и «капризного» оборудования стабилизаторы нужны с точностью 1-3%.

Диапазон работы

Даже самый точный и мощный стабилизатор, но с узким диапазоном рабочих напряжений будет абсолютно бесполезен в связке с генератором. Для минимизации количества срабатывания автоматики бензоагрегата из-за скачков напряжения желательно, чтобы пороги отключения стабилизатора напряжения были как можно шире. Тогда экономия топлива и повышенный ресурс двигателя будут более ощутимы для владельца данного оборудования. При выборе данного параметра нижний порог должен быть не более 120-130В, а верхний не менее 280-290В.

Тип стабилизатора

Все достоинства и недостатки разных типов стабилизаторов при выборе их для установки без генератора также актуальны и с ним. В настоящее время наиболее часто используют следующие:

  • сервоприводы
  • симисторно-релейные (Гибрид)
  • симистор/тиристор (Ампер, Герц, Герц-Дуо)
  • инвертор

Сервоприводные и гибридные относятся к классу недорогих устройств и поэтому рекомендовать их можно при пониженных требованиях к быстродействию и точности. Однако стоит отметить, что симисторно-релейные Гибриды могут передавать энергию в обе стороны без последствий для ключей, а также работать при частоте от 45 до 65Гц.

Симисторные/тиристорные и инверторные рекомендованы с точки зрения высокой скорости срабатывания, широкого диапазона работы, высочайшей точности. Первые могут работать при частоте 45-65Гц, но на выходе выдают такую же частоту не исправляя ее. Вторые перебои по частоте от генератора исправляют. Однако по цене и перегрузочной способности инверторы значительно уступают полупроводниковым стабилизаторам.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока

можно применить в схемах различных зарядных устройств для аккумуляторных батарей или
регулируемых
источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Схема включения с регулируемым выходным напряжением

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Можно ли ставить стабилизатор после генератора. Стабилизаторы напряжения. Какая последовательность подключения стабилизатора и генератора правильная

Нажмите, чтобы ознакомиться с правилами

Дорогие друзья!

Здесь Вы можете задать любой интересующий Вас вопрос, который касается электрики, электромонтажа и пр. Чаще всего задаются одни и те же вопросы — сначала загляните в раздел . Если Вы не желаете, чтобы вопрос был виден, то вполне можно или задать вопрос в моей группе ВКонтакте .

Чтобы задать вопрос Вам потребуется регистрация на сайте или авторизация для уже зарегистрированных пользователей.

Чтобы получить точный и правильный ответ нужно грамотно задать вопрос!

Задавая вопрос — не спешите! Тщательно его обдумайте. При качественной формулировке вопроса Вы получите более полный ответ, а значит, не придется многократно переспрашивать и уточнять. В тело вопроса Вы можете вставить изображение (это чаще касается эл.щита, схем на бирках электропечей, разводки и пр.).

И, пожалуйста, не забудьте представиться. Подробностей не нужно, назовитесь как-нибудь, ведь всегда приятно общаться не с пробелом:) Не забывайте и о знаках препинания в предложениях, не пишите сплошным текстом, я не телепат!

После заполнения предложенных форм, Ваш вопрос поступит мне на модерацию. После изучения вопроса и дальнейшего ответа, Вам на электронный адрес придет уведомление о положительном результате.

Всегда на связи, Александр

24-07-2014, 22:20 |

Здравствуйте. в частном доме стоит общий стабилизатор ресанта 12квт можно ли использовать бензогенератор просто говорят, что БГ нельзя перед стабилизатором ставить подскажите как нужно

ОТВЕТ:
Здравствуйте!
Все зависит от бензогенератора (Вы не указали марку). Если он хорошо держит напряжение, то одновременно их использовать не надо. Т.е. при переключении АВР включается только генератор. А так, одновременное подключение генератора и стабилизатора не рекомендуется (хотя народ и ставит стабилизатор после генератора). Лично я не владею полной информацией по данному вопросу, а обращаюсь к более узкому специалисту, который имеет оперативную и полную информацию о марках генераторов, которые довольно часто обновляются и который имеет более полную статистику по качеству и работе генераторов. Вам лучше обратиться к тем, кто не только продает генераторы, но и производит установку, например сюда.

Генераторы напряжения применяют в случаях ненадежной работы центральной системы снабжения электроэнергией, при частых перепадах и скачках напряжения. Генератор подает электричество в места, где нет электроэнергии, однако в случае резкого снижения напряжения возникает ложная сработка АВР, то есть, запускается генератор, когда он еще не нужен. Чтобы этого не происходило, подключают стабилизатор по схеме до генератора.

Работа генератора

По принципу действия генераторы разделяют на виды:

  1. С ручным управлением.
  2. С автоматическим управлением.

Генераторы ручного управления приводятся в действие человеком при обнаружении проблем в основной сети питания. Этот метод не обладает достаточной эффективностью, так как при подключении высокочувствительных устройств проходит много времени между отключением электроэнергии и пуском генератора. Предотвратить скачки напряжения с помощью генератора не получится. Поэтому ручные генераторы не очень популярны.

Сегодня особенно широко используются генераторы с автоматическим срабатыванием, путем отслеживания работы электрической сети. Он запускается автоматически при перебоях в сети. При нормализации работы сети, генератор сразу отключается самостоятельно, а работа всех электрических устройств переключается на основную сеть.

Такая автоматическая система дает возможность обеспечения постоянным питанием различных устройств. Однако она имеет недостаток: генератор может запуститься даже тогда, когда основная сеть исправна. Такое включение возможно, когда резко снижается напряжение в сети на короткое время. Автоматика ошибочно срабатывает и принимает это снижение питания за отключение сети.

Применение генератора совместно со стабилизатором, включенным в сеть перед генератором, решает эту задачу. Теперь генератор запустится только при действительном отключении электроэнергии. Стабилизатор не даст генератору запуститься при малых колебаниях питания в сети.

Выбор стабилизатора для генератора

Перед покупкой стабилизатора напряжения необходимо сделать правильный расчет мощности прибора. В таком случае складывают мощности всех приборов, планируемых к подключению, и добавляют резерв около 25%. Также нельзя забывать и о разнице между реактивной и активной нагрузке.

Активная нагрузка возникает в сети от устройств, выделяющих тепло. Это такие устройства, как обогреватели, плиты, духовки, утюги и другие устройства. Реактивная нагрузка возникает в сети от приборов, решающих другие задачи, кроме выделения тепла. Для них мощность рассчитывается сложнее. Полученную первым способом мощность делят на cos φ. Единица измерения также меняется. Мощность устройств с реактивной нагрузкой измеряют в вольт-амперах, а не в Ваттах.

Генераторы разделяют на разновидности по применяемому топливу. Некоторые из них работают на дизельном топливе, а другие только на бензине. Генераторы с дизельным двигателем имеют высокую стоимость, по сравнению с бензиновыми, однако меньше потребляют топлива, и надежнее в работе. Какой генератор подходит для вас – это каждый решает сам. При возникших трудностях с выбором лучше обратиться за консультацией к специалистам.

Ваши затраты на для генератора быстро окупятся, так как стабилизатор обеспечивает работу ваших устройств при любых режимах и предотвращает их выход из строя при аварийных режимах.

Прежде чем выбрать стабилизатор напряжения переменного тока, нужно понять, что это за электротехнический аппарат, для чего он нужен. Принцип действия устройства основан на работе автотрансформатора. В зависимости от того, повышенное или пониженное напряжение в линии электропередач, автотрансформатор при помощи платы управления понижает или повышает выходное напряжение до 220 В в однофазном аппарате и до 380 В в трёхфазном , с точностью от 0,5 % до 7 %.

Повышение или понижение параметров напряжения происходит благодаря включению определенной обмотки у трансформатора с помощью коммутационных ключей у электронных стабилизаторов или установки обмотки трансформатора токосъёмного контактора у электромеханического стабилизатора.

Аппарат приводит к стандартному значению напряжение (220 В или 380 В) только от стационарной линии электропередач, с определённой погрешностью. В сетевом проводе частота тока равна 50 Гц, а форма напряжения представлена в виде волны (чистая синусоида). Стабилизатор переменного тока защищает технику от короткого замыкания, а некоторые модели — и от последствий грозы. Стабилизатор напряжения нельзя устанавливать в цепи после бытового электрогенератора.

На выходе у бензинового или дизельного генератора форма напряжения только приближена к синусоиде, но она имеет пилообразные всплески, частота может отличаться от 50 Гц (от 48 до 52 Гц), напряжение — варьировать в определённом диапазоне. Ток от генератора можно подавать практически на все электроприборы напрямую, за исключением котлов отопления, циркуляционных насосов системы отопления, дорогой аудио- и видеотехники и другой аппаратуры, у которой высокие требования к качеству напряжения. Перед такими приборами можно поставить ИБП оn-line типа , который за счёт двойного преобразования формирует на выходе чистую синусоиду. Если установить стабилизатор напряжения после генератора, то он рано или поздно сломается и перестанет исправлять напряжение, поступающее от электрогенератора.

Ток от генератора нужно заводить в дом в обход или после стабилизатора, либо через байпас.

Исключение — инверторные генераторы, с их помощью получают переменный ток, который сравним по качеству с током от стационарной сети. После него не нужны стабилизация или исправление формы напряжения.

Существует только одна модель стабилизатора, который может менять форму напряжения от генератора и стабилизировать напряжение после электрогенератора, — аппарат серии СДП-1/1-3-220 . Он сделан на основе ИБП оn-line типа и идеально стабилизирует ток как от генератора, так и от стационарной сети, кроме стабилизации напряжения, он не пропускает высокочастотные импульсы.

К стабилизатору нельзя подключать сварочный аппарат. Если в вашей электрической сети напряжение отличается от 220 В, но нужно работать со сварочным аппаратом, то можно применить ЛАТР — электромеханический автотрансформатор. Следует вручную установить необходимое значение напряжения, но при этом следить, чтобы в сети оно не менялось, иначе будет изменяться и на выходе после ЛАТР, что может привести к поломке техники, подключённой к автотрансформатору.

Первым шагом при выборе стабилизатора является определение количества фаз. Если к дому подходит 2 провода (фаза, нейтраль) — это признак однофазной сети, если 4 провода (три фазы, одна нейтраль) — трёхфазной сети. Соответственно, на однофазную сеть нужно устанавливать однофазный прибор, на трёхфазную — трёхфазный стабилизатор переменного тока.

Если вы хотите защитить все электрические приборы в доме, то стабилизаторы устанавливают сразу после счётчика электроэнергии и автоматов защиты по току. Если нет потребности в стабилизации напряжения во всём помещении, то можно приобрести аппараты небольшой мощности перед телевизором, котлом отопления, насосом, холодильником или микроволновой печи. Очень часто в частные дома заведена трёхфазная сеть с напряжением 380 В, а по дому разведены три фазы по 220 В, тогда рационально установить 3 однофазных стабилизатора. Если нужно защитить трёхфазный электроприбор (котёл, двигатель, станок), то лучше использовать 1 трёхфазный прибор или 3 однофазных стабилизатора на коммутационной стойке с БКС (блоком контроля сети). Качественные трёхфазные стабилизаторы в одном корпусе изготавливают итальянская фирма Ortea под ТМ Orion и Orion Plus , российская компания «Штиль » выпускает приборы, рассчитанные на небольшую мощность (3600, 6000 и 9000 ВА, серия R-3). Трёхфазный стабилизатор в одном блоке содержит три однофазных, по сути, это 3 однофазных аппарата. Российские производители Progress , Lider , «Штиль» выпускают трёхфазную технику по следующей схеме: три однофазных стабилизатора, объединённых общим блоком или стойкой.

После того, как определено количество фаз, нужно выбрать необходимую мощность. Оптимальный вариант: покупатель знает, какая мощность должна быть у прибора, например, известна общая разрешённая мощность подключения дома к магистральной линии электропередач.

Второй вариант определения мощности: исходя из силы тока входных автоматов. Силу тока в амперах нужно умножить на 220 В, и получим мощность в Вт. В трёхфазной сети мощность следует умножить на 3, получится суммарная трёхфазная мощность.

Третий способ: вычислить суммарную мощность всей бытовой техники в помещении. При подсчёте учитывается фактор пусковых токов. Пусковые токи дает техника, в составе которой есть электрический двигатель, насос или компрессор. Двигатель при запуске потребляет мощность в 2-6 раз больше номинальной, следовательно, мощность этих электроприборов нужно считать с учетом пусковых токов. Пусковые токи длятся не более секунды, но они существенно влияют на нагрузку, и пренебрегать ими при выборе стабилизатора ни в коем случае нельзя.

Краткий перечень электроприборов, у которых есть пусковые токи:

  • холодильник (примерно 1 кВт при запуске, номинальная мощность — 200-300 Вт) — рекомендуются стабилизаторы Штиль R1200 , Progress 1500T ;
  • микроволновая печь (1,6 — 2 кВт) — можно установить Progress 2000T , Штиль R2000 ;
  • стиральная, посудомоечная машины (2,5 кВт) — стабилизатор мощностью 3000 ВА;
  • глубинные насосы, насосные станции (2,5 — 3 кВт) — подойдет стабилизатор мощностью 5000 ВА;
  • телевизор, кинескопный тип (300 Вт) — Штиль R600 ;
  • телевизор ЖК (250 — 300 Вт) — Штиль R400 или R600 ;
  • аудио- и видеотехника — высокоточные стабилизаторы «Штиль» серии SPT , Progress серии L , ;
  • котлы отопления (150-200 Вт) — быстродействующие стабилизаторы на симисторах Штиль R400ST , R600ST и R1200SPT .

Следующий шаг при выборе стабилизатора — уточнение проблемы с напряжением в магистральной сети.

Если отклонение параметров от нормы небольшое (входящее напряжение находится в границах 155 — 260 В), то устанавливают базовые стабилизаторы «Штиль» R серии, Progress T серии, Lider W-30, Volter — Ш серии. Когда напряжение слишком низкое или высокое, то следует рассмотреть аппараты специализированных серий: Progress TR (Псков), Lider W-50, Volter ШН или Ш.

Если наблюдается мерцание света, или в помещении много дорогой и требовательной к качеству напряжения техники, то нужно рассматривать стабилизаторы напряжения с высокой точностью работы и небольшой погрешностью: Progress серий L или SL, Lider серий SQ или SQ-I, Volter серий ПТ или ПТТ.

Если в доме установлено большое количество техники с пусковыми токами: глубинные насосы, холодильники, мойка Kohler и т.д., то рекомендуем рассмотреть стабилизаторы, выдерживающие большие перегрузки по пусковым токам. К таким аппаратам относят устройства Progress серий , и SL-20 , в которых установлено 2 трансформатора, благодаря чему они могут выдерживать перегрузку в размере 400 %.

Все серии украинских стабилизаторов Volter имеют возможность выдерживать перегрузку до 300 %. Стабилизаторы, изготовленные на заводе Varcon (Москва), могут кратковременно работать с перегрузкой, превышающей номинальную мощность в 7 раз.

После того, как были описаны алгоритмы подбора мощности стабилизатора напряжения, приведены примеры подбора моделей аппаратов, нужно определиться, где он будет установлен: в отапливаемом, неотапливаемом помещении или на улице. При температуре ниже нуля могут работать украинские стабилизаторы Volter (до −40 ˚С), итальянские однофазные стабилизаторы Vega (до −25 ˚С), трёхфазные итальянские аппараты Orion и Orion Plus (до −25 ˚С).

Если требуется установить аппарат на улице, то лучше приобрести металлический шкаф с вентиляционными отверстиями. Однако внутрь не должны попасть пыль и вода. Лучше всего установить в шкафу стабилизаторы Volter, они лучше других работают в сложных климатических условиях. Остальные производители качественной техники изготавливают стабилизаторы для работы при температуре выше нуля, но их можно устанавливать в неотапливаемом помещении.

Если вы уезжаете зимой с дачи, то стабилизатор лучше отключить и утеплить непыльным теплоизоляционным материалом, чтобы вентиляторы не забились пылью. Когда вы будете приезжать на дачу в зимний период, то сначала нужно просушить и прогреть помещение, а затем включить аппарат. Если вы включаете обогревательные приборы, то лучше включать электропитание через байпас, а после прогрева переключить байпас на работу через стабилизатор напряжения.

Есть второй способ эксплуатации стабилизаторов при температуре ниже нуля, не приспособленных для этого: аппарат должен всегда находиться под нагрузкой и в помещении с минимальной циркуляцией воздуха. Элементная база и трансформатор будут прогревать воздух внутри стабилизатора напряжения, также рядом со стабилизатором можно разместить небольшой нагревательный элемент или мощную лампу накаливания.

Какой тип стабилизатора напряжения выбрать? Есть два типа аппаратов: электромеханические и электронные, у каждого типа есть свои плюсы и минусы.

Принцип работы электромеханических аппаратов заключается в перемещении токосъёмного контактора по обмотке автотрансформатора. Достоинства данного типа агрегатов:

  • высокая точность работы (+/- 0,5 %),
  • плавность стабилизации,
  • надёжность,
  • работа при температуре ниже 0 ˚С,
  • выдерживают перегрузку до 200 % от номинальной мощности.

Их недостатки:

  • меньшая скорость срабатывания по сравнению с электронными стабилизаторами,
  • износ токосъёмных контакторов (периодически их нужно будет менять, но замену можно произвести быстро и недорого).

Также «слабым звеном» электромеханического стабилизатора является сервопривод (электромотор). Его замена не затруднительна, и ломается он крайне редко. Надёжные электромеханические стабилизаторы выпускает итальянская компания Ortea под торговыми марками Vega, Orion и Orion Plus.

Электронные стабилизаторы напряжения переменного тока

Обмотки автотрансформатора включаются и выключаются с помощью полупроводниковых элементов симисторов или тиристоров, у более дешёвых моделей — с помощью электронных реле. Их достоинства: высокая скорость срабатывания за счет работы полупроводниковых ключей, долговечность ключей, в конструкции нет механических узлов, испытывающих износ. Недостатки: ступенчатая стабилизация, чувствительность к условиям работы полупроводниковых элементов.

По принципу установки можно выделить три типа стабилизаторов: напольные; напольные с возможностью крепления на стену; напольные с возможностью установки на коммутационную стойку или на стену.

К стабилизаторам можно приобрести дополнительные аксессуары: байпас, коммутационную стойку и БКС. Байпас — это устройство, с помощью которого можно переключать переменный ток: он идёт через стабилизатор напряжения или в обход, ток переключается с помощью ручного тумблера на байпасе. Данное устройство нужно применять, когда требуется пустить ток в обход стабилизатора при электроснабжении от генератора.

Второй пример: работа со сварочным аппаратом. В этом случае байпас даёт возможность проводить какие-либо работы с стабилизатором, профилактический ТО, ремонт или замену проводки без коммутации. Коммутационные стойки применяют для трёхфазной сети, они обеспечивают удобство монтажа 3 стабилизаторов (каждый на свою фазу, у стойки общая клеммная колодка). Есть 4 вида стоек:

  • пустая — для монтажа и коммутации;
  • с байпасом;
  • с байпасом и БКС;
  • с БКС без байпаса. БКС — блок контроля сети, который отключает все стабилизаторы, если прекращается электроснабжение на одной фазе, или если параметры напряжения выходят за границы стабилизации. БКС нужен, когда к трёхфазному стабилизатору подключают трёхфазную нагрузку в 380 В: станок, насос, печку. Для этого вида аппаратуры требуется постоянное питания по всем трём фазам, прерывание снабжения хотя бы на одной из фаз исключено. Для частных домов, к которым подводятся три фазы, но внутри дома разводка выполнена по однофазной схеме, установка БКС не требуется. Залогом долгой работы стабилизатора напряжения являются следующие условия:
  • соответствие температурного режима окружающей среды,
  • работа без перегрузок по мощности,
  • правильно подобранный тип стабилизатора (соответствует условиям параметров напряжения в стационарной электросети).

Главный показатель качества и надёжности — оптимальная цена стабилизатора напряжения. Если показатели работы аппарата указаны высокие, но при этом он отличается низкой стоимостью, то значит произведен в Китае, даже если в графе «Производитель» указана другая страна. Китайские стабилизаторы заказывают российские компании, и их поставляют исключительно в СНГ, требований по качеству нет, кроме одного: минимально возможная цена. Качественную технику для стабилизации напряжения выпускают в России, Италии и Украине, дешёвую — в Китае. В других странах нет заводов по производству стабилизаторов, есть лишь торговые марки, которые там зарегистрированы. Качественный стабилизатор напряжения переменного тока — это основной элемент безопасности вашего дома, электрической техники, залог спокойной и комфортной жизни. Не экономьте на безопасности!

Нажмите, чтобы ознакомиться с правилами

Дорогие друзья!

Здесь Вы можете задать любой интересующий Вас вопрос, который касается электрики, электромонтажа и пр. Чаще всего задаются одни и те же вопросы — сначала загляните в раздел «Часто задаваемые вопросы» . Если Вы не желаете, чтобы вопрос был виден, то вполне можно написать мне лично или задать вопрос в моей группе ВКонтакте .

Чтобы задать вопрос Вам потребуется регистрация на сайте или авторизация для уже зарегистрированных пользователей.

Чтобы получить точный и правильный ответ нужно грамотно задать вопрос!

Задавая вопрос — не спешите! Тщательно его обдумайте. При качественной формулировке вопроса Вы получите более полный ответ, а значит, не придется многократно переспрашивать и уточнять. В тело вопроса Вы можете вставить изображение (это чаще касается эл.щита, схем на бирках электропечей, разводки и пр.).

И, пожалуйста, не забудьте представиться. Подробностей не нужно, назовитесь как-нибудь, ведь всегда приятно общаться не с пробелом:) Не забывайте и о знаках препинания в предложениях, не пишите сплошным текстом, я не телепат!

После заполнения предложенных форм, Ваш вопрос поступит мне на модерацию. После изучения вопроса и дальнейшего ответа, Вам на электронный адрес придет уведомление о положительном результате.

Всегда на связи, Александр

24-07-2014, 22:20 |

Здравствуйте. в частном доме стоит общий стабилизатор ресанта 12квт можно ли использовать бензогенератор просто говорят, что БГ нельзя перед стабилизатором ставить подскажите как нужно

ОТВЕТ:
Здравствуйте!
Все зависит от бензогенератора (Вы не указали марку). Если он хорошо держит напряжение, то одновременно их использовать не надо. Т.е. при переключении АВР включается только генератор. А так, одновременное подключение генератора и стабилизатора не рекомендуется (хотя народ и ставит стабилизатор после генератора). Лично я не владею полной информацией по данному вопросу, а обращаюсь к более узкому специалисту, который имеет оперативную и полную информацию о марках генераторов, которые довольно часто обновляются и который имеет более полную статистику по качеству и работе генераторов. Вам лучше обратиться к тем, кто не только продает генераторы, но и производит установку, например сюда.

Совместимость генератора и стабилизатора напряжения.

Ни для кого не будет новостью, что электрогенераторы — один из основных источников резервного электропитания в случае перебоев или отсутствия подачи напряжения в электросети. Временное обеспечение электроэнергией и есть их основной задачей. Запуск электрогенераторов выполняется вручную, или автоматически с применением блока автоматического ввода резерва «АВР». При использовании генератора с ручным запуском, владелец генераторной станции должен сам запускать генератор вручную или ключом, кнопкой (в случае наличия в генераторе системы электростартера). Это создает определенные неудобства в пользовании электростанцией, в условиях, если электростанция находится в другом помещении или на определенном расстоянии.

Более комфортным и эффективным будет все-таки использование генераторных станций с автоматическим запуском, что позволит системе работать полностью в автономном режиме, без присутствия человека. Система автоматического запуска самостоятельно произведет запуск электрогенератора и своевременное необходимое отключение генератора при подаче электронапряжения в промышленной сети. Система автоматического запуска генератора автономно анализирует параметры напряжения сети, т.е. при выходе сетевого напряжения за рабочий диапазон или при отключении электроэнергии, автоматика электрогенератора автоматически отключит подключенных к схеме потребителей от внешней электросети, запустит генераторную станцию и осуществит подачу электроэнергии от него. Как только напряжение во внешней сети появится или войдёт в допустимые пределы, система автоматики переключит подключенных потребителей на внешнюю сеть и произведет отключение генераторной станции.

В процессе эксплуатации электростанций с системой АВР возможно возникновение ситуации, когда автоматика будет пытаться переходить на подачу электроэнергии от резервного источника (генератора), а во внешней сети напряжение ещё подаётся. Такая ситуация возможна в случае, если напряжение в электросети присутствует, но с значением выходящим за допустимые пределы (диапазон). Как правило, это бывает при очень заниженном напряжении. Автоматика электрогенераторов срабатывает при скачках напряжения ниже 195В и выше 235В.

Именно в данной ситуации настоятельно рекомендуем Вам использовать генераторную станцию «в одной схеме» с стабилизатором напряжения. В таком случае удастся избежать лишних и ненужных запусков электростанции. Данная связка стабилизатора и генератора поможет исправить ситуацию с напряжением в промышленной сети. При наличии напряжения в сети, которое выходит за допустимый рабочий диапазон автоматики генератора, стабилизатор корректно отрегулирует его до стабильного 220В (или 380В в случае использования трехфазной сети) с довольно большой точностью (будет зависеть от типа стабилизатора напряжения). В итоге это позволит автоматике генератора работать стабильно с нормальным напряжением, без лишних и ненужных срабатываний.

Facebook

Twitter

Вконтакте

Google+

Обслуживание

Стабилизатор напряжения бортовой сети автомобиля

Предлагаемый широтно-импульсный стабилизатор напряжения бортовой сети автомобиля содержит те же узлы, что и его прототип [1], но за счёт применения микросхемы К561ТЛ1 (четыре триггера Шмитта) удалось мультивибратор и формирователь коротких импульсов собрать всего на одном её элементе, кроме того, использование мощного полевого p-канального транзистора позволило упростить узел управления выходным ключом.

Схема стабилизатора напряжения бортовой сети автомобиля показана на рисунке. Оно содержит стабилизатор напряжения питания микросхемы DD1 на стабилитроне VD1 и резисторе R4; генератор коротких импульсов низкого логического уровня с частотой следования 300…600 Гц на элементе DD1.1; времязадающий конденсатор С4, подключенный параллельно участку коллектор-эмиттер транзистора VT1; управляемый генератор тока на транзисторе VT2; измерительное устройство, как и в прототипе, с фильтром нижних частот, содержащее резистивный делитель напряжения R8—R10, стабилитрон VD5 и конденсатор С5; выходной мощный полевой транзистор VT3 и защитный диод VD6.

После подачи питания конденсатор С1 заряжается через резистор R4 до напряжения стабилизации стабилитрона VD1, начинает работать генератор коротких импульсов с частотой следования 300…600 Гц.

Рассмотрим один период работы стабилизатора, начиная с того момента, когда на выходе триггера DD1.1 появляется низкий логический уровень. Транзистор VT1 открывается током зарядки конденсатора СЗ и подаёт на входы элемента DD1.2 высокий уровень, одновременно разряжая конденсатор С4. На выходе элемента DD1.2 появляется низкий уровень, открывающий полевой транзистор VT3. Ток с вывода «15″ стабилизатора протекает через вывод «67″ и обмотку возбуждения генератора. По окончании импульса на выходе DD1.1 появляется высокий уровень, транзистор VT1 закрывается. Далее начинается зарядка конденсатора С4 током от управляемого генератора на транзисторе VT2 через резистор R5. Когда напряжение на конденсаторе С4 достигнет нижнего порога переключения триггера Шмитта DD1.2, он переключится, и на его выходе появится высокий уровень, закрывающий транзистор VT3. Дальнейшая зарядка конденсатора С4 (напряжение на нём ограничено диодом VD4 для защиты входных цепей микросхемы DD1) не. вызывает переключения элемента DD1.2.

Далее, когда на выходе генератора вновь формируется импульс низкого уровня, процессы повторяются.

Стабилизация напряжения осуществляется изменением относительной длительности включённого состояния полевого транзистора VT3 — этим процессом управляют измерительное устройство и генератор тока. При увеличении напряжения на выводе «15″ стабилизатора относительно вывода «Общий» увеличивается ток коллектора транзистора VT2. Конденсатор С4 начинает заряжаться быстрее, а относительная продолжительность включённого состояния транзистора VT3 уменьшается и, следовательно, уменьшается средний ток, протекающий через обмотку возбуждения генератора, — выходное напряжение генератора уменьшается.

В случае понижения напряжения на выводе «15″ устройства ток коллектора транзистора VT2 уменьшается, а время зарядки конденсатора С4 увеличивается. Относительная длительность включённого состояния транзистора VT3 и средний ток, протекающий через обмотку возбуждения генератора, увеличиваются, следовательно, увеличивается и выходное напряжение генератора.

Конструкция и детали стабилизатора напряжения

В стабилизаторе напряжения можно применить постоянные резисторы МТ, МЛТ, ОМЛТ, С2-23, С2-33, подстроечный резистор СП5-16, СП5-2, СП5-3, СП5-2В, СП5-ЗВ, СП5-2ВА, СП5-ЗВА или как в [1 ] СПО-05.

Конденсатор С1 — импортный фирм Jamicon, Samsung, Gloria, CapXon, остальные — плёночные К73-17 на напряжение 63 В.

Диоды 1N4148 можно заменить на КД522Б, КД510А, Д219А, Д223А, Д223Б, 1 N4001 — 1 N4007, диод КД209А — на КД212А, КД237А, КД213А.

Вместо транзистора КТ315Г можно использовать КТ315 А—КТЗ15В, КТ315Д—КТ315И, КТ3117А, а вместо КТ361Г — КТ361А— КТ361В, КТ361Д—КТ361И, КТ313А, КТ313Б.

Полевой транзистор RFP8P08 заменим на IRF5210, IRF6215, IRF9530, IRF9540, IRF9140.

Стабилитроны Д818Е можно заменить на Д818Д, КС191Д, КС 191Р, КС191Н, КС 191 У, КС191П, КС190В, КС190Г, КС190Д, а микросхему К561ТЛ1 — на К561ТЛ1 А, 564ТЛ1 или импортный аналог.

Вследствие простоты стабилизатор собран на отрезке макетной платы, который размещён в корпусе от реле-регулятора РН1. Возможно использование корпусов от регуляторов 12.3702, РН-2 [2]. Плата закреплена на стойках. Мощный полевой транзистор VT3 необходимо установить через изолирующую теплопроводящую прокладку на основание корпуса, предварительно смазав поверхности теплопроводящей пастой.

Налаживание стабилизатора напряжения

Для налаживания стабилизатора необходимы мультиметр, регулируемый стабилизированный источник питания с выходным напряжением 12… 15 В и максимальным током нагрузки не менее 1 А и осциллограф.

Стабилизатор напряжения подключают к источнику питания с установленным выходным напряжением 12 В. Осциллографом проверяют наличие импульсов частотой 300…600 Гц на выходе элемента DD1.1. Длительность коротких импульсов низкого уровня должна быть 100…300 мкс. Если частота и длительность импульсов выходят за указанные пределы, подбирают конденсатор С2. Далее проверяют наличие на коллекторе транзистора VT1 пилообразных импульсов с максимальным положительным напряжением около 9 В и отрицательным 0,5…0,7 В (относительно вывода 7 микросхемы DD1). Затем вход осциллографа подключают к выходу элемента DD1.2 — должны наблюдаться прямоугольные импульсы размахом около 9 В. Плавно повышают напряжение источника питания — в определённый момент длительность импульса высокого уровня должна резко увеличиться. Это значит, что напряжение, установленное на выходе источника питания, очень близко к напряжению стабилизации стабилизатора.

Проверяют длительности перепадов импульсов — они должны быть в пределах 5…20 мкс; короткие перепады вызывают излишний нагрев генератора Г221, а длинные — нагрев мощного транзистора VT3. При необходимости подбирают резистор R7. Это может потребоваться в случае замены полевого транзистора RFP8P08 другим, из числа рекомендованных из-за другой ёмкости затвор—исток.

Далее между выводом «67″ и общим проводом (корпусом) подключают лампу накаливания на напряжение 12 В мощностью 15 Вт. На выходе источника питания устанавливают напряжение 14,2 В. Вращая движок подстроечного резистора R9, находят момент резкого изменения яркости свечения лампы. Оставляют движок в положении, когда лампа погаснет.

Далее стабилизатор устанавливают на автомобиль и окончательно налаживают, как рекомендовано в [1].

ЛИТЕРАТУРА

1. Тышкевич Е. ШИ регулятор напряжения.

2. Синельников А. X. Электронные приборы для автомобилей.

Похожие радиосхемы и статьи:

Совмещаем стабилизатор напряжения и генератор

 

В настоящее время стабилизатор напряжения активно используется в ситуации, когда есть перебои и скачки напряжения в обычной электросети. По сути, основным его предназначением является передача электрического тока именно к тем потребителям, которые отключены от основного источника питания. Общий запуск генератора может осуществляться полностью автоматически (используется специальный АВР) или в ручном режиме. Автоматическое включение/отключение генератор производит в прямой зависимости от текущих параметров напряжения в электросети. Стоит заметить, что когда напряжение в основной сети появляется или входит в допустимые пределы, то автоматика просто переключает всех потребителей на основную сеть и потом отключает двигатель у генератора.

В ходе практической эксплуатации электрогенераторов случаются ситуации, когда автоматика уже просто переходит на подачу электричества от резервного источника (специального генератора), а в основной сети напряжение еще есть. Все это наглядно свидетельствует о том, что рабочее напряжение в такой электросети хотя и есть, но его реальное значение вышло из допустимых пределов. Как правило, автоматика современных электрогенераторов срабатывает при изменениях рабочего напряжения ниже значения 195 и свыше 235В. Важно знать, что в такой ситуации крайне желательно использование применение специального генератора «в общей связке» с высококачественным стабилизатором. В подобном случае удается избежать совсем ненужных включений специального генератора, а просто исправить текущую ситуацию именно благодаря высококачественному стабилизатору напряжения, который, по сути, на выходе помогает получить конечным потребителям классические 220 или же промышленные 380В с довольно высокой точностью, а именно от 1,0…15,0% в прямой зависимости от конкретной модели стабилизатора.

Важно знать, что благодаря связке стабилизатора напряжения и специального генератора, конечное оборудование у потребителей находится под очень эффективной и надежной защитой. Стоит особо упомянуть то факт, что перед установкой стабилизатора напряжения необходимо произвести точный расчет общего потребления энергии и также точно выяснить, какое оборудование будет продолжать свою работу при помощи генератора именно совместно со стабилизатором. Иные потребители будут просто отключаться.

Схемы подключения генератора

Варианты и схемы применения полуавтоматического управления генератором резервного питания + защита электросети, показаны для модификации 6,5кВт.

Полуавтоматическое управление легко позволяет подключить генератор к сети дома, в самых различных вариантах применения.

Полуавтоматическое управление генератором полностью заменяет ручной переключатель фаз сеть – генератор (рубильник включения резерва, ручной включатель резерва — РВР) и так же может использоваться как схема защиты генератора от встречного тока электросети.

Со стороны электросети в блоке полуавтоматического управления встроена защита от перенапряжений, стандартный диапазон которой составляет 140÷255В. Поэтому стабилизатор напряжения необходимо подключать перед блоком управления, при подключении электрогенератора к дому.


Рис. 1. Схема подключения электростанции со стабилизатором напряжения и с выделением резервной сети.

Как подключить генератор к сети видно из приведенной схемы. В этой схеме общее потребление от сети может значительно превышать мощность резервного электрогенератора и даже предельную мощность нагрузки самого блока полуавтоматического управления, так как часть энергии идёт напрямую. Но для этого необходимо заранее выделить резервную линию. При пропадании электросети необходимо только запустить электрогенератор резервного питания. И нет опасности перегрузки электрогенератора, так как к выделенной резервной линии заранее подключены только самые необходимые приборы, например, газовый котел отопления.

Из этой схемы может быть исключён стабилизатор, и вся электроэнергия может идти через контакты полуавтоматического управления генератором.

Полная мощность нагрузки, проходящая через контакты полуавтоматического управления от электрогенератора или от внешней сети не должна превышать паспортных значений.

Если необходимо подключение мощной нагрузки, то можно применить модификации на 11-13,5кВт или установить мощные контакторы, далее приведена схема подключения дизель генератора большой мощности.

Рис. 2. Схема увеличения мощности блока полуавтоматического управления генератором с помощью магнитных пускателей, применяется для подключения электростанции большой мощности к сети дома, офиса или предприятия.

Мощность нагрузки ограничена только допустимым током через магнитные пускатели. Блок полуавтоматического управления в данном случае используется только как управляющее устройство, ток нагрузки через него не идет (при разделении цепей нагрузки в данном случае через него можно запитать до 6 кВт).

Положение контактов указано при отсутствии внешней сети, по схеме видно, что есть электрическая блокировка для исключения одновременного включения катушек магнитных пускателей (в данном случае может быть включен только пускатель генератора). Причем даже при произвольном залипании контактов промежуточного реле исключается возможностьодновременного включения магнитных пускателей. Кроме этого магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному замыканию контактов магнитных пускателей. Это необходимо для полного исключения возможности встречного включения электрогенератора с внешней сетью.

При низких напряжениях электросети необходимо на входе электросети ставить стабилизатор. Это связано с тем, что магнитные пускатели и промежуточные реле, как правило, нормально работают при напряжениях выше 170 В.

Примечание: Контактная система магнитных пускателей является громоздкой по сравнению с контактами реле, имеет разные задержки срабатывания и отпускания, поэтому при применении схемы Рис №2, возможны проблемы с быстродействием переключения на электросеть, например возможен сброс компьютеров…

Управление генератором может применяться для подключения однофазного генератора к трёхфазной электросети, естественно только для однофазных потребителей. В данном случае на каждую фазу подключается одно изделие, а для остановки генератора используется нужная комбинация из трёх независимых перекидных контактов реле.
Рис. 3. Схема подключения однофазного резервного генератора к трёхфазной сети.

Контакты управления, предназначенные для остановки дизель генератора, соединены последовательно. При этом при пропадании хотя бы одной фазы можно завести генератор, причём энергия от него будет подаваться, только на одну отсутствующую фазу, оставшиеся фазы будут питаться от электросети. И соответственно дизель генератор будет работать, пока электроэнергия не появится на всех фазах.

После полного отсутствия напряжения подключение фаз будет происходить последовательно по мере синхронизации соответствующей фазы электросети с электрогенератором. После синхронизации последней фазы будет выработана команда для остановки генератора.

При параллельном соединении управляющих контактов электрогенератор можно будет завести только после пропадания всех фаз. Соответственно, при синхронизации генератора с любой фазой электросети будет переключение на эту фазу и автоматическая остановка электрогенератора. Другими словами, в этом случае при наличии хотя бы одной фазы запуск электрогенератора блокируется.

То есть пользователь сам может выбрать нужный ему алгоритм работы генератора в зависимости от наличия количества фаз электросети. Так же на основе схемы рис. 3 можно неограниченно увеличить мощность нагрузки, если нагрузка разбита на линии группы не более 6,5 кВт (13,5 кВт) в каждой, то на каждую линию ставится блок полуавтоматического управления генератором и все блоки независимо друг от друга параллельно работают.

Полуавтоматическое управление электрогенератором резервного питания также может применяться как полностью автоматический переключатель с основной фазы на резервную фазу — АВР, с возвратом на приоритетную фазу через минуту после появления на ней напряжения в диапазоне 155-250В.
Рис. 4. Схема подключения однофазного резервного генератора к трёхфазной сети. С выделением резервной фазы.

В данном случае фазы могут быть от разных (несинхронных) источников. При наличии хотя бы одной фазы у нас полностью автоматический переключатель фаз – АВР (Автомат Ввода Резерва), генератор остановлен, а на резервной фазе есть напряжение. Эта схема может применяться для аварийного питания газового котла отопления. Защита есть по всем трем фазам, кроме электрогенератора. Только при пропадании всех трех фаз разрешается запуск электрогенератора.

При таком применении необходимо уменьшать мощность нагрузки блоков полуавтоматического управления генераторов или применять контакторы Рис. 2.

Полуавтоматическое управление генератором позволяет обеспечить удалённую связь с аварийным электрогенератором и передачу энергии и управления всего по трем жилам кабеля. Так же в некоторых случаях позволяет сделать оптимальную разводку электросети с минимумов длины проводов и сэкономить бесполезные потери электроэнергии.
Рис. 5. Схема подключения бензогенератора с минимумом соединительных проводов, возможная длина более 100 метров.

Дополнительно применяется промежуточное реле на колодке с обмоткой 220В. Применение дополнительного реле иногда необходимо, если остановка электрогенератора производится ключом и к колодке ключа подходит 4 провода, то в этом случае для надёжной остановки необходимо закоротить 2 не связанные пары проводов. Если остановка осуществляется тумблером или ключом, к колодке которого подходит 2 провода то дополнительное реле не нужно (кроме уделённой связи по 3 жилам провода).

Так же имеется простая возможность остановки электрогенератора путём имитации срабатывания датчика масла, для этого провод, идущий в картер двигателя, соединяют с корпусом.
Рис. 6. Схема подключения генератора к сети с автоматического включения дежурного освещения.

При применении дополнительного реле есть возможность автоматически подключать резервное светодиодное освещение. При этом желательна система подзарядки аккумулятора и его защита от полного разряда.

Все приведенные схемы обеспечивают подключение резервного генератора для правильной работы фазозависимых газовых котлов отопления. Примеры схем для подключения инвертора или ИБП (UPS) к сети дома можно скачать в статье Нестандартные схемы использования полуавтоматики

.

Подключение генератора и стабилизатора

Для работы с бензиновым (или дизельным) электрогенератором можно приобрести только гибридный стабилизатор.
Любой другой тип стабилизатора при совместной работе с генератором может «качнуться» (в результате либо стабилизатор, либо генератор сгорит).

Его также можно использовать с генератором, если вам не нужно брать большую мощность от газогенератора (например, несколько лампочек).
Записать мощный насос или холодильник с инвертора уже не получится.

При выборе стабилизатора для электрогенератора необходимо учитывать как мощность, потребляемую нагрузкой, так и максимальную мощность, которую может выдать генератор.
Если стабилизатор слишком мощный, то его возможности не будут задействованы в полной мере (генератор не даст больше мощности, чем может).
Если стабилизатор слишком слабый, то он отключится от перегрузки (или просто выйдет из строя).
Самым оптимальным выбором будет стабилизатор «следующего рейтинга»: если у вас есть генератор, например, на 3 кВт, то и надо.

Ниже вы можете выбрать стабилизаторы, которые подойдут для вашего генератора или автономной электростанции.


Отличным дополнением к покупке генератора станет покупка стабилизатора напряжения Volter, который сделает систему еще более надежной и экономичной.

Генераторы напряжения используются при ненадежной системе центрального электроснабжения, то есть при частых скачках напряжения и перебоях в его подаче. Генератор обеспечивает электричеством те помещения, которые были отключены от электросети.Но в некоторых случаях при резком снижении напряжения наблюдается ложное срабатывание АВР, то есть запускается генератор, когда он еще не нужен. Подключение стабилизатора к генератору решает эту проблему.

Принцип работы генератора

В зависимости от принципа работы генераторы подразделяются на две группы. Устройства с ручным управлением должны быть активированы самим владельцем после обнаружения проблем в работе основной электросети.Этот метод менее эффективен, если генератор должен питать высокочувствительное оборудование: неизбежно пройдет некоторое время между отключением электроэнергии и запуском генератора. Таким способом нельзя обеспечить защиту от скачков напряжения. Поэтому генераторы этого типа используются все реже.
В настоящее время генераторы , работают автоматически: устройство контролирует состояние источника питания и автоматически включается в случае сбоя. При восстановлении электросети генератор автоматически отключается, и питание устройств снова передается во внешнюю сеть.

Эта система позволяет обеспечить бесперебойное питание для различных устройств, но у нее есть один недостаток: генераторная установка может быть активирована, если внешняя электросеть исправна. Такое самопроизвольное переключение становится возможным при резком падении напряжения в сети лишь на короткий промежуток времени. Автоматическая система, контролирующая включение и выключение генератора, ошибается и принимает это падение напряжения за полное отключение.
Использование генератора в сочетании со стабилизатором тока , который подключается к сети перед генератором, полностью решает эту проблему.Если он установлен со стабилизатором , генератор будет запускаться только при фактическом отключении электроэнергии. Генератор со стабилизатором не включится при незначительных колебаниях сетевого напряжения.

Как выбрать регулятор напряжения?

При покупке регулятора напряжения важно правильно рассчитать необходимую мощность устройств. Обычно для этого находят сумму мощностей всех электроприборов, которые будут подключены к сети, и добавляют к ней еще 25%.Поэтому перед покупкой стабилизатора к генератору потребуются некоторые расчеты. Кроме того, необходимо учитывать разницу между активными и реактивными типами нагрузок.

Активную нагрузку на сеть создают устройства, вырабатывающие тепло — электрические плиты, обогреватели, утюги и другие подобные устройства. Реактивные нагрузки — это нагрузки на устройства, которые не только выделяют тепло, но и решают другие проблемы. Для реактивных нагрузок расчет мощности немного сложнее: имеющийся показатель делится на коэффициент cosφ.Соответственно меняется и единица измерения: мощность устройств с реактивной нагрузкой меняется уже в Вольтах, а не в Ваттах.

Также генераторы классифицируются по типу используемого топлива. Для кого-то подойдет дизель, а другие работают исключительно на бензине. Дизель-генераторы дороже аналогичных бензиновых, но при этом потребляют меньше топлива и более надежны в эксплуатации. Какой вариант подойдет для конкретного случая — решать вам, а в сложных случаях стоит проконсультироваться со специалистом.

Стоимость покупки генератора со стабилизатором напряжения полностью оправдана и быстро окупается, поскольку обеспечивает работоспособность вашего оборудования в любой момент и предотвращает выход из строя чувствительного оборудования при скачках напряжения.

Генераторы напряжения

применяются в случаях ненадежной работы центральной системы электроснабжения, при частых скачках и скачках напряжения. Генератор подает электроэнергию в места, где нет электричества, но в случае резкого падения напряжения происходит ложное срабатывание АВР, то есть генератор запускается, когда он еще не нужен.Чтобы этого не произошло, стабилизатор подключается по схеме перед генератором.

Работа генератора

По принципу действия генераторы делятся на типы:

  1. Ручное управление.
  2. С автоматическим управлением.

Ручные генераторы управляются вручную при обнаружении проблем с питанием от сети. Этот способ недостаточно эффективен, так как при подключении высокочувствительных устройств между отключением электроэнергии и запуском генератора проходит много времени.Вы не можете предотвратить скачки напряжения с помощью генератора. Поэтому ручные генераторы не очень популярны.

Генераторы с автоматическим включением, отслеживая работу электрической сети . .. Автоматически запускается при отключении сети. При нормализации сети генератор сразу отключается самостоятельно, а работа всех электрических устройств переключается на основную сеть.

Такая автоматика дает возможность обеспечивать постоянным питанием различные устройства … Однако у нее есть недостаток: генератор может запускаться даже при исправной основной сети.Такое включение возможно при резком падении напряжения в сети на короткое время. Автоматика срабатывает по ошибке и принимает это снижение подачи электроэнергии за отключение сети.

Использование генератора вместе со стабилизатором, подключенным к сети перед генератором, решает эту проблему. Теперь генератор будет запускаться только при фактическом отключении электроэнергии. Стабилизатор предотвратит запуск генератора при небольших колебаниях напряжения питания в сети.

Выбор стабилизатора для генератора

Перед покупкой стабилизатора напряжения необходимо произвести правильный расчет мощности устройства. В этом случае сложите мощности всех планируемых к подключению устройств и добавьте резерв около 25%. Также нельзя забывать о разнице между реактивной и активной нагрузкой.

Активная нагрузка возникает в сети от устройств, выделяющих тепло. Это такие устройства, как обогреватели, плиты, духовки, утюги и другие устройства.Реактивная нагрузка возникает в сети от устройств, которые решают другие проблемы, помимо тепловыделения. Для них мощность вычислить сложнее. Мощность, полученная первым способом, делится на cos φ. Единица измерения также меняется. Реактивная мощность устройств измеряется в вольт-амперах, а не в ваттах.

Генераторы

делятся на типы в зависимости от используемого топлива. Некоторые из них работают на дизельном топливе, а другие — только на бензине. Генераторы с дизельным двигателем дороже бензиновых, но они потребляют меньше топлива и более надежны в эксплуатации.Какой генератор подойдет вам — каждый решает сам. Если возникнут трудности с выбором, лучше обратиться за консультацией к специалистам.

Ваши затраты на генератор быстро окупятся, поскольку стабилизатор обеспечивает работу ваших устройств в любых режимах и предотвращает их выход из строя в аварийных режимах.

Предлагаем к продаже отличные однофазные и трехфазные электрические устройства высокой надежности и качества, обеспечивающие круглосуточную безопасность дорогостоящих генераторных установок в сетях 220 и 380 Вольт.Основная сфера применения таких специализированных устройств — элитные коттеджи, частные дома и загородные коттеджи. Рекомендуемая к заказу точность вывода для серий составляет 3-10%. Все функции этих популярных диапазонов 2, 3, 5, 8, 9, 10, 12, 15, 20 и 30 кВА (кВт) полностью автоматические. Помимо широкого спроса на такое электрооборудование в бытовой сфере, они хорошо зарекомендовали себя благодаря своим хорошим техническим характеристикам и безотказной работе при непрерывной эксплуатации в офисных помещениях, торговых залах и промышленных объектах.Купить стабилизатор напряжения для генератора можно в Москве и Санкт-Петербурге. Все представленные стабилизирующие устройства российского производства компании «ЭТК Энергия» обеспечивают наличие эффективной многоступенчатой ​​защиты и лучшую самодиагностику нового поколения. По способу установки некоторые модели бытовой сборки за счет универсального компактного корпуса имеют возможность работы в настенном и напольном положениях. Для этого такие устройства оснащаются специальными настенными креплениями с тыльной стороны металлического корпуса.По типу сглаживания опасного электропитания премиальные марки автоматов делятся на: недорогие релейные с быстрым откликом, электромеханические, а также гибридные с плавной нормализацией скачков и провалов в электрической сети и электронные (тиристорные). с чистой синусоидальной формой волны.

Трехфазный или однофазный стабилизатор напряжения для генератора оптимально поддержит высококачественное электропитание круглосуточно в случае достаточно больших перегрузок сети.Он обеспечит стабильное выравнивание высокого и низкого электричества, легко подавит электромагнитные помехи и максимально защитит современное оборудование различного назначения от короткого замыкания … Самый высокий критический диапазон (от 65 В до 265 В) находится у высокоточных тиристоров типа Classic. и Ультра. Многие российские электроприборы нашего интернет-магазина имеют тщательно продуманную конструкцию корпуса, благодаря чему легко выдерживают сильные отрицательные температуры (до -30 ° C) и стабильно работают в помещениях с повышенной влажностью воздуха.Купить стабилизатор напряжения для генератора можно в Москве, Санкт-Петербурге по доступной цене. Среди отечественного оборудования для электросетей потребителей переменного тока и напряжений есть абсолютно бесшумные линейки и серии с низким уровнем шума (low noise). Работоспособность на протяжении всего времени работы контролируется специальным микропроцессорным блоком управления. Если нет необходимости регулировать критические падения, то можно использовать режим ручного байпаса, который переключается на электрическое питание напрямую от сети.Цифровой дисплей качественного сетевого оборудования помогает своевременно узнавать важную информацию о текущем состоянии сети. Гарантия на простые и морозостойкие сертифицированные модели (однофазные, трехфазные) для домашнего и промышленного использования предоставляется сроком на 1-3 года.

Перед тем, как выбрать стабилизатор переменного напряжения, нужно понимать, что это за электроаппарат, для чего он нужен. Принцип работы устройства основан на работе автотрансформатора.В зависимости от того, есть ли повышенное или пониженное напряжение в линии электропередачи, автотрансформатор, использующий плату управления, снижает или увеличивает выходное напряжение до 220 В в аппарате и до 380 В на входе с точностью от 0,5% до 7%.

Увеличение или уменьшение параметров напряжения происходит за счет включения определенной обмотки на трансформаторе с помощью ключей переключения на электронных стабилизаторах или установки обмотки трансформатора токосъемного контактора на электромеханическом стабилизаторе.

Устройство выводит на стандартное значение напряжения (220 В или 380 В) только от стационарной линии питания, с определенной погрешностью. В сетевом проводе частота тока составляет 50 Гц, а форма волны напряжения представлена ​​в виде волны (чисто синусоидальной волны). Стабилизатор переменного тока защищает оборудование от коротких замыканий, а некоторые модели — от воздействия грозы. Стабилизатор напряжения нельзя устанавливать в цепи после бытового электрогенератора.

На выходе бензинового или дизельного генератора форма волны напряжения только близка к синусоиде, но имеет пилообразные всплески, частота может отличаться от 50 Гц (от 48 до 52 Гц), напряжение может меняться в определенном диапазоне .Ток от генератора может подаваться напрямую практически на все электроприборы, за исключением отопительных котлов, циркуляционных насосов отопления, дорогостоящего аудио- и видеооборудования и другого оборудования, к которому предъявляются высокие требования к качеству напряжения. Можно поставить перед собой такие устройства, которые из-за двойного преобразования образует на выходе чистую синусоидальную волну … Если после генератора установить стабилизатор напряжения, то он рано или поздно выйдет из строя и перестанет корректировать напряжение, поступающее с генератора. генератор.Ток от генератора нужно подводить в дом в обход либо после стабилизатора, либо через байпас.

Исключение составляют инверторные генераторы, с их помощью они получают переменный ток, по качеству сопоставимый с током от стационарной сети. После этого стабилизация или коррекция формы напряжения не требуется.

Существует только одна модель стабилизатора, способного изменять форму напряжения от генератора и стабилизировать напряжение после электрогенератора — устройство серии СДП-1 / 1-3-220.Он выполнен на базе ИБП on-line и идеально стабилизирует ток как от генератора, так и от стационарной сети, кроме стабилизации напряжения не пропускает высокочастотные импульсы.

Сварочный аппарат нельзя подключать к стабилизатору. Если напряжение в вашей электросети отличается от 220 В, но вам нужно работать сварочным аппаратом, то можно использовать ЛАТР — электромеханический автотрансформатор. Необходимо вручную выставить необходимое значение напряжения, но при этом убедиться, что оно не меняется в сети, иначе оно изменится на выходе после LATR, что может привести к поломке оборудования, подключенного к автотрансформатору.

Первым шагом при выборе стабилизатора является определение количества фаз. Если к дому подходят 2 провода (фаза, нейтраль) — это признак однофазной сети, если 4 провода (три фазы, одна нейтраль) — трехфазная сеть … Соответственно, на однофазной сети нужно установить однофазное устройство, на трехфазное — трехфазный стабилизатор переменного тока.

Если вы хотите защитить все электроприборы в доме, то сразу после счетчика электроэнергии и автоматов защиты от максимального тока устанавливают стабилизаторы.Если нет необходимости в стабилизации напряжения по всему помещению, то можно приобрести маломощные устройства перед телевизором, отопительным котлом, насосом, холодильником или микроволновой печью. Очень часто в частные дома подводят трехфазную сеть напряжением 380 В, а по дому разводят три фазы по 220 В, тогда рационально установить 3 однофазных стабилизатора. Если необходимо защитить трехфазное электрическое устройство (котел, двигатель, автомат), то лучше использовать 1 трехфазный прибор или 3 однофазных стабилизатора на коммутационной стойке с БКС (блок управления сетью).Качественные трехфазные стабилизаторы в одном корпусе производятся итальянской компанией Ortea под торговой маркой ТМ, а российская компания «В» производит устройства, рассчитанные на малую мощность (3600, 6000 и 9000 ВА, серия R-3). Трехфазный стабилизатор в одном блоке содержит три однофазных, по сути, это 3 однофазных устройства. Российские производители «Штиль» выпускают трехфазное оборудование по следующей схеме: три однофазных стабилизатора, объединенные общим блоком или стойкой.

После того, как количество фаз определено, нужно выбрать необходимую мощность.Оптимальный вариант: покупатель знает, какую мощность должно иметь устройство, например, известна общая разрешенная мощность подключения дома к основной линии электропередачи.

Второй вариант определения мощности: исходя из силы тока вводимых автоматов … Сила тока в амперах нужно умножить на 220 В, и мы получим мощность в ваттах. В трехфазной сети мощность следует умножить на 3, вы получите общую трехфазную мощность.

Третий способ: посчитать общую мощность всей бытовой техники в комнате.В расчете учитывается коэффициент пусковых токов. Пусковые токи задаются с помощью электродвигателя, насоса или компрессора. При запуске двигатель потребляет мощность в 2-6 раз больше номинальной, поэтому мощность этих электроприборов нужно учитывать с учетом пусковых токов. Пусковые токи длятся не более секунды, но они существенно влияют на нагрузку, и ими ни в коем случае нельзя пренебрегать при выборе стабилизатора.

Краткий перечень электроприборов, у которых есть пусковые токи:

Следующим шагом при выборе стабилизатора является выяснение проблемы напряжения в магистральной сети.

Если отклонение параметров от нормы небольшое (входное напряжение находится в диапазоне 155 — 260 В), то устанавливаются базовые стабилизаторы «Штиль» серии R, серии Progress T, Lider W-30, Volter — W. серии. При слишком низком или повышенном напряжении следует рассматривать устройства специализированной серии: Прогресс ТР (Псков), Лидер В-50, Вольтер ШН или Ш.

Если есть мерцание света или в помещении много дорогого и требовательного оборудования, то следует учитывать стабилизаторы напряжения с высокой точностью срабатывания и небольшой погрешностью: серии Progress L или SL, Lider SQ или SQ-I серия, серия Volter PT или PTT.

Если в доме установлено большое количество оборудования с пусковыми токами: глубинные насосы, холодильники, мойки Kohler и т. Д., То рекомендуем рассмотреть стабилизаторы, выдерживающие большие бросковые перегрузки по току.К таким устройствам относятся устройства серии Прогресс, и, в которых установлено 2 трансформатора, так что они выдерживают перегрузку до 400%.

Вся серия украинских стабилизаторов Volter имеет способность выдерживать перегрузку до 300%. Стабилизаторы, изготовленные на заводе Varcon (Москва), могут кратковременно работать при перегрузке, превышающей номинальную мощность в 7 раз.

После того, как были описаны алгоритмы выбора мощности стабилизатора напряжения, приведены примеры выбора моделей устройств, нужно определиться, где он будет установлен: в отапливаемом, неотапливаемом помещении или на улице.При минусовой температуре могут использоваться украинские стабилизаторы Volter (до -40 ˚C), итальянские однофазные стабилизаторы Vega (до -25 ˚C), трехфазные итальянские устройства Orion и Orion Plus (до -25 ˚C). Работа.

Если вам необходимо установить устройство на открытом воздухе, лучше приобрести металлический шкаф с вентиляционными отверстиями. Однако пыль и вода не должны попадать внутрь. Лучше всего устанавливать стабилизаторы Volter в шкафу, они лучше других работают в сложных климатических условиях. Другие производители качественного оборудования делают стабилизаторы для работы при плюсовых температурах, но их можно установить и в неотапливаемом помещении.

Если вы выезжаете на дачу зимой, лучше выключить стабилизатор и утеплить беспыльным теплоизоляционным материалом, чтобы вентиляторы не забивались пылью. Приезжая зимой на дачу, нужно сначала просушить и прогреть комнату, а затем включить прибор. Если включить ТЭНы, то питание лучше через байпас, а после прогрева переключить байпас на работу через стабилизатор напряжения.

Есть второй способ работы стабилизаторов при отрицательных температурах, не приспособленный для этого: прибор всегда должен находиться под нагрузкой и в помещении с минимальной циркуляцией воздуха.Элементная база и трансформатор будут подогревать воздух внутри стабилизатора напряжения; также можно разместить небольшой нагревательный элемент или мощную лампу накаливания.

Какой тип регулятора напряжения выбрать? Есть два типа устройств: электромеханические и электронные, у каждого типа есть свои плюсы и минусы.

Принцип действия электромеханических устройств заключается в перемещении токосъемного контактора по обмотке автотрансформатора. Преимущества данного типа агрегата:

  • высокая точность работы (+/- 0.5%),
  • плавная стабилизация,
  • надежность,
  • работают при температурах ниже 0 ˚С,
  • выдерживают перегрузки до 200% номинальной мощности.

Их недостатки:

  • меньшая скорость отклика по сравнению с электронными стабилизаторами,
  • износ токосъемных контакторов (их нужно будет периодически менять, но замена может производиться быстро и недорого).

Также «слабым звеном» электромеханического стабилизатора является сервопривод (электродвигатель).Заменить его несложно, и ломается он редко. Надежные электромеханические стабилизаторы производятся итальянской компанией Ortea под торговыми марками Vega, Orion и Orion Plus.

Электронные стабилизаторы переменного напряжения

Обмотки автотрансформатора включаются и выключаются полупроводниковыми элементами симисторов или тиристоров, в более дешевых моделях — электронными реле. Их преимущества: высокая скорость срабатывания за счет работы полупроводниковых переключателей, долговечность клавиш, в конструкции отсутствуют механические компоненты, подверженные износу.Недостатки: ступенчатая стабилизация, чувствительность к условиям работы полупроводниковых элементов.

По принципу установки различают три типа стабилизаторов: напольные; напольные с возможностью крепления на стене; напольные с возможностью установки на стойку выключателей или на стену.

Для стабилизаторов можно приобрести дополнительные аксессуары: байпас, коммутационную стойку и ДКС. Байпас — это устройство, с помощью которого можно переключать переменный ток: он проходит через стабилизатор напряжения или байпас, ток переключается с помощью ручного тумблера на байпасе.Это устройство следует использовать, когда требуется пусковой ток в обход стабилизатора при питании от генератора.

Второй пример: работа со сварочным аппаратом. В этом случае байпас дает возможность без коммутации проводить любые работы со стабилизатором, профилактическое обслуживание, ремонт или замену проводки. Стойки коммутационные используются для трехфазной сети, они обеспечивают удобство установки 3-х стабилизаторов (каждый на свою фазу, стойка имеет общую клеммную колодку).Всего существует 4 типа стоек:

  • пустые — для установки и коммутации;
  • с байпасом;
  • с байпасом и ДКС;
  • с BCS без байпаса. БКС — блок управления сетью, отключающий все стабилизаторы при отключении питания на одной фазе или выходе параметров напряжения за пределы стабилизации. ДКС нужен, когда к трехфазному стабилизатору подключают трехфазную нагрузку на 380 В: автомат, насос, печку. Этот тип оборудования требует постоянного электропитания на всех трех фазах, прерывание электропитания хотя бы на одной из фаз исключено.Для частных домов, на которые подано три фазы, но внутри дома разводка выполняется по однофазной схеме, установка ДКС не требуется. Залогом длительной эксплуатации стабилизатора напряжения являются следующие условия:
  • соблюдение температурного режима окружающей среды,
  • работа без перегрузок по мощности,
  • правильно подобранный тип стабилизатора (соответствует условиям параметров напряжения в стационарной электросети).

Главный показатель качества и надежности — оптимальная цена стабилизатора напряжения. Если показатели производительности устройства указаны высокими, но при этом у него невысокая стоимость, значит, оно произведено в Китае, даже если в графе «Производитель» указана другая страна. Китайские стабилизаторы заказывают российские компании, и они поставляются исключительно в страны СНГ, требований к качеству нет, кроме одного: минимально возможная цена. Качественное оборудование стабилизации напряжения производится в России, Италии и Украине, дешевое оборудование — в Китае.В других странах нет заводов по производству стабилизаторов, есть только зарегистрированные торговые марки. Качественный стабилизатор переменного напряжения — это главный элемент безопасности вашего дома, электрооборудование, залог спокойной и комфортной жизни. Не экономьте на безопасности!

Что такое стабилизатор напряжения и как он работает? Типы стабилизаторов

Что такое стабилизатор напряжения и зачем он нам? Работа стабилизатора, типы и применение

Введение в стабилизатор:

Внедрение технологии микропроцессорных микросхем и силовых электронных устройств в конструкцию интеллектуальных стабилизаторов напряжения переменного тока (или автоматических регуляторов напряжения (AVR)) привело к получению высоких -качественное, стабильное электроснабжение при значительных и продолжительных отклонениях сетевого напряжения.

В качестве усовершенствования традиционных стабилизаторов напряжения релейного типа в современных инновационных стабилизаторах используются высокопроизводительные цифровые схемы управления и полупроводниковые схемы управления, которые исключают регулировку потенциометра и позволяют пользователю устанавливать требования к напряжению с помощью клавиатуры, с возможностью запуска и остановки выхода.

Это также привело к тому, что время срабатывания стабилизаторов или чувствительность стабилизаторов были очень низкими, обычно менее нескольких миллисекунд, кроме того, это можно регулировать с помощью переменной настройки.В настоящее время стабилизаторы стали оптимизированным решением для питания многих электронных устройств, чувствительных к колебаниям напряжения, и они нашли работу со многими устройствами, такими как станки с ЧПУ, кондиционеры, телевизоры, медицинское оборудование, компьютеры, телекоммуникационное оборудование и т. Д.

Что такое стабилизатор напряжения?

Это электрический прибор, который разработан для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от изменений входного или входящего напряжения питания.Он защищает оборудование или машину от перенапряжения, пониженного напряжения и других скачков напряжения.

Также называется автоматический регулятор напряжения (АРН) . Стабилизаторы напряжения предпочтительны для дорогостоящего и драгоценного электрического оборудования, поскольку они защищают его от вредных колебаний низкого / высокого напряжения. Некоторое из этого оборудования — кондиционеры, офсетные печатные машины, лабораторное оборудование, промышленные машины и медицинское оборудование.

Стабилизаторы напряжения регулируют колебания входного напряжения до того, как оно может быть подано на нагрузку (или оборудование, чувствительное к колебаниям напряжения).Выходное напряжение стабилизатора будет оставаться в диапазоне 220 В или 230 В в случае однофазного питания и 380 В или 400 В в случае трехфазного питания в пределах заданного диапазона колебаний входного напряжения. Это регулирование осуществляется с помощью понижающих и повышающих операций, выполняемых внутренней схемой.

На современном рынке доступно огромное количество разнообразных автоматических регуляторов напряжения. Это могут быть одно- или трехфазные блоки в зависимости от типа применения и необходимой мощности (кВА).Трехфазные стабилизаторы выпускаются в двух версиях: модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они доступны в виде отдельных блоков для бытовой техники или в виде большого стабилизатора для всей бытовой техники в определенном месте, например, во всем доме. Кроме того, это могут быть стабилизаторы аналогового или цифрового типа.

К распространенным типам стабилизаторов напряжения относятся стабилизаторы с ручным управлением или с переключением, автоматические стабилизаторы релейного типа, твердотельные или статические стабилизаторы и стабилизаторы с сервоуправлением.В дополнение к функции стабилизации большинство стабилизаторов имеют дополнительные функции, такие как отсечка низкого напряжения на входе / выходе, отсечка высокого напряжения на входе / выходе, отсечка при перегрузке, возможность запуска и остановки выхода, ручной / автоматический запуск, отображение отсечки напряжения, переключение при нулевом напряжении. и др.

Зачем нужны стабилизаторы напряжения?

Как правило, каждое электрическое оборудование или устройство рассчитано на широкий диапазон входного напряжения. В зависимости от чувствительности рабочий диапазон оборудования ограничен определенными значениями, например, одно оборудование может выдерживать ± 10 процентов номинального напряжения, а другое — ± 5 процентов или меньше.

Колебания напряжения (повышение или понижение величины номинального напряжения) довольно часто встречаются во многих областях, особенно на оконечных линиях. Наиболее частые причины колебаний напряжения — это освещение, неисправности электрооборудования, неисправная проводка и периодическое отключение устройства. Эти колебания приводят к поломке электрического оборудования или приборов.

Результатом длительного перенапряжения

  • Необратимое повреждение оборудования
  • Повреждение изоляции обмоток
  • Нежелательное прерывание нагрузки
  • Повышенные потери в кабелях и сопутствующем оборудовании
  • Снижение срока службы устройства

Длительное понижение напряжения приведет к

  • Неисправность оборудования
  • Более длительные периоды работы (как в случае резистивных нагревателей)
  • Снижение производительности оборудования
  • Вытягивание больших токов, которые в дальнейшем приводят к перегреву
  • Ошибки вычислений
  • Пониженная частота вращения двигателей

Таким образом, стабильность и точность напряжения определяют правильную работу оборудования.Таким образом, стабилизаторы напряжения гарантируют, что колебания напряжения на входящем источнике питания не влияют на нагрузку или электрический прибор.

Как работает стабилизатор напряжения?

Основной принцип стабилизатора напряжения для выполнения операций понижения и повышения

В стабилизаторе напряжения коррекция напряжения при повышенном и пониженном напряжении выполняется с помощью двух основных операций, а именно: b oost и понижающих операций . Эти операции могут выполняться вручную с помощью переключателей или автоматически с помощью электронных схем.В условиях пониженного напряжения режим повышения напряжения увеличивает напряжение до номинального уровня, в то время как понижающий режим снижает уровень напряжения во время состояния повышенного напряжения.

Концепция стабилизации заключается в добавлении или вычитании напряжения в сети и из нее. Для выполнения такой задачи в стабилизаторе используется трансформатор, который в различных конфигурациях соединен с переключающими реле. В некоторых стабилизаторах используется трансформатор с отводами на обмотке для обеспечения различных коррекций напряжения, в то время как в сервостабилизаторах используется автотрансформатор для обеспечения широкого диапазона коррекции.

Чтобы понять эту концепцию, давайте рассмотрим простой понижающий трансформатор с номиналом 230 / 12В и его связь с этими операциями приведена ниже.

На рисунке выше показана конфигурация повышения, в которой полярность вторичной обмотки ориентирована таким образом, что ее напряжение напрямую добавляется к первичному напряжению. Следовательно, в случае пониженного напряжения трансформатор (будь то переключение ответвлений или автотрансформатор) переключается с помощью реле или твердотельных переключателей, так что к входному напряжению добавляются дополнительные вольт.

На рисунке выше трансформатор подключен в компенсирующей конфигурации, в которой полярность вторичной катушки ориентирована таким образом, что ее напряжение вычитается из первичного напряжения. Схема переключения переключает соединение с нагрузкой в ​​эту конфигурацию во время состояния перенапряжения.

На рисунке выше показан двухступенчатый стабилизатор напряжения, в котором используются два реле для обеспечения постоянной подачи переменного тока на нагрузку во время перенапряжения и в условиях напряжения. Путем переключения реле могут выполняться операции понижения и повышения напряжения для двух конкретных колебаний напряжения (одно находится под напряжением, например, 195 В, а другое — при повышенном напряжении, например, 245 В).

В случае стабилизаторов ответвительного трансформаторного типа, различные ответвления переключаются в зависимости от требуемой величины повышающего или понижающего напряжения. Но в случае стабилизаторов типа автотрансформатора, двигатели (серводвигатель) используются вместе со скользящим контактом для получения повышающего или понижающего напряжения от автотрансформатора, поскольку он содержит только одну обмотку.

Типы стабилизаторов напряжения

Стабилизаторы напряжения стали неотъемлемой частью многих бытовых, промышленных и коммерческих электроприборов.Раньше использовались ручные или переключаемые стабилизаторы напряжения для повышения или понижения входящего напряжения, чтобы обеспечить выходное напряжение в желаемом диапазоне. Такие стабилизаторы построены с электромеханическими реле в качестве переключающих устройств.

Позже, дополнительная электронная схема автоматизирует процесс стабилизации, и на свет появились автоматические регуляторы напряжения РПН. Другой популярный тип стабилизатора напряжения — сервостабилизатор, в котором коррекция напряжения осуществляется непрерывно без какого-либо переключателя.Обсудим три основных типа стабилизаторов напряжения.

Стабилизаторы напряжения релейного типа

В стабилизаторах напряжения этого типа регулирование напряжения осуществляется переключением реле таким образом, чтобы одно из нескольких ответвлений трансформатора подключалось к нагрузке (как описано выше) независимо от того, он предназначен для работы в режиме наддува или противодействия. На рисунке ниже показана внутренняя схема стабилизатора релейного типа.

Он имеет электронную схему и набор реле, помимо трансформатора (который может быть трансформатором с тороидальным или железным сердечником с отводами на его вторичной обмотке).Электронная схема включает схему выпрямителя, операционный усилитель, микроконтроллер и другие крошечные компоненты.

Электронная схема сравнивает выходное напряжение с эталонным значением, обеспечиваемым встроенным источником эталонного напряжения. Каждый раз, когда напряжение повышается или опускается за пределы опорного значения, схема управления переключает соответствующее реле для подключения к выходу требуемого ответвления.

Эти стабилизаторы обычно изменяют напряжение при колебаниях входного напряжения от ± 15 процентов до ± 6 процентов с точностью выходного напряжения от ± 5 до ± 10 процентов.Этот тип стабилизаторов наиболее часто используется для низкоуровневых бытовых приборов в жилых, коммерческих и промышленных помещениях, поскольку они имеют малый вес и низкую стоимость. Однако они страдают рядом ограничений, таких как низкая скорость коррекции напряжения, меньшая долговечность, меньшая надежность, прерывание цепи питания во время регулирования и неспособность выдерживать высокие скачки напряжения.

Стабилизаторы напряжения с сервоуправлением

Их просто называют сервостабилизаторами (работа с сервомеханизмом, который также известен как отрицательная обратная связь), и название предполагает, что он использует серводвигатель для коррекции напряжения.Они в основном используются для обеспечения высокой точности выходного напряжения, обычно ± 1% при изменении входного напряжения до ± 50%. На рисунке ниже показана внутренняя схема сервостабилизатора, который включает в себя серводвигатель, автотрансформатор, понижающий повышающий трансформатор, драйвер двигателя и схему управления в качестве основных компонентов.

В этом стабилизаторе один конец первичной обмотки понижающего повышающего трансформатора соединен с фиксированным ответвлением автотрансформатора, а другой конец соединен с подвижным рычагом, которым управляет серводвигатель.Вторичная обмотка понижающего повышающего трансформатора подключена последовательно к входящему источнику питания, который является не чем иным, как выходом стабилизатора.

Электронная схема управления обнаруживает провал и рост напряжения путем сравнения входного сигнала со встроенным источником опорного напряжения. Когда схема обнаруживает ошибку, она приводит в действие двигатель, который, в свою очередь, перемещает рычаг автотрансформатора. Он может питать первичную обмотку повышающего трансформатора, так что напряжение на вторичной обмотке должно быть желаемым выходным напряжением.Большинство сервостабилизаторов используют встроенный микроконтроллер или процессор для схемы управления для достижения интеллектуального управления.

Эти стабилизаторы могут быть однофазными, трехфазными симметричными или трехфазными несимметричными. В однофазном типе серводвигатель, соединенный с регулируемым трансформатором, обеспечивает коррекцию напряжения. В случае трехфазного симметричного типа серводвигатель соединен с тремя автотрансформаторами, так что стабилизированный выход обеспечивается во время колебаний путем регулировки выхода трансформаторов.В несбалансированном типе сервостабилизаторов три независимых серводвигателя соединены с тремя автотрансформаторами и имеют три отдельные цепи управления.

Сервостабилизаторы обладают различными преимуществами по сравнению со стабилизаторами релейного типа. Некоторые из них — более высокая скорость коррекции, высокая точность стабилизированного выхода, способность выдерживать броски тока и высокая надежность. Однако они требуют периодического обслуживания из-за наличия двигателей.

Стабилизаторы статического напряжения

Как следует из названия, стабилизатор статического напряжения не имеет движущихся частей в качестве механизма серводвигателя в случае сервостабилизаторов.Он использует схему силового электронного преобразователя для достижения стабилизации напряжения, а не вариацию в случае обычных стабилизаторов. С помощью этих стабилизаторов можно добиться большей точности и отличного регулирования напряжения по сравнению с сервостабилизаторами, и обычно регулирование составляет ± 1 процент.

По сути, он состоит из повышающего трансформатора, преобразователя мощности IGBT (или преобразователя переменного тока в переменный) и микроконтроллера, микропроцессора или контроллера на базе DSP. Преобразователь IGBT, управляемый микропроцессором, генерирует соответствующее количество напряжения с помощью метода широтно-импульсной модуляции, и это напряжение подается на первичную обмотку повышающего трансформатора.Преобразователь IGBT вырабатывает напряжение таким образом, чтобы оно могло быть синфазным или сдвинутым на 180 градусов по фазе входящего линейного напряжения, чтобы выполнять сложение и вычитание напряжений во время колебаний.

Каждый раз, когда микропроцессор обнаруживает провал напряжения, он посылает импульсы ШИМ на преобразователь IGBT, так что он генерирует напряжение, равное величине отклонения от номинального значения. Этот выход находится в фазе с входящим питанием и подается на первичную обмотку повышающего трансформатора.Поскольку вторичная обмотка подключена к входящей линии, индуцированное напряжение будет добавлено к входящему источнику питания, и это скорректированное напряжение будет подаваться на нагрузку.

Точно так же повышение напряжения заставляет схему микропроцессора посылать импульсы ШИМ таким образом, что преобразователь выводит напряжение с отклоненной величиной, которое на 180 градусов не совпадает по фазе с входящим напряжением. Это напряжение на вторичной обмотке понижающего вольтодобавочного трансформатора вычитается из входного напряжения, так что выполняется понижающая операция.

Эти стабилизаторы очень популярны по сравнению со стабилизаторами с переключением отводов и сервоуправляемыми стабилизаторами из-за большого количества преимуществ, таких как компактный размер, очень быстрая скорость коррекции, отличное регулирование напряжения, отсутствие технического обслуживания из-за отсутствия движущихся частей, высокая эффективность и высокий КПД. надежность.

Разница между стабилизатором напряжения и регулятором напряжения

Здесь возникает серьезный, но сбивающий с толку вопрос: в чем именно разница (я) между стабилизатором и регулятором ? Хорошо.. Оба выполняют одно и то же действие, которое заключается в стабилизации напряжения, но основная разница между стабилизатором напряжения и регулятором напряжения составляет :

Стабилизатор напряжения: Это устройство или схема, которые предназначены для подачи постоянного напряжения на выход без изменений. по входящему напряжению.

Регулятор напряжения: Это устройство или схема, предназначенная для подачи постоянного напряжения на выход без изменения тока нагрузки.

Как выбрать стабилизатор напряжения правильного размера?

Прежде всего, необходимо учесть несколько факторов, прежде чем покупать стабилизатор напряжения для прибора.Эти факторы включают в себя мощность, требуемую для устройства, уровень колебаний напряжения, которые возникают в зоне установки, тип устройства, тип стабилизатора, рабочий диапазон стабилизатора (на который стабилизатор подает правильное напряжение), отключение по перенапряжению / пониженному напряжению, тип схема управления, тип монтажа и другие факторы. Здесь мы привели основные шаги, которые следует учитывать перед покупкой стабилизатора для вашего приложения.

  • Проверьте номинальную мощность устройства, которое вы собираетесь использовать со стабилизатором, наблюдая за данными на паспортной табличке (вот образцы: паспортная табличка трансформатора, паспортная табличка MCB, паспортная табличка конденсатора и т. Д.) Или из руководства пользователя продукта.
  • Поскольку стабилизаторы рассчитаны на кВА (как и у трансформатора, рассчитанные на кВА, а не на кВт), также можно рассчитать мощность, просто умножив напряжение прибора на максимальный номинальный ток.
  • Рекомендуется добавить запас прочности к номиналу стабилизатора, обычно 20-25 процентов. Это может быть полезно для будущих планов по добавлению дополнительных устройств к выходу стабилизатора.
  • Если прибор рассчитан в ваттах, учитывайте коэффициент мощности при расчете номинальной мощности стабилизатора в кВА.Напротив, если стабилизаторы рассчитаны в кВт, а не в кВА, умножьте коэффициент мощности на произведение напряжения и тока.

ниже — это решение под напряжением. Пример как выбрать стабилизатор напряжения подходящего размера для вашего электроприбора

Предположим, если прибор (кондиционер или холодильник) рассчитан на 1 кВА. Следовательно, безопасный запас в 20 процентов составляет 200 Вт. Прибавив эти ватты к фактической мощности, мы получим мощность 1200 ВА. Поэтому для устройства предпочтительнее стабилизатор на 1,2 кВА или 1200 ВА.Для домашних нужд предпочтительны стабилизаторы от 200 ВА до 10 кВА. А для коммерческих и промышленных применений используются однофазные и трехфазные стабилизаторы большой мощности.

Надеемся, что представленная информация будет информативной и полезной для читателя. Мы хотим, чтобы читатели выразили свое мнение по этой теме и ответили на этот простой вопрос — какова цель функции связи RS232 / RS485 в современных стабилизаторах напряжения — в разделе комментариев ниже.

ИБП и стабилизаторы

Источник бесперебойного питания , а также источник бесперебойного питания , ИБП или резервный аккумулятор / маховик — это электрическое устройство, которое обеспечивает аварийное питание нагрузки при выходе из строя входного источника питания, обычно от сети.ИБП отличается от вспомогательной или аварийной системы питания или резервного генератора тем, что он обеспечивает практически мгновенную защиту от перебоев в подаче питания за счет подачи энергии, хранящейся в батареях, суперконденсаторах или маховиках. Время работы от батареи большинства источников бесперебойного питания относительно невелико (всего несколько минут), но достаточно для запуска резервного источника питания или надлежащего отключения защищаемого оборудования.

ИБП обычно используется для защиты оборудования, такого как компьютеры, центры обработки данных, телекоммуникационное оборудование или другое электрическое оборудование, где неожиданное отключение питания может привести к травмам, смертельному исходу, серьезному нарушению работы или потере данных.Размеры блоков ИБП варьируются от блоков, предназначенных для защиты одного компьютера без видеомонитора (номинальное напряжение около 200 вольт), до больших блоков, питающих целые центры обработки данных или здания. Самый большой в мире ИБП, 46-мегаваттная аккумуляторная система хранения электроэнергии (BESS) в Фэрбенксе, Аляска, обеспечивает питание всего города и близлежащих сельских населенных пунктов во время отключений.

Общие проблемы с питанием


Основная роль любого ИБП — обеспечивать кратковременное питание при выходе из строя входного источника питания.Тем не менее, большинство ИБП также способны в той или иной степени исправлять общие проблемы с питанием от электросети:

  1. Скачок напряжения или длительное перенапряжение
  2. Кратковременное или продолжительное снижение входного напряжения
  3. Шум, определяемый как высокочастотный переходный процесс или колебание, обычно вводимый в линию ближайшим оборудованием
  4. Нестабильность частоты сети
  5. Гармоническое искажение: определяется как отклонение от идеальной синусоидальной формы волны, ожидаемой на линии
ИБП

делятся на категории в зависимости от того, какие из вышеперечисленных проблем они решают, [ сомнительно — обсудить ] и некоторые производители классифицируют свои продукты в соответствии с количеством решаемых ими проблем, связанных с питанием.

Технологии


Три основные категории современных систем ИБП: онлайн , линейно-интерактивный и резервный . Интерактивный ИБП использует метод «двойного преобразования» для приема входного переменного тока, выпрямления в постоянный ток для прохождения через перезаряжаемую батарею (или цепочки батарей), а затем обратное преобразование в 120 В / 230 В переменного тока для питания защищенного оборудования. Линейно-интерактивный ИБП поддерживает инвертор в рабочем состоянии и перенаправляет путь постоянного тока батареи от нормального режима зарядки к подаче тока при потере питания.В резервной («автономной») системе нагрузка питается напрямую от входной мощности, а схема резервного питания активируется только при отключении сетевого питания. Большинство ИБП ниже 1 кВА относятся к линейно-интерактивным или резервным, которые обычно дешевле.

Для больших блоков питания иногда используются динамические источники бесперебойного питания (DUPS). Синхронный двигатель / генератор переменного тока подключается к сети через дроссель. Энергия хранится в маховике. При пропадании сетевого питания вихретоковый регулятор поддерживает мощность нагрузки до тех пор, пока не исчерпывается энергия маховика.DUPS иногда комбинируются или объединяются с дизельным генератором, который включается после короткой задержки, образуя дизельный роторный источник бесперебойного питания (DRUPS).

ИБП на топливных элементах был разработан в последние годы с использованием водорода и топливных элементов в качестве источника энергии, что потенциально обеспечивает длительное время работы в небольшом пространстве. [ необходима ссылка ]

Offline / Standby


Автономный / резервный ИБП. Типичное время защиты: 0–20 минут.Расширение емкости: обычно недоступно

Автономный / резервный ИБП (SPS) предлагает только самые основные функции, обеспечивая защиту от перенапряжения и резервное питание от батареи. Защищаемое оборудование обычно подключается непосредственно к входящей электросети. Когда входящее напряжение падает ниже или поднимается выше заданного уровня, SPS включает свою внутреннюю схему инвертора постоянного и переменного тока, которая питается от внутренней аккумуляторной батареи. Затем ИБП механически включает подключенное оборудование на свой инверторный выход постоянного и переменного тока.Время переключения может достигать 25 миллисекунд в зависимости от количества времени, которое требуется резервному ИБП для обнаружения потери напряжения в электросети. ИБП предназначен для питания определенного оборудования, такого как персональный компьютер, без каких-либо нежелательных провалов или сбоев в работе этого устройства.

Линейно-интерактивный


Линейно-интерактивный ИБП. Типичное время защиты: 5–30 минут. Вместимость Расширение: несколько часов

Линейно-интерактивный ИБП аналогичен резервному ИБП, но с добавлением многоотводного автотрансформатора переменного напряжения.Это специальный тип трансформатора, который может добавлять или убирать катушки с проводом, тем самым увеличивая или уменьшая магнитное поле и выходное напряжение трансформатора. Он также известен как понижающий-повышающий трансформатор .

Этот тип ИБП способен выдерживать постоянные отключения из-за пониженного напряжения и скачки перенапряжения без потребления ограниченной мощности резервной батареи. Вместо этого он компенсирует, автоматически выбирая различные ответвления мощности на автотрансформаторе. В зависимости от конструкции, изменение ответвления автотрансформатора может вызвать очень кратковременное отключение выходной мощности, что может вызвать кратковременное «чириканье» ИБП, оборудованных сигнализацией потери мощности.

Это стало популярным даже в самых дешевых ИБП, поскольку в нем используются уже включенные компоненты. Основной трансформатор 50/60 Гц, используемый для преобразования между линейным напряжением и напряжением батареи, должен обеспечивать два немного разных отношения витков: один для преобразования выходного напряжения батареи (обычно кратного 12 В) в линейное напряжение, а второй для преобразования линейное напряжение до немного более высокого напряжения зарядки аккумулятора (например, кратного 14 В). Разница между двумя напряжениями заключается в том, что для зарядки аккумулятора требуется дельта-напряжение (до 13–14 В для зарядки аккумулятора 12 В).Кроме того, легче выполнить переключение на стороне сетевого напряжения трансформатора из-за более низких токов на этой стороне.

Чтобы получить функцию понижающего / повышающего напряжения , все, что требуется, — это два отдельных переключателя, так что вход переменного тока может быть подключен к одному из двух отводов первичной обмотки, а нагрузка подключена к другому, таким образом, используя первичную обмотку главного трансформатора. обмотки в качестве автотрансформатора. Аккумулятор все еще может заряжаться при «понижении» перенапряжения, но при «повышении» пониженного напряжения на выходе трансформатора слишком мало для зарядки аккумуляторов.

Автотрансформаторы

могут быть спроектированы для покрытия широкого диапазона изменяющихся входных напряжений, но это требует большего количества ответвлений и увеличивает сложность и стоимость ИБП. Обычно автотрансформатор покрывает диапазон только от 90 до 140 В для мощности 120 В, а затем переключается на аккумулятор, если напряжение становится намного выше или ниже этого диапазона.

В условиях низкого напряжения ИБП будет потреблять больше тока, чем обычно, поэтому ему может потребоваться цепь с более высоким током, чем нормальное устройство.Например, для питания устройства мощностью 1000 Вт при напряжении 120 В ИБП потребляет 8,33 А. Если произойдет отключение напряжения и напряжение упадет до 100 В, ИБП потребляет 10 А. для компенсации. Это также работает в обратном направлении, так что в условиях перенапряжения ИБП потребуется меньший ток.

Онлайн / двойное преобразование


В онлайн-ИБП батареи всегда подключены к инвертору, поэтому переключатели мощности не требуются. Когда происходит потеря мощности, выпрямитель просто выпадает из цепи, и батареи поддерживают стабильную и неизменную мощность.Когда питание восстанавливается, выпрямитель продолжает нести большую часть нагрузки и начинает заряжать батареи, хотя зарядный ток может быть ограничен, чтобы предотвратить перегрев аккумуляторов мощным выпрямителем и выкипание электролита. Основным преимуществом ИБП, подключенного к сети, является его способность обеспечивать «электрический брандмауэр» между входящим сетевым питанием и чувствительным электронным оборудованием.

Онлайн-ИБП идеально подходит для сред, где необходима электрическая изоляция, или для оборудования, которое очень чувствительно к колебаниям мощности.Хотя когда-то он был зарезервирован для очень больших установок мощностью 10 кВт или более, достижения в области технологий теперь позволили сделать его доступным в качестве обычного потребительского устройства с мощностью 500 Вт или меньше. Первоначальная стоимость онлайн-ИБП может быть выше, но общая стоимость владения, как правило, ниже из-за более длительного срока службы батареи. Интерактивный ИБП может потребоваться в случае «шумной» энергосистемы, частых провалов в электроснабжении, перебоев в электроснабжении и других аномалий, когда требуется защита чувствительных нагрузок ИТ-оборудования или когда необходима работа от резервного генератора длительного режима.

Базовая технология онлайн-ИБП такая же, как у резервного или линейно-интерактивного ИБП. Однако, как правило, он стоит намного дороже из-за того, что у него гораздо больший ток зарядного устройства / выпрямителя переменного тока в постоянный, а также выпрямитель и инвертор, предназначенные для непрерывной работы с улучшенными системами охлаждения. Он называется ИБП с двойным преобразованием типа из-за того, что выпрямитель напрямую управляет инвертором, даже при питании от нормального переменного тока.

Прочие конструкции


Гибридная топология / двойное преобразование по запросу


Эти гибридные роторные ИБП не имеют официальных обозначений, хотя в UTL используется одно название — «двойное преобразование по требованию».Этот тип ИБП ориентирован на высокоэффективные приложения, сохраняя при этом функции и уровень защиты, обеспечиваемые двойным преобразованием.

Гибридный ИБП (двойное преобразование по требованию) работает как автономный / резервный ИБП, когда условия питания находятся в пределах определенного предустановленного диапазона. Это позволяет ИБП достигать очень высоких показателей эффективности. Когда условия электропитания выходят за пределы предопределенных окон, ИБП переключается в режим онлайн / с двойным преобразованием. В режиме двойного преобразования ИБП может регулировать колебания напряжения без использования батареи, может отфильтровывать линейные шумы и частоту управления.Примерами такой конструкции ИБП с гибридным / двойным преобразованием по требованию являются HP R8000, HP R12000, HP RP12000 / 3 и Eaton BladeUPS.

Феррорезонанс


Феррорезонансные блоки работают так же, как резервные ИБП; однако они подключены к сети, за исключением того, что для фильтрации выходного сигнала используется феррорезонансный трансформатор. Этот трансформатор предназначен для удержания энергии достаточно долго, чтобы покрыть время между переключением с сетевого питания на питание от батареи, и эффективно исключает время переключения.Многие феррорезонансные ИБП имеют КПД 82–88% (переменный / постоянный-переменный ток) и обеспечивают отличную изоляцию.

Трансформатор имеет три обмотки: одна для обычного сетевого питания, вторая для выпрямленного питания от батареи и третья для выходной мощности переменного тока, подаваемой на нагрузку.

Когда-то это был доминирующий тип ИБП, и его мощность ограничена диапазоном около 150 кВА. Эти блоки до сих пор в основном используются в некоторых промышленных условиях (нефтегазовая, нефтехимическая, химическая, коммунальная и тяжелая промышленность) из-за прочной природы ИБП.Многие феррорезонансные ИБП, использующие технологию управляемого ферро, могут не взаимодействовать с оборудованием коррекции коэффициента мощности. [ требуется дальнейшее объяснение ]

Питание постоянного тока


ИБП, предназначенный для питания оборудования постоянного тока, очень похож на онлайн-ИБП, за исключением того, что ему не нужен выходной инвертор. Кроме того, если напряжение батареи ИБП соответствует напряжению, необходимому устройству, источник питания устройства также не понадобится. Поскольку один или несколько шагов преобразования мощности исключаются, это увеличивает эффективность и время работы.

Во многих системах, используемых в телекоммуникациях, используется «обычная батарея» со сверхнизким напряжением 48 В постоянного тока, поскольку в ней действуют менее строгие правила техники безопасности, такие как установка в кабелепроводе и распределительных коробках. Постоянный ток обычно был доминирующим источником питания для телекоммуникаций, а переменный ток обычно был доминирующим источником для компьютеров и серверов.

Было много экспериментов с питанием 48 В постоянного тока для компьютерных серверов в надежде снизить вероятность сбоя и стоимость оборудования.Однако для обеспечения того же количества энергии ток должен быть выше, чем в эквивалентной цепи 115 В или 230 В; больший ток требует более крупных проводников или больше энергии теряется в виде тепла.

Портативный компьютер — классический пример ПК со встроенным ИБП постоянного тока.

Высоковольтный постоянный ток (380 В) находит применение в некоторых приложениях центров обработки данных и позволяет использовать малые силовые проводники, но на него распространяются более сложные правила электрического кодекса для безопасного удержания высокого напряжения.

Поворотный


Роторный ИБП использует инерцию вращающегося маховика большой массы (накопитель энергии маховика) для обеспечения кратковременного включения в случае потери мощности.Маховик также действует как буфер против скачков и провалов мощности, поскольку такие кратковременные скачки мощности не могут существенно повлиять на скорость вращения маховика большой массы. Это также одна из старейших разработок, предшествующих электронным лампам и интегральным схемам.

Его можно рассматривать как в строке , поскольку при нормальных условиях он вращается непрерывно. Однако, в отличие от ИБП на аккумуляторных батареях, системы ИБП с маховиком обычно обеспечивают защиту от 10 до 20 секунд до того, как маховик замедлится и выходная мощность прекратится.Он традиционно используется в сочетании с резервными дизельными генераторами, обеспечивая резервное питание только в течение короткого периода времени, необходимого двигателю для запуска и стабилизации его мощности.

Роторный ИБП обычно предназначен для приложений, требующих защиты более 10 000 Вт, чтобы оправдать затраты и получить выгоду от преимуществ роторных ИБП. Маховик большего размера или несколько маховиков, работающих параллельно, увеличивают резервное время работы или мощность.

Поскольку маховики являются механическим источником энергии, нет необходимости использовать электродвигатель или генератор в качестве промежуточного звена между ним и дизельным двигателем, предназначенным для обеспечения аварийного питания.При использовании коробки передач инерция вращения маховика может использоваться для непосредственного запуска дизельного двигателя, а после запуска дизельный двигатель может использоваться для непосредственного вращения маховика. Аналогичным образом несколько маховиков могут быть соединены параллельно через механические промежуточные валы, без необходимости использования отдельных двигателей и генераторов для каждого маховика.

Обычно они предназначены для обеспечения очень высокого выходного тока по сравнению с чисто электронными ИБП и могут лучше обеспечивать пусковой ток для индуктивных нагрузок, таких как пуск двигателя или нагрузки компрессора, а также для медицинского оборудования МРТ и катетеризационной лаборатории.Он также способен выдерживать условия короткого замыкания, которые в 17 раз превышают токи электронного ИБП, что позволяет одному устройству перегореть предохранитель и выйти из строя, в то время как другие устройства по-прежнему будут получать питание от роторного ИБП.

Его жизненный цикл обычно намного больше, чем у чисто электронного ИБП, до 30 лет и более. Но они требуют периодического простоя для механического обслуживания, такого как замена шарикоподшипников. В более крупных системах резервирование системы обеспечивает доступность процессов во время этого обслуживания.Конструкции на основе батарей не требуют простоя, если батареи можно заменять в горячем режиме, что обычно имеет место для более крупных устройств. В более новых роторных агрегатах используются такие технологии, как магнитные подшипники и корпуса с воздушным вакуумированием, чтобы повысить эффективность работы в режиме ожидания и сократить объем технического обслуживания до очень низких уровней.

Обычно маховик большой массы используется в сочетании с системой двигатель-генератор. Эти блоки могут быть сконфигурированы как:

  1. Двигатель, приводящий в действие механически связанный генератор,
  2. Комбинированный синхронный двигатель и генератор с чередующимися пазами одного ротора и статора,
  3. Гибридный роторный ИБП, разработанный аналогично сетевому ИБП, за исключением того, что в нем вместо батарей используется маховик.Выпрямитель приводит в движение двигатель, вращающий маховик, а генератор использует маховик для питания инвертора.

В корпусе № 3 двигатель-генератор может быть синхронным / синхронным или индукционным / синхронным. Сторона двигателя блока в корпусах №№ 2 и 3 может приводиться в действие напрямую от источника переменного тока (обычно при байпасе инвертора), 6-ступенчатого привода двигателя с двойным преобразованием или 6-пульсного инвертора. В случае № 1 в качестве источника кратковременной энергии вместо батарей используется встроенный маховик, чтобы дать время для запуска и ввода в действие внешних электрически связанных генераторных установок.В случаях № 2 и 3 в качестве кратковременного источника энергии можно использовать батареи или отдельно стоящий маховик с электрической связью.

Форм-факторы


Модель для монтажа в стойку

Системы ИБП

бывают разных форм и размеров. Однако две наиболее распространенные формы — это башня и стойка.

Башня модель


Модели

Tower устанавливаются вертикально на земле или на столе / полке и обычно используются в сетевых рабочих станциях или приложениях для настольных компьютеров.

Модель для монтажа в стойку


Модели

для монтажа в стойку могут быть установлены в стандартные 19-дюймовые стойки, и для них может потребоваться от 1U до 12U (место в стойке). Они обычно используются в серверных и сетевых приложениях.

Приложения


N + 1


В крупных бизнес-средах, где надежность имеет большое значение, один огромный ИБП также может стать единственной точкой отказа, которая может нарушить работу многих других систем. Для обеспечения большей надежности несколько меньших модулей ИБП и батарей могут быть объединены вместе для обеспечения резервной защиты питания, эквивалентной одному очень большому ИБП.«N + 1» означает, что если нагрузку могут обеспечить N модулей, установка будет содержать N + 1 модуль. Таким образом, отказ одного модуля не повлияет на работу системы.

Множественное резервирование


Многие компьютерные серверы предлагают возможность резервирования блоков питания, так что в случае отказа одного блока питания один или несколько других блоков питания могут питать нагрузку. Это критический момент — каждый блок питания должен самостоятельно обеспечивать питание всего сервера.

Избыточность дополнительно повышается за счет подключения каждого источника питания к другой цепи (то есть к другому автоматическому выключателю).

Резервную защиту можно еще больше расширить, подключив каждый блок питания к собственному ИБП. Это обеспечивает двойную защиту как от сбоя источника питания, так и от отказа ИБП, что гарантирует непрерывную работу. Эта конфигурация также называется резервированием 1 + 1 или 2N. Если бюджет не позволяет установить два идентичных блока ИБП, то обычно один блок питания подключается к сети, а другой — к ИБП.

Для использования вне помещений


Когда система ИБП размещается на открытом воздухе, она должна иметь некоторые особенности, гарантирующие, что она может выдерживать погодные условия без какого-либо влияния на производительность. Производитель должен учитывать такие факторы, как температура, влажность, дождь и снег, а также другие факторы при проектировании системы ИБП для установки вне помещений. Диапазон рабочих температур для наружных систем ИБП может составлять от -40 ° C до +55 ° C.

Системы ИБП

для установки вне помещений могут быть установлены на столб, заземление (пьедестал) или хост.Наружная среда может означать сильный холод, и в этом случае наружная система ИБП должна включать в себя нагревательный коврик для батареи, или сильную жару, и в этом случае наружная система ИБП должна включать в себя систему вентиляции или систему кондиционирования воздуха.

Внутренний вид солнечного инвертора. Обратите внимание на множество больших конденсаторов (синие цилиндры), которые используются для кратковременного накопления энергии и улучшения формы выходного сигнала.

A солнечный инвертор , или фотоэлектрический инвертор , или солнечный преобразователь , преобразует переменный постоянный ток (DC) на выходе фотоэлектрической (PV) солнечной панели в переменный ток частоты сети (AC), который может подаваться в коммерческая электрическая сеть или используется местной, внесетевой электрической сетью.Это критически важный компонент BOS в фотоэлектрической системе, позволяющий использовать обычное оборудование с питанием от переменного тока. Солнечные инверторы имеют специальные функции, адаптированные для использования с фотоэлектрическими батареями, включая отслеживание точки максимальной мощности и защиту от изолирования.

Трудности при эксплуатации генератора


Коэффициент мощности


Проблемой в комбинации ИБП с двойным преобразованием и генератора является искажение напряжения, создаваемое ИБП. Вход ИБП с двойным преобразованием — это, по сути, большой выпрямитель.Ток, потребляемый ИБП, не является синусоидальным. Это может привести к тому, что напряжение сети переменного тока или генератора также станет несинусоидальным. Таким образом, искажение напряжения может вызвать проблемы во всем электрическом оборудовании, подключенном к этому источнику питания, включая сам ИБП. Это также приведет к потере большей мощности в проводке, подающей питание на ИБП, из-за скачков тока. Этот уровень «шума» измеряется как процент от «общего гармонического искажения тока» (THD (i)). Классические выпрямители ИБП имеют уровень THD (i) около 25–30%.Для уменьшения искажений напряжения требуется более толстая проводка сети или генераторы, которые в два раза больше, чем ИБП.

Существует несколько решений для снижения THD (i) в ИБП с двойным преобразованием:

Пассивная коррекция коэффициента мощности

Решения

Classic, такие как пассивные фильтры, снижают THD (i) до 5–10% при полной нагрузке. Они надежны, но большие, работают только при полной нагрузке и создают свои проблемы при использовании в тандеме с генераторами.

Активная коррекция коэффициента мощности

Альтернативное решение — активный фильтр.Благодаря использованию такого устройства THD (i) может упасть до 5% во всем диапазоне мощностей. Новейшая технология в ИБП с двойным преобразованием — выпрямитель, в котором используются не классические выпрямительные компоненты (тиристоры и диоды), а высокочастотные компоненты. ИБП с двойным преобразованием, выпрямителем и катушкой индуктивности IGBT может иметь THD (i) всего 2%. Это полностью исключает необходимость увеличения размера генератора (и трансформаторов) без дополнительных фильтров, инвестиционных затрат, потерь или места.

Связь


Управление питанием (PM) требует

  1. ИБП для сообщения о своем состоянии компьютеру, к которому он подключен, через канал связи, такой как последовательный порт, Ethernet и простой протокол управления сетью, GSM / GPRS или USB
  2. Подсистема в ОС, которая обрабатывает отчеты и генерирует уведомления, события PM или команды на отключение.Некоторые производители ИБП публикуют свои протоколы связи, но другие производители (например, APC) используют проприетарные протоколы.

Основные методы управления «компьютер-ИБП» предназначены для передачи сигналов «один-к-одному» от одного источника к одной цели. Например, один ИБП может подключаться к одному компьютеру для предоставления информации о состоянии ИБП и позволять компьютеру управлять ИБП. Точно так же протокол USB также предназначен для подключения одного компьютера к нескольким периферийным устройствам.

В некоторых ситуациях для одного большого ИБП полезно иметь возможность связываться с несколькими защищенными устройствами. Для традиционного последовательного управления или управления через USB можно использовать устройство репликации сигнала , которое, например, позволяет одному ИБП подключаться к пяти компьютерам с использованием последовательного или USB-соединения. Однако разделение обычно происходит только в одном направлении от ИБП к устройствам для предоставления информации о состоянии. Возврат управляющих сигналов может быть разрешен только от одной из защищенных систем к ИБП.

По мере того, как с 1990-х годов широко используется Ethernet, управляющие сигналы теперь обычно передаются между одним ИБП и несколькими компьютерами с использованием стандартных методов передачи данных Ethernet, таких как TCP / IP. Информация о состоянии и управлении обычно зашифрована, так что, например, посторонний хакер не может получить контроль над ИБП и дать ему команду на выключение.

Распределение данных о состоянии и управлении ИБП требует, чтобы все промежуточные устройства, такие как коммутаторы Ethernet или последовательные мультиплексоры, получали питание от одной или нескольких систем ИБП, чтобы предупреждения ИБП доходили до целевых систем во время отключения электроэнергии.Чтобы избежать зависимости от инфраструктуры Ethernet, ИБП можно подключать напрямую к главному серверу управления, используя также канал GSM / GPRS. Пакеты данных SMS или GPRS, отправляемые от ИБП, запускают программное обеспечение для выключения ПК для снижения нагрузки.

Аккумуляторы


Время работы ИБП с батарейным питанием зависит от типа и размера батарей, скорости разряда и эффективности инвертора. Общая емкость свинцово-кислотной батареи зависит от скорости ее разряда, которая описывается законом Пейкерта.

Производители указывают время автономной работы в минутах для комплектных систем ИБП. Для более крупных систем (например, центров обработки данных) требуется подробный расчет нагрузки, КПД инвертора и характеристик батареи для обеспечения требуемого срока службы.

Общие характеристики батарей и тестирование под нагрузкой


Когда свинцово-кислотная батарея заряжается или разряжается, это сначала влияет только на реагирующие химические вещества, которые находятся на границе раздела между электродами и электролитом.Со временем заряд, накопленный в химических веществах на границе раздела, часто называемый «зарядом на границе раздела», распространяется за счет диффузии этих химических веществ по всему объему активного материала.

Если батарея была полностью разряжена (например, автомобильные фары были оставлены включенными на ночь), а затем была произведена быстрая зарядка всего на несколько минут, то в течение короткого времени зарядки она развивает только заряд рядом с интерфейсом. Напряжение аккумулятора может возрасти и приблизиться к напряжению зарядного устройства, так что зарядный ток значительно снизится.Через несколько часов этот интерфейсный заряд распространится на объем электрода и электролита, что приведет к тому, что интерфейсный заряд станет настолько низким, что его может быть недостаточно для запуска автомобиля.

Из-за заряда интерфейса краткое самотестирование ИБП , функции , длящиеся всего несколько секунд, могут неточно отражать истинную продолжительность работы ИБП, и вместо этого расширенный тест с повторной калибровкой или кратковременный тест , который глубоко разряжает аккумулятор, нужный.

Тестирование глубокого разряда само по себе повреждает аккумуляторы из-за того, что химические вещества в разряженном аккумуляторе начинают кристаллизоваться в высокостабильные молекулярные формы, которые не будут повторно растворяться при перезарядке аккумулятора, постоянно снижая емкость заряда. В свинцово-кислотных батареях это называется сульфатированием, но также влияет на другие типы, такие как никель-кадмиевые батареи и литиевые батареи. Поэтому обычно рекомендуется проводить кратковременные тесты нечасто, например, каждые шесть месяцев или год.

Испытание комплектов батарей / элементов


Многокиловаттные коммерческие системы ИБП с большими и легкодоступными аккумуляторными батареями способны изолировать и тестировать отдельные элементы в группе батарей , которая состоит из комбинированных аккумуляторных блоков (например, свинцово-кислотных аккумуляторов на 12 В) или отдельных химические элементы, соединенные последовательно. Изоляция отдельной ячейки и установка перемычки вместо нее позволяет испытать разряд одной батареи, в то время как остальная часть комплекта батарей остается заряженной и доступной для обеспечения защиты.

Также возможно измерять электрические характеристики отдельных ячеек в цепочке батарей, используя промежуточные сенсорные провода, которые устанавливаются на каждом переходе между ячейками и контролируются как индивидуально, так и коллективно. Комплекты батарей также могут быть соединены последовательно-параллельно, например, два набора по 20 ячеек. В такой ситуации также необходимо контролировать ток между параллельными цепочками, поскольку ток может циркулировать между цепочками, чтобы уравновесить влияние слабых ячеек, мертвых ячеек с высоким сопротивлением или закороченных ячеек.Например, более сильные струны могут разряжаться через более слабые струны до тех пор, пока дисбалансы напряжений не будут уравновешены, и это должно быть учтено в индивидуальных межячейковых измерениях в каждой струне.

Последовательно-параллельное взаимодействие батарей


В цепях батарей, соединенных последовательно-параллельным соединением, могут возникать необычные режимы отказа из-за взаимодействия между несколькими параллельными цепочками. Неисправные батареи в одной цепочке могут отрицательно повлиять на работу и срок службы исправных или новых батарей в других цепях.Эти проблемы также применимы к другим ситуациям, когда используются последовательно-параллельные цепочки, не только в системах ИБП, но и в приложениях для электромобилей.

Рассмотрим последовательно-параллельную схему батарей со всеми исправными элементами, и одна из них закорочена или разрядится:

  • Неисправный элемент снизит максимальное развиваемое напряжение для всей последовательной цепочки, в которой он находится.
  • Другие последовательные цепочки, соединенные параллельно с поврежденной цепью, теперь будут разряжаться через поврежденную цепочку до тех пор, пока их напряжение не совпадет с напряжением поврежденной цепочки, что потенциально приведет к перезарядке и приведет к кипению электролита и выделению газа из оставшихся исправных ячеек в разрушенной цепочке.Эти параллельные цепочки теперь невозможно полностью перезарядить, так как повышенное напряжение будет уходить через цепочку, содержащую вышедшую из строя батарею.
  • Зарядные системы могут пытаться измерить емкость аккумуляторной батареи путем измерения общего напряжения. Из-за общего истощения напряжения в цепочке из-за мертвых ячеек система зарядки может определить это как состояние разряда и будет постоянно пытаться заряжать последовательно-параллельные цепочки, что приводит к непрерывной перезарядке и повреждению всех элементов в цепочке. деградированная серия, содержащая поврежденный аккумулятор.
  • Если используются свинцово-кислотные батареи, все элементы в ранее исправных параллельных цепях начнут сульфатироваться из-за невозможности их полной перезарядки, что приведет к необратимому повреждению накопительной емкости этих элементов, даже если поврежденный элемент в одна поврежденная строка в конечном итоге обнаруживается и заменяется новой.

Единственный способ предотвратить эти тонкие последовательно-параллельные цепочки взаимодействий — это вообще не использовать параллельные цепочки и использовать отдельные контроллеры заряда и инверторы для отдельных последовательных цепочек.

Взаимодействие новой / старой батареи серии


Даже всего одна цепочка батарей, соединенных последовательно, может иметь неблагоприятные последствия, если новые батареи смешивать со старыми. Старые батареи, как правило, имеют меньшую емкость, поэтому они разряжаются быстрее, чем новые батареи, а также заряжаются до максимальной емкости быстрее, чем новые батареи.

По мере разряда смешанной цепочки новых и старых батарей напряжение в цепочке будет падать, и когда старые батареи разрядятся, новые батареи все еще будут иметь доступный заряд.Новые элементы могут продолжать разряжаться через остальную часть колонны, но из-за низкого напряжения этот поток энергии может оказаться бесполезным и может быть потрачен впустую в старых элементах в виде резистивного нагрева.

Для элементов, которые должны работать в пределах определенного окна разряда, новые элементы с большей емкостью могут привести к тому, что старые элементы в последовательной цепочке будут продолжать разряжаться за пределами безопасного нижнего предела окна разряда, повреждая старые элементы.

При перезарядке старые элементы перезаряжаются быстрее, что приводит к быстрому повышению напряжения почти до полностью заряженного состояния, но до того, как новые элементы с большей емкостью полностью перезарядятся.Контроллер заряда определяет высокое напряжение почти полностью заряженной струны и снижает ток. Новые элементы с большей емкостью теперь заряжаются очень медленно, настолько медленно, что химические вещества могут начать кристаллизоваться до достижения полностью заряженного состояния, уменьшая емкость нового элемента в течение нескольких циклов зарядки / разрядки до тех пор, пока их емкость не будет более близка к старым элементам в последовательной цепочке. .

По этим причинам некоторые промышленные системы управления ИБП рекомендуют периодическую замену целых батарейных массивов, потенциально использующих сотни дорогих батарей, из-за этих разрушительных взаимодействий между новыми батареями и старыми батареями внутри и между последовательными и параллельными цепочками.

Насколько важную роль играет стабилизатор в запуске компрессора?

[…] Ну, если вы еще не купили свой кондиционер.


Да, они уже были (хотя и в коробке), когда я начал эту тему. Одним из факторов было то, что мы слышали, что переносные кондиционеры с двумя шлангами работают лучше, чем разветвители в очень жаркую погоду.

На самом деле это не полная / реальная картина, но мне действительно не удалось исследовать эффективность инверторных переменного тока.Я просто как бы подтвердил, что 9,5 EER может быть хорошим. Я искал высокие значения EER, и среди небольших единиц EER превышал 9,5, редко — 10. Я видел, что некоторые из них действительно достигли EER около 14, объединив испарительный охладитель. Я начал вводить числа вроде 13 и, не получив результатов для кондиционеров размером с комнату (я точно не помню), пришел к выводу, что 9–11 было почти максимумом для кондиционеров размером с комнату.

Я полагаю, что я просто не работал достаточно высоко, чтобы использовать модели с чрезвычайно высокой эффективностью инвертора.На самом деле, может быть, просто сложно искать EER. Выполняя поиск по запросу «инвертор переменного тока» EER прямо сейчас, я получаю средние результаты (текст под ссылками) для 7 страниц, за исключением только одного исключения на странице 3.

Я думаю, что могу спросить о небольшом. модель инвертора с высоким КПД, может быть, даже на 500 Вт, на другом форуме. Было бы здорово использовать его постоянно с ИБП. Думаю, два варианта на ночь (кроме внеплановых отключений):

1. При отключении переменного тока не используется. Хорошая буферизация для выравнивания эффекта охлаждения от температуры / вентилятора.

2. Малый инвертор переменного тока также работает при отключении.

3000 ВА Уменьшение вдвое мощности стабилизатора при 110 В Обеспокоенность:

После перерыва в дождливые и пасмурные дни мы наконец-то получили стабилизатор с регулируемым напряжением, правда, он работает слишком горячо. Согласно встроенному амперметру, он должен быть в состоянии справиться с нагрузкой с легкостью (8 * 220 <3000), но что, если он столкнется с этой нагрузкой при половинной мощности (провод такой же толщины для 110 В)? Это будет означать, что он может работать с небольшим превышением мощности.

Он предназначен для этого, возможно, в течение нескольких минут, что объясняет, почему он еще не сломался, а также почему он накапливает слишком много тепла. Для того, чтобы получить смутное представление, вот технические характеристики ЧРП по перегрузке:

Перегрузочная способность
150% номинального тока 1 минута, 180% номинального тока 10 секунд

У меня даже нет проблем с согласившись с тем, что стабилизатор на 1500 ВА может без труда запустить наш переменный ток. Я думаю, что компрессор работал постоянно.Если бы произошел сбой или мы вручную отключили его, я думаю, у него могло быть время для нормализации, и он просто не столкнулся с несколькими секундами скачка. О, и 50 Гц, я думаю, упростят запуск. Один плакат на hvac-talk.com написал:

Что касается запуска компрессора, хотя пусковой ток, наблюдаемый при запуске, может быть высоким, он очень короткий. Большинство цифровых амперметров не могут измерить его достаточно быстро.


Думаем заменить модель 3 кВА на три модели по 5 кВА.Тем не менее было бы приятно подтвердить, используются ли в некоторых конструкциях стабилизаторов такую ​​же толщину провода для 110 В, что дает вдвое меньшую мощность.

О, я только что нашел это в добавлении, хотел бы знать, правильно ли оно:

DUTY CYCLE
Стабилизаторы обычного типа подходят для нагрузки 30-40% в непрерывном рабочем цикле. Наши автоматические стабилизаторы напряжения относятся к категории Heavy Duty и Industrial и подходят для непрерывного рабочего цикла при 100% нагрузке. Для рабочей нагрузки 200 кВА обычно устанавливается стабилизатор обычного типа 400 кВА / 500 кВА, тогда как [Мощность] подходит для 200/250 кВА.

Определение стабилизатора энергосистемы

(PSS)

, относящееся к стабилизатору энергосистемы

(PSS)

Водная система означает все земли, собственность, права, права отчуждения, сервитуты и связанные с ними объекты, принадлежащие одному лицу , которые считаются необходимыми или удобными для доставки питьевой воды от источника к месту подключения потребителя (ей). Это включает в себя все права на воду, приобретенные в связи с системой, все средства сохранения, контроля и распределения питьевой воды, включая, помимо прочего, работы по отведению или сбору воды, родники, колодцы, очистные сооружения, насосы, подъемные станции, счетчики расхода воды, магистрали, гидранты, резервуары, резервуары и связанные с ними принадлежности в пределах собственности или границ сервитута, находящиеся под контролем или под контролем лица, владеющего системой.

Исследование присоединения означает любое из следующих исследований: Технико-экономическое обоснование присоединения, Исследование влияния надежности системы присоединения и Исследование вспомогательных средств, описанное в Стандартных процедурах присоединения крупных объектов. Исследование влияния надежности системы межсетевого взаимодействия (SRIS) означает инженерное исследование, проведенное в соответствии с Разделом 30.7 Процедур межсетевого взаимодействия крупных объектов, которое оценивает влияние предлагаемого крупного генерирующего объекта на безопасность и надежность линии электропередачи штата Нью-Йорк. Система и, если применимо, Затронутая система, чтобы определить, какие дополнительные средства и средства обновления системы необходимы для предлагаемого объекта большой генерации застройщика для надежного подключения к передающей системе штата Нью-Йорк в порядке, соответствующем минимальному стандарту подключения NYISO. .Соглашение об исследовании влияния надежности системы присоединения означает форму соглашения, содержащуюся в Приложении 3 Стандартных процедур присоединения крупных объектов для проведения исследования влияния надежности системы присоединения. IRS означает Налоговую службу.

Общественная система водоснабжения означает систему для обеспечения населения водопроводной водой для потребления людьми, если такая система имеет не менее 15 подключений к услугам или регулярно обслуживает в среднем не менее 25 человек в день не менее 60 дней из год.Такой термин включает (1) любые объекты для сбора, обработки, хранения и распределения, находящиеся под контролем оператора такой системы и используемые в основном в связи с такой системой, и (2) любые объекты для сбора или предварительной обработки, не находящиеся под таким контролем, которые используются. в первую очередь в связи с такой системой. Любая водная система, отвечающая всем следующим условиям, не является общественной системой водоснабжения:

Система сигнализации 7 (SS7) означает протокол сигнализации, используемый сетью CCS.

Проект означает определенные виды деятельности Грантополучателя, которые поддерживаются средствами, предоставленными по настоящему Контракту.

Комбинированная канализационная система означает систему для отвода как хозяйственно-бытовых, так и ливневых стоков.

Участок проекта, , если применимо, означает место, указанное в тендерной документации.

Инфраструктура для разгрузки поездов означает инфраструктуру для разгрузки поездов, разумно необходимую для разгрузки железной руды с железной дороги, подлежащей переработке или смешанной с другой железной рудой, на предприятиях по переработке или смешивании в непосредственной близости от инфраструктуры разгрузки этого поезда и, как следствие, затем железорудные продукты загружаются на железную дорогу для транспортировки (прямо или косвенно) в порт погрузки.

Непреходящая некоммунальная система водоснабжения означает общественную водную систему, которая не является общинной системой водоснабжения и которая регулярно обслуживает не менее 25 одних и тех же людей в течение 6 месяцев в году.

Узнайте больше о преимуществах стабилизаторов напряжения

Подробнее о преимуществах стабилизаторов напряжения »

Стабилизатор напряжения сегодня стал необходимостью в каждом доме. Стабилизатор напряжения гарантирует, что бытовой прибор получит желаемую мощность для оптимального функционирования.Это актив для защиты всех электронных товаров в вашем доме и лучшего реагирования на колебания напряжения. Отсутствие стабилизатора напряжения дома может вызвать перенапряжение, которое может привести к необратимому повреждению приборов и другим проблемам, перегреву и снижению производительности.

Теперь, когда вы знаете о важности стабилизатора напряжения, необходимо обязательно купить подходящий для своих нужд. Мы, в Luminous, предлагаем доступные, надежные стабилизаторы премиум-класса, которые могут эффективно удовлетворить ваши требования.Стабилизатор напряжения имеет решающее значение для поддержания оборудования в рабочем состоянии и в хорошем состоянии.

Будь то дом, офис или любое другое место; электричество — большая необходимость. Стабилизатор напряжения обеспечивает безопасность и надежное электроснабжение для правильной работы устройств в любом месте.

• Эффективность даже в неблагоприятных условиях

Если напряжение определенного электроприбора выше или ниже желаемого уровня, может возникнуть несколько проблем. Стабилизатор напряжения необходим для бесперебойной и бесперебойной работы устройств и поддержания напряжения в неизменном состоянии.Основное назначение стабилизатора напряжения — обеспечить постоянное напряжение на нагрузке даже при колебаниях напряжения.

• Избегайте необратимого повреждения оборудования

Каждое электрическое устройство в вашем доме спроектировано таким образом, чтобы правильно работать при различных уровнях напряжения. Частые или повторяющиеся колебания напряжения могут привести к необратимому повреждению оборудования, а также могут повлиять на проводку в вашем доме. Стабилизатор напряжения действует как защитный экран и снижает вероятность неисправности.Это также помогает продлить срок службы различных приборов. Установка стабилизатора напряжения необходима для защиты дорогих электроприборов, таких как кондиционеры, телевизор, холодильник и компьютеры.

Диапазон стабилизатора напряжения при ярком свете

Компания Luminous предлагает ряд решений для резервного питания, включая эффективные стабилизаторы напряжения для дома. Наш надежный ассортимент стабилизаторов гарантирует, что колебания выходной электрической мощности поддерживают стабильное значение, и предотвращает повреждение оборудования.

Вы можете выбрать из следующего:

• Стабилизаторы переменного тока

Кондиционеры — это чувствительные устройства, которым требуется эффективный стабилизатор напряжения для точного регулирования выходного напряжения. Наша линейка Tough X Silverline обеспечивает безопасную работу кондиционеров в вашем доме благодаря своей эффективности в сочетании с новейшими технологиями.

• Стабилизаторы для холодильников и телевизоров

Холодильники имеют широкий диапазон напряжений, но они не защищены от скачков напряжения.Поэтому стабилизатор напряжения всегда необходим для правильной работы стабилизатора вашего холодильника. С нашей линейкой холодильников Tough X Silverline вы можете обеспечить защиту от короткого замыкания и широкий диапазон входного напряжения. Стабилизатор напряжения для телевизора гарантирует, что скачки напряжения не повредят ваш драгоценный телевизор, и регулирует безопасную выходную мощность, чтобы защитить его во всем.

• Стабилизаторы магистрали

Использование освещения, вентиляторов и любых других электрических устройств с низким напряжением снижает производительность и срок службы оборудования.Наши сетевые стабилизаторы предназначены для защиты всего вашего дома от постоянного низкого напряжения и обеспечивают бесперебойное электроснабжение. Мы известны своими надежными продуктами, которые обеспечивают регулируемое и безопасное выходное напряжение с помощью передовой технологии DGR и интеллектуальной функции i-start. Итак, убедитесь, что ваше домашнее оборудование защищено подходящим стабилизатором напряжения.

Характеристики световых стабилизаторов:

1. Системы на базе микропроцессоров

2.Молочно-белый премиум-белый Металлический дизайн

3. Автоматическое отключение высоких и низких частот

4. DGR Tech — стабилизатор может работать даже от генератора или инвертора.

5. Zero Crossing Tech — предотвращает скачки напряжения на подключенные устройства

6. Технология I-Start — интеллектуальный запуск устройства для предотвращения перегрузки сети и защиты оборудования от повторяющихся колебаний и частых сбоев питания, обеспечивая более длительный срок службы устройства.

В Luminous мы гордимся своей сетью, состоящей из более чем 100 сервисных центров компании и почти 190 авторизованных сервисных центров.У нас есть более 1400 полевых специалистов, обслуживающих более 4200 пунктов в Индии, чтобы предоставить эффективные решения в области электроснабжения для всех ваших требований.

Стабилизаторы энергосистемы | PSS

Поддержка приложений

Системы возбуждения с высоким коэффициентом усиления и малым временем отклика значительно способствуют стабильности переходных процессов (синхронизирующий момент), но также могут снизить стабильность слабого сигнала (демпфирующий момент). Управление стабилизатором системы питания (PSS) обеспечивает положительный вклад, демпфируя колебания угла ротора генератора, которые находятся в широком диапазоне частот в энергосистеме.Они варьируются от низкочастотных промежуточных режимов (обычно 0,1–1,0 Гц) до локальных режимов (обычно 1–2 Гц) и внутризаводских режимов (около 2–3 Гц). Низкочастотные режимы, обычно называемые межзонными или межзональными режимами, вызываются когерентными группами генераторов, колеблющимися против других групп во взаимосвязанной системе. Эти режимы присутствуют во всех взаимосвязанных системах, а демпфирование является функцией прочности соединительных линий и коэффициентов нагрузки агрегата. Слабые связи из-за перебоев в работе линии и больших системных нагрузок могут привести к плохому демпфированию промежуточных режимов.Управление PSS обычно может обеспечить значительные улучшения в демпфировании промежуточного режима, применяя стабилизаторы к большинству устройств, которые участвуют в режимах качания мощности.

Характеристики

PSS часто оцениваются по демпфированию «местного режима», когда генератор раскачивается относительно остальной части энергосистемы. Этот режим обычно находится на частотах от 1 до 3 Гц. Более сильные связи системы и меньшая нагрузка имеют тенденцию давать более высокие частоты локальных мод, а более слабые связи и более тяжелая нагрузка имеют тенденцию давать более низкие частоты местных мод.Характеристики PSS должны быть спроектированы таким образом, чтобы обеспечивать приемлемую производительность в широком диапазоне условий системы, которые могут возникать в результате различных условий эксплуатации (таких как отключение линий и меняющиеся уровни нагрузки).

GE Energy Consulting проводит исследования по настройке и тестированию PSS, чтобы помочь клиентам достичь наилучших практических характеристик. Использование методов малосигнала в частотной области оказалось очень эффективным в этих исследованиях, и GE Energy Consulting разрабатывает и совершенствует инструменты моделирования более 30 лет.В дополнение к демпфированию низкочастотных мод, которые имеют первостепенное значение, хорошо известно, что PSS также может вносить нежелательные эффекты в характерные режимы механической системы крутильных колебаний турбогенератора. Опыт GE доказывает, что такое взаимодействие должно быть строго ограничено для конструкций турбогенераторов GE. Существуют эффективные средства снижения уровней сигнала кручения, встроенные в конструкции GE PSS; настройки этих фильтров определяются на основе скрининговых исследований Energy Consulting.

Тюнинг Исследования

PSS обеспечивает модуляцию напряжения возбуждения, которая гасит колебания мощности и ускоряет колебания посредством обычного управления АРН. Исследование настройки определяет оптимальные настройки PSS на основе конкретного генератора, настроек AVR и характеристик системы. Для этого анализа используются детализированные модели специального назначения. Наши исследования определяют ключевую настройку компенсации фазы PSS. В дополнение к этому предложению мы также выполняем экранирование PSS / крутильного взаимодействия для паровых турбин с низкими модальными частотами.Эти исследования выполняются, чтобы определить, требуется ли торсионный фильтр.

Тестирование средств управления AVR / PSS

Испытания PSS обычно проводятся при вводе станции в эксплуатацию. Условие испытания для PSS — выходная мощность установки при базовой нагрузке или близкая к ней. Тестирование современных систем возбуждения облегчается за счет использования внутренней записи данных и тестовых сигналов.

Основные типы обычно выполняемых тестов приведены в следующем списке.

1. Пошаговый тест в эталонном АРН (базовая нагрузка — без PSS).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *