Свойства транзистора: описание, типы, устройство, маркировка, применение.

Содержание

описание, типы, устройство, маркировка, применение.

В  этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www.radioingener.ru/diody-i-ix-primenenie/

Что такое транзистор.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.

Биполярный (обычный) транзистор

Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем.  В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис.

1), которые образуют два р — n перехода.

Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.

Устройство и структура.

Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.

Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.

Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.

Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.

Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.

Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).

Изготовление транзисторов.

Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света.

Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.

Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.

В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.

  • Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
  • Второй элемент — буква Т — начальная буква слова «транзистор».
  • Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
  • Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.

Вот некоторые примеры расшифровки обозначений по этой системе :

ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;

ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;

КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис.

4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д.

Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Рис. 4 Внешний вид некоторых транзисторов.

Советую просмотреть обучающий фильм:

Схемы включения и основные параметры биполярных транзисторов

 

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

 

  • Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.

  • Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
  • Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

  • Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
  • Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
  • Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.

При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.

 

Полевой транзистор

В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).

И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.

Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.

Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.

В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.

Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.

Кодовая и цветовая маркировка транзисторов

Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.

 

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5 — КТ315, КТ361

И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора

 

Характеристики и параметры транзисторов | Основы электроакустики

Транзисторы разделяются на типы (подтипы) по классификационным параметрам. Например,маломощные низкочастотные и среднечастотные транзисторы классифицируются по таким параметрам, как коэффициент усиления по току и предельная частота усиления или генерации. В отдельных случаях особо выделяют шумовые свойства транзисторов, характеризуемые коэффициентом шума, или способность транзисторов работать при повышенных напряжениях на коллекторе.

Маломощные высокочастотные транзисторы классифицируются по статическому коэффициенту усиления тока в схеме с общим эмиттером (ОЭ) и модулю коэффициента усиления тока на частоте 10. ..20 МГц.

Мощные низкочастотные транзисторы классифицируются по максимальному обратному напряжению между коллектором и базой и статическому коэффициенту усиления тока в схеме с ОЭ.

При практическом использовании транзисторов используются следующие параметры.

Параметры постоянного тока используются для расчета режима транзистора по постоянному току. К этим параметрам относятся:

  •  Обратный ток коллекторного перехода Iко — ток через переход коллектор—база при отключенном эмиттере и заданном напряжении на коллекторе.
  • Обратный ток эмиттерного перехода Iэо — ток через переход эмиттер—база при отключенном коллекторе и заданном напряжении на эмиттере.
  • Начальный ток коллектора Iкн — ток в цепи коллектора при замкнутых эмиттере и базе и заданном напряжении на коллекторе. В некоторых случаях указывается начальный ток коллектора при включении между базой и эмиттером заданного сопротивления.
  •  Ток коллектора запертого транзистора Iкз — ток коллектора при обратном смещении эмиттерного перехода и заданных напряжениях на эмиттере и коллекторе.

Параметры малого сигнала характеризуют работу транзисторов в различных усилителях. Переменные токи и напряжения на электродах транзисторов при измерениях этих параметров должны быть малыми по сравнению с постоянными токами и напряжениями, определяющими выбор начальной рабочей точки (начальное смещение). Сигнал считается малым, если при изменении (увеличении) переменного тока (или напряжения) в два раза значение измеряемого параметра остается неизменным в пределах точности измерений. Так как транзисторы имеют резко выраженные нелинейные свойства, параметры малого сигнала сильно зависят от выбора начального смещения. Для характеристики таких параметров чаще всего используется система Н-параметров в следующем составе:

  • входное сопротивление Н11 — отношение напряжения на входе к вызванному им изменению входного тока;
  • коэффициент обратной связи по напряжению h22 — отношение изменения напряжения на входе к вызвавшему его приращению напряжения на выходе;
  • выходная проводимость Н22 — отношение изменения выходного тока к вызвавшему его изменению выходного напряжения при условии холостого хода по переменному току на входе;
  • коэффициент усиления тока h31 — отношение изменения выходного тока к вызвавшему его приращению входного при условии короткого замыкания выходной цепи.

В зависимости от схемы включения к цифровым индексам добавляется буквенный: б — для схемы с ОБ, э — в схеме ОЭ, к — для схемы с ОК. Применяются и другие символы для обозначения коэффициента усиления по току: для схемы с ОБ — а, а для схемы с ОЭ — В или р.

Измерение Н-параметров, как правило, производится на низкой частоте (50… 1000 Гц). Они используются при расчетах низкочастотных усилителей, преимущественно первых каскадов, работающих на малых сигналах. На высокой частоте коэффициенты усиления тока становятся комплексными величинами (так же как и другие Н-параметры). Усилительные свойства транзисторов на высокой частоте характеризуются модулем коэффициента усиления тока ¦а¦, ¦h31б] или ¦В¦. Частота, на которой значение ¦h31бl уменьшается на 3 дБ (около 30%) по сравнению с Наш, измеренным на низкой частоте, называется предельной частотой усиления тока fa.

Модуль усиления тока в схеме ОЭ уменьшается с ростом частоты более заметно, чем в схеме ОБ. В некоторой области частот параметр ¦h31э¦ обратно пропорционален частоте: ¦h31э¦=Fт/F. Частота F, — граничная частота усиления тока базы. На этой частоте модуль ¦Н21э¦ равен 1. Имеет место приближенное соотношение: fа=mFт где т=2 для бездрейфовых и т=1,6 для дрейфовых транзисторов.

К малосигнальным параметрам относятся также емкости переходов транзистора.

  •  Емкость коллекторного перехода Ск — емкость, измеренная между коллекторным и базовым выводами транзистора при отключенном эмиттере и обратном смещении на коллекторе.
  •  Емкость эмиттерного перехода Сэ — емкость, измеренная между выводами эмиттера и базы при отключенном коллекторе и обратном смещении на эмиттере. Значения емкостей Ск и Сэ зависят от приложенного напряжения. Если, например, указано значение Ск при напряжении U, то емкость Скх при напряжении U, можно найти из приближенной формулы: Скх = Cк(U/Uх)m, где m определяется таким же образом, как и в формуле .
  • Максимальная частота генерации Fмакс — наибольшая частота автоколебаний в генераторе на транзисторе. С достаточной точностью можно считать, что Fмакc — частота, на которой коэффициент усиления транзистора по мощности равен единице.
  • Коэффициент шума Кш — отношение полной мощности шумов на выходе транзистора к части мощности, вызываемой тепловыми шумами сопротивления источника сигнала. Коэффициент шума выражается в децибелах. Его значение дается для определенного частотного диапазона. Для большинства транзисторов минимальные шумы наблюдаются при работе на частотах 1000.. .4000 Гц. На высоких и низких частотах шумы увеличиваются. Обычно минимальное значение Рш соответствует малым токам коллектора (0,1…0,5 мА) и малым коллекторным напряжениям (0,5… 1,5 В). Шумы резко увеличиваются при повышении температуры. Приводимые в справочных данных значения Рд, относятся к оптимальному внутреннему сопротивлению источника сигнала и режиму работы, которые и следует использовать при проектировании малошумящих усилителей.

Параметры большого сигнала характеризуют работу в режимах, при которых токи и напряжения между выводами транзистора меняются в широких пределах. Эти параметры используются для расчета ключевых схем, предоконечных и оконечных усилителей низкой и высокой частоты, автогенераторов.

  • Статический коэффициент усиления по току: Вcт=(Iк-Iко)/(Iб+Iко). В рассматриваемом случае ток коллектора и ток базы существенно превосходят тепловой ток коллектора 1„„, поэтому на практике пользуются формулой: Вст=Iк/Iб.
  • Статическая крутизна прямой передачи Sст — отношение постоянного тока коллектора к постоянному напряжению на входе транзистора. Параметр Sст используется для транзисторов средней и большой мощности, работающих в схемах, где источник входного сигнала имеет малое внутреннее сопротивление. Напряжение между коллектором и эмиттером транзистора в режиме насыщения измеряется при определенном значении коллекторного и базового токов или определенной глубине насыщения.
  • Глубина насыщения — это отношение прямого тока базы к току, при котором транзистор находится на границе насыщения. Напряжение между базой и эмиттером транзистора в режиме насыщения измеряется при тех же условиях, что и напряжение между коллектором и эмиттером транзистора в режиме насыщения.
  • Время рассасывания Тр — интервал времени между моментом подачи на базу транзистора запирающего импульса и моментом, когда напряжение на коллекторе достигает уровня (0,1…0,3)Е„ — напряжение питания коллекторной цепи). Время рассасывания зависит от глубины насыщения транзистора и измеряется при определенном значении коллекторного и базового токов.

Параметры предельных режимов работы.

  •  Максимальная мощность, рассеиваемая прибором — Раакс- Так как в транзисторах подавляющая часть рассеиваемой мощности выделяется в области коллекторного перехода, то эта мощность практически равна максимальной мощности, рассеиваемой на коллекторном переходе.
  • Максимальный ток коллектора — определяет максимальный ток коллектора при максимальном напряжении на коллекторе и максимально допустимой рассеиваемой мощности.
  • Максимальное обратное напряжение между коллектором и базой транзистора — Этот параметр используется обычно для расчета режима работы запертого транзистора или при включении его по схеме ОБ и генератора тока в цепи эмиттера.
  • Максимальное обратное напряжение на переходе эмиттер—база . Этот параметр используется для расчета режима работы, когда на входе действует запирающее напряжение (усилители в режиме В, различные импульсные схемы).
  • Максимальное напряжение между коллектором и эмиттером транзистора Uкэ макс при условии короткого замыкания эмиттера с базой. В ряде случаев этот параметр приводится при условии включения между базой и эмиттером резистора заданного сопротивления.Параметр Uкэ макс используется при расчетах режима работы транзистора, включенного по схеме с общим эмиттером и при отсутствии запирающего напряжения или когда оно мало, например, менее 1 В.
  • Максимальные значения токов, напряжений и мощности определяют границы области гарантированной надежности работы. Так как работа в предельном режиме соответствует самой низкой надежности, то использование предельных режимов в схемах, от которых требуется высокая надежность, не допускается.

Практика показывает, что при использовании полупроводниковых приборов в облегченных режимах надежность их работы повышается в десятки раз по сравнению с надежностью в предельном режиме.

Тепловые параметры полупроводниковых приборов устанавливают допустимые пределы или диапазоны температуры окружающей среды и самих приборов, при которых гарантируется их надежная работа Параметры предельных режимов устанавливают­ся исходя из условий обеспечения надежной работы транзисторов. Чтобы радиотехнические устройства на транзисторах работали безот­казно, рабочие режимы транзисторов выбирают такими, при которых ток, напряжения и мощность не превышают 0,8 их максимально до­пустимых значений.

Анализ частотных свойств транзистора с общей базой

Введение

Транзистор (от англ. Transfer – переносить и Resistor – резистор), полупроводниковый прибор, использующийся для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника, содержащего не менее трех областей с различной – электронной (n) и дырочной (p) – проводимостью.

Первый транзистор был изобретен в 1948 году американцами У.Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током, а также по принципу действия  их делят на:

 

(в процессах токопрохождения биполярных транзисторов участвуют основные и не основные носители зарядов, а в  полевых – носители одного знака)

 

В полевых транзисторах, управление потоком основных носителей заряда осуществляется в области полупроводника, называемой каналом, путем изменения его поперечного сечения с помощью электрического поля. Полевой транзистор имеет следующие три электрода: исток, через который в n канал втекают основные носители; сток, через который они вытекают из канала, и затвор, предназначенный для регулирования поперечного сечения канала. В настоящее время существует множество типов полевых транзисторов, которые в ряде устройств работают более эффективно, чем биполярные. Преимуществом полевых транзисторов является также и то, что ассортимент полупроводниковых материалов для их изготовления значительно шире (так как они работают только с основными носителями заряда), благодаря чему возможно создание, например, температуроустойчивых  приборов. Большое значение также имеют низкий уровень шумов и высокое входное сопротивление этих транзисторов.

Биполярным транзистором (БТ) называется трех электродный полупроводниковый прибор с двумя взаимодействующими p-n переходами, предназначенный для усиления электрических колебаний по току, напряжению или мощности и имеющие три или более вывода. Действие транзистора основано на управлении движением носителе электрических зарядов в полупроводниковом кристалле. Наиболее распространены транзисторы с тремя выводами. Слово “биполярный” означает, что физические процессы в БТ определяются движением носителей заряда обоих знаков (электронов и дырок). Взаимодействие переходов обеспечивается тем, что они располагаются достаточно близко – на расстоянии, меньшем диффузионной длины. Два p-n перехода образуются в результате чередования областей с разным типом электропроводности. Промышленность выпускает различные транзисторы, которые классифицируют по характеру переноса носителей (биполярные и полевые), числу p-n переходов, порядку чередования областей p-n переходов, методам изготовления, мощности, диапазону рабочих частот и т. п.

Биполярные транзисторы независимо от их структуры (p-n-p или n-p-n) классифицируют по ряду признаков.

Классификация БТ

По числу  p-n переходов транзисторы подразделяют на:
–  однопереходные
–  двухпереходные
–  многопереходные

По порядку чередования областей  p-n переходов различают  транзисторы  структуры:

–   p-n-p

(принцип действия обоих  типов транзисторов одинаков)

По характеру распределения атомов примеси и движению носителей заряда транзисторы разделяют на:

  • бездрейфовые (диффузионные)
  • дрейфовые

(БТ с однородной базой называют бездрейфовыми, а с неоднородной базой – дрейфовыми.)

По применяемому материалу транзисторы классифицируются на:

  • германиевые
  • кремниевые
  • арсенид-галлиевые

По технологии изготовления транзисторы бывают:

  • сплавные
  • диффузионные
  • эпитаксиальные
  • планарные

По допустимой мощности, рассеиваемой на электродах транзистора, их подразделяют на:

 

Примечание: Если конструкция корпуса не позволяет рассеивать выделяемую мощность, то транзистор размещают на радиаторе, охлаждаемую поверхность которого подбирают так, чтобы температура кристалла полупроводника не превышала допустимую.

По значению предельной частоты биполярные транзисторы делят на:

Маркировка БТ

Обозначение биполярных транзисторов состоит из шести или семи элементов.

Таблица №1. Маркировка БТ.

№ элемента п/п

Что обозначает элемент

Расшифровка элемента

1

Исходный материал

Г(1) – германий.
К(2) – кремний.
А(3) – арсенид-галлия.

2

Тип транзистора

Т – биполярный.
П – полевой.

3

Цифра, указывающая на частотные и мощностные свойства.

см. таблицу №2

4, 5 (6)

Цифра, указывающие порядковый номер разработки

–––

6 (7)

Буква, указывающая на разновидность транзистора из данной группы

–––

 

Таблица №2. Классификация транзисторов по мощности и частоте.

Частота

Мощность

Малая

Средняя

Большая

Низкая

1

4

7

Средняя

2

5

8

Высокая

3

6

9

Примеры обозначения:

KT315A, КТ806Б, ГТ108А, КТ3126, КТ3102, КТ3107, КТ972А.

 

Область транзистора, расположенная между p-n переходами, называют базой. Одна из примыкающих к базе областей должна наиболее эффективно осуществлять инжекцию носителей в базу, а другая – экстрагировать носители из базы (толщина базы делается значительно меньше диффузионной длины неосновных носителей в ней; ширина базы в сравнении с шириной эмиттера и коллектора очень мала и составляет единицы микрометров)

Область транзистора, из которой происходит инжекция носителей в базу, называют эмиттером, а переход – эмиттерным.

Область транзистора, осуществляющая экстракцию носителей из базы, называют коллектором, а переход – коллекторным.

Кроме того, концентрация атомов примесей в эмиттере и коллекторе (низкоомные области) значительно больше, чем в базе (высокоомная область). Площадь коллекторного перехода больше эмиттерного, что способствует увеличению коэффициента переноса носителей из эмиттера в коллектор.

Основные свойства БТ определяются процессами в базовой области, которая обеспечивает взаимодействие эмиттерного и коллекторного переходов. Поэтому ширина базовой области должна быть малой (обычно меньше 1 мкм). Если распределение примеси в базе от эмиттера к коллектору однородное (равномерное), то в ней отсутствует электрическое поле и носители совершают в базе только диффузионное движение. В случае неравномерного распределения примеси (неоднородная база) в базе существует “внутреннее” электрическое поле, вызывающее появление дрейфового движения носителей: результирующее движение определяется как диффузией, так и дрейфом. БТ с однородной базой называют бездрейфовыми, а с неоднородной базой – дрейфовыми.

Частотные свойства транзисторов

Подробности
Категория: Общая электроника и электротехника

С повышением частоты усиление, даваемое транзисторами, снижается. Имеются две главные причины этого явления. Во-первых, на более высоких частотах вредно влияет емкость коллекторного перехода. 

На низких частотах сопротивление емкости очень большое, коллекторное сопротивление также очень велико и можно считать, что весь ток идет в нагрузочный резистор. Но на некоторой высокой частоте сопротивление емкости становится сравнительно малым и в нее ответвляется заметная часть тока, создаваемого генератором, а ток в резисторе соответственно уменьшается. Следовательно, уменьшаются выходное напряжение и выходная мощность.

Емкость эмиттерного перехода также уменьшает свое сопротивление с повышением частоты, но она всегда шунтирована малым сопротивлением эмиттер-ного перехода и поэтому ее вредное влияние может проявляться только на очень высоких частотах. Практически на менее высоких частотах емкость, которая шунтирована очень большим сопротивлением коллекторного перехода, уже настолько сильно влияет, что работа транзистора, на который могла бы влиять емкость, становится нецелесообразной. Поэтому влияние емкости в большинстве случаев можно не рассматривать.

Второй причиной снижения усиления на более высоких частотах является отставание по фазе переменного тока коллектора от переменного тока эмиттера. Оно вызвано инерционностью процесса перемещения носителей через базу от эмиттерного перехода к коллекторному, а также инерционностью процессов накопления и рассасывания заряда в базе. Носители, например электроны в транзисторе типа n-p-n, совершают в базе диффузионное движение и поэтому скорость их не очень велика. Время пробега носителей через базу в обычных транзисторах получается порядка 10-7с, т. е. 0,1 мкс и менее. Конечно, это время очень небольшое, но при частотах порядка единиц и десятков мегагерц и выше оно вызывает заметный сдвиг фаз между токами коллектора и эмиттера. За счет такого сдвига фаз на высоких частотах возрастает переменный ток базы, а от этого снижается коэффициент усиления по току.

Обозначим коэффициент усиления по току для схемы с общим эмиттером в, а коэффициент усиления по току для схемы с общей базой б.

При повышении частоты в уменьшается значительно сильнее, чем б. Коэффициент б снижается от влияния емкости, а на величину в влияет еще и сдвиг фаз между токами коллектора и эмиттера за счет времени пробега носителей через базу. Схема с общим эмиттером по сравнению со схемой с общей базой обладает значительно худшими частотными свойствами.

Принято считать предельно допустимым уменьшение величин б и в на 30 % по сравнению с их значениями на низких частотах.

Те частоты, на которых получается такое снижение усиления, называют граничными, или предельными, частотами усиления для схем с общей базой и общим эмиттером.

Помимо предельных частот усиления, транзистор характеризуется еще максимальной частотой генерации, при которой коэффициент усиления по мощности каскада снижается до 1.

На высоких частотах происходит не только изменение величин б и в. Вследствие влияния емкостей переходов и времени пробега носителей через базу, а также процессов накопления и рассасывания зарядов в базе собственные параметры транзистора на высоких частотах изменяют свою величину и уже не являются чисто активными сопротивлениями. Изменяются также и все другие параметры.

Более высокие предельные частоты могут быть получены при использовании полупроводников, у которых подвижность носителей выше.

Усилительные свойства транзистора и элементы аналоговой интегральной схемотехники

Санкт-Петербургский Государственный Политехнический Университет

РАДИОФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

Лабораторная работа №:10

Усилительные свойства транзистора и элементы аналоговой интегральной схемотехники.

·  Цель работы:

Выявить сходные и отличительные черты БТ И ПТ и особенности их использования в усилительных устройствах

·  Объекты исследования:

Биполярные и полевые транзисторы.

Группа: 2094/1

Работу выполнили:  Середкин А.,

     Андросенко Т.

Преподаватель:       Зайцев Э.Ф.

                                                                               Отчет принят:

2008

Часть I

Семейства ВАХ БТ и простейшие каскады усиления на БТ.

  1. Измерение малосигнальных Y-параметров БТ.

1.1  Схема измерения параметров y11 и y21:

RL=100 Ом, R3’=100 Ом, Rб=1 кОм.

1.2  Измерение малосигнальных параметров y11 и y21.

Измерение малосигнальных параметров проводилось при подаче на вход транзистора гармонического колебания на частоте 2-3 кГц, при этом емкость Сбл надежно блокировала по переменному току эмиттерную цепь. Для нахождения y11 и y21 измерили амплитуды U0, U1, U2 напряжений ~u0, ~u1, ~u2, соблюдая условия малости сигнала .

y11===1.8*10-3 См

y21== =0,092 См

1.3 Схема для измерения y22.

1.3  Измерение y22:

Rб=1 кОм обеспечивает замыкание цепи базы по постоянному току. В цепь эмиттера включен измерительный резистор Rэ, значение которого мы выбрали 100 Ом. Измерение проводилось для заданной рабочее точки( Uк=5 В, Iк=4 мА) при подаче на транзистор колебания с амплитудой 2-3 В. Параметр y22 находили по результатам измерения амплитуд напряжений ~u2 и ~u3:

y22===0,085*10-3

1.4  Схема для измерения y12:

1.5  Измерение y12:

Измерение проводилось аналогично предыдущему. Измерительный резистор Rб=150 Ом включен в цепь базы.

y12== =3,33*10-7 См

1.6  Оценка y-параметров.

H21=50 UT=25.5 мВ UY=140 В

Теоретические

Экспериментальные

=3.1*10-3 См

=0.15 См

-5.7*10-7 См

0,028*10-3 См

y11=1.8*10-3  См

y21=0,092 См

y12=3,33*10-7 См

y22=0,085*10-3

  1. Измерение усилительных параметров простейших каскадов на биполярных транзисторах.

2.1  Схема усилительного каскада с общим эмиттером(См п. 1.1)

2.2  Измерение коэффициентов усиления напряжения, тока и мощности, входного сопротивления.

Измерения проводились при подаче на вход усилителя гармонического колебания на частоте 2-3 кГц.

60

48

KP=|KU|*KI=2880

=2*10-3*1000/=500 Ом

2.3  Теоретический расчет коэффициентов усиления напряжения, тока и мощности, входного сопротивления.

KU=y21*RL=0,1*390=39

KI=h21=50

KP=|KU|*KI=1950 32.9 дБ

500

2.4  Амплитудная характеристика усилителя по схеме с общим эмиттером.

U1, мВ

U2, мВ

1

10

1,7

16,5

2,4

23

3,2

32

4,2

38

4,8

44

5,4

48

Измерения проводились на той же частоте. Форма выходных колебаний контролировалась осциллографом. Амплитуда U1 входного напряжения изменялась от значений, при которых наблюдалось заметные искажения синусоиды на выходе усилителя, до уровня слабого сигнала.

Амплитудная характеристика усилителя по схеме с общим эмиттером.

2.5  Усилительный каскад с общим коллектором.

2.6   Измерение коэффициентов усиления напряжения, тока и мощности, входного сопротивления.

0,95

=14,1

KP=|KU|*KI=13,4 11.2 дБ

=11.5*10-3*1000/()=5750 Ом

2.7  Амплитудная характеристика U2=f(U1) усилителя с общим коллектором.

U1, мВ

U2, мВ

0.8

0.8

1.4

1.4

2.2

2

2.8

2.6

3.4

3.1

4

3.6

4.8

4.4

5.5

5

Амплитудная характеристика U2=f(U1) усилителя с общим коллектором

2.8  Измерение выходного сопротивления усилителя с ОК

Выходное сопротивление находилось по результатам измерения выходных напряжений u2’ и u2”, соответствующих различным значениям сопротивлений нагрузки RL’=51 Ом, RL”= 20 Ом. При этих опытах амплитуду U1 напряжения ~u1 поддерживалась на одном уровне (10-20 мВ), а сопротивление RБ=0.

14,6 Ом

2.9  Теоретический расчет коэффициентов усиления напряжения, тока и мощности, входного и выходного сопротивления.

K’U=-S*RL=-0,1*390=-39

0,975

KI=1+h21=1+50=51

KP=* KI=49,7 16,9 дБ

RВХ=20 кОм

RВЫХ~1/S=10 Ом

Теоретические

Экспериментальные

KU=0,975

KI=51

KP=49,7 16,9 дБ

RВХ=20 кОм

RВЫХ=10 Ом

KU=0.95

KI=14.1

KP=13,4 11.2 дБ

RВХ=5750 Ом

RВЫХ=14,6 Ом

Часть II.

Семейства ВАХ характеристик полевых транзисторов. Простейшие каскады усиления на полевых транзисторах. Исследование дифференциальных усилителей.

  1. Измерение малосигнальных  Y параметров Полевых транзисторов.

1.1  Измерение параметра y21=S.

Измерение малосигнального параметра y21 проводилось при подаче на вход транзистора гармонического колебания на частоте 2-3 кГц, при этом емкость СБЛ надежно блокировала по переменному току цепь истока. Нагрузочный резистор RL=100 Ом обеспечивал режим, близкий к короткому замыканию выхода для любого варианта рабочего тока транзистора.

y21===4,2*10-3

1.2  Измерение параметра y22.

y224,5*10-5

  1. Измерение усилительных параметров простейших транзиторных каскадов на полевых транзисторах.

2.1  Усилительный каскад с общим истоком(Схему см. п.1.1 измерение y21 ПТ)

2.2  Измерение Коэффициента усиления напряжения.

=0,42

2.3  Расчет Коэффициента усиления напряжения по формуле.

=0,42

2.4  Амплитудная характеристика U2=f(U1) усилителя с ОИ.

U1, B

U2, В

1,6

1,5

1,3

1,45

1

1,3

0,72

1,12

0,6

0,92

0,5

0,8

0,4

0,65

0,3

0,49

2.5  Усилительный каскад с общим стоком.

2.6  Измерение коэффициента усиления напряжения и выходного сопротивления.

KU=U2/U1=0.19/0.3=0.63

RВЫХ=218 Ом

2.7  Расчет коэффициента усиления напряжения и выходного сопротивления по формулам.

K’U=-S*RL=4,2*10-3*100=0.42

KU=0.42/1.42=0.3

RВЫХ~1/S=238 Ом

2.8  Сравнение расчетных и измеренных характеристик для усилителей с общим стоком и общим истоком

Схема с общим стоком

Схема с общим истоком

Экспериментальные

Теоретические

Экспериментальные

Теоретические

KU=0.63

RВЫХ=218 Ом

KU=0.3

RВЫХ=238 Ом

KU=0,42

KU=0,42

2.9  Амплитудная характеристика U2=f(U1) усилителя с ОС.

U1, B

U2, В

2,30

1,25

1,6

1,05

1,5

0,91

1,3

0,8

1,1

0,66

  1. Исследование дифференциального усилителя при различных способах подачи входного и съема выходного сигналов.

3.1  Дифференциальный каскад на биполярных транзисторах.

3.2  Измерение дифференциального и плечевого коэффициента усиления в режиме подачи сигнала на один вход.

Д|=(U’2+U”2)/U1=(0.32+0.32)/16*10-3=40

П1|=U’2/U1=20

П2|=U”2/U1=20

3.3  Теоретический расчет дифференциального и плечевого усилителя.

КД=y21*RL=0,1*390=39

КПД/2=19,5

3.4  Измерение дифференциального коэффициента усиления и коэффициента подавления синфазной помехи в режимах противофазного и, соответственно, синфазного возбуждения входов. Вычисление коэффициента ослабления синфазного сигнала.

КД=35

КСФ=0,625

КООС=20lg| КД/ КСФ|=34,9 дБ

Вывод:

В ходе выполнения работы были исследованы усилительные свойства биполярных транзисторов. Нами была выбрана рабочая точка (IК=4мА;UК=5В). В этой точке нами были посчитаны малосигнальные параметры для обоих схем включения. При анализе усилительных каскадов С ОЭ и ОК были рассчитаны коэффициенты усиления по напряжению, току и мощности, о так же их входное и выходное сопротивления. Сравнительные результаты расчета и измерения этих величин приведены в таблицах (п. 1.6 и 2.9). Были сняты амплитудные характеристики усилителей и найдены границы областей на которых не наблюдается искажения выходного гармонического сигнала 

Сравнивая результаты измерений характеристик усилителей на БТ можно сделать вывод о различии усилительных свойств схем с ОЭ и ОК, и как следствие применения их для решения различных задач. Так к примеру схема с ОК имеет большое входное сопротивления что может использоваться при согласовании, а схема с ОЭ дает сильное усиление по мощности.

Транзисторы: описание, подключение, схема, характеристики

Транзистор — электронная “кнопка” в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого.

Содержание

  • Назначение
  • Биполярные транзисторы
  • Полевые транзисторы
  • Пример
  • Вывод

Назначение транзисторов

Транзистор — электронная “кнопка” в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого. Также применяется для преобразования и коммутации электрических сигналов, что широко используется в электронных устройствах любой сложности, в том числе в микросхемах, в качестве атомарного триггера и так далее.

Как правило, у транзистора имеется три ноги: для входа, для выхода и для управляющего сигнала.

В DIY-разработках чаще всего используются транзисторы в двух корпусах: ТО-92 для небольших нагрузок и ТО-220 — более крупный и более мощный.

Транзисторы бывают двух типов: биполярные и полевые, каждый из которых имеет свои особенности, преимущества и недостатки.

Биполярные транзисторы.

Простое, надежное, компактное и недорогое устройство. Три контакта имеют следующие названия и назначения:
  • Коллектор — контакт для мощного положительного тока, которым следует управлять.
  • Эмиттер — контакт для “земли” мощного тока, на который открывается или закрывается транзит в зависимости от состояния Базы.
  • База — та самая “кнопка”, подавая небольшой ток на которую можно разблокировать связь коллектор-эмиттер, а заземлив его — заблокировать.
Простейшая схема подключения биполярного транзистора выглядит так:

В роли затвора, в нашем случае, чаще всего выступает пин Ардуино. Токоограничивающий резистор нужен для того, чтобы этот самый пин не сгорел, так как при подаче сигнала этот контакт замкнется на землю. Для этой цели достаточно резистора номиналом от 180 Ом.

Основной характеристикой биполярного транзистора является является коэффициент усиления hfe, соотношение между управляющим током и током нагрузки:

Ice = Ibe * hfe

Давайте рассчитаем, какой ток можно пропустить через типовой транзистор bc337 в корпусе ТО-92. Согласно даташита, коэффициент усиления такого транзистора составляет от 160 до 400, возьмем 300 как разумно-оптимальный. Примем номинал токоограничивающего резистора за 1 кОм, значит на базе получим ток:

Ibe = V/R = 5/1000 = 0.005 А

Вычисляем максимальный управляемый ток при помощи нехитрой формулы:

Ice = 5 мА * 300 = 1500 мА

Ответ: при помощи транзистора bc337 мы (теоретически) можем управлять нагрузкой до 1.5 А. При более высокой нагрузке транзистор откроется не полностью, “лишняя” часть пойдет на нагрев и транзистор быстро сгорит.

К основным характеристикам биполярного транзистора также можно причислить максимальное напряжение коллектор-эмиттер и максимальный ток через коллектор. Для нашего примера bc337 эти параметры, соответственно, 50 В и 0.8 А. Получается, что расчетные 1.5 А мы пропускать через этот транзистор все-таки не сможем, максимум 0.8. Поэтому, перед выбором транзистора, обязательно изучите его характеристики и свойства нагрузки.

Биполярные транзисторы выпускаются в двух разновидностях: NPN и PNP.

Транзистор из рассмотренного выше примера — NPN (Negative-Positive-Negative), такие более эффективны, а значит и распространены. PNP-транзисторы работают по обратной логике: при заземлении базы открываются, при подаче на нее питания закрываются.

Полевые транзисторы

Полевый транзисторы позволяют управлять гораздо более мощными нагрузками, при тех же размерах корпуса. В отличие от биполярных транзисторов, ток через затвор полевых не проходит, он изолирован от главной нагрузки, управление происходит только при помощи напряжения, а значит токоограничивающий резистор для них не нужен.

Названия и назначения контактов:

  • Сток — для подачи управляемой нагрузки;
  • Исток — для заземления, связь с которым открывается или закрывается в зависимости от состояния затвора;
  • Затвор — управляющий контакт, подаем напряжение — открываем транзистор, заземляем — закрываем.
Простейшая схема подключения полевого транзистора выглядит очень похоже:

Основными характеристиками полевого транзистора являются:
  • Максимальное напряжение сток-исток;
  • Максимальный ток через сток;
  • Сопротивление сток-исток;
  • Рассеиваемая мощность;
Недостатком полевого транзистора является то, что часть пропускаемой мощности в нем превращается в тепло, потому рассеиваемая мощность является таким важным параметром. Выделяемая мощность — это напряжение в квадрате, умноженное на сопротивление сток-исток, если она превысит допустимое, транзистор перегреется и выйдет из строя.

Наиболее известная разновидность полевого транзистора — MOSFET, чаще всего в DIY используются именно они. Особое внимание обратите на транзисторы с буквой L в маркировке, например IRLZ44n, они очень удобны для работы с контроллерами благодаря логическому уровню управления. Это значит, что для полного открытия гарантированно хватит сигнала с пина, обычно это от 2,5 В и выше. Максимальный ток сток-исток таких транзисторов многократно больше, чем у полевых, в случае IRLZ44n это аж 45 А, против 0,8 А у bc337. Поэтому для управления серьезной нагрузкой рекомендуется использовать именно их.


Пример

Рассматривать применение транзисторов в качестве простого выключателя мы здесь не будем, тем более, что такие схемы уже приведены выше. Давайте попробуем сделать из них что-то более сложное и полезное. Например, управление асинхронным электромотором с возможностью реверса. Для этого применим схему подключения, известную как Н-мост. Простейший вариант будет выглядеть так:

Для запуска мотора в одном направлении, подаем на первый пин единицу, на второй ноль. Нетрудно заметить на схеме, что при этом ток пойдет по красной линии, плюс на левый контакт мотора, минус на правый. Если выставим состояние пинов в обратное положение, ток пойдет по синей линии и мотор будет крутиться в противоположном направлении. Если оба пина выставить в одинаковое положение, мотор вращаться не будет, так как на его контактах будет отсутствовать разница потенциалов.

Можно обойтись и одним пином, для этого подключить второй управляющий контакт через логический инвертор, как пример — микросхему 74HC04, которая превращает ноль в единицу и наоборот. Тогда на пинах всегда будет разноименный сигнал и мотор будет вращаться в ту или другую сторону, в зависимости от подключения и состояния единственного управляющего пина.


Вывод


Транзистор — очередной элементарный “кирпичик”, один из базовых элементов электроники, наряду с резистором и конденсатором и диодом. Комбинацией этих “кубиков” создается подавляющее количество электронных схем. Знать эти элементы, их свойства, разновидности и уметь ими пользоваться должен каждый DIY-мастер.

Некоторые свойства транзистора – для новичков в радиоделе

Все элементы электрической схемы нужны и важны Если схема имеет ненужные элементы, то это, вероятнее всего, плохая схема Но сделать такой вывод можно только после тщательного анализа схемы Мы уже встречали, например, в схеме блока питания диоды, без которых схема будет работать Но рекомендации изготовителя микросхем стабилизаторов, добавивших диоды, полагаю, были результатом анализа возможных причин выхода микросхем из строя

Хотя все компоненты схемы нужны, транзисторы имеют особенный статус Недаром количество моделей транзисторов не умещается ни в один справочник И с каждым годом появляются всё новые и новые модели Производители транзисторов постоянно совершенствуют их, улучшая параметры

Мы ранее рассматривали биполярный транзистор Мы даже рассчитали номиналы сопротивлений в наиболее часто встречающейся схеме включения транзистора Воспользуемся полученными результатами для проведения очередного эксперимента

Рис 51 Испытание транзистора треугольными импульсами напряжения

В программе Multisim из приборов я использую кроме осциллографа ещё и функциональный генератор XFG1 Генератор воспроизводит синусоидальные, прямоугольные и треугольные разнополярные импульсы Мне нужны треугольные, однополярные импульсы Чтобы получить их, я использую постоянную составляющую (offset в настройках свойств генератора) Кроме того, я подбираю амплитуду импульсов и величину резистора R3 такими, чтобы получить нужную мне

«картинку» на экране осциллографа

Виртуальный осциллограф удобен для наблюдения за происходящим в режиме реального времени Но для анализа полученных результатов программа предлагает другое средство – обозреватель графиков, полученных при симуляции схем на экранах приборов

Рис 52 График, полученный на экране осциллографа в Grapher

Преимущество работы с таким графиком в том, что его можно увеличить на весь экран монитора, можно использовать курсоры для получения значений в любой точке кривой

Треугольные импульсы генератора, в данном случае, это линейно нарастающее до заданной величины напряжение, которое также линейно спадает до нуля Как мы знаем, это напряжение вызывает изменение входного тока транзистора, который меняется по закону входного сигнала С изменением тока базы (входным) связано изменение тока коллектора: Iк = B*Iб

Как видно из рисунка, и об этом мы ранее говорили, преобразование входного тока (или напряжения) в выходной (ток коллектора) не совсем линейно Если входное напряжение состоит строго из прямых линий, то выходное напряжение чуть-чуть «кривовато» Если мы хотим использовать каскад усиления на транзисторе  для  масштабного преобразования  входного напряжения, то хотели бы получить закон изменения входного напряжения без искажений То есть, с «кривоватостью» что-то нужно будет сделать Позже мы поговорим об этом

А сейчас вспомним, что проводя опыты с конденсатором и индуктивностью, мы отмечали, что напряжение и ток через них не находятся в фазе (не синфазны) Перенося это понятие на входное и выходное напряжение у транзисторного каскада усиления, мы можем сказать, что они противофазны: когда входное напряжение растёт, выходное спадает и наоборот Позже этот факт мы используем для улучшения свойств усилительного каскада

Заглянув в любой справочник по транзисторам, можно увидеть, что бывают транзисторы низкочастотные, а бывают высокочастотные Что это означает

Проводя наблюдение за усилением транзистором синусоидального, например, напряжения, мы использовали одну частоту генератора Если мы проведём опыт, в котором будем менять частоту, то обнаружим, что начиная с некоторой частоты, усиление каскада на транзисторе будет уменьшаться То есть, транзистор неравномерно усиливает переменное напряжение любой частоты Этот факт относится к частотным свойствам транзистора

Для испытания усилителей на разных частотах иногда используют специальные генераторы с плавно меняющейся частотой Их называют «свип-генераторы» или генераторами качающейся частоты В программе Multisim для цели построения кривой зависимости усиления от частоты используют плоттер Боде

Рис 53 Опыт с плоттером Боде и транзисторным каскадом усиления

Такую же характеристику, её называют АЧХ (амплитудно-частотная характеристика), мы могли бы построить по точкам, делая замеры на выходе при неизменном напряжении на входе на разных частотах На рисунке видно, что усиление до какой-то частоты (на рисунке это 372 кГц) постоянно, но начиная с этой частоты падает Частоту, где усиление начинает падать (точнее спадает на 3 дБ), называют верхней граничной частотой или верхней частотой среза Для разных транзисторов она разная В этом смысле есть транзисторы, у  которых эта частота невелика, их называют низкочастотными, а есть транзисторы, у которых она достаточно большая, высокочастотные На что влияет верхняя граничная частота

Радиосигналы имеют частоту в несколько десятков мегагерц, телевизионные сигналы в несколько сотен мегагерц Каскад усиления, который мы исследовали, на этих частотах не сможет усиливать Кроме того, из математики известно, что функцию, описывающую прямоугольные импульсы, можно разложить в ряд простых функций В радиотехнике используют разложение на функции синуса и косинуса, которые входят в ряд с разными амплитудами и частотами, кратными основной частоте повторения импульсов Такой анализ называют гармоническим Так вот, мы можем рассматривать усиление прямоугольных импульсов, как усиление всех его составляющих За верхней частотой среза составляющие прямоугольного импульса усиливаются хуже, что приводит к искажению формы импульсов

Вместе с тем, мы помним, что на транзисторе рассеивается мощность, выделяясь в виде тепла Если бы транзистор повторял форму входных прямоугольных импульсов, то мощность в крайних состояниях оказывалась бы небольшой Но из-за искажений приходится учитывать мощность, рассеиваемую в моменты перехода, которая оказывается значительно больше

Искажения импульсов прямоугольной формы из-за частотных ограничений может иметь значение и в устройствах, где фронты импульсов производят действия, например, переписывают данные в цифровых устройствах Затянутые фронты усложняют процесс работы с данными

Рис 54 Испытание каскада усиления прямоугольными импульсами частотой 200 кГц

Частота 200 кГц не слишком велика, если учесть, что цифровые микросхемы работают с частотой повторения импульсов в десятки мегагерц И, если даже на такой частоте импульсы перестали быть прямоугольными, то, что с ними будет, если мы решим применить усилитель в цифровом устройстве

Заменив транзистор более высокочастотным, мы получим иную верхнюю частоту среза:

Рис 55 Частотные характеристики транзистора 2N3391

Как  видно  на  рисунке  верхняя  граничная  частота  увеличилась  до  17  МГц  А  прямоугольные импульсы…

Рис 56 Повторение испытания прямоугольными импульсами после замены транзистора

…стали значительно больше похожи на прямоугольные

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

Характеристики транзистора — входные, выходные и токопроводящие характеристики

Конфигурация транзистора

Любой тип транзисторной схемы может быть разработан с использованием трех вышеупомянутых характеристик транзистора. Конфигурация транзисторов основана на выводах транзисторов. Существует три типа конфигурации схемы транзистора, а именно:

Каждая конфигурация схемы имеет свою характеристическую кривую. Исходя из требований схемы, выбирается соответствующая конфигурация транзистора.

Несколько вещей необходимо учитывать при использовании правильного транзистора для схемы. Это максимальное номинальное напряжение между эмиттером и коллектором (UCEmax), максимальная мощность для построения цепи и максимальный ток коллектора (ICEmax). Электрическая цепь не должна превышать эти максимальные значения для правильной работы. При превышении указанного значения может произойти необратимое повреждение цепи. Также важно поддерживать правильное усиление тока и частоту.

Конфигурация с общим эмиттером

В такой конфигурации эмиттер используется как общая клемма для входа и выхода.Он работает как схема инвертирующего усилителя. В этом случае вход применяется в области база-эмиттер, а выход получается между выводами коллектора и эмиттера.

В данном случае

VBE — входное напряжение,

IB — входной ток,

VCE — выходное напряжение и

IC — выходной ток.

Конфигурация с общим эмиттером обычно основана на транзисторных усилителях. В этом случае ток эмиттера эквивалентен сумме тока базы и тока коллектора.

Следовательно,

IE = IC + IB

(изображение будет загружено в ближайшее время)

Это уравнение является уравнением транзистора для конфигурации CE. Отношение тока коллектора к току эмиттера дает коэффициент усиления по току альфа в конфигурации с общей базой. Точно так же отношение тока коллектора к току базы дает коэффициент усиления по току бета в конфигурации с общим эмиттером.

Соотношение между двумя коэффициентами усиления по току:

Коэффициент усиления по току (α) = IC / IE

Коэффициент усиления по току (β) = IC / IB

Ток коллектора IC = αIE = βIB

В этой конфигурации используется один из трех схемы конфигурации.Он имеет средние входные и выходные значения импеданса. Он также имеет средний коэффициент усиления по току и напряжению. Выходной сигнал этой конфигурации имеет фазовый сдвиг 180 °, что означает, что вход и выход обратно пропорциональны друг другу.

(изображение будет загружено в ближайшее время)

Входные и выходные характеристики конфигурации с общим эмиттером

  1. Входные характеристики транзистора

Входная характеристика транзистора получается между входным током IB и входным напряжением VB посредством имеющий постоянное выходное напряжение VCE.Поддерживая постоянное выходное напряжение VCE и изменяя входное напряжение VBE в разных точках, мы можем проверить значения входного тока в каждой из точек. Теперь, используя значения, полученные из разных точек, строят график, отображая значения IB и VBE при постоянном VCE.

Rin = VBE / IB (при постоянном VCE)

Это уравнение, необходимое для расчета входного сопротивления Rin.

(изображение будет загружено в ближайшее время)

  1. Выходные характеристики

Выходная характеристика общего эмиттера получается между выходным напряжением VCE и выходным током IC при постоянном входном токе IB.Сохраняя постоянный базовый ток IB и изменяя значение выходного напряжения VCE в разных точках, мы можем вычислить значение IC коллектора для каждой точки. Теперь, если мы построим график между IC и VCE, мы получим выходные характеристики общей конфигурации эмиттера.

Rout = VCE / IC (при постоянном IB)

Это уравнение для расчета выходного сопротивления.

(изображение будет загружено в ближайшее время)

Что такое транзистор, его функции и характеристики [видео]

Теплые советы: Слово в этой статье составляет около 3200 слов, а время чтения составляет около 15 минут.

Каталог

Введение

В этой статье в основном будет рассказано, что такое транзистор , а также его подробные характеристики и функции. Транзистор — это своего рода твердое полупроводниковое устройство, которое выполняет множество функций, таких как обнаружение, выпрямление, усиление, переключение, стабилизация напряжения, модуляция сигнала и так далее. В качестве переключателя переменного тока транзистор может управлять выходным током в зависимости от входного напряжения.

В отличие от обычных механических переключателей (таких как реле и переключатели), транзисторы используют телекоммуникационные сигналы для управления своим включением и выключением, а скорость переключения может быть очень высокой, которая может достигать более 100 ГГц в лаборатории. В 2016 году команда из Национальной лаборатории Лоуренса в Беркли преодолела физический предел и сократила самый сложный из доступных транзисторных процессов с 14 нм до 1 нм, сделав прорыв в вычислительных технологиях.

Что такое транзистор? Определение, функции и использование

Артикул Core

Введение в транзисторы

Назначение

Представьте, что такое транзистор, его функции и характеристики

Английское название

Транзистор

Категория

Дискретный полупроводник Продукты

Функция

Используется как детектор, выпрямитель, усилитель, переключатель, стабилизатор напряжения, модуляция сигнала

Элемент

Высокий отклик и высокая точность

I Что такое транзистор?

Транзисторы — это полупроводниковые устройства, которые обычно используются в усилителях или электрически управляемых переключателях.Транзисторы являются основным строительным блоком, регулирующим работу компьютеров, мобильных телефонов и всех других современных электронных схем.

Благодаря их высокому отклику и высокой точности транзисторы могут использоваться для широкого спектра цифровых и аналоговых функций, включая усилители, переключатели, стабилизаторы напряжения, модуляцию сигнала и генераторы. Транзисторы могут быть упакованы независимо или на очень небольшой площади, вмещая часть 100 миллионов или более транзисторных интегральных схем.

(транзисторная технология Intel 3D)

Строго говоря, под транзисторами понимаются все отдельные элементы на основе полупроводниковых материалов, включая диоды, транзисторы, полевые транзисторы, тиристоры и т. Д., Изготовленные из различных полупроводниковых материалов. Транзисторы в основном относятся к кристаллическим триодам.

Транзисторы

делятся на две основные категории: биполярные транзисторы (BJT ) и полевые транзисторы (FET) .

Структура транзистора

Транзистор имеет три полюса: три полюса биполярного транзистора состоят из N-типа и P-типа соответственно: эмиттер, база и коллектор ; Три полюса полевого транзистора : Source, Gate, Drain .

Из-за трех полярностей транзистора их также можно использовать тремя способами: заземленный эмиттер (также называемый общим усилителем эмиссии / конфигурацией CE), заземленная база (также называемая конфигурацией усилителя общей базы / CB) и заземленный коллектор (также называется общим набором усилителя / конфигурации CC / эмиттерного соединителя).


II Разработка транзисторов

В декабре 1947 года группа компаний Belle Labs, Shockley, Barding и Bratton разработала германиевый транзистор с точечным контактом, появление которого было главным изобретением в 20 веке и предшественником Революция в микроэлектронике. С появлением транзисторов люди смогли использовать небольшое маломощное электронное устройство вместо трубки с большим объемом и большим потреблением энергии. Изобретение транзистора послужило толчком к рождению интегральной схемы.

В начале 1910-х годов в системах связи начали использовать полупроводники. В начале 1910-х годов в системах связи начали использовать полупроводники. В первой половине 20 века рудные радиоприемники были широко популярны среди радиолюбителей. Они используются для обнаружения с помощью таких полупроводников. Электрические свойства полупроводников также применяются в телефонных системах.

В феврале 1939 года лаборатория Белла делает великое открытие — кремниевый PN переход.В 1942 году студент по имени Сеймур Бензер из исследовательской группы Университета Пердью под руководством Ларка Горовица обнаружил, что монокристаллы германия обладают превосходными выпрямляющими свойствами, которых нет у других полупроводников. Эти два открытия соответствовали требованиям правительства США и заложили основу для последующего изобретения транзисторов.

  • 2.2 Точечно-контактные транзисторы

В 1945 году точечный транзистор, изобретенный Шокли и другими учеными, стал предвестником революции в области микроэлектроники человека.По этой причине Шокли подал заявку на патент на первый транзистор для Bell. Наконец, он получил разрешение на первый патент на транзистор.

  • 2.3 Биполярные и униполярные транзисторы

В 1952 году Шокли предложил концепцию униполярного переходного транзистора на основе биполярного транзистора в 1952 году, который сегодня называется переходным транзистором. Его структура аналогична структуре биполярного транзистора PNP или NPN , но на границе раздела материала PN имеется обедненный слой, образующий выпрямительный контакт между затвором и проводящим каналом исток-сток.В то же время полупроводник на обоих концах используется в качестве затвора. Ток между истоком и стоком регулируется затвором.

Подробное описание того, как работает биполярный переходной транзистор NPN и что он делает

Fairy Semiconductor, производящая транзисторы, выросла из компании, состоящей из нескольких человек, в большую компанию с 12 000 сотрудников.

После изобретения кремниевых транзисторов в 1954 году большие перспективы применения транзисторов становились все более очевидными.Следующая цель ученых — еще более эффективно соединять транзисторы, провода и другие устройства.

  • 2.6 Полевой транзистор (FET) и МОП-транзистор

В 1962 году Стэнли, Хейман и Хофштейн, которые работали в исследовательской группе интеграции устройств RCA, обнаружили, что транзисторы, МОП-транзисторы, могут быть сконструированы путем диффузии и термического окисления проводящих полос, каналов с высоким сопротивлением и оксидных изоляторов на подложках Si.

В начале основания Intel компания по-прежнему фокусировалась на планках памяти.Хофф объединил все функции центрального процессора на одном кристалле, а также память. И это первый в мире микропроцессор —- 4004 (1971 г.). Рождение 4004 года знаменует начало целой эпохи. С тех пор Intel стала неконтролируемой и доминирующей в области исследований микропроцессоров.

В 1989 году Intel представила 80486 процессоров. В 1993 году Intel разработала новое поколение процессоров. А в 1995 году Intel выпустила Pentium_Pro. Процессор Pentium II выпущен в 1997 году. В 1999 году выпущен процессор Pentium III, а процессор Pentium 4 выпущен в 2000 году.

III Классификация транзистора
  • 3.1 Как классифицировать транзистор

> Материал, используемый в транзисторе

По полупроводниковым материалам, используемым в транзисторе, его можно разделить на кремниевый транзистор и германиевый транзистор. По полярности транзистора его можно разделить на германиевый NPN-транзистор , германиевый PNP-транзистор , кремниевый NPN-транзистор и кремниевый PNP-транзистор.

> Технологии

По своей структуре и процессу изготовления транзисторы можно разделить на диффузионные транзисторы, легированные транзисторы и планарные транзисторы.

> Текущая мощность

По допустимому току транзисторы можно разделить на транзисторы малой мощности, транзисторы средней мощности и транзисторы большой мощности.

> Рабочая частота

По рабочей частоте транзисторы можно разделить на низкочастотные транзисторы, высокочастотные транзисторы и сверхвысокочастотные транзисторы.

> Структура пакета

В соответствии со структурой упаковки транзисторы можно разделить на транзисторы с металлической упаковкой, транзисторы с пластиковой упаковкой, транзисторы с корпусом со стеклянной оболочкой, транзисторы с поверхностной упаковкой и транзисторы с керамической упаковкой и т. Д.

> Функции и использование

По функциям и использованию транзисторы можно разделить на малошумящие транзисторы усилителя, транзисторы усилителя средней и высокой частоты, переключающие транзисторы, транзисторы Дарлингтона, транзисторы с высоким обратным напряжением, транзисторы с ограничением полосы пропускания, демпфирующие транзисторы, микроволновые транзисторы, оптические транзисторы и магнитный транзистор и многие другие типы.

  • 3.2 Типы транзисторов и их характеристики

> Гигантский транзистор (GTR)

GTR — это высоковольтный сильноточный биполярный транзистор (BJT), поэтому его иногда называют мощным BJT.

Особенности: Высокое напряжение, высокий ток, хорошие характеристики переключения, высокая мощность привода, но схема управления сложна; Принцип работы ОТО и обычных биполярных транзисторов одинаков.

> Фототранзистор

Фототранзисторы — это оптоэлектронные устройства, состоящие из биполярных транзисторов или полевых транзисторов. Свет поглощается в активной области таких устройств, производя фотогенерируемые носители, которые проходят через внутренний механизм электрического усиления и генерируют усиление фототока. Фототранзисторы работают на трех концах, поэтому легко реализовать электронное управление или электрическую синхронизацию.

Материалами, используемыми в фототранзисторах, обычно являются GaAs, которые в основном делятся на биполярные фототранзисторы, полевые фототранзисторы и связанные с ними устройства.Биполярные фототранзисторы обычно имеют высокое усиление, но не слишком быстрое. Для GaAs-GaAlAs коэффициент увеличения может быть больше 1000, время отклика больше наносекунды, что часто используется в качестве фотодетектора и оптического усиления.

Фототранзисторы с полевым эффектом (FET) реагируют быстро (около 50 пикосекунд), но недостатком является то, что светочувствительная область и коэффициент усиления малы, что часто используется в качестве сверхвысокоскоростного фотодетектора. Есть много других связанных планарных оптоэлектронных устройств, отличительными чертами которых являются высокая скорость отклика (время отклика составляет десятки пикосекунд) и которые подходят для интеграции.Ожидается, что такие устройства будут применяться в оптоэлектронной интеграции.

> Биполярный транзистор

Биполярный транзистор — это разновидность транзистора, обычно используемого в аудиосхемах. Биполярность возникает в результате протекания тока в двух типах полупроводниковых материалов. Биполярные транзисторы можно разделить на тип NPN или тип PNP в зависимости от полярности рабочего напряжения.

> Биполярный переходной транзистор (BJT)

«Биполярный» означает, что электроны и дырки движутся одновременно с работой.Биполярный переходной транзистор, также известный как полупроводниковый триод, представляет собой устройство, которое объединяет два PN перехода посредством определенного процесса. Есть две комбинированные структуры PNP и NPN. Внешнее выявление трех полюсов: коллектора, эмиттера и базы. BJT имеет функцию усиления, которая в зависимости от его эмиттерного тока может передаваться через область базы в область коллектора.

Чтобы обеспечить этот процесс транспортировки, с одной стороны, должны быть выполнены внутренние условия.Это означает, что концентрация примеси в области излучения должна быть намного больше, чем концентрация примеси в базовой области, а толщина базовой области должна быть очень малой. С другой стороны, должны выполняться внешние условия. Это означает, что эмиссионный переход должен иметь положительное смещение (плюс положительное напряжение), а коллекторный переход должен иметь обратное смещение. Есть много видов BJT, в зависимости от частоты, есть высокочастотные и низкочастотные лампы; по мощности бывают лампы малой, средней и большой мощности; по материалу полупроводника бывают кремниевые и германиевые трубки и т. д.Схема усилителя состоит из общего эмиттера, общей базы и общего коллектора.

БЮТ

> Полевой транзистор (FET)

Значение «полевого эффекта» заключается в том, что принцип работы транзистора основан на эффекте электрического поля полупроводника.

Полевые транзисторы — это транзисторы, работающие по принципу полевых эффектов. Существует два основных типа полевых транзисторов: Junction FET (JFET) и металл-оксидные полупроводниковые полевые транзисторы (MOS-FET).В отличие от BJT, полевой транзистор состоит только из одной несущей, поэтому его также называют униполярным транзистором. Он относится к полупроводниковым устройствам с регулируемым напряжением, которые обладают такими преимуществами, как высокое входное сопротивление, низкий уровень шума, низкое энергопотребление, широкий динамический диапазон, простая интеграция, отсутствие вторичного пробоя, широкая безопасная рабочая зона и т. Д.

Эффект поля заключается в изменении направления или величины электрического поля, перпендикулярного поверхности полупроводника, для управления плотностью или типом большинства носителей в полупроводниковом проводящем слое (канале).Ток в канале модулируется напряжением, и рабочий ток переносится большинством носителей в полупроводнике. По сравнению с биполярными транзисторами, полевые транзисторы характеризуются высоким входным сопротивлением, низким уровнем шума, высокой предельной частотой, низким энергопотреблением, простым производственным процессом и хорошими температурными характеристиками, которые широко используются в различных усилителях, цифровых схемах, микроволновых схемах и т. Д. Металлические полевые МОП-транзисторы. Полевые транзисторы на основе кремния и барьера Шоттки (MESFET) на основе GaAs являются двумя наиболее важными полевыми транзисторами.Они являются основными устройствами крупномасштабной интегральной схемы MOS и сверхбыстрой интегральной схемы MES соответственно.

полевой транзистор

> Одноэлектронный транзистор

Одноэлектронный транзистор — это транзистор, который может записывать сигнал с одним или небольшим количеством электронов. С развитием технологии травления полупроводников интеграция крупномасштабных интегральных схем становится все выше и выше. Возьмем, к примеру, динамическую память с произвольным доступом (DRAM), ее интеграция растет почти в четыре раза каждые два года, и ожидается, что одноэлектронный транзистор станет конечной целью.

В настоящее время средняя память содержит 200 000 электронов, в то время как одноэлектронный транзистор содержит только один или несколько электронов, поэтому это значительно снизит энергопотребление и улучшит интеграцию интегральных схем. В 1989 г. Ф. Скотт-Томас и другие исследователи открыли феномен кулоновской блокировки. Когда приложено напряжение, через квантовую точку не будет проходить ток, если изменение количества электрического заряда в квантовой точке меньше одного электрона.

Итак, отношение тока к напряжению — это не нормальная линейная зависимость, а ступенчатая. В этом эксперименте впервые в истории управление движением электрона осуществляется вручную, что обеспечивает экспериментальную основу для изготовления одноэлектронного транзистора.

> Биполярный транзистор с изолированным затвором (IGBT)

Биполярный транзистор

с изолированным затвором сочетает в себе преимущества гигантских транзисторов GTR и силовых полевых МОП-транзисторов.Обладает хорошими свойствами и широким спектром применения. IGBT также является трехполюсным устройством: затвор, коллектор и эмиттер.

IV Основные параметры транзисторов

Основные параметры транзистора включают коэффициент усиления тока, мощность рассеяния, характеристическую частоту, максимальный ток коллектора, максимальное обратное напряжение, обратный ток и так далее.

  • 4.1 Коэффициент усиления постоянного тока

Коэффициент усиления постоянного тока, также называемый коэффициентом усиления статического тока или коэффициентом усиления постоянного тока, относится к отношению IC тока коллектора транзистора к базовому току IB, которое обычно выражается через hFE или β, когда вход статического сигнала не изменяется. .

  • 4,2 Коэффициент усиления переменного тока

Коэффициент усиления переменного тока, также называемый коэффициентом усиления переменного тока и коэффициентом усиления динамического тока, относится к отношению IC к IB в состоянии переменного тока, которое обычно выражается через hFE или β. HFE и β тесно связаны, но также различны. Эти два параметра близки на низкой частоте и имеют некоторые различия на высокой частоте.

Мощность рассеивания, также известная как максимально допустимая мощность рассеивания коллектора —- PCM, относится к максимальной мощности рассеивания коллектора, когда параметр транзистора не превышает заданное допустимое значение.

Рассеиваемая мощность тесно связана с максимально допустимым переходным и коллекторным током транзистора. Фактическая потребляемая мощность транзистора не должна превышать значение PCM при его использовании, в противном случае транзистор будет поврежден из-за перегрузки.

Транзистор, мощность рассеяния PCM которого меньше 1 Вт, обычно называют транзистором малой мощности, который равен или превышает 1 Вт. Транзистор мощностью менее 5 Вт называется транзистором средней мощности, а транзистор, чей ИКМ равен или превышает 5 Вт, называется транзистором высокой мощности.

  • 4,4 Характеристическая частота (fT)

Когда рабочая частота транзистора превышает частоту отсечки fβ или fα, коэффициент усиления тока β будет уменьшаться с увеличением частоты. Характерная частота — это частота транзистора, при которой значение β уменьшается до 1.

Транзисторы, характеристическая частота которых меньше или равна 3 МГц, обычно называют низкочастотными транзисторами.Транзисторы с fT больше или равным 30 МГц называются высокочастотными транзисторами. Транзисторы с fT более 3 МГц и транзисторы менее 30 МГц называются транзисторами промежуточной частоты.

  • 4,5 Максимальная частота (фМ)

Максимальная частота колебаний — это частота, при которой коэффициент усиления транзистора уменьшается до 1.

В общем, максимальная частота колебаний высокочастотных транзисторов ниже, чем общая базовая частота среза fα, в то время как характеристическая частота fT выше, чем общая базовая частота среза fα, и ниже, чем частота среза общего коллектора fβ.

  • 4,6 Максимальный ток коллектора (ICM)

Максимальный ток коллектора (ICM) — это максимально допустимый ток через коллектор транзистора. Когда ток коллектора IC транзистора превышает ICM, значение β транзистора, очевидно, изменится, что повлияет на его нормальную работу и даже вызовет повреждение.

  • 4,7 Максимальное обратное напряжение

Максимальное обратное напряжение — это максимальное рабочее напряжение, которое транзистор может прикладывать во время работы.Оно включает в себя обратное напряжение пробоя коллектор-эмиттер, обратное напряжение пробоя коллектор-база и обратное напряжение пробоя эмиттер-база.

> Напряжение обратного пробоя коллектор-коллектор

Это напряжение относится к максимально допустимому обратному напряжению между коллектором и эмиттером, когда цепь базы транзистора разомкнута, обычно выражается в VCEO или BVCEO.

> Обратное напряжение пробоя база — база

Напряжение относится к максимально допустимому обратному напряжению между коллектором и базой при срабатывании транзистора, которое выражается в VCBO или BVCBO.

> Напряжение обратного пробоя эмиттер-эмиттер

Это напряжение относится к максимально допустимому обратному напряжению между эмиттером и базой, когда коллектор транзистора открыт, которое выражается в VEBO или BVEBO.

> Коллектор — база обратного тока (ICBO)

ICBO, также называемый током обратной утечки коллектора, относится к обратному току между коллектором и базовым электродом, когда эмиттер транзистора открыт.Обратный ток чувствителен к температуре. Чем меньше значение, тем лучше температурная характеристика транзистора.

> Ток обратного пробоя коллектор-эмиттер (ICEO)

Обратный ток пробоя ICEO между коллектором и эмиттером

ICEO — обратный ток утечки между коллектором и эмиттером, когда база транзистора открыта. Чем меньше ток, тем лучше производительность транзистора.

Часто задаваемые вопросы о транзисторе, его функциях и характеристиках

1. Что такое транзистор и как он работает?
Транзистор — это миниатюрный электронный компонент, который может выполнять две разные задачи. Он может работать либо как усилитель, либо как переключатель: … Крошечный электрический ток, протекающий через одну часть транзистора, может вызвать гораздо больший ток через другую его часть. Другими словами, малый ток включает больший.

2. Каковы основные функции транзистора?
Транзистор — это полупроводниковое устройство, используемое для усиления или переключения электронных сигналов и электроэнергии. Транзисторы — один из основных строительных блоков современной электроники. Он состоит из полупроводникового материала, обычно с тремя выводами для подключения к внешней цепи.

3. Каков принцип работы транзистора?
Транзистор состоит из двух PN-диодов, соединенных спина к спине.Он имеет три вывода: эмиттер, базу и коллектор. Основная идея транзистора заключается в том, что он позволяет вам управлять потоком тока через один канал, изменяя интенсивность гораздо меньшего тока, протекающего через второй канал.

4. Какие два основных типа транзисторов?
Транзисторы в основном делятся на два типа; это биполярные переходные транзисторы (BJT) и полевые транзисторы (FET). BJT снова подразделяются на транзисторы NPN и PNP.

5. Сколько существует типов транзисторов?
два типа
Есть два типа транзисторов, которые имеют небольшие различия в том, как они используются в схеме. Биполярный транзистор имеет клеммы, обозначенные как база, коллектор и эмиттер.

6. Что такое транзисторы PNP и NPN?
В транзисторе NPN положительное напряжение подается на вывод коллектора для создания тока, протекающего от коллектора к эмиттеру.В транзисторе PNP положительное напряжение подается на вывод эмиттера для создания тока, протекающего от эмиттера к коллектору.

7. Как измеряются характеристики транзисторов?
Выходная характеристика транзистора определяется путем исследования изменения напряжения между выводами коллектор-эмиттер, принадлежащих току коллектора, для разных токов базы. Эксперимент запускается нажатием кнопки «Выходная характеристика» на мобильном устройстве.

8. Что такое транзистор в процессоре?
Транзистор — это основной электрический компонент, который изменяет поток электрического тока. Транзисторы — это строительные блоки интегральных схем, таких как компьютерные процессоры или ЦП. Транзисторы в компьютерных процессорах часто включают или выключают сигналы.

9. Для чего нужен NPN-транзистор?
Определение: Транзистор, в котором один материал p-типа помещен между двумя материалами n-типа, известен как NPN-транзистор.Транзистор NPN усиливает слабый сигнал, поступающий на базу, и производит сильные сигналы усиления на конце коллектора.

10. Для чего используются транзисторы в мобильном телефоне?
Они хранят электрический заряд. Они хранят данные. Они усиливают входящий сигнал телефона.


Книжное предложение

Этот весьма успешный учебник, тщательно переработанный и обновленный, знакомит студентов с анализом и проектированием транзисторных схем.Он охватывает широкий спектр схем, как линейных, так и переключающих. Методы транзисторных схем: дискретные и интегральные дает студентам обзор основных качественных операций схемы с последующим изучением процедуры анализа и проектирования. Он включает в себя решенные задачи и примеры дизайна, чтобы проиллюстрировать концепции. Это третье издание включает две дополнительные главы, посвященные усилителям мощности и источникам питания, которые развивают многие методы проектирования схем, представленные в предыдущих главах.Эта книга, входящая в серию «Руководства по электронной инженерии», предназначена для студентов первого и второго курсов бакалавриата. Сам по себе полный текст, он предлагает дополнительное преимущество в виде перекрестных ссылок на другие заголовки в серии. Это идеальный учебник как для студентов, так и для преподавателей.

— Гордон Дж. Ричи,

Создавайте сложные транзисторные радиоприемники, недорогие, но очень эффективные. Создайте свои собственные транзисторные радиоприемники: «Руководство по высокопроизводительным и маломощным радиосхемам для любителей» предлагает полные проекты с подробными схемами и идеями о том, как были разработаны радиоприемники.Узнайте, как выбирать компоненты, создавать различные типы радиомодулей и устранять неполадки в своей работе. Если копнуть глубже, этот практический ресурс покажет вам, как разрабатывать инновационные устройства, экспериментируя с существующими конструкциями и радикально улучшая их.

— Рональд Куан


Актуальная информация по теме «Что такое транзистор, а также его функции и характеристики»

О статье «Что такое транзистор, его функция и характеристики», Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

Альтернативные модели

Часть Сравнить Производители Категория Описание
Производитель.Номер детали: W25Q128FVFIG Сравнить: Текущая часть Производитель: Winbond Electronics Категория: Чип памяти Описание: Flash Serial-SPI 3V / 3.3V 128M-бит 16M x 8 7ns 16Pin SOIC
Производитель № детали: W25Q128FVFIG TR Сравнить: W25Q128FVFIG VS W25Q128FVFIG TR Производитель: Winbond Electronics Категория: Чип памяти Описание: NOR Flash Serial-SPI 3V / 3.3V 128M-бит 16M x 8 7ns 16Pin SOIC
Производитель № детали: N25Q128A13ESF40E Сравнить: W25Q128FVFIG против N25Q128A13ESF40E Производитель: Micron Категория: Флэш-память Описание: NOR Flash Serial-SPI 3V / 3.3V 128Mbit 128M / 64M / 32M x 1Bit / 2Bit / 4Bit 7ns 16Pin SO W Tray
Производитель № детали: S25FL128P0XMFI000 Сравнить: W25Q128FVFIG VS S25FL128P0XMFI000 Изготовители: Spansion Категория: Чип памяти Описание: IC FLASH 128 Мбит 104 МГц 16SO

Shahram Marivani — ХАРАКТЕРИСТИКИ БИПОЛЯРНОГО ТРАНЗИСТОРА

ХАРАКТЕРИСТИКИ БИПОЛЯРНОГО ТРАНЗИСТОРА

ЗАДАЧИ:

Ознакомиться с теорией работы биполярных переходных транзисторов (БЮТ). и изучить V-I характеристики BJT

ВВЕДЕНИЕ:

Тип транзистора (NPN или PNP) можно определить с помощью мультиметра.Тест проверяет полярность переходов база-эмиттер и база-коллектор. Этот тест должен быть выполнен в начале лабораторного сеанса. Для BJT есть три региона работы;

  1. Активная область: в этой области базовый эмиттерный переход смещен в прямом направлении, а переход база-коллектор имеет обратное смещение. Эта область — нормальный транзистор режим работы на усиление и характеризуется коэффициентом усиления транзистора по току значение, бета.
  2. Область отсечки: в этой области переходы база-эмиттер и база-коллектор обратное смещение, и транзистор действует как разомкнутый переключатель. (Я С = 0)
  3. Область насыщения: в этой области переходы база-эмиттер и база-коллектор смещен в прямом направлении, и транзистор действует как замкнутый переключатель. (V CE = 0)

В активной области транзистора была определена добротность для количественной оценки способность транзистора усиливать входной сигнал.Этот параметр определяется как соотношение между I C и I B , которое обычно называется β-фактором. Аналогично коэффициент α равен определяется как отношение между I C и I E . Таким образом;

β = I C / I B и α = I C / I E

Нетрудно показать, что β = α / (1 — α) и α = β / (β + 1). Как показывает практика, чем больше значение β, тем выше коэффициент усиления транзистор, т.е.е. тем лучше транзистор. Типичные значения β находятся в диапазоне от 80 до 300 или выше.

РАБОТА В ЛАБОРАТОРИИ

  1. Определите тип транзистора, используя сопротивление перехода постоянного тока транзистора:
    Проверьте тип транзистора для каждого блока, проверив полярность базы-эмиттера соединение. Используйте мультиметр Fluke в режиме сопротивления. Сведите ваши измеренные данные в таблицу. Для данного транзистора (2N3904) измерьте сопротивление прямого и обратного смещения. между базой и эмиттером, базой и коллектором и коллектором и эмиттером.Выводы этого транзистора показаны на Рисунок 1.

  2. Рисунок 1 — Упрощенная схема и подключение выводов транзистора 2N3904
  3. I C — V BE Характеристика биполярного переходного транзистора:
    Подключите испытательную схему транзистора, как показано на рисунке 2. Установите напряжение постоянного тока (V B ) на 0 Вольт и V CC до 10 В. Увеличивайте V B с шагом 0,1 В и измерьте напряжение постоянного тока между базой и эмиттером (V BE ), постоянный ток через коллектор I C и ток через базу I B .Сведите свои показания в ясную таблицу и нанесите на график зависимости I C от V BE . Убедитесь, что вы взяли достаточно точек данных, чтобы построить типичную характеристику. БЮТ. Вычислить β для каждой измеренной точки данных и свести в таблицу рассчитанные значения β с измеренными данными. График β по сравнению с V BE .

  4. Рисунок 2 — Испытательная схема для измерения характеристик биполярного транзистора V BE и I C
  5. Измерение I C по сравнению с характеристикой V CE биполярного транзистора:
    Используя испытательную схему на Рисунке 2, отрегулируйте V B , чтобы генерировать ток 50 мкА в базе транзистор.Измените V CC , чтобы изменить V CE . Выберите разумные шаги для V CE (маленькие шаги при более низких напряжениях; 0,1 В для значений от 0 до 1,0 В и большие шаги при более высоких напряжениях; 1,0 В для значений выше 1,0 В). Измерьте V CE и I C .
    Повторите вышеуказанное измерение для I B = 100 мкА, 150 мкА и 200 мкА. Постройте набор кривые для I C в сравнении с V CE для постоянного I B .
    По измеренным данным определите диапазон V CE , в котором I C близок к нулю ампер.
    Найдите значение α из этого набора измеренных данных, затем вычислите β. Сравните значение β, полученное в результате этого измерения, и значение, полученное в результате измерения выполнено в 2.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Синтез, экспериментальные и теоретические характеристики, а также свойства полевого транзистора нового класса производных дибензотиофена: от линейной к циклической архитектуре

Мы сообщаем о синтезе и характеристике бис-дибензотиофенового циклического димера, содержащего бис-этиленовые связи ( DBT-CM ), и соответствующих моноэтилен-связанных «линейных» цис — и транс -изомеров ( цис цисцисцис и транс транс-DBT-LM соответственно).Различная молекулярная архитектура приводит к заметным различиям как в твердотельной упаковке, так и в электронных и оптических свойствах молекул. Рентгеновская кристаллография показывает, что циклическая архитектура DBT-CM приводит к более плотно упакованной конфигурации стопки, которая обеспечивает более сильное межмолекулярное электронное взаимодействие для переноса дырок и электронов между соседними молекулами, в то время как определение морфологии тонкой пленки и кристалличности не раскрывает важные температурно-зависимые свойства пленок как функция молекулярной архитектуры.Более того, окислительно-восстановительный потенциал, электронная структура и оптические свойства DBT-CM сильно отличаются от свойств его линейных аналогов. Энергии внутримолекулярной реорганизации для переноса дырок и электронов для DBT-CM заметно меньше, чем у линейных аналогов, в то время как дисперсия для самой высокой валентной зоны (и межмолекулярное электронное взаимодействие для переноса дырок) является наибольшей для серии. Более благоприятные характеристики упаковки / морфологии молекул и свойства переноса заряда (в рамках концепции Маркуса) DBT-CM проявляются в исследованиях тонкопленочных полевых транзисторов, где подвижность полевых дырочных носителей равна 0.026 см 2 V −1 s −1 , значение на порядок больше, чем у любого линейного аналога.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте снова? Транзистор

PNP — принцип работы, характеристики и применение

Транзистор PNP

является подтипом биполярных переходных транзисторов (BJT).Это базовый транзистор, который часто используется в различных электронных схемах. Он используется для таких функций, как усиление сигнала, переключатели и генераторы. В этом посте представлена ​​подробная информация о транзисторе PNP, принципах работы транзистора PNP, его характеристиках, применении, преимуществах и недостатках.

Что такое PNP-транзистор

PNP-транзистор — это тип биполярного переходного транзистора, который состоит из трех слоев, в которых слой с примесью «N» расположен между двумя слоями с примесью «P».В транзисторах PNP электроны являются неосновными носителями заряда, а дырки — основными носителями заряда. Течение тока происходит из-за движения отверстий. Он имеет два PN-перехода:

  • Соединение эмиттер-база
  • Соединение коллектор-база

Рис. это устройство, управляемое током. Структура противоположна транзистору NPN, но аналогична по работе.

Символ транзистора PNP показывает стрелку, направленную внутрь от эмиттера к базе, которая указывает направление обычного тока. PNP-транзистор считается включенным, когда напряжение источника, подключенного к базе, низкое, и выключается, когда оно высокое.

Рис. 2 — Обозначение транзистора PNP

Как работает транзистор PNP

Чтобы понять работу транзистора, необходимо знать характеристики полупроводников.

Четвертый столбец периодической таблицы содержит определенные элементы, которые в контролируемых условиях ведут себя как проводники и изоляторы. Эти элементы называются полупроводниками. Электроны движутся в полупроводнике медленно, а дырки движутся медленнее, чем электроны. Для изменения удельного сопротивления полупроводника требуется всего несколько донорных или акцепторных атомов.

PNP-транзистор работает, когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор смещен в обратном направлении.Говорят, что переход имеет прямое смещение, когда полупроводник P-типа подключен к положительному выводу, а полупроводник N-типа подключен к отрицательному выводу. При обратном смещении полупроводник P-типа подключается к отрицательной клемме, а полупроводник N-типа подключается к положительной клемме.

Рис. 3 — Конструкция и обозначение схемы PNP-транзистора

Область базового коллектора имеет обратное смещение, в котором используется внешний источник напряжения.Это означает, что база имеет более высокий потенциал, чем коллектор. Обратное смещение не создает диффузии, и, следовательно, между клеммами не протекает ток.

Область базового эмиттера смещена в прямом направлении, так что напряжение на эмиттере имеет более высокий потенциал, чем на базе (V BE ). Отверстия вставляются в эмиттер (P-область), пересекая область обеднения в базу от положительного вывода источника напряжения (V BE ). Поскольку эмиттер сильно легирован, он притягивает много электронов, которые диффундируют в базовую область.

В то же время электроны текут из отрицательного вывода, толкая электроны около перехода эмиттер-база в эмиттер. Это заставляет ток (I E ) течь от эмиттера к коллектору.

Ток коллектора или ток базы можно рассчитать по формуле:

База более отрицательна, чем эмиттер, примерно на 0,7 В для кремниевого полупроводника и на 0,3 В для германиевого полупроводника.

Подводя итог, при увеличении напряжения прямого смещения барьер перехода эмиттер-база уменьшается.Это позволяет большему количеству носителей достигать коллектора, что, в свою очередь, увеличивает ток от эмиттера к коллектору. Это также означает, что уменьшение напряжения прямого смещения уменьшает ток.

  Прочтите о PN-переходе, прямом смещении, обратном смещении и слое истощения.  

Характеристики транзистора PNP

Взаимосвязь между постоянными токами и напряжениями представлена ​​графически, которые известны как характеристики. Двумя важными характеристиками транзистора PNP являются:

  • Входные характеристики
  • Выходные характеристики

Входные характеристики для конфигурации с общей базой

В конфигурации с общей базой для различных постоянных значений выходного напряжения (V BC ) кривая строится между входным током (I E ) и входным напряжением (V BE ).

На рисунке ниже показан приблизительный график для входных характеристик. Из этой характеристической кривой мы можем сделать вывод, что для фиксированного значения выходного напряжения (V BC ) напряжение эмиттера прямо пропорционально току эмиттера (I E ).

Рис. 4 — Входные характеристики для общей базовой конфигурации

Выходные характеристики для общей базовой конфигурации

Для различных постоянных значений входного тока (I E ) кривая строится между выходным током ( I C ) и выходное напряжение (V BC ).На рисунке ниже показаны выходные характеристики с тремя интересующими областями, указанными как активная область, область отсечки и область насыщения. Транзистор действует как переключатель «ВЫКЛ» в области отсечки и переключатель «ВКЛ» в области насыщения.

Рис. 5 — Выходные характеристики для общей базовой конфигурации

  • В активной области переход база-эмиттер смещен в прямом направлении, а переход с базой-коллектором смещен в обратном направлении.
  • В области отсечки и соединение база-эмиттер, и соединение-база коллектора имеют обратное смещение.
  • В области насыщения переходы база эмиттер и база коллектора смещены в прямом направлении.

Применения транзистора PNP

Применения транзисторов PNP включают:

  • Они используются при проектировании схем усилителя, таких как усилители класса B.
  • Используются в общем управлении двигателем.
  • PNP-транзисторы широко используются в парных схемах Дарлингтона.
  • Используются как переключатели.
  • Используются как генераторы.

Преимущества транзистора PNP

Преимущества транзисторов PNP:

  • Транзисторы PNP используются для источника тока.
  • Упрощает конструкцию схемы, поскольку генерирует сигнал, привязанный к отрицательной шине питания.
  • Как и другие транзисторы, он меньше по размеру и может входить в состав интегральных схем.
  • Они генерируют меньше шума, чем транзисторы NPN.

Добавить комментарий

Ваш адрес email не будет опубликован.