Термоэдс термопары – Термопара — Википедия

Содержание

Термопара — Википедия

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля, равной 300 °C, и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур

Т1 и Т2.

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик

[1]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;

— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры[2]. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения[править | править код]

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения[3]. Упоминания об этом их применении относятся к началу 1830-х годов[4]. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу

[5].

Преимущества термопар[править | править код]

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки[править | править код]

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ

[6].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Таблица ниже описывает свойства нескольких различных типов термопар[7]. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью ±0,0025×T имела бы точность ±2,5 °C при 1000 °C.

Тип

термопары

IEC (МЭК)

Материал

положительного

электрода

Материал

отрицательного

электрода

Темп.

коэффициент,

μV/°C

Темп.

диапазон, °C

(длительно)

Темп.

диапазон,°C

(кратковременно)

Класс точности 1 (°C) Класс точности 2 (°C) IEC (МЭК)

Цветовая маркировка

K Хромель

Cr—Ni

Алюмель

Ni—Al

40…41 0 до +1100 −180 до +1300 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Зелёный-белый
J Железо

Fe

Константан

Cu—Ni

55.2 0 до +700 −180 до +800 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C
±0,T от 333 °C до 750 °C
Чёрный-белый
N Нихросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100 −270 до +1300 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый
R Платинородий

Pt—Rh (13 % Rh)

Платина

Pt

0 до +1600 −50 до +1700 ±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
S Платинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600 −50 до +1750 ±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
B Платинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +1700 0 до +1820 ±0,0025×T от 600 °C до 1700 °C Отсутствует
T Медь

Cu

Константан

Cu—Ni

−185 до +300 −250 до +400 ±0,5 от −40 °C до 125 °C
±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C
±0,0075×T от 133 °C до 350 °C
Коричневый-белый
E Хромель

Cr—Ni

Константан

Cu—Ni

68 0 до +800 −40 до +900 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый
  • Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.

ru.wikipedia.org

7.4. ТермоЭдс. Термопара. Термоэлектрические эффекты Томпсона и Пельтье

Для измерения температуры используетсятермоЭДС, см. (Рис. 46), возникающая при контакте двух различных проводников. Это явление было открыто в 1821 г.Т. Зеебекоми получило названиеэффекта Зеебека. Для многих комбинаций металлов при их соединении возникаетвнутренняя контактная разностьпотенциалов, линейно зависящая от температуры соединения, если температурный диапазон не слишком велик.

Рис. 46. ТермоЭДС, возникающая при контакте двух различных проводников

Возникновение внутренней контактной разности потенциалов обусловлено тем, что максимальная энергия свободных электроновзависит от их концентрации и потому имеет различную величину для разных металлов. При соединении металлов возникаетдиффузияэлектронов из металла с большей концентрацией и, соответственно, большей максимальной энергией свободных электронов в металл с меньшей концентрацией свободных электронов. В результате диффузии металлы приобретают разноимённые заряды, возникает внутреннее электрическое поле, внутренняя разность потенциалов, а максимальные энергии свободных электронов двух металлов становятсяравными. Эта контактная разность потенциалов вместе с электрическим полем локализована в тонком слое вблизи контакта. Для измерения температуры используются два последовательных контакта металлов при различной температуре (термопара), как показано на Рис. 47.

Рис. 47. Система двух последовательных контактов полупроводников или металлов при различных температурах Т1и Т2, используемая для измерения температуры.

Величина напряжения V, измеряемая вольтметром на Рис. 47, описывается выражением

V=T=ab(T1-T2), T1>T2, (7.4.1)

гдеab – коэффициент Зеебека. По известной Т2с помощью напряженияVна выходе термопары можно определить неизвестную температуру Т1. Величина коэффициента Зеебека зависит от физической природы контактирующих проводников:

а) для контакта двух металлов

ab=ln, (7.4.2)

б) для контакта металла и невырожденного дырочного полупроводника

ab=(r+2+ln), (7.4.3)

в) для контакта металла и невыраженного электронного полупроводника

ab=-(r+2+ln).(7.4.4)

Здесь <>=(r+2)kT– средняя энергия носителя тока,r– показатель степени в зависимости длинысвободного пробега электрона от энергииэлектрона

 ~r. 7.4.5

При рассеянии на ионах примеси r=2, при рассеянии на акустических фононахr=0, при рассеянии на оптических фононахr=(T<D) иr=1 (T>D).

В области температур Т~273 К коэффициент Зеебека для термопар из металла лежит в диапазоне от 6 до 68 мкВ/К и не зависит от площади контакта. Для проводников величина может достигать 1 200 мкВ/К (Cu2O).

Для повышения чувствительности из термопар собирают термобатарею, см. Рис. 48. С помощью термобатареи можно зафиксировать разность температурТ~1016К.

Рис. 48. Термобатарея

Термобатареи используются также в качестве маломощных генераторов тока, где КПД преобразования тепловой энергии в энергию электрического тока достигает 75% и выше (при использовании полупроводников с разными типами проводимости). Основные потери в таких генераторах обусловлены теплопроводностью. Примечательным свойством таких генераторов является отсутствие движущихсячастей.

Преимущества термопары как датчика температуры:

  1. линейная связь между разностью температур Т и измеряемым напряжениемV;

  2. малая инерционность в силу формирования термоЭДС в малом объёме контакта;

  3. Возможность измерения температур в широком диапазоне значений: от сверхнизких (железо-золото) до очень высоких ~3 000 К (графит-карбид титана, графит-цирконат бора).

Напряжение на выходе термопары зависит не только от внутренней контактнойразности потенциалов, но также отджоулева тепла, которое меняет температуру термопары и вносит температурную погрешностьэффекта Пельтьеиэффекта Томпсона. Для уменьшения джоулева тепла схема измерений должна иметь большую величину входного импеданса.

Эффект Пельтье(Ш. Пельтье, 1834 г.) заключается в выделении или поглощении тепла при прохождении электрического тока через контакт двух различных проводников

QП12It, (7.4.6)

где П12– коэффициент Пельтье для контакта проводников 1 и 2, который зависит от природы проводника и температуры контакта. При изменении направления токаIзнакQПизменяется на противоположный (выделение тепла превращается в поглощение тепла и наоборот). В известном опыте Ленца на стыке стержней из висмута и сурьмы была помещена капля воды. При пропускании электрического тока в одном направлении вода замерзала, а при пропускании тока в противоположном направлении образовавшийся лёд таял. Для металлов коэффициент Пельтье ~10-2-10-3В, а для полупроводников порядка 3*10-1-10-3В. Эффект Пельтье используется для создания холодильников, где температура понижается до -14оС. Причина эффекта Пельтье заключается в том, чтосредняя энергияносителей токав двух проводниках, находящихся в контакте, несмотря на совпадение уровня Ферми,различна. Для иллюстрации на Рис. 49 показан контакт металла и полупроводникаp-типа.

Рис. 49. Энергетическая диаграмма границы двух проводников при возникновении эффекта Пельтье

Если электрон переходит из металла в полупроводник, то поглощается тепло Q=Еп/пм(переходят электроны с энергиейЕп/п, тепловое равновесие в металле восстанавливается за счёт передачи тепловой энергии решётки свободным электронам металла). Если электрон переходит из полупроводника в металл, то выделяется теплоQ=Еп/пм, которое передаётся решётке.

Эффект Пельтье приводит к понижению или повышению температуры контакта относительно температуры среды, поэтому он вносит температурную погрешность, влияя на разность температур Т12и, соответственно, величину измеряемого напряженияV.

Эффект Томсона(теоретически предсказан У. Томсоном в 1856 г.; обнаружен экспериментально Леру в 1867 г.) наблюдается в неоднородно нагретых проводниках, по которым протекает электрический ток. Схема, позволяющая наблюдать эффект Томсона, показана на . Эффект Томсона представляет собой дополнительное (помимо джоулева тепла) выделение или поглощение тепла при протекании тока в неоднородно нагретом проводнике. Процесс описывается выражением:

QT=σI(T1T2)t, (7.4.7)

где σ – коэффициент Томсона. За положительное направление, определяющее знак тока, берётся направление, в котором растёт температура (эффект Томсона считается положительным, если ток, текущий в направлении роста температуры, вызывает нагревание проводника). При изменении направления тока и фиксированной разности температур знак QTменяется на противоположный. Для висмута при комнатной температуре σ~10-5В/К.

Эффект Томсона возникает благодаря тому, что в проводнике с током существует поток энергии с интенсивностью

P=-(<WK>-e), (7.4.8)

где <WK> — средняя кинетическая энергия электрона в потоке,— потенциал электростатического поля в проводнике. Отсюда следует, что в ед. объёма за ед. времени выделяется количество теплоты

Q=(T1T2)t+j()t, (7.4.9)

где первое слагаемое описывает эффект Томсона, а второе эффект — Джоуля-Ленца.

Для металлов

==ln, (7.4.10)

для полупроводников n-типа

=ln+. (7.4.11)

Эффект Томсона вносит температурную погрешность при измерении температуры с помощью термопары.

Важно отметить, что гальванические напряжения, вызванные влажностью и коррозией, могут оказаться на 2-3 порядка больше термоЭДС.

Если использовать законы обратимой термодинамики, то можно получить соотношения, которое связывают величины ,и П:

QП1212I, (7.4.12)

(7.4.13)

П121)-П122)+((7.4.14)

или в дифференциальной форме:

. (7.4.15)

Рис. 50. Схема, демонстрирующая эффект Томсона

studfile.net

принцип работы, устройство, типы и виды, проверка работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю – «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С – керамика с повышенным содержанием Al2O3, свыше 1400°С – керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

odinelectric.ru

Термопара — это… Что такое Термопара?

Схема термопары. При температуре спая нихрома и алюминий-никеля равной 300 °C термоэдс составляет 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик [1]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 31 июля 2012.

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920х—30х годах термопары использовались для питания детекторных приемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т.п) с использованием открытого огня.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
  • Большой температурный диапазон измерения: от −200 °C до 2500 °C
  • Простота
  • Дешевизна
  • Надежность

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ [2].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

Тип термопары МЭК Температурный диапазон °C (длительно) Температурный диапазон °C (кратковременно) Класс точности 1 (°C) Класс точности 2 (°C) IEC Цветовая маркировка
K 0 до +1100 −180 до +1300 ±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 1200 °C
J 0 до +700 −180 to +800 ±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 750 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 750 °C
N 0 до +1100 −270 to +1300 ±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 1200 °C
R 0 до +1600 −50 to +1700 ±1.0 от 0 °C до 1100 °C
±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C
±0.0025×T от 600 °C до 1600 °C
S 0 до 1600 −50 до +1750 ±1.0 от 0 °C до 1100 °C
±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C
±0.0025×T от 600 °C до 1600 °C
B +200 до +1700 0 до +1820 ±0.0025×T от 600 °C до 1700 °C
T −185 до +300 −250 до +400 ±0.5 от −40 °C до 125 °C
±0.004×T от 125 °C до 350 °C
±1.0 от −40 °C до 133 °C
±0.0075×T от 133 °C до 350 °C
E 0 до +800 −40 до +900 ±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 800 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 900 °C

См. также

Примечания

Ссылки

dic.academic.ru

Принцип работы термопары, определение, типы и виды термопар, схемы работы термопары, способы подключения

Термопара — термоэлектрический преобразователь — это два разных сплава металла (проводники) которые образуют замкнутую цепь (термоэлемент). Термопара — один из наиболее распространенных в промышленности температурный датчик. Применяется в любых сферах промышленности, автоматики, научных исследованиях, медицине — везде, где нужно измерять температуру. Так же применяется в термоэлектрических генераторах для преобразования тепловой энергии в электрическую.

Действие термопары основано на эффекте, который впервые был открыт и описан Томасам Зеебеком в 1822 г. — термоэлектрический эффект или эффект Зеебека. В замкнутой цепи, состоящей из разнородных проводников, возникает термоэлектрический эффект (термо-ЭДС), если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой. В сочетании с электроизмерительным прибором (милливольтметром, потенциометром и т. п.), термопара образует термоэлектрический термометр.

Измерительный прибор подключают либо к концам термоэлектродов, либо в разрыв одного из них. В среду, которую контролируют, помещают рабочий спай, а свободные концы подсоединяются к измерительному прибору. Чем больше различие между свойствами проводников и тепловой перепад на концах, тем выше термо-ЭДС.

По-простому — термопара это две проволоки из разнородных металлов (например, Хромель и Копель), сваренных или скрученных между собой. Место сварки (скрутки) называется рабочий спай Т1, а места соединения с измерительным прибором Т2 называют холодными спаями. То есть рабочий спай помещают в среду, температуру которой необходимо измерить, а холодные спаи подключают к приборам (милливольтметр). Но надо знать прибор — например, ИРТ 7710 не меряет температуру рабочего спая, он меряет разницу температур холодного и рабочего спаев. Это значит простым милливольтметром (тестером) мы можем узнать, поступает ли сигнал с рабочего спая (есть обрыв или нет), узнать где у термопары плюс (+) а где (-), примерно узнать какой тип термопары (но для этого нужен точный милливольтметр).

Типы, виды термопар

Типы российских термопар приведены в ГОСТ 6616-94.

Почему российские термопары? Термопара ТХК, то есть Хромель-Копель была придумана в СССР и сейчас выпускается только у нас и в странах СНГ. Не известно почему, но везде пишут ХК (L) — в скобках подразумевается международный тип, но это не так — на западе тип L это (Fe-CuNi). Может быть, они чем то и похожи по названию металлов входящих в сплав, но самое главное — у них разные таблицы НСХ. Мы с этим столкнулись, заказывая термопару из Италии. Наш совет — когда закупаете термопарный провод или кабель, сравнивайте таблицы НСХ, т.е. номинальные статические характеристики преобразователя ГОСТ Р 8.585-2001.

Таблица соответствия типов отечественных и импортных термопар

Тип температурного датчика

Сплав элемента

Российская маркировка температурных датчиков

Температурный диапазон

 

Термопара типа ТХК — хромель, копель (производства СССР или РФ)

хромель, копель

-200 … 800 °C

Термопара типа U

медь-медьникелевые

 

-200 … 500 °C

Термопара типа L

хромель, копель

ТХК

-200 … 850 °C

Термопара типа B

платинородий — платинородиевые

ТПР

100 … 1800 °C

Термопара типа S

платинородий — платиновые

ТПП

0 … 1700 °C

Термопара типа R

платинородий — платиновые

ТПП

0 … 1700 °C

Термопара типа N

нихросил нисил

ТНН

-200 … 1300 °C

Термопара типа E

хромель-константановые

ТХКн

0 … 600 °C

Термопара типа T

медь — константановые

ТМК

-200 … 400 °C

Термопара типа J

железо — константановые

ТЖК

-100 … 1200 °C

Термопара типа K

хромель, алюмель

ТХА

-200 … 1300 °C


Таблица ANSI Code (Американский национальный институт стандартов) и IEC Code (Международная электротехническая комиссия — МЭК)

В настоящее время в её состав входят более 76 стран (наша в том числе).

eltermo.ru

Термопары. Конструкции, типы, характеристики термопар. Метотехника

ПРОДУКЦИЯ


 

Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

(800) 200-52-75
(495) 366-00-24
(495) 504-95-54
e-mail: [email protected]

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото

Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото

Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото

Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Тантал

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ниобий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ванадий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Хром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Рений

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопары широко применяются для измерения температур благодаря своим характеристикам. Данные средства дают высокую точность измерений, позволяют проводить их в широком диапазоне температур, а также имеют достаточно простое устройство и достаточно надежны.

Среди большого количества типов термопар стоит выделить термопары хромель-алюмель, хромель-копель, ВР5/ВР20, которые являются наиболее востребованными ввиду своих характеристик.

На странице представлена информация о принципе работы, конструкциях, типах и характеристиках термопар.


Принцип работы и конструкции термопар

В простейшем случае термопара представляет из себя два разнородных проводника, которые образуют замкнутую электрическую цепь. Для получения такой цепи концы проводников соединяют друг с другом с помощью пайки, сварки или скрутки.

Если поместить один конец (спай) термопары в среду с температурой T1, а другой — с температурой T2, то в цепи будет протекать электрический ток, который вызывается термо-ЭДС. Данное явление получило название эффект Зеебека. При этом величина термо-ЭДС зависит только от разности температур спаев и материалов проводников. Таким образом, по изменению величины термо-ЭДС можно определить соответствующее изменение температуры. Проводники принято называть термоэлектродами, а места соединения проводников — спаями.

Схема простейшей термопары. t1 > t2. А — положительный термоэлектрод, В — отрицательный термоэлектрод. Спай с температурой t1 — горячий спай (рабочий конец), с температурой t2 — холодный спай (свободный конец). Стрелками показано направление тока.


На практике температуру измеряют с помощью термоэлектрического термометра, в котором термопара является чувствительным элементом. Помимо нее в такой системе присутствуют и другие компоненты, которые, например, измеряют термо-ЭДС и преобразуют полученные значения в градусы.

Основными факторами, которые определяют конструкцию термопары, являются условия ее эксплуатации. Основные из них: диапазон измеряемых температур и свойства среды, в которой осуществляются измерения. Перечисленные факторы влияют на способ соединения термоэлектродов в рабочем спае, изоляции термоэлектродов, защиты термопары.

Соединение термоэлектродов может проводиться с помощью сварки, спайки или скрутки. В зависимости от диапазона измеряемых температур термоэлектроды могут быть изолированы друг от друга с помощью воздуха или специальных керамических трубок. В зависимости от свойств среды, в которой осуществляются измерения, термопара может иметь защитный чехол.

Конструкция термопары. 1 — защитная гильза, 2 — неподвижный штуцер (существуют варианты исполнения с передвижным штуцером), 3 — головка, 4 — розетка из изоляционного материала с зажимами для присоединения термоэлектродов и удлиняющих проводов, 5 — патрубок с сальниковым уплотнением, 6 — соединительная трубка, 7 — термоэлектроды.

Типы термопар и их характеристики

Наиболее распространенной классификацией термопар является классификация по типу материалов, из которых изготовлены термоэлектроды. Например, благородные металлы, тугоплавкие и другие. Ниже представлены типы термопар, разделенные по указанному принципу.

Термопары из неблагородных металлов

Наиболее широким классом термопар являются термопары, изготовленные из неблагородных металлов. Среди наиболее используемых можно выделить термопары хромель-алюмель, хромель-копель, железо-константан.

Термопара хромель-алюмель (ТХА, тип K)

  • Используется для измерения температур в диапазоне от -200 °С до +1100 (+1300) °С. В скобках указана максимальная температура при кратковременном измерении.
  • В диапазоне температур от 200 до 500 °С может возникнуть эффект гистерезиса, когда показания при нагревании и охлаждении могут различаться. В некоторых случаях разница достигает 5 °С.
  • Работает в нейтральной атмосфере или атмосфере с избытком кислорода.
  • После термического старения показания снижаются.
  • Может произойти изменение термо-ЭДС при использовании в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция). При этом термопара показывает заниженную температуру.
  • Атмосфера серы вредна для термопары, т.к. негативно воздействует на оба электрода.
Термопара хромель-копель (ТХК, тип L) и хромель-константан (ТХКн, тип E)
  • Используется для измерения температур в диапазоне от -200 °С до +800 (+1100) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Обладает самой высокой чувствительностью из всех промышленных термопар.
Термопара железо-константан (ТЖК, тип J)
  • Используется для измерения температур в диапазоне от -203 °С до +750 (+1100) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Работает в восстановительной и окислительной средах.
  • Хорошо работает в разряженной атмосфере.
  • При температурах выше 500 °С необходимо наличие газоплотной защиты термопары, если в среде измерения присутствует сера.
  • Обладает высокой чувствительностью.
  • Имеет невысокую стоимость, так как в состав термопары входит железо.
  • На электроде из железа может образоваться ржавчина из-за конденсации влаги.
  • Показания повышаются после термического старения.
Термопара медь-константан (ТМК, тип Т) и медь-копель (ТМК, тип M)
  • Используется для измерения температур в диапазоне от -250 °С до +400 (+600) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Может работать в окислительной или восстановительной атмосфере, а также в вакууме.
  • Наиболее точная термопара для измерения темпераур 0-250 °С.
  • Не рекомендуется использование термопар данного типа при температурах выше 400 °С.
  • Не чувствительна к повышенной влажности.
  • Оба термоэлектрода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.
Термопара нихросил-нисил (ТНН, тип N)
  • Используется для измерения температур до +1200 (+1250) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.
  • Высокая стабильность при температурах от 200 до 500 °С (значительно меньший гистерезис, чем для термопары типа К).
  • Считается самой точной термопарой из неблагородных металлов.

Термопары из тугоплавких металлов

К данному классу относятся термопары, предназначенные для измерения высоких температур.

Термопара ВР5-ВР20 (ТВР, тип A)

  • Используется для измерения высоких температур в диапазоне от +1300 °С до +2500 (+3000) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Может работать в инертной атмосфере или вакууме.
  • Обладает хорошими механическими свойствами при высоких температурах.
Термопара вольфрам-молибден (ТВМ)
  • Используется для измерения высоких температур в диапазоне от +1400 °С до +1800 (+2400) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Может работать в инертной среде, среде водорода или вакууме.
  • Имеет невысокую стоимость по сравнению с другими термопарами для измерения высоких температур.
  • Имеет низкую чувствительность.

Термопары из благородных металлов

Данные термопары являются самыми точными и часто применяются в качестве эталонных.

Термопара платинородий-платина (ТПП, тип S, R)

  • Используется для измерения температур в диапазоне от 300 °С до +1400 (+1600) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Может работать в окислительной и инертной атмосфере. При наличии защиты может использоваться в восстановительных средах.
  • Не рекомендуется применение ниже 300 °С, т.к термо-ЭДС в этой области мала и крайне нелинейна.
  • Дает высокую точность измерений.
  • Имеет хорошую воспроизводимость и стабильность термо-ЭДС.
  • Используется в качестве эталонной термопары.
  • Имеет высокую стоимость.
  • Чувствительна к химическим загрязнениям металлическими и неметаллическими примесями.
Термопара платинородий-платинородий (ТПР, тип B)
  • Используется для измерения температур в диапазоне от 600 °С до +1600 (+1800) °С. В скобках указана максимальная температура при кратковременном измерении.
  • Может работать в окислительной и нетральной среде. Возможно использование в вакууме. При наличии защиты может использоваться в восстановительных средах.
  • Не рекомендуется применение при температуре ниже 600 °С, где термо-ЭДС очень мала и нелинейна.
  • Дает высокую точность измерений.
  • Имеет хорошую воспроизводимость и стабильность термо-ЭДС.
  • Используется в качестве эталонной термопары.
  • Имеет высокую стоимость.
  • Чувствительна к химическим загрязнениям металлическими и неметаллическими примесями.

www.metotech.ru

КИП и Я — записки киповца » Архив блога » Таблица термо-ЭДС стандартных термопар

Автор: admin в рубриках: датчик, калибровка термопар, полезное, термопара

Основные значения термо-ЭДС стандартных термопар.

Градуировочные характеристики преобразователей (свободные концы ТП при 0°С)

Номинальные статические характеристики преобразования, термо-ЭДС, мВ

Стан-   ДСТУ ДСТУ ДСТУ ДСТУ ДСТУ ГОСТ   ДСТУ ГОСТ
дарт ANSI IEC IEC IEC IEC IEC,D   ANSI IEC  
ТП   ТМК ТМКн ТЖК ТХКн ТХК ТХК68   ТХА ТХА68
Т°С M M Т J E L   P K  
-200   -6,151 -5,603 -7,890 -8,825 -9,488 -9,488   -5,891 -5,892
-150   -5,112 -4,648 -6,500 -7,279 -7,831 -7,831   -4,913 -4,914
-100   -3,718 -3,379 -4,633 -5,237 -5,641 -5,641   -3,554 -3,553
-50 -1,732 -2,002 -1,819 -2,431 -2,787 -3,004 -3,004   -1,889 -1,889
0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
50 1,951 2,254 2,036 2,585 3,048 3,306 3,350 1,575 2,023 2,022
100 4,091 4,725 4,279 5,269 6,319 6,861 6,898 3,300 4,096 4,095
150 6,381   6,704 8,010 9,789 10,624 10,624 5,154 6,138 6,137
200 8,777   9,288 10,779 13,421 14,561 14,570 7,115 8,138 8,137
250 11,225   12,013 13,555 17,181 18,643 18,690 9,163 10,153 10,151
300 13,663   14,862 16,327 21,036 22,843 22,880 11,281 12,209 12,207
350 16,002   17,819 19,090 24,964 27,135 27,130 13,454 14,293 14,292
400 18,181   20,872 21,848 28,946 31,491 31,480 15,667 16,397 16,395
450 20,399     24,610 32,965 35,888 35,870 17,905 18,516 18,513
500 22,703     27,393 37,005 40,300 40,270 20,158 20,644 20,640
550 25,095     30,216 41,053 44,710 44,670 22,414 22,776 22,772
600 27,574     33,102 45,093 49,107 49,090 24,663 24,905 24,902
650 30,135     36,071 49,116 53,485 53,480 26,895 27,025 27,022
700 32,769     39,132 53,112 57,841 57,820 29,101 29,129 29,128
750 35,470     42,281 57,080 62,169 62,120 31,272 31,213 31,214
800 38,228     45,494 61,017 66,442 66,420 33,406 33,275 33,277
850 41,036     48,715 64,922     35,502 35,313 35,314
900 43,884     51,877 68,787     37,556 37,326 37,325
950 46,768     54,956 72,603     39,565 39,314 39,310
1000 49,680     57,953 76,373     41,529 41,276 41,269
1050 52,617     60,890       43,443 43,211 43,202
1100 55,574     63,792       45,308 45,119 45,108
1150 58,549     66,679       47,123 46,995 46,985
1200 61,537     69,553       48,887 48,838 48,828
1250 64,530             50,599 50,644 50,633
1300 67,523             52,258 52,410 52,398
1350 70,511             53,863 54,138  
1400 73,503                  

1. P — Platinel 5355 — Platinel 7674. C — Tungsten 5% Rhenium — Tungsten 26% Rhenium

2. НСХ ТСС(I) близка к ТХА(К), с диап. 0-800 С. НСХ ВР(А)-1 находится между (А)-3 и (А)-2 для диап. 0-1800 С, отличие 0,3%.

3. Термопары R, S, ТПП13, ТПП10 и ТПП68 не требуют компенсации свободных концов.

4. Стандарты: IEC — IEC584, DIN IEC584, ANSI — ANSI/ASTM, D — DIN43710, ДСТУ — ДСТУ2837-94, ДСТУ2857-94, ГОСТ — ГОСТ6616-68.

Оставьте отзыв

kipiya.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о