Термоэлектрический генератор: принцип работы
Термоэлектрический генератор (термогенератор ТЭГ) — это электрическое устройство, использующее эффекты Зеебека, Томсона и Пельтье для выработки электроэнергии за счет термо-ЭДС. Эффект термо-ЭДС был открыт немецким ученым Томасом Иоганном Зеебеком (эффект Зеебека) в 1821 г. В 1851 году Уильям Томсон (позже лорд Кельвин) продолжил термодинамические исследования и доказал, что источником электродвижущей силы (ЭДС) является температурный перепад.
В 1834 году французский изобретатель и часовщик Жан Чарльз Пельтье открыл второй термоэлектрический эффект, установил, что разность температур происходит на стыке двух различных типов материалов под воздействием электрического тока (эффект Пельтье). В частности, он предсказал, что ЭДС возникает внутри одного проводника, когда присутствует температурный перепад.
В 1950 году русский академик и исследователь Абрам Иоффе открыл термоэлектрические свойства полупроводников. Термоэлектрический генератор энергии стали использовать в системах автономного электроснабжения в недоступных районах. Изучение космического пространства, выход человека в космос дали мощный толчок для бурного развития термоэлектрических преобразователей.
Радиоизотопный источник энергии был впервые установлен на космических кораблях и орбитальных станциях. Их начинают использовать в крупной нефтегазовой отрасли для антикоррозионной защиты газопроводов, в исследовательских работах на Дальнем Севере, в сфере медицины в качестве электрокардиостимуляторов, в жилищном хозяйстве как автономные источники электроснабжения.
Термоэлектрический эффект и перенос тепла в электронных системах
Термоэлектрические генераторы, принцип работы которых основан на комплексном использовании эффекта трех ученых (Зеебека, Томсона, Пельтье), получили свое развитие почти через 150 лет после открытий, намного опередивших свое время.
Термоэлектрический эффект заключается в следующем явлении. Для охлаждения или генерации электричества используется «модуль» состоящий из электрически связанных пар. Каждая пара состоит из полупроводникового материала р (S> 0) и n (S
Если выбранные материалы обладают хорошими термоэлектрическими свойствами, этот тепловой поток, создаваемый движением носителей заряда, будет больше теплопроводности. Поэтому система передаст тепло от холодного источника к горячему и будет действовать как холодильник. В случае генерации электричества тепловой поток вызывает смещение носителей заряда и появление электрического тока. Чем больше разность температуры, тем больше электричества можно получить.
Эффективность ТЭГ
Оценивается коэффициентом полезного действия. Мощность термоэлектрогенератора зависит от двух критических факторов:
- Объема теплового потока, который может успешно перемещаться через модуль (тепловой поток).
- Дельты температур (DT) – разница температур между горячей и холодной стороной генератора. Чем больше дельта, тем эффективнее он работает, поэтому конструктивно должны быть обеспечены условия, как для максимальной подачи холода, так и максимального отвода тепла от стен генератора.
Термин «эффективность термоэлектрических генераторов» аналогичен термину, применяемому в отношении всех других типов тепловых двигателей. Пока он очень низкий и составляет не более 17 % эффективности Карно. КПД генератора ТЭГ ограничен эффективностью Карно и на практике достигает лишь несколько процентов (2-6 %) даже при высоких температурах. Это происходит из-за низкой теплопроводности в полупроводниковых материалах, что не способствует эффективной выработке электроэнергии. Таким образом, нужны материалы с низкой теплопроводностью, но в то же время с максимально высокой электропроводностью.
Полупроводники лучше справляются с этой задачей, чем металлы, но пока еще очень далеки от тех показателей, которые вывели бы термоэлектрический генератор на уровень промышленного производства (хотя бы с 15 % использованием высокотемпературного тепла). Дальнейшее повышение эффективности ТЭГ зависит от свойств термоэлектрических материалов (термоэлектрики), поиском которых сегодня занят весь научный потенциал планеты.
Разработки новых термоэлектриков относительно сложные и затратные, однако в случае успеха они вызовут технологическую революцию в системах генерации.
Термоэлектрические материалы
Термоэлектрики состоят из специальных сплавов или полупроводниковых соединений. В последнее время для термоэлектрических свойств применяются электропроводящие полимеры.
Требования к термоэлектрикам:
- высокая эффективность, которая обусловлена низкой теплопроводностью и высокой электропроводностью, высоким коэффициентом Зеебека;
- устойчивость к высоким температурам и термомеханическим воздействиям;
- доступность и безопасность окружающей среды;
- устойчивость к вибрациям и резким перепадам температур;
- долгосрочная стабильность и дешевизна;
- автоматизация процесса изготовления.
В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД ТЭГ. Термоэлектрический полупроводниковый материал представляет собой сплав теллурида и висмута. Он был специальным образом изготовлен, чтобы обеспечить отдельные блоки или элементы с различными характеристиками «N» и «P».
Термоэлектрические материалы чаще всего изготавливаются путем направленной кристаллизации из расплавленной или прессованной порошковой металлургии. Каждый способ изготовления имеет свое особое преимущество, но наиболее распространены материалы с направленным ростом. В дополнение к теллуриту висмута (Bi 2 Te 3) существуют другие термоэлектрические материалы, в том числе сплавы свинца и теллурита (PbTe), кремния и германия (SiGe), висмута и сурьмы (Bi-Sb), которые могут использоваться в конкретных случаях. Пока термопары висмута и теллурида лучше всего подходят для большинства ТЭГ.
Достоинства ТЭГ
Достоинства термоэлектрогенераторов:
- выработка электричества происходит по замкнутой одноступенчатой схеме без использования сложных передающих систем и применения движущих частей;
- отсутствие рабочих жидкостей и газов;
- отсутствие выбросов вредных веществ, бросового тепла и шумового загрязнения окружающей среды;
- устройство длительного автономного функционирования;
- использование отработанного тепла (вторичные источники теплоты) с целью экономии энергоресурсов
- работа в любом положении объекта независимо от среды эксплуатации: космос, вода, земля;
- выработка постоянного тока при малом напряжении;
- невосприимчивость к короткому замыканию;
- неограниченный срок хранения, 100 % готовность к работе.
Сферы применения термоэлектрического генератора
Преимущества ТЭГ определили перспективы развития и его ближайшее будущее:
- изучение океана и космоса;
- применение в малой (бытовой) альтернативной энергетике;
- использование тепла от выхлопных труб автомобилей;
- в системах переработки мусора;
- в системах охлаждения и кондиционирования;
- в системах тепловых насосов, для мгновенного разогрева дизельных двигателей тепловозов и автомобилей;
- нагрев и приготовление пищи в походных условиях;
- зарядка электронных устройств и часов;
- питание сенсорных браслетов для спортсменов.
Термоэлектрический преобразователь Пельтье
Элемент Пельтье (ЭП) — это термоэлектрический преобразователь, работающий с использованием одноименного эффекта Пельтье, одного из трех термоэлектрических эффектов (Зеебека и Томсона).
Француз Жан-Шарль Пельтье соединил провода меди и висмута друг с другом и подключил их к батарее, создав таким образом пару соединений двух разнородных металлов. Когда батарея включалась, один из переходов нагревался, а другой охлаждался.
Устройства, основанные на эффекте Пельтье, чрезвычайно надежны, поскольку они не имеют движущихся частей, не нуждаются в техническом обслуживании, не имеют выбросов вредных газов, компактны и имеют возможность двунаправленной работы (нагрев и охлаждение) в зависимости от направления тока.
К сожалению, они малоэффективны, имеют низкий КПД, выделяют довольно много тепла, что требует дополнительной вентиляции и увеличивает стоимость устройства. Такие устройства потребляют довольно много электроэнергии и могут вызвать перегрев или конденсацию. Элементы Пельтье с размерами более 60 мм x 60 мм практически не встречаются.
Область применения ЭП
Внедрение передовых технологий в области производства термоэлектриков привело к удешевлению производства ЭП и расширению доступности рынка.
Сегодня ЭП широко применяется:
- в переносных охладителях, для охлаждения небольших приборов и электронных компонентов;
- в осушителях для извлечения воды из воздуха;
- в космических аппаратах для уравновешивания воздействия прямого солнечного света на одну сторону корабля, рассеивая тепло на другую сторону;
- для охлаждения фотонных детекторов астрономических телескопов и высококачественных цифровых камер, чтобы минимизировать погрешности наблюдения, возникающих из-за перегрева;
- для охлаждения компьютерных компонентов.
В последнее время широкое применение он получил и для бытовых целей:
- в устройствах кулеров, питающихся через USB-порт для охлаждения или нагрева напитков;
- в виде дополнительной ступени охлаждения компрессионных холодильников с понижением температуры до -80 градусов для одноступенчатого охлаждения и до -120 для двухступенчатого;
- в легковых автомобилях для создания автономных холодильников или обогревателей.
Китай наладил производство элементов Пельтье модификаций TEC1-12705, TEC1-12706, TEC1-12715 стоимостью до 7 евро, которые могут обеспечить по схемам «тепло-холод» мощность до 200 Вт, сроком службы до 200 000 часов, работающих в температурной зоне от -30 до 138 градусов Цельсия.
Ядерные батарейки РИТЭГ
Радиоизотопный термоэлектрический генератор (РИТЭГ) представляет собой устройство использующее термопары для преобразования тепла, выделяемое при распаде радиоактивного материала, в электричество. Этот генератор не имеет движущихся частей. РИТЭГ использовался в качестве источника энергии на спутниках, космических аппаратах, удаленных объектах маяков, построенных СССР для Полярного круга.
РИТЭГы, как правило, являются наиболее предпочтительным источником энергии для устройств, которым требуется несколько сотен Ватт мощности. В топливных элементах, батареях или генераторах установленных в местах, где солнечные элементы являются неэффективными. Радиоизотопный термоэлектрический генератор требует соблюдения строгих мер осторожного обращения с радиоизотопами в течение долгого времени после окончания его срока службы.
В России насчитывается порядка 1 000 РИТЭГов, которые использовались в основном для источников питания на средствах дальнего действия: маяках, радиомаяках и других специальных радиотехнических средствах. Первым космическим РИТЭГом на полонии-210 стал «Лимон-1» в 1962 году, затем «Орион-1» мощностью 20 Вт. Последняя модификация была установлена на спутниках «Стрела-1» и «Космос-84/90». «Луноходы»-1,2 и «Марс-96» использовали РИТЭГ в системах обогрева.
Устройство термоэлектрогенератора своими руками
Столь сложные процессы, которые протекают в ТЭГ, никак не останавливают местных «кулибиных» в стремлении присоединится к мировому научно-техническому процессу по созданию ТЭГ. Использование самодельных ТЭГ применяется уже давно. Во время Великой Отечественной войны партизаны делали универсальный термоэлектрогенератор. Он вырабатывал электрический ток для зарядки рации.
С появлением на рынке элементов Пельтье по доступными для бытового потребителя ценам возможно сделать ТЭГ самому, выполнив следующие шаги.
- Приобрести два радиатора в магазине IT и применить термопасту. Последняя облегчит соединение элемента Пельтье.
- Разделить радиаторы любым теплоизолятором.
- Сделать отверстие в изоляторе для размещения элемента Пельтье и проводов.
- Собрать конструкцию, и поднести источник тепла (свеча) к одному из радиаторов. Чем дольше нагрев, тем больше тока будет вырабатываться из домашнего термоэлектрического генератора.
Работает такой прибор бесшумно, и имеет небольшой вес. Термоэлектрический генератор ic2 в зависимости от размера, может подключить зарядку мобильного телефона, включить небольшой радиоприемник и светодиодное освещение.
В настоящее время многие известные мировые производители начали выпуск различных доступных гаджетов с применением ТЭГ для автолюбителей и путешественников.
Перспективы развития термоэлектрической генерации
Ожидается, что спрос на бытовое потребление ТЭГ вырастет на 14 %. Перспективы развития термоэлектрической генерации опубликовал Market Research Future, издав документ «Глобальный отчет по исследованию рынка термоэлектрических генераторов — прогноз до 2022 года» — анализ рынка, объем, доля, ход, тенденции и прогнозы. Доклад подтверждает перспективу ТЭГ в утилизации автомобильных отходов и системах совместного производства электроэнергии и тепла для бытовых и промышленных объектов.
Географически глобальный рынок термоэлектрических генераторов был разделен на Америку, Европу, Азиатско-Тихоокеанский регион, Индию и Африку. АТР считается самым быстрорастущим сегментом в области внедрения рынка ТЭГ.
Среди этих регионов Америка, по оценкам экспертов, является основным источником доходов на глобальном рынке ТЭГ. Ожидается, что увеличение спроса на экологически чистую энергию повысит спрос на него в Америке.
Европа также будет демонстрировать относительно быстрый рост в течение прогнозируемого периода. Индия и Китай будут наращивать потребление значительными темпами из-за увеличения спроса на транспортные средства, что приведет к росту рынка генераторов.
Компании по производству автомобилей такие, как Volkswagen, Ford, BMW и Volvo в сотрудничестве с NASA, уже приступили к разработке мини-ТЭГ для системы регенерации тепла и экономии топлива в автомобиле.
Превращение тепла человеческого тела в электричество
Исследователи Университета штата Северная Каролина (NC State) разработали новую схему для сбора тепла, выделяемого человеческим телом. Собранное тепло преобразуется в электричество, которое затем используется для зарядки носимой электроники. Прототипы, находящиеся на данный момент на стадии экспериментальной проверки, отличаются небольшим весом и повторяют форму тела человека. Благодаря новой технологии система способна генерировать гораздо больше электроэнергии из вырабатываемого человеком тепла, чем все ранее созданные экспериментальные образцы.
Носимые термоэлектрические генераторы (TEG’и) получают электроэнергию за счет разницы температур человеческого тела и окружающего его воздуха.
«Предыдущие методы, которыми пользовались инженеры-исследователи, предусматривали применение радиаторов. Они были или тяжелыми, жесткими и громоздкими, или были способны вырабатывать мощность всего до одного микроватта на квадратный сантиметр (мкВт / см2)», — говорит Дариуш Вашаи (Daryoosh Vashaee), доцент Кафедры электротехники и вычислительной техники Университета штата Северная Каролина и автор данного научного исследования. — «В нашей технологии не используется радиатор, что делает ее легче и удобнее. Однако при этом генерируемая мощность достигает 20 мкВт / см2».
Новая система состоит из нескольких слоев. Первый слой выполнен из теплопроводного материала, который прилегает к коже и собирает тепло. Сверху этот материал покрыт полимерным изолирующим слоем. Он предотвращает рассеивание собранного тепла в окружающую среду. Тепло тела отводится в расположенный по центру термоэлектрический генератор (TEG), который занимает площадь в один квадратный сантиметр. Та часть тепла, которая осталась не преобразованной в электричество, проходит через TEG в наружный слой, состоящий также из теплопроводного материала. Здесь тепло быстро рассеивается. Вся эта многослойная система в сборе обладает отличной гибкостью. А ее толщина составляет всего 2 миллиметра.
«В данном прототипе генератор TEG занимает лишь один квадратный сантиметр. Но мы с легкостью можем сделать его больше. Размер генератора будет зависеть от того, сколько электроэнергии потребуется для того или иного устройства», — поясняет Дариуш Вашаи. Проект, над которым он работает, проводится в рамках деятельности Научно-исследовательского центра наносистемной техники (ASSIST), относящегося к университету NC State и функционирующего под эгидой Национального научного фонда США.
Исследователи также обнаружили, что для сбора тепла самым оптимальным местом является верхняя часть руки. Вообще, более высокая температура поверхности кожи бывает обычно вокруг запястья. Но это очень ограниченная область, где, к тому же, часто нарушается контакт между кожей и термоэлектрическим генератором TEG. В то же время носить накладные полосы на груди тоже не рационально, поскольку в этой зоне из-за одежды наблюдается ограниченный поток воздуха. Следовательно, рассеивание тепла здесь также будет ограничено.
Для проведения экспериментов полосы материала с TEG вшили в футболки. Исследователи обнаружили, что вшитый в футболку генератор мог вырабатывать 6 мкВт / см2, если человек находился в состоянии относительного покоя, или 16 мкВт / см2, если он активно двигался.
«Футболки с TEG, безусловно, имеют право на существование и могут применяться для зарядки носимых устройств. Но они не так эффективны, как накладки на верхнюю часть руки», — говорит Вашаи.
Научно-исследовательский центр ASSIST ставит своей целью разработку носимых технологий, которые могут быть использованы для постоянного длительного мониторинга состояния здоровья человека.
По утверждению Дариуша Вашаи добиться поставленных целей можно, но для этого нужно сделать так, чтобы устройства, осуществляющие контроль над состоянием здоровья человека, не зависели от состояния заряда батарей. Новая технология, которая была разработана усилиями исследователей из Университета штата Северная Каролина, позволяет в значительной мере приблизить тот момент, когда намеченные учеными цели станут реальностью».
Открыть счет для торговли акциями высокотехнологичных компаний
SUPEER-TEXNOLOG.NAROD.RU Получение электричества из разницы температур
Получение
электричества из разницы температур — термоэлектрический генератор своими
руками.
В результате работ российского академика А.Ф. Иоффе и его сотрудников, были синтезированы полупроводниковые сплавы, которые позволили применить этот эффект на практике и приступить к серийному выпуску термоэлектрических охлаждающих приборов для широкого применения в различных областях человеческой деятельности.
Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.
Термоэлектрический модуль (Элемент Пельтье) представляет
собой совокупность термопар, электрически соединенных, как правило,
последовательно. В стандартном термоэлектрическом модуле термопары помещаются
между двух плоских керамических пластин на основе оксида или нитрида алюминия.
При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.
Лабораторная работа.
Элементы Пельте широко используются в системах охлаждения.
Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих
их возможностей и посвящена данная лабораторная работа.
Подключаем воду к охладителю и питание к Пельтье, проверяем работу элемента. Через десять минут брусок охладился до -10 градусов, а через 30 ещё больше. В помещении 22 градуса.
Чтож, всё хорошо работает, я в этом и не сомневался. Теперь отключаем блок питания и вместо него припаиваем 10Вт 6 вольтовою лампочку и ставим наш агрегат на конфорку.
Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.
Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.
Температура охлаждающей жидкости на выходе десять
градусов, на входе на один градус меньше. Судя по таким результатам, вода, для
охлаждения, не так уж необходима…
Отключаем подачу воды, и ставим на охладитель большой радиатор.
Результат предсказуем, напряжение снизилось до трёх вольт, ток до 0.5А. За пятнадцать минут радиатор нагрелся до 45 градусов.
После того, как я снял прибор с конфорки, лампочка продолжала светить ещё минут десять, даже при разнице температур брусков всего в двадцать градусов, можно было различить накал спирали.
Выводы этой лабораторной просты. При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.
Получение электричества из разницы температур — термоэлектрический генератор своими руками. — Альтернативная энергия — Каталог статей
В результате работ российского академика А.
Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.
Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле
термопары помещаются между двух плоских керамических пластин на основе
оксида или нитрида алюминия. Количество термопар может изменяться в
широких пределах — от единиц до сотен пар, что позволяет создавать ТЭМ
практически любой холодильной мощности — от десятых долей до сотен ватт.
При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.
Лабораторная работа.
Элементы Пельте широко используются в системах охлаждения. Но не многие
знают об их другом свойстве – вырабатывать энергию. Изучению этих их
возможностей и посвящена данная лабораторная работа.
50*50 мм элемент, установлен между двумя алюминиевыми брусками.
Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из
брусков просверлены сквозные отверстия, через которые пропущена медная
трубка, для водяного охлаждения. Вот, что получилось
Подключаем воду к охладителю и питание к Пельтье, проверяем работу элемента. Через десять минут брусок охладился до -10 градусов, а через 30 ещё больше. В помещении 22 градуса.
Чтож, всё хорошо работает, я в этом и не сомневался. Теперь
отключаем блок питания и вместо него припаиваем 10Вт 6 вольтовою
лампочку и ставим наш агрегат на конфорку.
Опыт доказывает, что элемент Пельтье хорошо вырабатывает
электричество. Лампочка горит достаточно ярко, напряжение около 4.5
вольта.
Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.
Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…
Отключаем подачу воды, и ставим на охладитель большой радиатор.
Результат предсказуем, напряжение снизилось до трёх вольт,
ток до 0. 5А. За пятнадцать минут радиатор нагрелся до 45 градусов.
После того, как я снял прибор с конфорки, лампочка продолжала светить ещё минут десять, даже при разнице температур брусков всего в двадцать градусов, можно было различить накал спирали.
Выводы этой лабораторной просты. При помощи элементов
Пельтье можно добывать электричество в экспедиции, в турпоходе, на
охотничьем зимовье, словом в любом месте, где это может понадобиться.
Естественно, при наличии дров или яркого солнца, ну и обязательно
смекалки.
источник:Опыты с элементами Пельтье
еще один самодельный термогенератор: http://overland-botsman.narod.ru/termogen.htm
а вот и заводская модель
Отопительная печь «Индигирка»
Электрогенерирующая дровяная отопительно-варочная печь
Получать жизненно необходимое
электричество из тепла дровяной печи нам представилось более реальным.
Ничего нового мы не изобретали. Просто адаптировали надежный тепловой
электрогенератор к печи длительного горения.
Много ли электричества можно вытянуть из бытовой печки? На пару лампочек Ильича хватит. Зарядить аккумуляторы ноутбука-мобильника-навигатора хватит. Включить телевизорчик-радиоприемничек-и-тому-подобное хватит.
Затапливайте печку, грейтесь, варите суп-харчо, подключайте портативный телевизор и смотрите «Лебединое озеро». Пусть балерины используются только по прямому назначению.
Такие вот печки-лампочки.
Компания «Термофор» поставила на серийное производство новинку, аналоги которой ни в России, ни в остальном мире не замечены.
Это небольшая твердотопливная отопительно-варочная печь со встроенным электрогенератором, который преобразует тепловую энергию горящего в печи топлива в электрическую энергию.
Во время работы печи по прямому
назначению, то есть в процессе отопления или приготовления пищи, печь
генерирует постоянный ток напряжением 12 вольт и мощностью не менее 50
ватт.
Много это или мало? Для пресыщенного комфортом городского жителя, наверное, мало. Для человека, по тем или иным причинам полностью отрезанного от внешнего мира и его благ — очень много. Зачастую эти спасительные 50 ватт могут стать гранью между жизнью и смертью.
При современном уровне развития энергосберегающих технологий эта мощность обеспечивает весь необходимый для цивилизованной жизни набор электрических устройств.
Технические характеристики: | Разработка проекта осуществлена компанией «Термофор» совместно с компанией «Криотерм» из Санкт-Петербурга. Напомним, что сегодня в мире из 6 миллиардов населения Земли более 1,6 миллиарда людей не имеют доступа к стационарным источникам электроэнергии. Из 21 миллиона дач в России около 5
миллионов либо вообще не подключены к электроснабжению, либо испытывают
серьезные перебои с электроснабжением. В северных широтах получение электроэнергии из тепла печи имеет ряд выраженных преимуществ по сравнению с получением электроэнергии ветряками, солнечными батареями и дизельными генераторами. Легко представить реальные условия, где нет ни ветра, ни солнца, ни возможности доставки дизельного топлива. Вырабатываемого печью тока достаточно для подключения 2—3 энергосберегающих лампочек, зарядки аккумуляторов ноутбука, мобильного или спутникового телефона, фото- или видеокамеры, подключения портативного телевизора, радиоприемника, DVD проигрывателя и других портативных энергосберегающих устройств. По результатам лабораторных и полевых испытаний, электрогенератор печи выходит на стабильный режим через 6—8 минут после зажигания топлива в печи. Надежность электрогенераторов не вызывает сомнений, поскольку электрогенераторы компании «Криотерм» уже много лет поставляются сотням фирм-потребителей в 17 стран мира. Подобные электрогенераторы производства
нашего партнера используются в оборонной промышленности многих стран,
космосе, высокотехнологичных отраслях промышленности. В настоящее время компания «Термофор» изучает возможные рынки сбыта энергопечей. Очевидно, что разработка представляет интерес для военных, спасателей, геологов, туристов, дачников, рыбаков и охотников. Кроме того, целевым сегментом являются кочевые народы и народы севера. В планах этого года — увеличение мощности получаемого тока до 100 ватт. | ||||||||
Макс. объем отапливаемого помещения, м3 | 50 | ||||||||
Мощность, кВт | 4 | ||||||||
Масса, кг | 38 | ||||||||
Глубина, мм. | 370 | ||||||||
Ширина, мм. | 500 | ||||||||
Высота, мм. | 620 | ||||||||
Суммарная площадь поверхностей нагрева, кв. ![]() | 0.6 | ||||||||
Объем камеры сгорания, л | 41 | ||||||||
Диаметр проема топочной дверцы, мм | 178 | ||||||||
Диаметр дымохода, мм. | 80 | ||||||||
Мин. высота дымохода, м. | 3 |
Термоэлектрический генератор своими руками: видео, фото, инструкция
Популярные схемы на lm358
Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.
Неинвертирующий усилитель и источник опорного напряжения
Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя
выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.
Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.
Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина
При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности
При этом сигнал является стабильным и высококачественным.
Усилитель
Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.
Усилитель термопары на LM358
Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника
. Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.
Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 о С с достаточно высокой точностью до 0,02 о С. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.
Простая схема регулятора тока
Схема включает кремниевый диод
. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.
Схема состоит из нескольких компонентов:
- Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
- Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.
Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором , эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.
В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.
Устройство конвекторной системы
Одним из популярных способов обустроить отопление частного дома электричеством можно считать применение конвекторов, приборов, использующих в своей работе воздушную конвекцию.
Устройство и принцип работы конвектора
В металлический корпус отопительного прибора встроены управляемые термостатом нагревательные элементы ТЭНы. Каждый из них представляет собой помещенный в керамическую оболочку проводник высокого сопротивления, герметично запаянный в алюминиевый или стальной корпус. Такая конструкция устройства позволяет увеличить площадь взаимодействия с воздухом и эффективно осуществлять его нагрев. Рабочая температура нагревательных элементов варьируется от 100 до 60С.
Конвекторы зависимы от подачи электричества, что заставляет их владельцев задуматься о наличии альтернативного варианта отопительной системы на случай аварии
После включения конвектора начинается разогрев ТЭНов. Согласно физическим законам, остывший воздух опускается вниз. Здесь он попадает сквозь нижнюю решетку внутрь конструкции и проходит через нагревательные элементы, постепенно разогреваясь и поднимаясь вверх. Там он постепенно остывает и снова опускается вниз. Процесс многократно повторяется, позволяя создавать комфортную температуру в помещении. При необходимости можно использовать вентиляторы, которые ускорят естественную конвекцию.
Конструктивные особенности конвекторов определяют их главные недостатки, среди которых неравномерный прогрев воздуха. Температура у самого пола остается ниже, чем под потолком, что, впрочем, свойственно и водяному отоплению. Еще один «минус» – циркулирующие потоки поднимают пыль, неизбежно присутствующую в каждом доме. Сегодня выпускаются модели, которые практически лишены этого недостатка.
Настенный или напольный вариант?
Осуществлять отопление можно при помощи разных моделей конвекторов. Существуют два основных типа приборов:
- Настенные конструкции. Отличаются высотой, которая составляет в среднем 45 см, и способом крепления. Они могут быть либо установлены прямо на пол, либо при помощи специального устройства закреплены на стену.
- Напольные. Узкие длинные приборы, которые устанавливаются обычно под низко расположенные окна, витражи и в районе плинтусов.
Несмотря на меньшую, чем у настенных конвекторов мощность, времени для разогрева помещения им понадобится намного меньше.
Устройства обоих типов оборудуются термостатами, которые могут быть как встроенные, так и выносные. Так же выпускаются конструкции, не сжигающие кислород в комнате и не пересушивающие воздух.
Настенная модель конвектора крепится на стену при помощи специального крепежа
Напольные модели электрических конвекторов устанавливаются на пол, а не внутрь него, как их водяные собратья. Поэтому их можно установить уже в конце ремонта
Расчет необходимого числа конвекторов для обогрева
Число и мощность приборов, необходимых, чтобы обустроить отопление дачного дома электричеством, рассчитывают исходя из объемов помещения, в котором они будут установлены.
Сначала выбирается среднее значение мощности, необходимой для отопления 1 куб.м. Средние значения для помещений:
- с хорошей теплоизоляцией, соответствующей стандартам энергосбережения скандинавских стран – 20 Вт на куб.
м;
- с утепленными перекрытиями, стенами и стеклопакетами на окнах – 30 Вт на куб. м;
- с недостаточной изоляцией – 40 Вт на куб. м;
- с плохой изоляцией – 50 Вт на куб. м.
Исходя из этих значений, определяется мощность, необходимая для обогрева помещения и выбирается нужное число приборов для обогрева
Очень важно правильно выполнить расчеты. Практика показывает, что даже электрическое отопление деревянного дома абсолютно безопасно при условии грамотного подбора оборудования и качественной его установки. Конвекторы – эффективный, но далеко не единственный вариант устройств для обогрева помещений, работающих от электричества
Разнообразные электрические системы отопления дома дают возможность выбрать наиболее подходящий вариант, который позволит обеспечить эффективный и безопасный обогрев жилья
Конвекторы – эффективный, но далеко не единственный вариант устройств для обогрева помещений, работающих от электричества. Разнообразные электрические системы отопления дома дают возможность выбрать наиболее подходящий вариант, который позволит обеспечить эффективный и безопасный обогрев жилья.
Как сделать термогенератор Пельтье своими руками
Итак мой термогенератор нагревается масляной (на обычном, самом дешевом, подсолнечном масле) горелкой.
Которая помещена вот в такой разборный корпус, состоящий из консервной банки, регулятора высоты горелки и самого элемента Пельтье.
Сама горелка тоже состоит из банки и угольного фитиля.
Изготовить такой фитиль можно по этой видеоинструкции.
Лично я делаю такие фитили из углей от костра, продвинутые жители больших городов могут просто купить древесный уголь в магазине. Подобная горелка и сама по себе хороша, можно использовать как источник освещения, вместо свечек. Масло на её работу уходит мало, особо не чадит, может гореть сутками.
Вот это элемент Пельтье, сверху на него помещен радиатор от охлаждения компьютерного процессора, с вентилятором.
Это регулятор уровня огня горелки. Я его изготовил от убитого CD-rom_а. Его можно изготовить из чего угодно, лишь бы фантазия работала.
Элемент Пельтье (в данном варианте два-три элемента, друг на друге, всё смазано термопастой) у меня зажат между охлаждающим радиатором и нагревающим радиатором.
Пространство вокруг элемента я заполнил резиной (от каблуков ненужной обуви) и склеил всё это автомобильным термогерметиком.
Вентилятор для охлаждения изготовил из 3–х вольтового двигателя от того же неисправного CD-rom_а и лопастей штатного вентилятора от компьютерного кулера. Двигатель и вентилятор состыковал при помощи китайского суперклея и дискодержателя от всё того же CD-rom_а. В результате получился вентилятор охлаждения, который начинает работать от полутора вольт и жрёт совсем небольшой ток.
Для радиатора нагревания взял радиатор от кулера старого процессора.
Напряжение, порядка 6-8 вольт, у меня выходит на преобразователь, где уменьшается до нужных для девайсов пяти вольт.
Про этот преобразователь я уже писал. http://tutankanara.livejournal.com/410005.html
Вот и сам генератор в сборе. Кат только (в пределах минуты-две) вырабатываемое напряжение достигает полутора вольт, начинает крутиться вентилятор охлаждения, и холодная сторона элемента начинает охлаждаться. В рабочий режим генерации термогенератор выходит через несколько минут. От него можно питать светодиодные гирлянды и заряжать электронные девайсы. Мой генератор даёт порядка 400 миллиампер тока при 5 вольтах напряжения. Сила тока зависит от применяемого элемента. Если будет возможность, поставлю элементы получше.
Также данное устройство, если снять генераторную часть, можно использовать в качестве обычной горелки, для кипячения воды. Обычно я заполняю наполовину банку и она закипает через 10-15 минут.
Перспективы
В данное время продолжают ставить опыты, подбирая оптимальные термопары, позволяющие повысить коэффициент полезного действия.
Большая вероятность того, что скоро разработки усовершенствования доброкачественности термических элементов, обретут высший статус производства материала для повышения взаимодействия термопар, с применением высоких технологий:
- нанотехнологий;
- ям квантования и т.п.
Вполне возможен вариант изобретения совсем другого принципа, с применением нестандартных материалов.
Были попытки соединения микроскопических проводников из золота искусственно синтезированной молекулой. Этот опыт в дальнейшем вполне может добиться успеха.
Виды электрического отопления
Отопление при помощи электричества можно сделать несколькими способами. В первую очередь вам стоит определиться с типом системы, которую вы хотите реализовать. Будет это традиционное водяное отопление, воздушное или теплый пол. Все три системы могут применяться как единственный способ обогрева, так и комбинированный — любые две или даже все три. Чтобы определиться нужно представлять достоинства и недостатки каждой их них.
Электроотопление не обязательно должно быть однотипным
Водяное отопление с электрическим котлом
Начнем с достоинств. Самая стабильная система, которая за счет инерционности продолжает поддерживать температуру некоторое время после того, как котел перестал работать. Во время работы минимально сушит воздух, работает практически бесшумно. Высокая ремонтопригодность. Если не прятать трубы отопления в стены, они всегда доступны для ремонта и замены.
Водяное отопление с электрокотлом ничем не отличается
Недостатки таковы. Сложная система из труб и радиаторов требует больших затрат времени и денег на стадии монтажа. За счет инерционности невозможно быстро менять температуру — быстро нагреть помещение не получится. При останове системы в зимнее время она может разрушится — если вода замерзнет в трубах, их разорвет. Для серьезного ремонта необходим полный останов и слив теплоносителя.
Воздушное отопление на электрических обогревателях
Отопление этого типа быстро монтируется. Все что надо — купить обогреватели, повесить и включить в сеть. Воздух начинает нагреваться сразу после включения. При заморозке системы, она остается работоспособной — замерзать нечему. Элементы отопления между собой не связаны. Выход из строя одного никак не сказывается на работоспособности других. Его можно спокойно ремонтировать.
Повесить обогреватели — вот и все что нужно
Недостатки воздушного отопления такие. Первый — при отключении обогревателей температура быстро снижается. Чтобы обеспечить постоянную работу необходима система резервного электропитания. Второй — из-за непосредственного контакта с нагревательными элементами воздух пересыхает, необходимы меры/приборы для увлажнения воздуха. Третий — многие воздушные обогреватели имеют встроенные вентиляторы, что повышает эффективность, но они издают шум.
Теплый пол на электрических элементах
Электрический теплый пол — самая молодая система отопления. Из всех описанных выше она дает наиболее комфортные условия — самая высокая температура получается на уровне ног, а в районе головы — она средняя. Также эта система инертна — пока нагреется/остынет массив пола проходит значительный промежуток времени. По этой причине после выключения температура держится еще некоторое время. Сложность монтажа зависит от типа электрического теплого пола. Есть системы, которые требуют стяжки (электрические греющие кабели и маты), есть те, которые монтируются на ровное жесткое основание без мокрых работ (пленочный теплый пол) и могут использоваться для подогрева ламината, линолеума и т.д.
Теплый пол есть разных видов. Это комфортный способ отопления частного дома электричеством
Электрическое отопление частного дома при помощи теплого пола имеет и недостатки. Первый — средняя или низкая ремонтопригодность. Прямого доступа к системе отопления нет. Приходится разбирать/разбивать пол. Второй — затраты времени и сил на устройство электрического подогрева теплого пола низкими не назовешь. Системы, требующие стяжки монтируются около месяца (пока «зреет» стяжка пользоваться нельзя), теплый пол для «сухого» монтажа можно собрать за день, но стоимость обогревательных элементов довольно высокая.
Какой вид отопления электричеством лучший
Как видите, сказать какой вид электроотопления в доме лучший, не получится. Идеального нет. Исходить надо из условий эксплуатации:
Сказанное выше основано на выборе большинства. Это не значит, что нельзя в доме с постоянным проживанием делать воздушное электрическое отопление частного дома. Можно, и делают. Просто надо четко представлять достоинства и недостатки.
Роторный вихревой теплогенератор
В таком оборудовании роль статора отводится обычному центробежному насосу. Полый внутри и цилиндрический по форме корпус, может быть представлен отрезком трубы с наличием стандартных двухсторонних фланцевых заглушек. Внутри конструкции располагается ротор, являющийся главным конструктивным элементом.
Вся поверхность ротора представлена определенным количеством просверленных глухих отверстий, размеры которых зависят от показателей мощности устройства.
Вихревой генератор
Промежуток от корпуса до вращающейся части должен быть рассчитан индивидуально, но, как правило, размеры такого пространства варьируются в пределах двух миллиметров.
Важно отметить, что производительность роторного вихревого устройства примерно на 30% превышает такие показатели статического теплового генератора, но этот тип оборудования нуждается в контроле состояния всех элементов, а также отличается достаточно шумной работой.
Достоинства и недостатки
Независимо от того, куплен он или изготовлен своими руками, термоэлектрогенератор имеет ряд достоинств. Так, к наиболее весомым из них относятся:
- Малогабаритные размеры.
- Возможность работы как нагревательных, так и в охладительных приборах.
- При смене полярности наблюдается обратимость процесса.
- Отсутствие подвижных элементов, которые изнашиваются достаточно быстро.
https://youtube.com/watch?v=yeLhUVp2K2s
Несмотря на имеющиеся существенные преимущества, такое устройство имеет некоторые недостатки:
- Незначительный КПД (всего 2−3%).
- Необходимость создания источника, отвечающего за температурный перепад.
- Существенное потребление энергии.
- Большая себестоимость.
Делаем бесплатное электричество — простой самодельный генератор
Многих электриков интересует один очень популярный вопрос – как автономно и бесплатно получить небольшое количество электроэнергии. Очень часто, к примеру, при выезде на природу или походе катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы в экстренной ситуации. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примерами!
Что такое термоэлектрический генератор?
Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.
Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.
Схема работы ТЭС
Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.
Что это такое?
Для объяснения принципа работы термоэлектрического генератора, нужно взять разнородные проводники и замкнуть их в цепь. Точки, в которых проводники соединяются, называют спаями. При нагреве одного из спаев цепи энергия свободных электронов на нем возрастает, так как имеет зависимость от температуры.
На нагретом участке электроны имеют более высокую энергию и начинают перемещаться в холодную область, где электроны обладают меньшей энергией, таким образом в цепи возникает ЭДС.
Величина разности потенциалов в такой цепи зависит от температуры, электропроводности и коэффициента термоЭДС ,который также называется коэффициентом Зеебека.
Для разных материалов его значение различно и измеряется относительно коэффициента платины, которой равняется нулю. К примеру, сурьма, железо, кадмий имеют положительный коэффициент, а висмут, никель, кобальт — отрицательный.
Изготовление своими руками
Схематично устройство самодельной термоэлектростанции можно представить так:
- Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
- Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же; если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
- К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
- Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.
Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.
Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 – их у него 127. Данный элемент рассчитан на токи до 12А.
Электричество от двух стержней
Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.
Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.
Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.
В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на :
Принцип работы
В девятнадцатом веке одним ученым обнаружилось возникновение электродвижущей силы в замкнутой цепи, при изменениях температуры в среде контактировании сурьмы с проводником.
Нагревая один из контактов, возникает магнитное поле, что вызывает ЭДС. При нагревании второго контакта, поток ЭДС противоположно изменяется.
Спустя двенадцать 12 лет другой физик выявил противоположный эффект. Пропустив ток по цепи термопары, в контактах создается перепады температур.
В принципе эти оба эффекта разные стороны одного и того же явления, дающего возможность непосредственно получить электричество из тепла.
Перспективы
В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.
Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.
Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.
Молекула вместо термопары
Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.
Проблемы традиционной электроэнергетики
Технологии преобразования тепловой энергии в электрическую, такие как ТЭС, АЭС, КЭС, ГТЭС, ТЭП, термоэлектрические генераторы, МГД-генераторы имеют разные преимущества и недостатки. Исследовательский институт электроэнергетики (EPRI) иллюстрирует плюсы и минусы технологий генерации на природных энергетических ресурсах, рассматривая такие критические факторы, как строительство и затраты на электроэнергию, на землю, требования к воде, выбросы CO2, отходы, доступность и гибкость.
Результаты EPRI подчеркивают, что при рассмотрении технологий производства электроэнергии нет единого подхода к решению всех проблем, но при этом все же больше преимуществ у природного газа, который является доступным для строительства, имеет низкую себестоимость электроэнергии, создает меньше выбросов, чем уголь. Однако не все страны имеют доступ к обильному и дешевому природному газу. В некоторых случаях доступ к природному газу находится под угрозой из-за геополитической напряженности, как это было в случае с Восточной Европой и некоторыми странами Западной Европы.
Технологии возобновляемых источников энергии, такие как ветровые турбины, солнечные фотоэлектрические модули производят эмиссионное электричество. Однако для них, как правило, требуется много земли, результаты их эффективности являются неустойчивыми и зависят от погоды. Уголь, основной источник тепла, является самым проблемным. Он лидирует по выбросам CO2, требует много чистой воды для охлаждения теплоносителя и занимает большую площадь под строительство станции.
Новые технологии направлены на снижение ряда проблем, связанных с технологиями производства электроэнергии. Например, газовые турбины, объединенные с резервным аккумулятором, обеспечивают резерв на случай непредвиденных обстоятельств без сжигания топлива, а периодически возникающие проблемы в области возобновляемых ресурсов могут быть смягчены за счет создания доступного крупномасштабного хранилища энергии. Таким образом, сегодня нет ни одного безупречного способа преобразования тепловой энергии в электрическую, который мог бы обеспечить надежную и экономически эффективную электроэнергию с минимальным воздействием на окружающую среду.
Историческая справка
Термоэлектрические эффекты или термоэлектричество, своим открытием обязано нескольким ученым. Впервые явление открыл немецкий физик Томас Иоганн Зеебек, в 1821 году. Оно получило название «Эффект Зеебека».
Обратное свойство – нагревание или охлаждение разнородных проводников воздействием электрического тока, в 1834 году изучил француз Жан Пельтье, его именем назван и сам эффект и термоэлектрический преобразователь, получивший название элемент Пельтье. Свой вклад в исследования внесли, также русский физик Эмилий Ленц в 1838 г. и британец Уильям Томпсон в 1851 г.
Причина, по которой эти технологии не получили широкого распространения, заключается в низком КПД, при использовании чистых металлических пар — это сотые доли процента. Немногим более эффективными — 1,5-2,0% оказались термоэлементы из полупроводников, которые начали использоваться в середине XX века.
Была отсылка к теме термоэлектрических генераторов и в советской фантастике — в 1930-х годах Роман Адамов написал научно-фантастический роман «Тайна двух океанов», о похождениях подводной лодки «Пионер», источником энергии в которой служила термопара.
Где разместить инфракрасный обогреватель
Важно определиться, где лучше разместить обогреватель. Вариантов немного: на полу или потолке, а также на стене
Для разных видов помещений, исходных задач выбирается наиболее оптимальный, у каждого есть свои особенности, плюсы и минусы.
С потолка тепловыми лучами хорошо «прорезается» все пространство. Минус в верхнем размещении — сложно подобрать эстетичный вариант, нельзя сочетать с натяжными потолками, да и сама высота помещения должна быть не менее 2,5 метра. |
Напольный способ прост в исполнении, эффективен, но пол испытывает постоянные механические нагрузки, и есть вероятность повреждения системы обогрева. К тому же, ее придется прятать под ковер, напольное покрытие, а это снижает КПД излучения. |
Укрепить обогреватель ИК типа можно и на стене. Если это кажется неэстетичным, всегда есть возможность превратить его в элемент дизайна, преобразовав в панно или иную интерьерную фишку. |
Монтаж теплого пола как разновидности пленочного обогрева
Теплый пол — это вариант пленочного инфракрасного обогрева. Такой обогреватель представляет собой комплекс из тонких генераторов-полосок, которые последовательно соединяются, образуя полосу нужной длины. К блоку управления можно подключать несколько таких греющих элементов, а сам блок включается в электросеть.
Есть варианты с размещением подобных пленок и на потолке, и на стенах, но наиболее часто используется напольный метод монтажа, хотя бы из-за его простоты. Сама балластная нагрузка от массы напольного покрытия становится способом фиксации, тогда как при других вариантах нужны специальные крепежные приспособления.
Чтобы теплоотдача была максимальной, необходимо выбрать напольное покрытие с высокой теплопроводностью. Если «укутать» пол ковром, теплоотдача сильно снизится. Дерево лучше пропустит тепловые волны, но максимально высокий КПД от напольного ИК обогрева достигается при использовании кафельной плитки.
Теплый ИК пол
Постройте термоэлектрический генератор, подобный генераторам, которые используются для миссий в глубоком космосе
Итак, как это работает? Почему из-за разницы температур (для разных металлов) возникает электрический ток? Я не буду вдаваться в подробный рассказ о , так как это займет слишком много времени. Но вот мой суперкороткий ответ: у электрического проводника есть свободные заряды, которые могут перемещаться (в некоторой степени). Когда вы прикладываете электрическое поле, эти заряды перемещаются и создают электрический ток. Обычно мы думаем об этих зарядах как об электронах, но это может быть что-то еще.Если вы возьмете металл и сделаете один конец горячим, а другой — холодным, электроны на горячей стороне будут иметь больше энергии и двигаться дальше. Эти более горячие электроны распространяются, и на холодном конце электроны имеют меньше энергии. Степень разделения заряда зависит от конкретного металла.
Теперь возьмем другой металл с двумя концами при разных температурах. Но поскольку этот металл отличается от первого, у него будет другое разделение заряда на горячем и холодном концах. Когда эти разные металлы соединяются вместе, они образуют батарею — не очень хорошую батарею, но все же это как батарея.И бум — вот и твой термоэлектрический генератор.
Если вы думаете о создании термоэлектрического генератора для питания вашего дома, у меня плохие новости. Эти вещи очень неэффективны. Чтобы извлечь из них что-то полезное, нужны довольно большие перепады температур. Однако есть и хорошие новости. Эти термоэлектрические генераторы не имеют движущихся частей. Отсутствие движущихся частей означает, что они маленькие и довольно надежные. И поэтому они используются в некоторых космических кораблях (например, «Вояджер», «Кассини» и др.).Чтобы изменить температуру, космический корабль будет использовать радиоактивный источник, который остается очень горячим — вот и все. Так работает ваш радиоизотопный термоэлектрический генератор (РИТЭГ). Он похож на скрепку и генератор из медной проволоки, только лучше.
Но подождите! Есть больше. Вы можете сделать что-нибудь еще с двумя разными металлами. Что, если я использую те же два металла, но вместо того, чтобы нагреть концы до разной температуры и получить напряжение, я подключу их к батарее? Кроме того, я опущу оба конца в воду, чтобы было немного легче измерить температуру.Чтобы получить ощутимый эффект, я сделал два изменения: я использовал нихромовую проволоку вместо стали и сделал несколько соединений последовательно. Вот как это выглядит.
Термоэлектрический генератор: как построить один
Термоэлектрический генератор
— это полупроводниковое устройство, которое преобразует разницу тепла между двумя слоями в электричество.Он принадлежит к классу материалов, называемых «термоэлектриками», и является одной из самых больших надежд автомобильной промышленности в отношении экономии, получаемой от двигателя внутреннего сгорания. Его также называют «генератором Пельтье».”
С генератором Пельтье автомобиль может эффективно снизить расход топлива за счет рекуперации части энергии, которую двигатель теряет в виде тепла, и передачи ее аккумулятору, тем самым помогая приводить в действие электронику автомобиля и даже кондиционер. В случае гибридных автомобилей термоэлектрический генератор также может преобразовывать тепло в движение.
Вот как вы можете самостоятельно разработать термоэлектрический генератор Пельтье в домашних условиях:
1. Берем два радиатора
Они должны быть достаточно большими для ваших нужд и смочить их термопастой в том месте, где блок Пельтье застрянет (вы можете найти его в любом IT-магазине / RadioShack).
2. Изготовить теплоизолятор
Это для разделения двух радиаторов. Это может быть что угодно, если только оно соответствует максимальной температуре вашего приложения (не плавится). Изолятор не должен быть толще блока Пельтье, который вы устанавливаете между радиаторами. Вырежьте отверстие по размеру и форме элемента Пельтье, чтобы оно идеально входило в изолятор. Также освободите место для двух проводов.
3. Собрать генератор
Соедините два радиатора, изолятор с блоком Пельтье и установите источник тепла на один из радиаторов.Чем дольше вы ждете, тем выше напряжение и ток (мощность), которые вы получаете от устройства Пельтье.
Конечно, у всего есть свои ограничения, но с блоком размером с тот, который показан в следующем видео, вы легко сможете управлять небольшими гаджетами, которые есть у вас дома. Термоэлектрический генератор большего размера послужит более высоким целям.
Посмотрите видео и сделайте то же самое! Удачи!
(Посещений 17946 раз, сегодня 1 посещений)
Как построить самодельный термоэлектрический генератор
В термоэлектрическом генераторе используется основная концепция, согласно которой разница температур между двумя материалами создает электричество.
Можно ли адаптировать эту технологию для изготовления термоэлектрического генератора в домашних условиях?
На самом деле, можно довольно легко, несмотря на эффективность такого генератора, питать некоторые небольшие бытовые приборы или портативные электрические устройства, такие как смартфоны, видеокамеры и многое другое.
Технологические усовершенствования в некоторой степени обратились к этой идее: блоки Пельтье представляют собой термоэлектрический материал, который помогает преобразовывать разницу температур в электричество.
Они все чаще используются в автомобильной промышленности для восстановления части тепла, потерянного двигателем, и передачи энергии на аккумулятор.
Схема термоэлектрического генератора
DIY Термоэлектрический генератор
Термоэлектрический генератор можно использовать дома, выполнив следующие действия:
- Купите два радиатора в Интернете или в ИТ-магазине и нанесите термопасту для облегчения укладки Пельтье Ед. изм.
- Разделите два радиатора подходящим теплоизолятором.
- Затем вырежьте отверстие в изоляторе для установки элемента Пельтье.
- Обязательно оставьте достаточно места для пары проводов.
- Далее — соберите сборку вместе и начните подавать тепло на один из радиаторов. Чем дольше вы это делаете, тем больше тока будет вытекать из вашего самодельного термоэлектрического генератора.
- В зависимости от размера генератора вы сможете питать все больше и больше устройств или гаджетов в своем доме. Типичные примеры
- — зарядка мобильного телефона или запуск небольшого радиоприемника и включение светодиодного света.
- Это также отличная идея использовать его для питания уличных вентиляторов и освещения, которые не подключены к электросети вашего дома.
Самое лучшее в использовании термоэлектрического генератора — это то, что он является бесплатным и неисчерпаемым источником энергии, если у человека есть одновременный доступ к материалам, имеющим некоторую разницу температур, которые можно использовать для выработки необходимого электрического тока.
Можно себе представить, что эта технология не получила широкого распространения, но факт в том, что она используется даже для полетов в дальний космос, где она оказалась более эффективной технологией, чем солнечная энергия.
Поскольку собрать такой генератор очень легко, было бы здорово, если бы все больше и больше людей использовали его и получали бесплатное электричество, просто используя влияние разной температуры двух находящихся рядом веществ или предметов — обычное дело. Достаточно возникновения в большинстве домов.
Это могло бы помочь увеличить то, что поставляется из сети, и если бы все это делали, то разница была бы в меньшей мощности, потребляемой из сети. Это, как мы все знаем, будет способствовать тому, что наша планета станет гораздо более зеленым местом, чем она есть на самом деле.
Хотя можно попробовать сделать термоэлектрический генератор самостоятельно, выполнив описанные выше действия, неплохо было бы посмотреть пару видеороликов на YouTube для большей ясности по теме.
Когда вы приступите к изготовлению термоэлектрического генератора, вы получите беспрецедентное удовольствие от первого использования его для запуска вентилятора или зажигания маленькой лампочки.
Создаю свой собственный термоэлектрический генератор! | Орион Харбалл
Наш мир тонет в неэффективности … Даже в открытом космосе, где он менее устойчив, энергия тратится впустую! Большая часть этой ненужной энергии находится в форме тепла.Но это тепло можно превратить во что-то полезное, облегчая человечеству освоение космоса.
Сначала прочтите эту статью, чтобы понять основы TEG и некоторые способы их использования:
https://medium.com/@orion.bob.h/creating-light-on-a- martian-night-d7cb2d0e01fa
Итак, мы знаем, что исследование космоса должно быть максимально эффективным. Мы не можем где-нибудь остановиться, чтобы получить больше топлива или больше энергии. Поэтому очень важно выжать из окружающей среды как можно больше энергии!
Несколько областей, в которых, по моему мнению, ТЭГ все еще могут влиять на освоение космоса:
- Создание скафандров легче и устойчивее.
- Сбор отработанного тепла от электронных компонентов внутри космического корабля.
- Облегчение ракетных двигателей. (Больше всего в восторге от этого!)
Итак, давайте поработаем с модулями Пельтье, чтобы продемонстрировать осуществимость этих идей.
Мой процесс:
Используя модули Пельтье, я определяю количество получаемой энергии от двух источников тепла. Один источник невероятно мал, а другой невероятно велик. Модули, которые я использую, могут собирать только примерно 2–3% энергии, производимой за счет тепла, но есть более эффективные устройства для сбора избыточной тепловой энергии.Мы также можем повысить эффективность наших более дешевых деталей, добавив различные охлаждающие устройства, которые есть во многих кондиционерах космического класса.
Конечная цель:
Сделайте устройство, которое не просто доказывает эффективность выработки электричества из-за разницы температур, но и имеет практическое применение в реальном мире (легкое / в некоторой степени надежное). Итак, давайте попробуем выработать достаточно электричества для питания того, что вы все время носите с собой, например, вашего смартфона.
Несколько примечательных материалов:
- Цифровой мультиметр — устройство, которое мы будем использовать для регистрации всех наших данных о производстве энергии.
- ДЕШЕВЫЕ модули Пельтье — устройства, которые будут использоваться для выработки небольшого количества электроэнергии в зависимости от разницы температур. Просто запомните слово ДЕШЕВО.
- Радиаторы — алюминиевые детали, которые занимают большую площадь поверхности в ограниченном пространстве, что значительно упрощает охлаждение.
- Вода — хранится в резервуарах, прикрепленных к устройствам для их охлаждения.
- Свечи — основной источник тепла наших устройств.
- My Arms — Еще один хороший источник тепла для наших устройств.
- Металлические контейнеры для хранения — подходят для хранения воды в одном месте.
Нормальная температура человеческого тела составляет 98,6 градусов по Фаренгейту, но температура вне человеческого тела может быть намного ниже. Температура в помещении, где люди чувствуют себя наиболее комфортно, примерно на 20 градусов ниже. Я собираюсь использовать эту информацию для выработки полезного электричества от моего тела и температуры в моем доме.
Выделите материал, использованный в эксперименте: Радиаторы
Радиаторы предназначены для отвода как можно большего количества тепла с потоком воздуха. В конструкции используется вентиляционная поверхность с множеством ребер, предназначенных для улавливания даже самого легкого ветра. Поток воздуха охлаждает ребра, которые, в свою очередь, охлаждают поверхность, на которой установлен радиатор.
Body Heat Test # 1: Без радиатора
Вот график, показывающий электричество, выработанное за час. Помните, что оно выражено в милливольтах! (1000 Милливольт = 1 Вольт)
Модуль Пельтье без алюминиевого радиатора… Довольно жалко.Без алюминиевого радиатора один пустой модуль Пельтье может генерировать только 20 милливольт при макс. 20 милливольт — это всего лишь 1/50 одного вольта. Это означает, что мне понадобится как минимум 250 из них для зарядки моего смартфона (5 вольт)!
Body Heat Test # 2: с радиатором
Вот увеличенное количество энергии на выходе с радиаторами, прикрепленными к модулям Пельтье:
Модуль Пельтье с алюминиевым радиатором… Намного лучше, в 2 раза эффективнее!Модуль сделал поверхность намного холоднее, дав нам вдвое больше энергии! 40 милливольт тоже не много, мне еще нужно 125, чтобы зарядить смартфон.
Почему модули Пельтье такие неэффективные:
Когда вы читали статью, упомянутую по ссылке выше, я говорил об эффекте Пельтье, идее использования электричества для создания разницы температур. Этот эффект противоположен генерированию энергии, поэтому эти модули значительно менее эффективны, чем модули, предназначенные для выработки электроэнергии.
Где мы можем получить более эффективные термоэлектрические модули?
Эти модули могут быть значительно дороже, и их труднее найти.Модули, используемые в генераторе радиационного охлаждения неба Aaswath Raman , стоят в 10 раз больше (20 долларов каждый), чем модули, которые я купил (2 доллара каждый).
Больше тепла, больше эффективности:
Некоторые из наиболее эффективных модулей ТЭГ предназначены для сбора большего количества энергии из-за сильной жары. Лучшими примерами являются ТЭГ, обнаруженные в РИТЭГах НАСА, где температура превышает 1000 градусов по Фаренгейту. Устройства, собирающие здесь энергию, имеют КПД почти 10%!
Используя гораздо больший источник тепла, я попытаюсь получить как можно больше энергии от этих низкокачественных модулей Пельтье.Эффективность по-прежнему будет иметь значение, поскольку нам нужно поддерживать разницу температур в течение длительного периода времени, поэтому нам нужно сохранять одну сторону как можно более прохладной.
Testing «The Waters» XD…
Я купил большую упаковку TEG, но я не хочу тратить их все на один проект (они тонкие, AS HECK.), Поэтому давайте попробуем использовать Некоторые из наших модулей посвящены нескольким различным методам сохранения эффективности.
Выделите материалы в этом эксперименте:
Cool Liquids…
Поперечное сечение систем охлаждения, используемых на МКС.Для многих хрупких электронных устройств жидкостное охлаждение очень важно, поскольку температура может варьироваться от очень высокой до абсолютного нуля. Особенно в отделении жизнеобеспечения, поскольку температура должна быть стабильной, чтобы поддерживать наших отважных космонавтов. На космической станции, например, жидкий аммиак используется для излучения избыточного тепла, пропуская его через затененные участки космической станции. Теперь у меня нет жидкого аммиака, поэтому вода — лучшее, что вам нужно!
Испытание свечей №1: вода против. Алюминиевый радиатор
Теперь мы проверяем жидкостное охлаждение на всемогущем алюминиевом радиаторе! Кто победит? Давайте посмотрим на результаты, записанные моим надежным мультиметром.
Радиационное охлаждение… Какая жалость.Радиационное охлаждение потребляет в 10 раз больше энергии, чем раньше! Оно превышает 1/2 вольта, теперь нам понадобится всего 12 из них, чтобы зарядить смартфон. (Намного лучше, чем 125, представьте, что тащите это в космос! 😲)
А теперь о воде…
Ого, вода, ты прекрасно выглядишь!О боже! Что ж, вода однозначно выдувает алюминий ИЗ ВОДЫ 😆. Жидкий хладагент почти в два раза эффективнее сохраняет нашу поверхность достаточно прохладной для выработки электричества … Это означает, что нам нужно всего 6–7 модулей для выработки энергии, достаточной для зарядки смартфона.
Где сияет жидкая охлаждающая жидкость:
Жидкую охлаждающую жидкость на космической станции можно легко заменить, если на борту есть что-то для этого! Но если аппарат находится в космосе сам по себе, ему не поможет, если кулер сломается.
Где сияет алюминий:
Алюминий не имеет движущихся частей, поэтому он может служить дольше в вакууме космоса. Радиатор, вероятно, никогда не придется заменять в течение всего срока службы космического корабля, поэтому большинство зондов для исследования дальнего космоса используют ребра для охлаждения своих термоэлектрических генераторов.
Теперь мы впадаем в крайности, используя большие перепады температур для выработки как можно большего количества электроэнергии. (Для выработки вашего смартфона стоимостью 😁 ) .
Выводы из предыдущих испытаний:
Мы знаем, что один модуль с водой может генерировать большое количество энергии, мы также знаем, что алюминиевые ребра могут распределять тепло по большей площади поверхности.
Итак, давайте объединим эти две идеи в генераторе…
Один модуль может генерировать едва ли 1 вольт, а нам нужно минимум 5 вольт для зарядки сотового телефона.Итак, я начинаю с шести модулей, просто чтобы не беспокоиться о потребности в энергии, прежде чем мне, возможно, придется добавлять больше…
Набор модулей помещается под коробку с рождественским печеньем, внутри банки находится наш жидкий хладагент. Для обогрева все устройство было помещено над набором маленьких свечей, по одной на каждый модуль. С шестью свечами и водой я был готов записать еще несколько данных о производстве энергии…
Мощное устройство могло генерировать большое количество энергии в течение часа.Но со временем устройство постепенно теряет мощность, поскольку вода начинает нагреваться.
НО У НАС ДОСТАТОЧНО ЭНЕРГИИ ДЛЯ ЗАРЯДКИ ТЕЛЕФОНА !!!
Итак … Как все это применимо к идеям, о которых я упоминал ранее?
Космические костюмы:
Поскольку человеческое тело постоянно выделяет тепло, почему бы не попробовать использовать его, как я делал раньше? Команда исследователей из Канзасского университета изучала возможность использования термоэлектрической технологии для питания скафандров будущих космонавтов.
Устройство используется для считывания показателей жизненно важных функций и выработки электроэнергии в Университете штата Канзас.Отработанное тепло:
Каждое трудолюбивое электронное устройство выделяет отработанное тепло даже в космосе! Это тепло необходимо отводить через различные системы вентиляции, чтобы не допустить перегрева. Во время миссий с участием человека, когда экономия энергии имеет решающее значение для выживания, термоэлектрические устройства могут собирать ненужную энергию, чтобы сделать миссию намного более простой задачей.
Марсоход «Оппортьюнити» питался исключительно от солнечной энергии и умер от недостатка энергии, возможно, его можно было спасти с помощью TEG!Ракетные двигатели:
Ракета Rocket Lab «Электрон» использует устройство, называемое турбонасосом, которое позволяет топливу и окислителю быстро объединяться в двигателях.Турбонасос питается от аккумулятора, что позволяет двигателю быть более простым по конструкции. Поскольку компания хочет инвестировать в возможность повторного использования, почему бы не использовать термоэлектрические устройства, чтобы уменьшить размер батареи и увеличить продолжительность работы? Тепло от сопла ракеты при выстреле излучает много тепловой энергии.
Двигатель Резерфорда от Rocketlab.Создание схемы термоэлектрического генератора (ТЭГ)
Термоэлектрический генератор (ТЭГ) — это своего рода «устройство свободной энергии», которое имеет свойство преобразовывать температуру в электричество.В этом посте мы немного узнаем об этой концепции и узнаем, как мы можем использовать ее для выработки электроэнергии из тепла и холода.
Что такое ТЭГ
В одной из своих предыдущих статей я уже объяснял аналогичную концепцию относительно того, как сделать небольшой холодильник с помощью устройства Пельтье
Устройство Пельтье также в основном является ТЭГ, предназначенным для выработки электричества из разницы температур. Термоэлектрическое устройство очень похоже на термопару, единственная разница заключается в составе двух аналогов.
В ТЭГ для эффекта используются два разных полупроводниковых материала (p-n), тогда как термопара работает с двумя разнородными металлами для одного и того же, хотя для термопары может потребоваться значительно большая разница температур по сравнению с меньшей версией ТЭГ.
Также широко известный как эффект Зеебека, он позволяет устройству ТЭГ инициировать выработку электричества при воздействии разницы температур на его оборотных сторонах. Это происходит из-за специально сконфигурированной внутренней структуры устройства, в которой для процесса используется пара легированных полупроводников p и n.
Эффект Зеебека
В соответствии с принципом Зеебека, когда два полупроводниковых материала подвергаются воздействию двух экстремальных температурных уровней, инициируется движение электронов через p-n-переход, что приводит к развитию разности потенциалов на внешних выводах материалов.
Хотя концепция кажется удивительной, все хорошие вещи имеют врожденный недостаток, и в этом смысле они также являются тем, что делает их относительно неэффективными.
Необходимость экстремальной разницы температур на двух сторонах становится самой сложной частью системы, потому что нагрев одной из сторон также означает, что другая сторона также нагреется, что в конечном итоге приведет к нулевому электричеству и повреждению ТЭГ. устройство.
Чтобы обеспечить оптимальный отклик и инициировать поток электронов, один полупроводниковый материал внутри ТЭГ должен быть горячим, и одновременно другой полупроводник необходимо держать в стороне от этого тепла, обеспечивая надлежащее охлаждение с противоположной стороны. Эта критичность делает концепцию немного неуклюжей и неэффективной.
Тем не менее, концепция ТЭГ является чем-то эксклюзивным и неосуществимым до сих пор с использованием какой-либо другой системы, и эта уникальность этой концепции делает ее очень интересной и с которой стоит поэкспериментировать.
Схема ТЭГ с использованием выпрямительных диодов
Я пытался спроектировать схему ТЭГ с использованием обычных диодов, хотя я не уверен, будет ли она работать или нет, я надеюсь, что с этой установкой могут быть достигнуты некоторые положительные результаты, и она имеет область применения для улучшения.
На рисунках мы видим простую диодную сборку, зажатую радиаторами. Это диоды типа 6A4, я выбрал эти более крупные диоды, чтобы получить большую площадь поверхности и лучшую проводимость.
Диод 6A4
Простая схема термоэлектрического генератора, показанная выше, может быть использована для выработки электричества из отходящего тепла путем соответствующего применения необходимой степени разницы тепла между указанными теплопроводными пластинами.
На рисунке справа показано множество диодов, соединенных последовательно и параллельно для достижения более высокого КПД и пропорционально большего накопления разности потенциалов на выходе.
Зачем использовать диод для изготовления ТЭГ
Я предположил, что диоды подойдут для этого приложения, поскольку диоды являются основными полупроводниковыми элементами, состоящими из легированного p-n материала, встроенного в их два оконечных вывода.
Это также означает, что два конца специально состоят из различных материалов, что облегчает применение температуры отдельно от двух противоположных концов.
Многие такие модули могут быть построены и соединены последовательно и параллельно для достижения более высоких коэффициентов преобразования, и это приложение может быть реализовано также с использованием солнечного тепла. Сторона, которую необходимо охладить, может быть достигнута за счет воздушного охлаждения или за счет улучшенного испарительного воздушного охлаждения из атмосферы для увеличения коэффициента полезного действия.
Удивительный генератор Зеебека — Марка:
Фотография Стива Дабл.Ячейки Пельтье — это плоские устройства, которые отводят тепло от одной стороны к другой посредством термоэлектрического принципа, называемого эффектом Пельтье. Ячейки обычно используются для отвода тепла от процессоров или видеокарт, а также используются в охладителях и обогревателях для кемпинга. Удивительный генератор Зеебека использует одно из этих устройств в обратном направлении, чтобы преобразовать дифференциал тепла в электричество, а не использовать электричество для создания дифференциала тепла.
Первоначально я сделал этот проект, потому что мне нужно было что-то вроде парогенератора, но без шума и проблем с обслуживанием, связанных с паром. Я был приятно удивлен, когда обнаружил, что мой элемент Пельтье за $ 5 37 Вт от eBay может улавливать тепло от одной чайной свечи или спиртовой горелки и использовать его для выработки около 5 В при 1 А, что делает его идеальным для питания радиоприемников. мобильные телефоны и светодиодные фонари. Вы можете сделать удивительный генератор Зеебека менее чем за час, используя в основном лом или переработанные детали, и он имеет отчетливое ощущение стимпанка.
В кулере
Эффекты Пельтье и Зеебека обмениваются разницей температур и электричеством. В термоэлектрическом охладителе, также известном как устройство Пельтье, чередующиеся кусочки разных полупроводниковых материалов соединяются зигзагообразно между двумя пластинами. Нагрев одной пластины отталкивает электроны в одном материале, притягивая их в другом. Это индуцирует электрический ток в одном направлении — эффект Зеебека. И наоборот, при подаче напряжения на переход отводится тепло к одной стороне, а другая охлаждается — эффект Пельтье.
Множественные переходы зигзага работают параллельно, что умножает эффекты. Независимо от того, используется ли устройство для преобразования разности температур в напряжение или наоборот, оно выполняет преобразование без движущихся частей.
К сожалению, термоэлектрические устройства обычно имеют КПД всего 1-2%, или 5% с учетом последних достижений. Этого недостаточно, чтобы сделать крупномасштабное производство термоэлектрической энергии (ТЭГ) практичным, хотя многие исследователи пытаются повысить эффективность.Но термоэлектрические генераторы полезны и для других целей; они могут измерять экстремальные перепады температур и используются в системах отопления для питания конвекционных вентиляторов и насосов с использованием отработанного тепла, регенерированного из печных труб и котлов.
Принцип, лежащий в основе нашего удивительного генератора Зеебека, прост. Мы размещаем нашу ячейку Пельтье горизонтально над «печью» из жестяных банок, нагреваем нижнюю сторону свечой или спиртовой горелкой и охлаждаем верхнюю часть с помощью радиатора и вентилятора.
1. Изготовить печь для банок
1а.С помощью небольшого ножа или дремеля с режущей головкой сделайте 3 или 4 U-образных разреза на равном расстоянии вокруг пустой жестяной банки рядом с открытым концом (дном печи). Загните получившиеся металлические язычки на 90 ° в банку, чтобы получились скобки. Они будут удерживать крышку банки позже, чтобы создать ровную площадку для свечи.
ВНИМАНИЕ: Надевайте перчатки для защиты рук при резке металла.
1б. Вырежьте еще одно отверстие большего размера в банке между двумя скобами напротив шва банки, которое идет дальше к верху.Отверстие должно быть достаточно большим, чтобы сквозь него проходили свечи и пальцы. С помощью плоскогубцев загните края этих надрезов в банку так, чтобы не было видно острых краев.
1с. Вырежьте еще 2 прямоугольных отверстия с каждой стороны банки рядом с закрытым концом (верхом), чтобы свет светил и поступал воздух. Просверлите отверстие над каждым из них, ближе к закрытому концу, этого достаточно. чтобы болты прошли сквозь них.
2. Добавьте дымоход (необязательно)
Дымоход не является функционально необходимым, но он добавляет ощущение стимпанка и уравновешивает дизайн.
Если вы также хотите покрасить стороны банки, вы можете использовать высокотемпературную краску, но я предпочитаю естественный блеск металла.
2а. Просверлите или вырежьте другое отверстие в банке рядом с закрытым концом и сквозь шов, который является самой прочной частью банки. Отверстие должно быть того же размера, что и медное колено, и должно быть достаточно плотным, чтобы удерживать дымоход на месте.
2б. Проденьте колено через отверстие. Если он не плотно прилегает, используйте высокотемпературный силиконовый клей или замазку для ремонта выхлопных газов, чтобы закрепить его.Затем наденьте трубу дымохода на колено.
3. Сделайте прокладку
Вы можете просто разместить ячейку Пельтье между банкой и радиатором, но установка ее внутри прокладки ограничивает теплообмен вокруг нее, что повышает эффективность.
3а. Вырежьте из материала печатной платы круг такого же диаметра, как и консервная банка. Вы можете использовать кольцевую пилу или круговой нож, если он у вас есть. В противном случае используйте канцелярский нож, чтобы вырезать шестиугольную форму, затем подпилите ее по размеру.Печатная плата хрупкая, поэтому нанесите глубокие надрезы с обеих сторон и отщелкните излишки плоскогубцами.
3б. Вырежьте в прокладке отверстие для ячейки Пельтье. Обведите ячейку маркером, оставив дополнительное пространство для выходящих из ячейки контактов кабеля. Затем обрежьте контур канцелярским ножом.
4. Соберем все вместе
4а. Прикрутите пружины к верхней части банки, пропустив каждый болт через конец пружины, гайку, банку и другую гайку внутри банки в указанном порядке.Закрепить болт на глубину дополнительной гайкой проще, чем иметь одну гайку внутри банки. Затем прикрепите радиатор к вентилятору 5 В. Я использовал тонкую медную проволоку, но вы также можете использовать клей или шурупы.
4б. Поместите прокладку в верхнюю часть банки и поместите ячейку Пельтье в зазор. Для повышения эффективности нанесите тонкий слой смазки для теплопередачи (также называемой компаундом для теплоотвода) с обеих сторон ячейки.
4с. Закрепите радиатор на верхней части ячейки Пельтье, зацепив верхние части пружин за натяжную планку радиатора.Если его нет, просверлите отверстия с каждой стороны, чтобы продеть пружины.
Установите крышку на держатели внутри. Если банка маленькая, закрепите ее на прочном основании с помощью силиконового клея. Затем сделайте подсвечник, который поместится внутри банки. Я использовал банку с анчоусами с жесткой проволокой в качестве ручки.
4д. Скрутите или спаяйте вместе красный (+) и черный (-) провода от вентилятора и элемента Пельтье, красный с красным и черный с черным, а также подключите к каждому из них провод из крокодиловой кожи для подключения генератора к другим устройствам.
Украшайте как хотите (я добавил причудливую дверь от модели паровой машины к подсвечнику), и готово!
Огневая мощь
One Candlepower
Поставьте свечу в печь из жестяных банок и подождите, пока нагреется. Если свеча продолжает гаснуть, добавьте в печь еще дырок.
Если вы все сделали правильно, вентилятор начнет вращаться. Если у вас есть измеритель напряжения, вы должны начать видеть показания вскоре после того, как зажжется свеча. Если вентилятор не вращается, убедитесь, что провода вентилятора не подключены в обратном направлении.
Регулировка напряжения
Выходной сигнал ячейки Пельтье не регулируется, и его напряжение будет меняться вместе с пламенем и уровнем топлива. Нерегулируемая мощность может убить некоторое электронное оборудование (хотя я подключил свой MP3-плеер и радио к нерегулируемому току без каких-либо побочных эффектов).
Вы можете исправить это с помощью регулятора напряжения LM317. Эти дешевые и легкодоступные компоненты могут быть сконфигурированы для создания постоянного напряжения от 1,2 В до 25 В. Вы можете подключить элемент Пельтье, генерирующий примерно 5 В, к LM317, чтобы получить регулируемое выходное напряжение до примерно 3.8 В, настраиваемое поворотом потенциометра. Выходное напряжение 3,8 В позволяет включать мощный светодиод, заряжать КПК или мобильный телефон, а также включать радио или MP3-плеер.
Для питания устройств с более высоким напряжением вам потребуется создать повышающий стабилизатор, который объединяет схему генератора с умножителем напряжения для повышения напряжения при понижении тока.
ВНИМАНИЕ: Цепи повышающего напряжения являются умеренно сложными, и вам не следует пытаться построить их, если вы не знакомы с электроникой, поскольку они могут вызвать неприятный (и потенциально смертельный) ток.
Повышение выходной мощности
Для большей мощности используйте спиртовую горелку вместо свечи и увеличьте пламя. Используйте банку меньшего размера, радиатор большего размера и много смазки для радиатора.
Вы также можете увеличить производительность, соединив несколько ячеек Пельтье. Соедините их параллельно, чтобы увеличить ток, и соедините их последовательно, чтобы увеличить напряжение. Используйте диоды LN4001 или LN4002, чтобы предотвратить проникновение тока в ячейки. В случае параллельных ячеек подключите диод к положительному выводу каждой ячейки так, чтобы его серебряная полоса была обращена в сторону от ячейки.Подключив ячейки последовательно, подключите диод от красного провода каждой ячейки к черному проводу следующей ячейки, чтобы серебряная полоса была обращена к черному.
Термоэлектрический генераторсвоими руками — CARAVAN GENERATORS
-
термоэлектрический генератор
- Термоэлектрические генераторы (также называемые термогенераторами) — это устройства, которые преобразуют тепло (разницу температур) непосредственно в электрическую энергию, используя явление, называемое «эффектом Зеебека» (или «термоэлектрическим эффектом»).Их типичный КПД составляет около 5-10%.
-
сделай сам
- Сделай сам (или сделай сам) — это термин, используемый для описания строительства, модификации или ремонта чего-либо без помощи экспертов или профессионалов.
- (DIYed) Простое прошлое DIY
- Сделай сам; Выполнение задачи обычно возлагается на специалиста
- Сделай сам
Термоэлектрическое устройство
Этот увлекательный аксессуар демонстрирует эффект Пельтье — поглощение или излучение тепловой энергии, когда электроны переходят из одного состояния в другое через разнородные полупроводниковые переходы.Просто подключите его к Genecon или другому источнику напряжения, поверните ручку в одном направлении, и пластина нагреется. Поменяйте направление движения (или поменяйте местами провода), и пластина остынет! Такие термоэлектрические цепи позволяют регулировать температуру, когда размер или экономичность делают обычные методы охлаждения непрактичными. Они используются на печатных платах для охлаждения компонентов и в холодильниках для пикников, питаемых от автомобильных зажигалок. В качестве дополнительной задачи попросите учащихся предложить более важные или разнообразные приложения для устройства.Вояджер 2 20120613 09Три цилиндрических объекта, выстроенных в линию на удлиненной стреле, — это радиоизотопные термоэлектрические генераторы (РИТЭГ), которые по сути представляют собой ядерные батареи, используемые для питания космического корабля. Тепло, выделяемое при естественном распаде плутония, преобразуется непосредственно в электричество с помощью термопар. Он будет продолжать обеспечивать питание космического корабля как минимум до 2020 года, через 43 года после его запуска. Подобные источники энергии были типичны для космических аппаратов, работающих за пределами орбиты Марса.
20111113 MSL 07Цилиндрический объект в задней части марсохода представляет собой радиоизотопный термоэлектрический генератор (РИТЭГ). Используя естественный распад изотопа диоксида плутония, он может обеспечить марсоход мощностью около 125 Вт электроэнергии.
термоэлектрический генератор своими руками Предлагаемый вариант написан как учебник для студентов старших курсов или для выпускников первого года обучения и охватывает современные тепловые устройства, такие как радиаторы, термоэлектрические генераторы и охладители, тепловые трубы и теплообменники, как конструктивные элементы в более крупных системах.Эти устройства становятся все более важными и фундаментальными в тепловом проектировании в таких различных областях, как охлаждение микроэлектроники, преобразование зеленой или тепловой энергии, терморегулирование и управление в космосе и т. Д. Однако учебников по этому кругу тем не существует. Предлагаемая книга может быть использована в качестве курса дизайна замкового камня после фундаментальных курсов, таких как термодинамика, механика жидкости и теплопередача. Основные концепции в этой книге охватывают: 1) понимание физических механизмов тепловых устройств с основными формулами и подробными выводами, и 2) проектирование тепловых устройств в сочетании с математическим моделированием, графической оптимизацией и, иногда, вычислительными жидкостями.