Трансформатор описание: Силовые трансформаторы: определение, классификация и принцип работы

Содержание

Трансформаторы напряжения: описание, принцип действия

Все трансформаторы тока — это конструкции, которые изменяют переменный ток и стабильно защищают от перепадов высокого напряжения. Он является механизмом только переменного тока, который не может работать с источником постоянного тока, так как при этом в его обмотках не будет электромагнитной индукции. Сейчас трансформаторы напряжения, работающие на маленьких мощностях, практически вытеснены более мощными модификациями.

Описание и составляющие

Трансформатор состоит из трех частей:

  • Электро-обмотка может быть первичной подводящей напряжение и вторичной снимающей напряжение. Первичная обвивка подключается по порядку и подсоединяется к ключу переменного тока. Вторичная обвивка должна быть замкнута на нагрузку и ее противодействие не превышает установленного значения, она никак не сопряжена с первичной. На вторичной обмотке вызывается крайне высокое напряжение и вследствие этого она обязана быть заземлена.
  • Системы охлаждения: естественное воздушное, масляное (трансформаторное масло циркулирует и отдает запасенное тепло через заднюю стенку бака в окружающую среду, охлаждаясь), по тому же принципу циркуляции происходит охлаждение водой и естественное жидким диэлектриком.
  • Сердечник. А еще его называют магнитопровод, чаще всего изготавливается из специальных сплавов штампованных пластин в виде буквы Ш и О. Могут быть броневые (катушки установлены на одной оси) и стержневые (занимают большую часть сердечника и сердечники являются раздельными их стягивают при сборке).

Принцип действия

Отдача мощности из одной обмотки во вторую совершается электромагнитным путем и основана на электромагнитной индукции. Непостоянный ток, идя по первичной обмотке, формирует электромагнитное течение в магнитопроводе и индуцирует во вторичной обмотке, пронизывая ее витки. В результате он становиться замкнутым в магнитопроводе и сцепляется с двумя обмотками. Витки обмотки имеют равное усилие и в случае если повысить количество витков на 2–ой обмотке, объединяя их поочередно между собою, то можно повысить вольтаж на выходе трансформатора.

Таким же образом уменьшая количество витков уменьшить выходное напряжение. В сердечнике трансформатора неизбежны потери энергии за счет выделения тепла, но в современных мощных моделях эти потери невелики и не превышают 3%. Однофазные трансформаторы напряжения могут работать, на нагрузку, в режиме холостого хода и короткого замыкания. Как три отдельных однофазных трансформатора можно рассматривать трехфазные, но они работают на больших мощностях.

Трансформаторы силовые. Термины и определения – РТС-тендер

Термин

Определение

1.1. Трансформатор

Статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока

1. 2. Силовой трансформатор

Трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приема и использования электрической энергии.

Примечание. К силовым относятся трансформаторы трехфазные и многофазные мощностью 6,3 кВ·А и более, однофазные мощностью 5 кВ·А и более

1.3. Силовой трансформаторный агрегат

Устройство, в котором конструктивно объединены два или более силовых трансформаторов

1.4. Многофазная трансформаторная группа

Группа однофазных трансформаторов, обмотки которых соединены так, что в каждой из обмоток группы может быть создана система переменного тока с числом фаз, равным числу трансформаторов.

Примечание. Многофазная трансформаторная группа, имеющая три однофазных трансформатора, называется трехфазной трансформаторной группой

1.5. Магнитное поле трансформатора

Магнитное поле, созданное в трансформаторе совокупностью магнитодвижущих сил всех его обмоток и других частей, в которых протекает электрический ток.

Примечание. Для расчетов, определения параметров и проведения исследований магнитное поле трансформатора может быть условно разделено на взаимосвязанные части: основное поле, поле рассеяния обмоток, поле токов нулевой последовательности и т.д.

1.6. Магнитное поле рассеяния обмоток

Часть магнитного поля трансформатора, созданная той частью магнитодвижущих сил всех его основных обмоток, геометрическая сумма векторов которых в каждой фазе обмоток равна нулю.

Примечание. Предполагается наличие тока не менее чем в двух основных обмотках

1.7. Магнитное поле токов нулевой последовательности

Часть магнитного поля трансформатора, созданная геометрической суммой магнитодвижущих сил токов нулевой последовательности всех его основных обмоток

1.8. Основное магнитное поле

Часть магнитного поля трансформатора, созданная разностью суммы магнитодвижущих сил всех его обмоток и суммы магнитодвижущих сил обмоток, создающих поле рассеяния обмоток и поле токов нулевой последовательности обмоток трансформатора

1.9. Сторона высшего (среднего, низшего) напряжения трансформатора

Совокупность витков и других токопроводящих частей, присоединенных к зажимам трансформатора, между которыми действует его высшее (среднее или низшее) напряжение

1. 10. Схема соединения трансформатора

Сочетание схем соединения обмоток высшего и низшего напряжений для двухобмоточного и высшего, среднего и низшего напряжений для трехобмоточного трансформатора.

Примечание. Схема соединения -обмоточного трансформатора включает -схем обмоток

2.1. Трансформатор общего назначения

Силовой трансформатор, предназначенный для включения в сеть, не отличающуюся особыми условиями работы, или для непосредственного питания приемников электрической энергии, не отличающихся особыми условиями работы, характером нагрузки или режимом работы

2.2. Специальный трансформатор

Трансформатор, предназначенный для непосредственного питания потребительской сети или приемников электрической энергии, если эта сеть или приемники отличаются особыми условиями работы, характером нагрузки или режимом работы.

Примечание. К числу таких сетей и приемников электрической энергии относятся подземные шахтные сети и установки, выпрямительные установки, электрические печи и т.п.

2.3. Повышающий трансформатор

Трансформатор, у которого первичной обмоткой является обмотка низшего напряжения

2.4. Понижающий трансформатор

Трансформатор, у которого первичной обмоткой является обмотка высшего напряжения

2.5. Однофазный трансформатор

Трансформатор, в магнитной системе которого создается однофазное магнитное поле

2.6. Трехфазный трансформатор

Трансформатор, в магнитной системе которого создается трехфазное магнитное поле

2. 7. Многофазный трансформатор

Трансформатор, в магнитной системе которого создается магнитное поле с числом фаз более трех

2.8. Двухобмоточный трансформатор*

Трансформатор, имеющий две основные гальванически не связанные обмотки (черт.4)

2.9. Трехобмоточный трансформатор*

Трансформатор, имеющий три основные гальванически не связанные обмотки (черт.5)

2.10. Многообмоточный трансформатор*

Трансформатор, имеющий более трех основных гальванически не связанных обмоток

2.11. Трансформатор с жидким диэлектриком

Трансформатор, в котором основной изолирующей средой и теплоносителем служит жидкий диэлектрик

2. 12. Масляный трансформатор

Трансформатор с жидким диэлектриком, в котором основной изолирующей средой и теплоносителем служит трансформаторное масло

2.13. Трансформатор с негорючим жидким диэлектриком

Трансформатор с жидким диэлектриком, в котором основной изолирующей средой и теплоносителем служит негорючий жидкий диэлектрик

2.14. Сухой трансформатор

Трансформатор, в котором основной изолирующей средой служит атмосферный воздух или другой газ или твердый диэлектрик, а охлаждающей средой — атмосферный воздух

2.15. Воздушный трансформатор

Сухой негерметичный трансформатор, в котором основной изолирующей и охлаждающей средой служит атмосферный воздух

2. 16. Газонаполненный трансформатор

Сухой герметичный трансформатор, в котором основной изолирующей средой и теплоносителем служит воздух или другой газ

2.17. Трансформатор с литой изоляцией

Сухой трансформатор, в котором основной изолирующей средой и теплоносителем служит электроизоляционный компаунд

2.18. Кварценаполненный трансформатор

Сухой трансформатор в баке, заполненном кварцевым песком, служащим основной изолирующей средой и теплоносителем

2.19. Регулируемый трансформатор

Трансформатор, допускающий регулирование напряжения одной или более обмоток при помощи специальных устройств, встроенных в конструкцию трансформатора

2. 20. Трансформатор, регулируемый под нагрузкой

Трансформатор РПН

Регулируемый трансформатор, допускающий регулирование напряжения хотя бы одной из его обмоток без перерыва нагрузки и без отключения его обмоток от сети

Примечание. Другие обмотки трансформатора, регулируемого под нагрузкой, могут не иметь регулирования или иметь переключение без возбуждения

2.21. Трансформатор, переключаемый без возбуждения

Трансформатор ПБВ

Регулируемый трансформатор, допускающий регулирование напряжения путем переключения ответвлений обмоток без возбуждения после отключения всех его обмоток от сети.

Примечание. Понятие «переключение без возбуждения» может быть отнесено также к одной или нескольким обмоткам трансформатора, регулируемого под нагрузкой

2. 22. Регулировочный трансформатор

Регулируемый трансформатор, предназначенный для включения в сеть или в силовой трансформаторный агрегат с целью регулирования напряжения сети или агрегата

2.23. Последовательный регулировочный трансформатор (трансформаторный агрегат)

Регулировочный трансформатор (трансформаторный агрегат), включаемый последовательно с другим трансформатором со стороны нейтрали или со стороны линии с целью регулирования напряжения на зажимах линии

2.24. Линейный регулировочный трансформатор (трансформаторный агрегат)

Регулировочный трансформатор (трансформаторный агрегат), одна из обмоток которого включается последовательно в сеть с целью регулирования напряжения сети

2. 25. Автотрансформатор

Трансформатор, две или более обмоток которого гальванически связаны так, что они имеют общую часть

2.26. Двухобмоточный автотрансформатор

Автотрансформатор, имеющий две обмотки, гальванически связанные так, что они имеют общую часть, и не имеющий других основных обмоток (черт.7)

2.27. Трехобмоточный силовой автотрансформатор

Силовой автотрансформатор, две обмотки которого имеют общую часть, а третья основная обмотка не имеет гальванической связи с двумя первыми обмотками (черт.8)

2.28. Рудничный трансформатор

Трансформатор, предназначенный для установки и работы в рудниках и шахтах

2. 29. Тяговый трансформатор

Трансформатор, предназначенный для установки и работы на электрическом или теплоэлектрическом подвижном составе

2.30. Судовой трансформатор

Трансформатор, предназначенный для установки и работы на судах

2.31. Сварочный трансформатор

Трансформатор, предназначенный для питания установок электрической сварки

2.32. Преобразовательный трансформатор

Трансформатор, предназначенный для работы в выпрямительных, инверторных и других установках, преобразующих систему переменного тока в систему постоянного тока и наоборот при непосредственном подключении к ним

2. 33. Электропечной трансформатор

Трансформатор, предназначенный для питания электротермических установок

2.34. Пусковой трансформатор

Трансформатор или автотрансформатор, предназначенный для изменения напряжения ступенями при пуске электродвигателей

2.35. Передвижной трансформатор

Трансформатор, который можно перевозить по железной дороге или другим видом транспорта, практически без демонтажа узлов и деталей и без слива масла, предназначенный для использования в качестве передвижного резерва

2.36. Герметичный трансформатор

Трансформатор, выполненный так, что исключается возможность сообщения между внутренним пространством его бака и окружающей средой

2. 37. Трансформатор с расщепленной обмоткой (расщепленными обмотками)

Трансформатор, имеющий одну расщепленную обмотку (две или более расщепленных обмотки)

3.1. Магнитная система трансформатора

Комплект пластин или других элементов из электротехнической стали или другого ферромагнитного материала, собранных в определенной геометрической форме, предназначенный для локализации в нем основного магнитного поля трансформатора

3.2. Стержень

Часть магнитной системы, на которой располагаются основные обмотки трансформатора (черт.1-3)

3.3. Диаметр стержня

Диаметр окружности, в которую вписан контур ступенчатого или квадратного поперечного сечения стержня магнитной системы

3. 4. Межосевое расстояние стержней

Расстояние между продольными осями двух соседних стержней магнитной системы (черт.1)

3.5. Активное сечение стержня (ярма)

Суммарная площадь поперечного сечения ферромагнитного материала в поперечном сечении стержня (ярма)

3.6. Ярмо

Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи (черт.1, 2)

3.7. Боковое ярмо

Ярмо, соединяющее два конца одного и того же стержня (черт.1-3).

Примечание. Можно различать боковую часть бокового ярма, ось которой параллельна продольной оси стержня, и его торцевую часть, ось которой перпендикулярна этой оси

3. 8. Торцевое ярмо

Ярмо, соединяющее концы двух или более разных стержней (черт.2)

3.9. Плоская магнитная система

Магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости

3.10. Пространственная магнитная система

Магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях

3.11. Симметричная магнитная система

Магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней

3. 12. Несимметричная магнитная система

Магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня

3.13. Разветвленная магнитная система

Магнитная система, в которой магнитный поток стержня при переходе в ярмо разветвляется на две или более частей

3.14. Стержневая магнитная система

Магнитная система, в которой ярма соединяют разные стержни и нет боковых ярм (черт.1)

3.15. Броневая магнитная система

Магнитная система, в которой оба конца каждого стержня соединяются не менее чем двумя боковыми ярмами (черт. 3)

3.16. Бронестержневая магнитная система

Магнитная система, в которой часть стержней имеет боковые ярма или каждый стержень — не более чем одно боковое ярмо

3.17. Шихтованная магнитная система

Магнитная система, в которой стержни и ярма с плоской шихтовкой собираются в переплет как цельная конструкция (черт.2)

3.18. Стыковая магнитная система

Магнитная система, в которой стержни и ярма или отдельные части, собранные и скрепленные раздельно, при сборке системы устанавливаются встык

3.19. Навитая магнитная система

Магнитная система, в которой стержни и ярма образуются в виде цельной конструкции путем навивки из ленточной или рулонной электротехнической стали

4. 1. Виток обмотки

Проводник, однократно охватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создает магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Примечание. Виток обмотки может быть образован несколькими параллельно соединенными проводниками

4.2. Обмотка трансформатора

Совокупность витков, образующих электрическую цепь, в которой суммируются электродвижущие силы, наведенные в витках, с целью получения высшего, среднего или низшего напряжения трансформатора или с другой целью.

Примечания:

1. В трехфазном и многофазном трансформаторе (трансформаторной группе) под «обмоткой» подразумевается совокупность соединяемых между собой обмоток одного напряжения всех фаз.

2. В однофазном трансформаторе под «обмоткой» подразумевается совокупность соединяемых между собой обмоток одного напряжения, расположенных на всех его стержнях

4.3. Основная обмотка

Обмотка трансформатора, к которой подводится энергия преобразуемого или от которой отводится энергия преобразованного переменного тока.

Примечание. Силовой трансформатор имеет не менее двух основных обмоток

4.4. Вспомогательная обмотка

Обмотка трансформатора, не предназначенная непосредственно для приема энергии преобразуемого или отдачи энергии преобразованного переменного тока, или мощность которой существенно меньше номинальной мощности трансформатора.

Примечание. Вспомогательная обмотка может быть предназначена, например, для компенсации третьей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, питания сети собственных нужд ограниченной мощности и т.п.

4.5. Первичная обмотка трансформатора

Обмотка трансформатора, к которой подводится энергия преобразуемого переменного тока.

Примечание. Термин применим к любому числу обмоток трансформатора, если направление передачи энергии от них к другим обмоткам трансформатора является определенным

4.6. Вторичная обмотка трансформатора

Обмотка трансформатора, от которой отводится энергия преобразованного переменного тока.

Примечание. Термин применим к любому числу обмоток трансформатора, если направление передачи энергии к ним от других обмоток трансформатора является определенным

4.7. Обмотка высшего напряжения трансформатора*

Обмотка ВН

Основная обмотка трансформатора, имеющая наибольшее номинальное напряжение по сравнению с другими его основными обмотками

4.8. Обмотка низшего напряжения трансформатора*

Обмотка НН

Основная обмотка трансформатора, имеющая наименьшее номинальное напряжение по сравнению с другими его основными обмотками.

Примечание. Обмотка низшего напряжения регулировочного трансформатора может иметь более высокий уровень изоляции, чем обмотки высшего и среднего напряжения

4.9. Обмотка среднего напряжения трансформатора*

Обмотка СН

Основная обмотка трансформатора, номинальное напряжение которой является промежуточным между номинальными напряжениями обмоток высшего и низшего напряжения.

Примечание. Обмотка среднего напряжения регулировочного трансформатора может иметь более высокий уровень изоляции, чем обмотка высшего напряжения

4.10. Расщепленная обмотка

Обмотка, состоящая из двух или более гальванически не связанных частей, суммарная номинальная мощность которых, как правило, равна номинальной мощности трансформатора, напряжения короткого замыкания которых относительно других обмоток (обмотки) практически равны между собой, и которые допускают независимую друг от друга нагрузку или питание (черт.9).

Примечание. Совокупность частей расщепленной обмотки считается одной обмоткой

4.11. Общая обмотка автотрансформатора

Обмотка, являющаяся общей частью двух обмоток автотрансформатора (черт.7)

4.12. Последовательная обмотка автотрансформатора

Обмотка автотрансформатора, включаемая последовательно с общей обмоткой (черт.7)

4.13. Обмотка высшего напряжения автотрансформатора

Обмотка ВН

Совокупность витков, в которых индуктируется электродвижущая сила, используемая для получения высшего напряжения автотрансформатора

4.14. Обмотка среднего напряжения автотрансформатора

Обмотка СН

Совокупность витков, в которых индуктируется электродвижущая сила, используемая для получения среднего напряжения автотрансформатора

4.15. Обмотка низшего напряжения автотрансформатора

Обмотка НН

Совокупность витков, в которых индуктируется электродвижущая сила, используемая для получения низшего напряжения автотрансформатора

4.16. Обмотка фазы

Одна из обмоток однофазного трансформатора или часть обмотки трехфазного или многофазного трансформатора, образующая ее фазу

4.17. Обмотка стержня

Часть или целая обмотка высшего, среднего или низшего напряжения, расположенная на стержне трансформатора.

Примечание. В автотрансформаторе под обмоткой стержня подразумевается общая или последовательная обмотка

4.18. Концентрические обмотки

Обмотки стержня, изготовленные в виде цилиндров и концентрически расположенные на стержне магнитной системы (черт.4, 5)

4.19. Двойная концентрическая обмотка

Обмотка, состоящая из двух цилиндрических частей, расположенных на стержне магнитной системы концентрически с двух сторон другой обмотки (черт.6)

4.20. Чередующиеся обмотки

Обмотки высшего и низшего напряжения трансформатора, чередующиеся в осевом направлении стержня (черт.10)

4.21. Регулировочная обмотка

РО

Отдельно выполненная часть обмотки трансформатора, имеющая ответвления, переключаемые при регулировании напряжения

4.22. Обмотка грубого регулирования

РО грубая

Отдельно выполненная часть регулировочной обмотки, напряжение между соседними ответвлениями которой равно сумме напряжений нескольких ступеней регулирования

4.23. Обмотка тонкого регулирования

РО тонкая

Отдельно выполненная часть регулировочной обмотки, имеющая ответвления, соответствующие каждой ступени регулирования

4.24. Компенсационная обмотка

КО

Вспомогательная обмотка, располагаемая на стержнях или ярмах с целью компенсации частей магнитного поля трансформатора.

Примечание. Возможна, например, компенсация магнитодвижущей силы регулировочной обмотки, магнитного поля нулевой последовательности, поля третьей гармонической и др.

4.25. Сетевая обмотка

Обмотка преобразовательного трансформатора, присоединяемая к сети переменного тока

4.26. Вентильная обмотка

Обмотка преобразовательного трансформатора, присоединяемая к вентильным преобразователям

4.27. Группа соединения обмоток трансформатора

Угловое смещение векторов линейных электродвижущих сил обмоток (сторон) среднего и низшего напряжений по отношению к векторам соответствующих электродвижущих сил обмотки (стороны) высшего напряжения

4.28. Нейтраль обмотки

Общая точка обмоток фаз трехфазного или многофазного трансформатора, соединяемых в «звезду» или «зигзаг».

Примечание. В однофазном трансформаторе — зажим обмотки, предназначенный для присоединения к общей точке при соединении обмоток трехфазной (многофазной) группы в «звезду или «зигзаг»

4.29. Ответвление обмотки

Отвод, присоединенный к одному из витков и позволяющий использовать часть обмотки, заканчивающуюся этим витком

4.30. Основное ответвление обмотки

Ответвление, на котором обмотка трансформатора имеет номинальную мощность при номинальном напряжении.

Примечание. В специальных трансформаторах и в отдельных случаях в трансформаторах общего назначения основное ответвление определяется нормативным документом

4.31. Положительное ответвление обмотки

Ответвление, так расположенное в обмотке, что при его включении увеличивается число витков с одинаковым направлением электродвижущей силы по сравнению с числом витков на основном ответвлении.

Примечание к терминам 4.31 и 4.32. При реверсировании регулировочной обмотки одно и то же ответвление может быть положительным или отрицательным

4.32. Отрицательное ответвление обмотки

Ответвление, так расположенное в обмотке, что при его включении уменьшается число витков с одинаковым направлением электродвижущей силы по сравнению с числом витков на основном ответвлении

5.1. Изоляция трансформатора

Совокупность изоляционных деталей и заполняющей трансформатор изоляционной среды, исключающая замыкание металлических частей трансформатора, находящихся во время его работы под напряжением, с заземленными частями, а также частей, находящихся под разными потенциалами, между собой

5.2. Внутренняя изоляция

Изоляция внутри бака трансформатора в масле или другом жидком диэлектрике (внутри бака герметичного трансформатора, заполненного воздухом или газом) или внутри заполняющего трансформатор твердого диэлектрика.

Примечание. Основным признаком внутренней изоляции является практическая независимость ее электрической прочности от внешних атмосферных условий

5.3. Внешняя изоляция

Изоляция в воздухе снаружи бака трансформатора.

Примечания:

1. Основным признаком внешней изоляции является зависимость ее электрической прочности от атмосферных условий

2. Внешняя изоляция в воздушном трансформаторе — изоляция вне пространства, ограниченного наружной цилиндрической поверхностью наружной обмотки и ближайшими к обмоткам поверхностями магнитной системы

5.4. Междуфазная изоляция

Изоляция между обмотками разных фаз трансформатора

5.5. Главная изоляция обмотки

Изоляция обмотки от частей остова и от других обмоток

5.6. Продольная изоляция обмотки

Изоляция между разными точками обмотки фазы трансформатора.

Примечание. Изоляция между разными точками обмотки фазы, например, между витками, слоями витков, катушками, элементами емкостной защиты и т.п.

5.7. Концевая изоляция обмотки

Изоляционные конструкции и детали, служащие для изолирования торцевых частей обмоток от ярма, ярмовых балок и металлических прессующих колец

5.8. Емкостная защита обмотки

Специальные меры, применяемые для выравнивания емкостного распределения напряжения вдоль обмотки.

Примечание. Емкостная защита может достигаться применением электростатических экранов, конденсаторов или изменением последовательности соединения между собой катушек обмотки или витков в катушках

5.9. Емкостное кольцо обмотки

Кольцевой металлический незамкнутый изолированный электростатический экран, расположенный у торца обмотки или между ее катушками и гальванически соединенный с одной из ее точек

5.10. Экран емкостной защиты обмотки

Цилиндрический незамкнутый электростатический экран, расположенный вдоль внутренней или наружной цилиндрической поверхности обмотки и гальванически соединенный с одной из ее точек или заземленный

5.11. Экранирующий виток обмотки

Кольцевой незамкнутый электростатический экран, расположенный снаружи или внутри катушки непрерывной или дисковой обмотки, имеющий размер в направлении оси обмотки, равный приблизительно осевому размеру одной катушки

5.12. Обмотка с неградуированной изоляцией

Обмотка, у которой линейный конец и нейтраль имеют один уровень изоляции

5.13. Обмотка с градуированной изоляцией

Обмотка, у которой линейный конец и нейтраль имеют различные уровни изоляции

5.14. Термический срок службы изоляции

Период работы от первого включения до полного износа изоляции под влиянием физико-химических факторов, прежде всего температуры, при изменяющихся нагрузке, напряжении и условиях охлаждения

5.15. Номинальный термический срок службы изоляции

Термический срок службы при постоянной температуре наиболее нагретой точки изоляции, равной допустимой температуре для данного изоляционного материала

6.1. Активная часть трансформатора

Единая конструкция, включающая в собранном виде остов трансформатора, обмотки с их изоляцией, отводы, части регулирующего устройства, а также все детали, служащие для их механического соединения.

Примечание. В некоторых типах трансформаторов с активной частью могут быть конструктивно связаны крышка бака и вводы

6.2. Активные материалы трансформатора

Электротехническая сталь или другой ферромагнитный материал, из которого изготовлена магнитная система, а также металл обмоток и отводов трансформатора

6.3. Остов

Единая конструкция, включающая в собранном виде магнитную систему со всеми деталями, служащими для ее соединения и для крепления обмоток

6.4. Отводы

Совокупность электрических проводников, служащих для соединения обмоток трансформатора с вводами, устройствами переключения ответвлений обмоток и другими токоведущими частями

6.5. Контактный зажим трансформатора

Контактный зажим, имеющий гальваническую связь с обмотками и предназначенный для присоединения трансформатора к внешней цепи

6.6. Бак трансформатора

Бак, в котором размещается активная часть трансформатора или трансформаторного агрегата с жидким диэлектриком, газо- или кварценаполненного

6.7. Бак колокольного типа

Бак, имеющий вблизи дна разъем, позволяющий отделить и поднять верхнюю часть бака без подъема активной части трансформатора

6.8. Герметичный бак

Бак, имеющий уплотнения, практически исключающие сообщение между внутренним объемом бака и окружающей атмосферой.

Примечание. При наличии расширителя герметизация относится и к внутреннему объему расширителя

6.9. Расширитель

Сосуд, соединенный с баком трубопроводом и служащий для локализации колебаний уровня жидкого диэлектрика

6.10. Воздухоосушитель

Сосуд, сообщающийся с одной стороны с внутренним объемом воздуха в расширителе или баке трансформатора, а с другой — с атмосферным воздухом, предназначенный для отделения влаги из воздуха, поступающего в расширитель или бак трансформатора

6.11. Маслоуказатель

Указатель уровня масла или другого жидкого диэлектрика в трансформаторе или его расширителе

6.12. Термосифонный фильтр

Сосуд, сообщающийся двумя патрубками с внутренним объемом бака в верхней и нижней его части, заполненный веществом, служащим для очистки масла или другого жидкого диэлектрика от продуктов окисления и для поглощения влаги

6.13. Кожух трансформатора

Оболочка воздушного трансформатора, защищающая его активную часть от попадания посторонних предметов, но допускающая свободный доступ к ней охлаждающего воздуха

6.14. Устройство регулирования напряжения трансформатора (трансформаторного агрегата)

Устройство, предназначенное для регулирования напряжения трансформатора (трансформаторного агрегата) и включающее все необходимые для этого аппараты, механизмы и составные части, за исключением регулировочных обмоток

6.15. Устройство переключения ответвлений обмоток

Устройство, предназначенное для изменения соединений ответвлений обмоток между собой или с вводом

6.16. Устройство переключения ответвлений обмоток без возбуждения

Устройство ПБВ

Устройство, предназначенное для изменения соединений ответвлений обмоток при невозбужденном трансформаторе

6.17. Устройство регулирования напряжения трансформатора под нагрузкой

Устройство РПН

Устройство регулирования, предназначенное для регулирования напряжения без перерыва нагрузки и без отклонения обмоток трансформатора от сети

6.18. Переключатель ответвлений обмотки

Контактное устройство, служащее для переключения ответвлений обмотки в трансформаторе, переключаемом без возбуждения

6.19. Избиратель ответвлений

Часть устройства регулирования под нагрузкой, предназначенная для выбора нужного ответвления обмотки перед переключением и для длительного пропускания тока.

Примечание. Избиратель ответвлений не служит для изменения и отключения тока

6.20. Предызбиратель ответвлений

Часть устройства регулирования напряжения под нагрузкой, длительно пропускающая ток, предназначенная для использования контактов избирателя, а также присоединенных к нему ответвлений обмотки более одного раза при прохождении всего диапазона регулирования трансформатора.

Примечания:

1. Предызбиратель не служит для изменения и отключения тока.

2. Предызбиратель может производить реверсирование регулировочной части обмотки или переключение грубых ступеней регулирования

6.21. Контактор устройства регулирования напряжения под нагрузкой

Часть устройства регулирования напряжения под нагрузкой, предназначенная для изменения и отключения тока в цепях переключающего устройства, предварительно подготовленных к этому избирателем

6.22. Токоограничивающий резистор устройства регулирования напряжения под нагрузкой

Резистор устройства регулирования напряжения под нагрузкой, предназначенный для включения между работающим и вводимым в работу ответвлением с целью ограничения переходного тока в переключаемой части обмотки и перевода нагрузки с одного ответвления на другое без перерыва в токе нагрузки трансформатора и без существенного его изменения

6.23. Токоограничивающий реактор устройства регулирования напряжения под нагрузкой

Реактор устройства регулирования напряжения под нагрузкой, предназначенный для включения между работающим и вводимым в работу ответвлением с целью ограничения переходного тока в переключаемой части обмотки и перевода нагрузки с одного ответвления на другое без перерыва в токе нагрузки трансформатора и без существенного его изменения

6.24. Система охлаждения

Совокупность теплообменников или элементов системы охлаждения, устройств, предназначенных для ускорения движения теплоносителя и (или) охлаждающей среды, контрольных и измерительных приборов, служащая для отвода тепла, выделяющегося в трансформаторе в охлаждающую среду

6.25. Охладитель

Теплообменник, в котором происходит передача тепла от теплоносителя, заполняющего бак трансформатора и принудительно циркулирующего через теплообменник, воздуху или воде, движение которых также принудительно ускоряется

6.26. Радиатор трансформатора

Теплообменник, в котором происходит передача тепла от теплоносителя, заполняющего бак трансформатора и движущегося путем естественной конвекции, воздуху, охлаждающему трансформатор

7.1.1. Стержень (ярмо) с плоской шихтовкой

Стержень (ярмо) магнитной системы, в котором плоские пластины различной или одинаковой ширины расположены так, что плоскости всех пластин параллельны

7.1.2. Стержень с радиальной шихтовкой

Стержень стыковой магнитной системы, в котором плоские пластины разной ширины расположены в поперечном сечении стержня практически в радиальных направлениях

7.1.3. Стержень с эвольвентной шихтовкой

Стержень стыковой магнитной системы, в котором пластины одной ширины изогнуты и расположены так, что в поперечном сечении они имеют форму эвольвенты и в совокупности образуют практически круговой цилиндр

7.1.4. Ступенчатое сечение стержня

Поперечное сечение стержня, собранного из двух или более пакетов пластин разной ширины, имеющее форму ступенчатой фигуры, вписанной в окружность или овал

7.1.5. Круглое сечение стержня

Поперечное сечение стержня с радиальной или эвольвентной шихтовкой, практически имеющее форму круга

7.1.6. Пластина магнитной системы

Пластина из электротехнической стали или другого ферромагнитного материала, являющаяся элементом магнитной системы трансформатора.

Примечание. В некоторых конструкциях магнитных систем пластина при сборке может подвергаться изгибу по заданному профилю

7.1.7. Пакет пластин

Стопа пластин одного размера в стержне или ярме магнитной системы.

Примечание. Пакет может состоять из двух частей, разделенных каналом

7.1.8. Число ступеней в стержне (ярме)

Число пакетов пластин в половине поперечного сечения стержня (ярма) магнитной системы с плоской шихтовкой.

Примечание. Аналогично определяется число ступеней в навитой магнитной системе

7.1.9. Коэффициент заполнения круга

Отношение площади поперечного сечения стержня к площади круга с диаметром, равным диаметру стержня трансформатора.

Примечание. При наличии в сечении стержня каналов площадь поперечного сечения каналов не включается в площадь поперечного сечения стержня

7.1.10. Коэффициент заполнения сечения стержня (ярма)

Отношение активного сечения стержня (ярма) к площади его поперечного сечения

7.1.11. Коэффициент заполнения сталью

Отношение активного сечения стержня к площади круга с диаметром, равным диаметру стержня трансформатора.

Примечание. Коэффициент заполнения сталью равен произведению коэффициента заполнения круга и коэффициента заполнения сечения стержня

7.1.12. Окно магнитной системы

Пространство, ограниченное ближайшими поверхностями двух соседних стержней и двух торцевых ярм или поверхностями стержня, двух торцевых частей и боковой части бокового ярма

7.1.13. Высота окна магнитной системы

Расстояние между двумя торцевыми ярмами, измеренное по линии, параллельной продольной оси стержня (черт.1)

7.1.14. Ширина окна магнитной системы

Расстояние между ближайшими поверхностями двух соседних стержней или стержня и бокового ярма, измеренное по линии, перпендикулярной их продольным осям (черт.1)

7.1.15. Коэффициент заполнения окна магнитной системы

Отношение суммарной площади поперечного сечения металла всех витков всех обмоток в окне магнитной системы к площади окна

7.1.16. Ярмовая прессующая балка

Балка, служащая в магнитной системе для прессовки ярма и в качестве торцевой опоры для обмоток или только для прессовки ярма

7.1.17. Угол магнитной системы

Часть магнитной системы, ограниченная объемом, образованным пересечением боковых поверхностей или их продолжений одного из ярм и одного из стержней (черт.1)

7.1.18. Стык магнитной системы

Место сочленения пластин стержня и ярма в шихтованной магнитной системе или пакетов пластин стержня и ярма в стыковой магнитной системе.

Примечание. В некоторых конструкциях магнитных систем возможен стык пластин внутри стержня или ярма

7.1.19. Прямой стык магнитной системы

Стык магнитной системы, при котором пластины сохраняют прямоугольную форму

7.1.20. Косой стык магнитной системы

Стык магнитной системы, при котором пластины (пакеты) в месте сочленения срезаны под углом, близким к 45° к продольной оси пластины

7.1.21. Изоляция пластин (лент) магнитной системы

Слой изоляционного материала, наносимый на поверхность пластины (ленты) или образуемый на ее поверхности

7.2.1 Слой обмотки

Ряд витков от одного и более, расположенных на одной цилиндрической поверхности

7.2.2 Катушка обмотки

Группа последовательно соединенных витков более одного витка, конструктивно объединенная и отделенная от других таких групп или обмоток

7.2.3. Входные катушки обмотки

Катушки обмотки, ближайшие к ее линейному зажиму и отличающиеся по конструкции от остальных катушек

7.2.4. Простая цилиндрическая обмотка

Обмотка, сечение витка которой состоит из сечений одного или нескольких параллельных проводов, а витки и все их параллельные провода расположены в один ряд (слой) без интервалов на цилиндрической поверхности в ее осевом направлении (черт.11)

7.2.5. Двухслойная (многослойная) цилиндрическая обмотка

Обмотка, состоящая из двух (или более) концентрически расположенных простых цилиндрических обмоток (слоев) (черт.12)

7.2.6. Катушечная обмотка

Обмотка, состоящая из ряда катушек, расположенных в осевом направлении обмотки

7.2.7. Дисковая катушечная обмотка

Катушечная обмотка, собранная из отдельно намотанных катушек, выполненных в виде плоских спиралей из одного провода или нескольких параллельных проводов

7.2.8. Непрерывная катушечная обмотка

Катушечная обмотка, намотанная непрерывным проводом в виде плоских спиралей из одного провода или нескольких параллельных проводов (черт.15)

7.2.9. Переплетенная обмотка

Катушечная обмотка, в которой порядок последовательного соединения витков отличается от последовательности их расположения в катушках

7.2.10. Обмотка с переплетением катушек

Катушечная обмотка, в которой порядок последовательного соединения катушек отличается от последовательности их расположения в обмотке

7.2.11. Многослойная цилиндрическая катушечная обмотка

Катушечная обмотка, каждая катушка которой представляет собой многослойную цилиндрическую обмотку

7.2.12. Одноходовая винтовая обмотка

Обмотка, витки которой следуют один за другим в осевом направлении по винтовой линии, а сечение каждого витка образовано сечениями нескольких параллельных проводов прямоугольного сечения, расположенными в один ряд в радиальном направлении обмотки (черт.13)

7.2.13. Двухходовая (многоходовая) винтовая обмотка

Обмотка, состоящая из двух или более одноходовых обмоток, взаимно расположенных подобно ходам резьбы двухходового (многоходового) винта (черт.14)

7.2.14. Транспозиция проводов обмотки

Изменение взаимного расположения параллельных проводов в сечении витка обмотки с целью уравнивания распределения тока между ними

7.2.15. Сосредоточенная транспозиция проводов обмотки

Транспозиция проводов обмотки, сосредоточенная в нескольких местах в осевом направлении, при числе мест меньшем, чем число параллельных проводов без одного

7.2.16. Групповая транспозиция проводов обмотки

Сосредоточенная транспозиция, при которой все параллельные провода делятся на две или более группы и изменяется взаимное расположение этих групп без изменения расположения проводов в группе (черт.16)

7.2.17. Общая транспозиция проводов обмотки

Сосредоточенная транспозиция, при которой изменяется взаимное расположение всех параллельных проводов (черт.16)

7.2.18. Равномерно распределенная транспозиция проводов обмотки

Транспозиция параллельных проводов в винтовой или катушечной обмотке, выполняемая путем изменения расположения всех проводов в ряде мест, равномерно распределенных в осевом направлении обмотки, при числе мест не меньше числа параллельных проводов или катушек без одного (черт.17)

7.2.19. Прессующее кольцо обмотки

Металлическое разрезное или неметаллическое кольцо, размещенное между концевой изоляцией обмотки и ярмовыми балками трансформатора с целью осуществления осевой прессовки обмотки

8.1. Номинальный режим трансформатора

Режим работы трансформатора на основном ответвлении при номинальных значениях напряжения, частоты, нагрузки и номинальных условиях места установки и охлаждающей среды

8.2. Аварийный режим трансформатора

Режим работы, при котором напряжение или ток обмотки, или части обмотки таковы, что при достаточной продолжительности это угрожает повреждением или разрушением частей трансформатора

8.3. Параллельная работа трансформаторов

Работа двух или нескольких трансформаторов при параллельном соединении не менее чем двух основных обмоток одного из них с таким же числом основных обмоток другого трансформатора (других трансформаторов)

8.4. Режим холостого хода трансформатора

Х.х. трансформатора

Режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и других обмотках, не замкнутых на внешние цепи.

Примечание. Если нет специальной оговорки, то предполагается, что напряжение источника питания равно номинальному напряжению первичной обмотки и синусоидально, а частота равна номинальной частоте трансформатора

8.5. Опыт холостого хода

Опыт х.х.

Режим холостого хода трансформатора, осуществляемый при номинальной частоте и различных значениях синусоидального напряжения первичной обмотки с целью опытного определения потерь и тока холостого хода и др. параметров и характеристик трансформатора

8.6. Режим короткого замыкания трансформатора

Режим работы трансформатора при питании хотя бы одной из обмоток от источника с переменным напряжением при коротком замыкании на зажимах одной из других обмоток.

Примечание. Если нет специальной оговорки, то предполагается, что напряжение источника питания равно номинальному напряжению первичной обмотки и синусоидально, а его частота равна номинальной частоте трансформатора

8.7. Опыт короткого замыкания пары обмоток

Опыт к.з. пары обмоток

Режим короткого замыкания, осуществляемый с целью опытного определения потерь напряжения короткого замыкания и др. параметров и характеристик пары обмоток трансформатора при номинальной частоте и пониженном против номинального напряжения на одной из обмоток, при закороченной второй обмотке этой пары и остальных обмотках, не замкнутых на внешние цепи

8.8. Режим нагрузки трансформатора

Режим работы возбужденного трансформатора при наличии токов не менее чем в двух его основных обмотках, каждая из которых замкнута на внешнюю цепь.

Примечание. При этом не учитываются токи, протекающие в двух или более обмотках в режиме холостого хода

8.9. Номинальный режим нагрузки двухобмоточного трансформатора

Режим нагрузки трансформатора номинальным током при номинальных частоте и напряжении

8.10. Номинальный режим нагрузки трехобмоточного (многообмоточного) трансформатора

Режим нагрузки трехобмоточного (многообмоточного) трансформатора, установленный нормативным документом

8.11. Допустимый режим нагрузки трансформатора

Режим продолжительной нагрузки трансформатора, при которой расчетный износ изоляции обмоток от нагрева не превосходит износ, соответствующий номинальному режиму работы.

Примечание. Метод и нормы для расчета износа изоляции устанавливаются нормативным документом

8.12. Перегрузка трансформатора

Нагрузка трансформатора, при которой расчетный износ изоляции обмоток, соответствующий установившимся превышениям температуры, превосходит износ, соответствующий номинальному режиму работы

8.13. Допустимая перегрузка

Перегрузка трансформатора, разрешенная нормативным документом

8.14. Допустимая систематическая перегрузка

Ограниченная по длительности перегрузка трансформатора, при которой расчетный износ изоляции за установленное время не превосходит износа за такое же время при номинальном режиме работы.

Примечание. Установленное время (обычно одни сутки) включает длительность перегрузки и длительность предшествующей и последующей нагрузок

8.15. Допустимая аварийная перегрузка

Перегрузка трансформатора, допустимая в аварийных режимах, величина и длительность которой установлены нормативным документом

8.16. Нагрузочная способность трансформатора

Совокупность допустимых нагрузок и перегрузок трансформатора

8.17. Возбуждение трансформатора

Создание основного магнитного поля трансформатора путем подключения одной или нескольких обмоток к одной или нескольким сетям или другим источникам с соответствующими номинальными напряжениями и частотой

8.18. Перевозбуждение трансформатора

Увеличение магнитной индукции в магнитной системе трансформатора по отношению к индукции в режиме холостого хода

8.19. Превышение номинального напряжения трансформатора

Превышение напряжения сети, в которую включена обмотка трансформатора, по сравнению с номинальным напряжением обмотки на включенном ответвлении

8.20. Регулирование напряжения трансформатора

Изменение в соответствии с заданным режимом или стабилизация напряжения одной или более обмоток при помощи специального устройства

8.21. Продольное регулирование напряжения

Регулирование напряжения трансформатора с изменением или стабилизацией его значения

8.22. Поперечное регулирование напряжения

Регулирование напряжения трансформатора с изменением или стабилизацией его фазы

8.23. Продольно-поперечное регулирование напряжения

Регулирование напряжения трансформатора с изменением или стабилизацией его значения и фазы

8.24. Регулирование напряжения трансформатора в нейтрали

Регулирование напряжения трансформатора путем переключения ответвлений обмотки, расположенных вблизи ее нейтрали

8.25. Регулирование напряжения трансформатора в линии

Регулирование напряжения трансформатора путем переключения ответвлений обмотки, расположенных вблизи от зажима, присоединяемого к сети

8.26. Естественное масляное охлаждение

Охлаждение частей масляного трансформатора путем естественной конвекции масла при охлаждении внешней поверхности бака и установленных на нем охладительных элементов посредством естественной конвекции воздуха и лучеиспускания в воздухе.

Примечание. Аналогично определяется естественное охлаждение при заполнении трансформатора другим жидким диэлектриком

8.27. Естественное воздушное охлаждение

Охлаждение частей сухого трансформатора путем естественной конвекции воздуха и частично лучеиспускания в воздухе

8.28. Дутьевое охлаждение

Охлаждение трансформатора с использованием принудительного повышения скорости движения воздуха, охлаждающего отдельные части системы охлаждения или активную часть трансформатора

8.29. Циркуляционное охлаждение

Охлаждение трансформатора с использованием принудительного повышения скорости движения заполняющего трансформатор теплоносителя при помощи насосов или вентиляторов

8.30. Масляно-водяное охлаждение трансформатора

Охлаждение масляного трансформатора с принудительной циркуляцией масла через охладители, охлаждаемые водой.

Примечание. Аналогично определяется водяное охлаждение при заполнении трансформатора другим жидким диэлектриком

8.31. Направленное циркуляционное охлаждение

Циркуляционное охлаждение с канализацией движения теплоносителя внутри бака трансформатора

9.1.1. Высшее напряжение трансформатора

ВН

Наибольшее из номинальных напряжений обмоток трансформатора

9.1.2. Низшее напряжение трансформатора

НН

Наименьшее из номинальных напряжений обмоток трансформатора

9.1.3. Среднее напряжение трансформатора

СН

Номинальное напряжение, являющееся промежуточным между высшим и низшим номинальными напряжениями обмоток трансформатора.

Примечание. При наличии более трех цепей и двух или более промежуточных напряжений эти напряжения, начиная с более высокого, следует именовать: «первое среднее», «второе среднее» и т.д.

9.1.4. Напряжение короткого замыкания пары обмоток трансформатора

Напряжение к.з.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

9.1.5. Напряжение короткого замыкания трансформатора

Напряжение к.з.

Напряжение короткого замыкания пары обмоток для двухобмоточного и три значения напряжения короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжения — для трехобмоточного трансформатора.

Примечание. Для многообмоточного трансформатора с обмотками число значений напряжения короткого замыкания равно

9.1.6. Изменение напряжения пары обмоток трансформатора

Арифметическая разность напряжений при холостом ходе обмотки на данном ответвлении и напряжения на ее зажимах при заданных токе нагрузки и коэффициенте мощности, когда напряжение на другой обмотке пары равно ее номинальному напряжению, если она включена на основном ответвлении, или напряжению другого ответвления, на которое она включена при остальных обмотках, не замкнутых на внешние цепи

9.1.7. Коэффициент трансформации

Отношение напряжений на зажимах двух обмоток в режиме холостого хода.

Примечания:

1. Для двух обмоток силового трансформатора, расположенных на одном стержне, коэффициент трансформации принимается равным отношению чисел их витков

2. В трехфазном (многофазном) трансформаторе коэффициенты трансформации для фазных и междуфазных напряжений могут быть различными

3. В двухобмоточном трансформаторе коэффициент трансформации равен отношению высшего напряжения к низшему; трехобмоточный трансформатор имеет три коэффициента трансформации — высшего и низшего, высшего и среднего, среднего и низшего напряжений

9.1.8. Значение ступени регулирования напряжения

Наименьшая разность напряжений, получаемая при регулировании

9.1.9. Диапазон регулирования напряжения

Разность максимального и минимального напряжения обмотки, получаемых при регулировании

9.1.10. Ток холостого хода трансформатора

Ток х.х.

Ток первичной основной обмотки трансформатора в режиме холостого хода и номинальном синусоидальном напряжении номинальной частоты на ее зажимах.

Примечание. У трехфазного и многофазного трансформатора током холостого хода считается среднее арифметическое токов всех фаз

9.1.11. Ток короткого замыкания трансформатора

Ток к.з.

Ток в обмотке трансформатора при испытаниях на стойкость при коротком замыкании в одной из сетей, присоединенных к зажимам трансформатора

9.1.12. Установившийся ток короткого замыкания

Действующее значение тока короткого замыкания, определяемое без учета свободного тока при неизменном напряжении на зажимах первичной обмотки трансформатора

9.1.13. Наибольший установившийся ток короткого замыкания

Установившийся ток короткого замыкания трансформатора, определяемый с учетом регламентированного реактивного сопротивления питающей сети, на который трансформатор должен быть рассчитан

9.1.14. Ударный ток короткого замыкания

Наибольшее мгновенное значение тока короткого замыкания, определяемое как сумма мгновенных значений вынужденного тока и свободного тока в процессе короткого замыкания

9.1.15. Наибольший ударный ток короткого замыкания

Ударный ток короткого замыкания при наибольшем вынужденном токе и наибольшем возможном или установленном нормативным документом свободном токе

9.1.16. Кратность установившегося тока короткого замыкания

Отношение установившегося тока короткого замыкания трансформатора к номинальному току

9.1.17. Ударный коэффициент тока короткого замыкания

Отношение ударного тока короткого замыкания к амплитуде наибольшего установившегося тока короткого замыкания

9.1.18. Циркулирующий ток в устройстве регулирования напряжения под нагрузкой

Ток, протекающий в контуре, содержащем часть обмотки между двумя ответвлениями и токоограничивающий резистор или обмотку реактора, под воздействием напряжения между двумя ответвлениями в процессе переключения

9.1.19. Типовая мощность трансформатора

Полусумма мощностей всех частей обмоток трансформатора.

Примечание. Мощностью части обмотки является произведение наибольшего длительно допустимого в этой части тока на наибольшее длительно допустимое напряжение этой части

9.1.20. Мощность обмотки трансформатора

Полная мощность, подводимая к этой обмотке от внешней цепи или отводимая от нее во внешнюю цепь

9.1.21. Электромагнитная мощность автотрансформатора

Мощность, передаваемая автотрансформатором из одной сети в другую посредством электромагнитной индукции, равная мощности общей или последовательной обмотки автотрансформатора

9.1.22. Электрическая мощность автотрансформатора

Мощность, непосредственно передаваемая автотрансформатором из одной сети в другую электрическим путем благодаря гальванической связи между соответствующими обмотками, равная произведению напряжения общей обмотки на ток последовательной обмотки автотрансформатора и коэффициент, учитывающий число фаз

9.1.23. Проходная мощность автотрансформатора

Мощность, передаваемая автотрансформатором из одной сети в другую, равная сумме его электромагнитной и электрической мощностей

9.1.24. Потери трансформатора

Активная мощность, расходуемая в магнитной системе, обмотках и др. частях трансформатора при различных режимах работы

9.1.25. Потери холостого хода

Потери х.х.

Потери, возникающие в трансформаторе в режиме холостого хода при номинальном напряжении и номинальной частоте

9.1.26. Магнитные потери

Потери, возникающие в магнитной системе трансформатора в режиме холостого хода при номинальном напряжении и номинальной частоте

9.1.27. Потери короткого замыкания пары обмоток

Потери к.з.

Приведенные к расчетной температуре потери, возникающие в трансформаторе при номинальной частоте при установлении в одной из обмоток тока, соответствующего меньшей из номинальных мощностей обмоток этой пары, при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

9.1.28. Потери короткого замыкания

Потери к.з.

Потери короткого замыкания пары обмоток для двухобмоточного и три значения потерь короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжений — для трехобмоточного трансформатора.

Примечания:

1. Для многообмоточного трансформатора с обмотками число значений равно .

2. Обмотки пары должны быть включены или замкнуты накоротко на основных ответвлениях

9.1.29. Основные потери в токоведущих частях

Потери в обмотках и др. токоведущих частях трансформатора, определяемые током данной обмотки или токоведущей части и ее электрическим сопротивлением, измеренным при постоянном токе

9.1.30. Добавочные потери в опыте короткого замыкания

Разность потерь, измеренных при определенном токе в опыте короткого замыкания, и основных потерь в токоведущих частях, определенных при том же токе

9.1.31. Добавочные потери в токоведущих частях

Потери от токов, наведенных полем рассеяния в токоведущих частях трансформатора

9.1.32. Потери от циркулирующих токов

Потери от токов, наведенных полем рассеяния и замыкающихся в параллельно соединенных ветвях обмоток трансформатора

9.1.33. Добавочные потери в элементах конструкций

Потери от гистерезиса и вихревых токов, возникающие в металлических деталях трансформатора от воздействия поля рассеяния.

Примечание. В добавочные потери в элементах конструкции трансформатора не входят потери от вихревых токов и гистерезиса в активных материалах

9.1.34. Суммарные потери трансформатора

Сумма потерь холостого хода и потерь короткого замыкания трансформатора.

Примечание. Для трехобмоточного трансформатора за потери короткого замыкания принимается наибольшее из трех значений потерь согласно п.9.1.28

9.1.35. Относительные потери

Отношение потерь холостого хода, потерь короткого замыкания или суммарных потерь трансформатора к его номинальной мощности

9.1.36. Стойкость трансформатора при коротком замыкании

Способность трансформатора при включении на любом ответвлении выдерживать без повреждений внешние короткие замыкания

9.1.37. Электродинамическая стойкость трансформатора при коротком замыкании

Способность трансформатора выдерживать без повреждений динамические воздействия, возникающие при внешнем коротком замыкании

9.1.38. Термическая стойкость трансформатора при коротком замыкании

Способность трансформатора выдерживать без повреждений термические воздействия, возникающие при внешнем коротком замыкании

9.2.1. Номинальные данные трансформатора

Указанные изготовителем параметры трансформатора (например, частота, мощность, напряжение, ток), обеспечивающие его работу в условиях, установленных нормативным документом, и являющиеся основой для определения условий изготовления, испытаний, эксплуатации

9.2.2. Номинальная мощность обмотки (ответвления обмотки)

Указанное на паспортной табличке трансформатора значение полной мощности на основном (данном) ответвлении, гарантированное изготовителем в номинальных условиях места установки и охлаждающей среды при номинальной частоте и номинальном напряжении обмотки (ответвления).

Примечание. Если на паспортной табличке трансформатора указаны несколько мощностей, соответствующих различным способам охлаждения, то за номинальную принимается наибольшая из этих мощностей

9.2.3. Номинальная мощность двухобмоточного трансформатора*

Номинальная мощность каждой из обмоток трансформатора.

Примечание. В трансформаторе с расщепленной обмоткой номинальная мощность — это мощность нерасщепленной обмотки или равная ей суммарная мощность частей расщепленной обмотки

9.2.4. Номинальная мощность трехобмоточного трансформатора*

Наибольшая из номинальных мощностей отдельных обмоток трансформатора

9.2.5. Номинальная мощность автотрансформатора

Номинальная проходная мощность обмоток, имеющих общую часть.

Примечание. Под обмотками понимаются обмотки высшего и низшего напряжения в двухобмоточном и обмотки высшего и среднего напряжения в трехобмоточном автотрансформаторе

9.2.6. Номинальная частота трансформатора

Частота, на которую рассчитан трансформатор, указанная на паспортной табличке

9.2.7. Номинальное напряжение обмотки трансформатора

Указанное на паспортной табличке напряжение между зажимами трансформатора, связанными с обмоткой, при холостом ходе трансформатора.

Примечание. Для обмотки, снабженной ответвлениями, номинальным считается напряжение основного ответвления

9.2.8. Номинальное напряжение ответвления обмотки

Указанное на паспортной табличке напряжение ответвления при холостом ходе трансформатора

9.2.9. Номинальный ток обмотки

Ток, определяемый по номинальной мощности обмотки, ее номинальному напряжению и множителю, учитывающему число фаз

9.2.10. Номинальный ток ответвления обмотки

Ток, определяемый по номинальным мощности и напряжению ответвления обмотки и множителю, учитывающему число фаз, или по указанию нормативного документа

9.2.11. Расчетная температура обмотки

Средняя условная температура обмотки, к которой должны быть приведены потери и напряжение короткого замыкания трансформатора, установленная нормативным документом

9.3.1. Полная масса

Масса собранного трансформатора, включая все узлы, устанавливаемые на нем и на отдельных фундаментах, и всю заполняющую жидкость

9.3.2. Транспортная масса

Масса трансформатора в том виде, в котором он погружается на транспортное средство, без массы демонтируемых узлов и деталей и части изоляционной жидкости, сливаемой перед транспортированием

9.3.3. Масса активной стали

Масса электротехнической стали или другого ферромагнитного материала, образующего магнитную систему трансформатора

9.3.4. Масса металла обмоток

Суммарная масса металла витков всех обмоток трансформатора.

Примечание. При соответствующей оговорке термин может быть отнесен к одной из обмоток, к обмотке фазы или обмотке стержня

9.3.5. Масса масла

Масса масла, которое должно заполнять трансформатор при его работе.

Примечания:

1. В массу масла, определяемую данным термином, не включают массу масла, заполняющего вводы, если их внутренний объем не сообщается с внутренним объемом бака трансформатора.

2. Аналогично определяют массу другого жидкого диэлектрика в трансформаторах, заполненных жидкостями    

Трехфазный силовой трансформатор, назначение трехфазного трансформатора

Трехфазный трансформатор – статический аппарат с тремя парами обмоток, предназначенный для преобразования напряжения при передаче электрического тока на дальние дистанции. Такое преобразование можно осуществить с помощью трех однофазных трансформаторов. Но комплексный аппарат имеет значительные габариты и массу. Трехфазный трансформатор свободен от этих недостатков, благодаря тому, что три обмотки расположены на общем магнитопроводе. Трехфазные аппараты успешно применяют в сетях мощностью до 60 кВА.

Назначение трехфазного трансформатора

Главная задача такого аппарата – преобразовать параметры электрического тока таким образом, чтобы потери при нагреве проводов были минимальными. Для решения этой проблемы необходимо снизить силу тока и увеличить значение напряжения до 6-500 кВ, чтобы значение мощности осталось постоянным. После доставки электрического тока потребителю напряжение необходимо снизить до требуемой величины – 380 В. И эту проблему тоже решают трехфазные аппараты.

Также эти устройства применяют для присоединения измерительных приборов, изменения напряжения при проведении испытаний или подключении силовой нагрузки.

Принцип действия и устройство силового трехфазного трансформатора

В конструкцию этого аппарата входят:

  • Магнитопровод. К нему крепятся все части аппарата. Также он служит для создания основного магнитного потока. Магнитопровод может быть стержневым, бронестержневым, броневым.
  • Обмотки. В каждой фазе присутствуют две обмотки – понижающая и повышающая. Обмотки могут соединяться «звездой» или «треугольником» В первом случае линейное напряжение (между началами фаз) в 1,73 раза выше фазного (между началом и концом фазы). При соединении «треугольником» линейное и фазное напряжения одинаковы. Соединение «звездой» эффективно при значительных напряжениях, «треугольником» – при высоких токах.
  • Вводы и выводы. Необходимы для присоединения концов обмоток к ЛЭП. Ввод соединяется с первичной обмоткой, вывод – со вторичной.

В каталоге силовых трансформаторов представлены «сухие» и «масляные» модели. В маломощных трансформаторах охлаждение осуществляется воздушным способом. Такие аппараты называют «сухими». Высокомощные устройства имеют масляное охлаждение, благодаря чему их называют «масляными». Масло не только охлаждает обмотки, которые нагреваются из-за протекания по ним электрического тока, но и повышает изоляционные характеристики.

Принцип действия:

  • При подключении первичной обмотки в сеть в ней начинает протекать переменный .
  • В сердечнике магнитопровода появляется магнитный поток, охватывающий обмотки всех фаз. В каждом витке присутствует ЭДС, равная по направлению и величине.
  • Если количество витков в первичной обмотке больше, чем число витков во вторичной обмотке, то выходное напряжение больше входного. И наоборот.

Силовые сухие трехфазные трансформаторы — особенности эксплуатации и характеристики

В сухих трансформаторах тепло от нагревающихся токоведущих частей отводится воздушным потоком. Такая охлаждающая система эффективна для аппаратов мощностью не выше 4000 кВА и напряжением обмоток высшего напряжения не более 35 кВ. Эти устройства применяются в местах, в которых предъявляются повышенные требования к безопасности обслуживающего персонала и оборудования. Они востребованы на металлургических предприятиях, в нефтяной индустрии, машиностроении, при организации электроснабжения объектов жилого, административного и производственного назначения.

Преимущества сухих трехфазных трансформаторов с выходным напряжением 380 В:

  • Возможность установки в непосредственной близости от людей и оборудования, в любом помещении. Необходимо только предусмотреть защитное ограждение, вентиляционную систему, средства мониторинга.
  • Безопасность. Эти аппараты взрывобезопасны, поскольку элегаз и жидкий диэлектрик отсутствуют.
  • Экологичность. Масляные испарения отсутствуют. Поэтому такие модели разрешены для установки возле дошкольных, учебных, медицинских учреждений.
  • Простота эксплуатации. Необходимо контролировать только основные параметры – температуру обмоток, отсутствие или наличие КЗ.
  • Современные комплектующие. Благодаря им удалось уменьшить габариты и массу аппаратов.

Недостатки моделей «сухого» типа:

  • Чувствительность к условиям окружающей среды – температуре, влажности, запыленности, сейсмическим воздействиям.
  • Отсутствие моделей, рассчитанных на напряжение более 35 кВ и мощность выше 4000 кВА.
  • Вероятность появления микротрещин в обмотке, которые развиваются и становятся причиной выхода устройства из строя и даже его возгорания.

Цены на сухие трансформаторы зависят от мощности аппарата и материала (медь, алюминий), из которого изготовлены обмотки. Также на стоимость влияет исполнение: открытое, защищенное, герметичное.

Трехфазные силовые трансформаторы масляного типа – плюсы и минусы конструкции

Эти аппараты более опасны в эксплуатации, по сравнению с «сухими» аналогами. Отказ от софтолового масла сделал устройства более безопасными и экологичными, но полностью предотвратить возгорания и взрывы этого оборудования пока не удалось. При использовании масляных устройств необходимо специальное обслуживание и постоянный контроль комплекса рабочих параметров, что повышает эксплуатационные расходы. Оборудование сложно транспортировать к месту назначения, поскольку для доставки масла необходима специальная станция.

Преимущества масляных силовых трехфазных трансформаторов:

  • Неприхотливость к условиям окружающей среды.
  • Привычная конструкция для электриков старшего поколения.
  • Отсутствие межвитковых и межслойных замыканий, благодаря теплопроводности масла.
  • Отсутствие вероятности появления микроскопических трещин в обмотках.
  • Наличие моделей, рассчитанных на значительные напряжение (375 кВ и выше) и мощность (40000 кВА и выше).

У обоих видов трансформаторов имеются собственные достоинства и недостатки. Поэтому при выборе конкретного типа оборудования инженеры-электрики учитывают запланированные эксплуатационные условия, требования СНиПов, ГОСТов, ПУЭ, рекомендации изготовителя.

Трансформаторы, их виды и назначение

Что такое трансформатор
Принцип работы трансформатора
Виды трансформаторов
Режимы работы трансформатора
Уравнения идеального трансформатора
Магнитопровод трансформатора
Обмотка трансформатора
Применение трансформаторов
Схема трансформатора

Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

В начало

Принцип работы трансформатора

В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.

В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.

В начало

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

В начало

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В.

Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор.

Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины.

Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем.

Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

В начало

Уравнения идеального трансформатора

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

В начало

Магнитопровод трансформатора

Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.

В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.

В начало

Обмотка трансформатора

Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.

В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.

Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.

В начало

Применение трансформаторов

Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.

Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).

В начало

Схема трансформатора

  1. Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
  2. Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
  3. Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
  4. Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
  5. Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
  6. Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
  7. Изоляция проводников стекло-шелк.
  8. Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
  9. Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
  10. Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
  11. Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
  12. Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.


В начало

Трансформаторы масляные


Масляные трансформаторы предназначены для работы с электросетями на крупных производственных комплексах, где требуется преобразование энергии с целью защиты оборудования от резких скачков напряжения. Новейшие масляные устройства отличаются надежностью, стойкостью к перепадам температурных режимов. Масляные трансформаторы предполагают внутреннюю и наружную установку.

Параметры использования и принцип работы

Масляный трансформатор — это агрегат силового типа с масляным охлаждением магнитного провода и обмоток. Во время работы механизма производится нагревание магнитного провода с обмотками из-за потери внутренней энергии. Максимальный нагрев прибора ограничивается с помощью теплоизоляции, срок эксплуатации которой напрямую зависит от предельной температуры. Чем мощнее установка, тем с большими оборотами должна работать охлаждающая система. Охлаждающим средством в трансформаторе является масло, которое к тому же служит изолирующим компонентом.
 .
 Чтобы устройство функционировало без перебоев, ему необходимо создать оптимальные условия:

  • в окружающей среде не должно содержаться взрывоопасных веществ;
  • уровень пыли и других примесей должен соответствовать допустимым нормам.
Кроме этого, при нагреве масло не должно образовывать осадок на обмотках в результате разложения. Иначе нормальный теплообмен будет нарушен.

Конструктивной особенностью масляных трансформаторов является наличие в них специального расширителя, предназначенного для масла, за счет которого происходит возмещение температурных перепадов и всего объема масла.

В маслорасширитель входит воздухоосушитель. Он является своеобразным фильтром, препятствующим попаданию внутрь оборудования инородных тел, всевозможных загрязнений, а также влаги. В конструкции предусмотрена специальная гильза, необходимая для жидкостного термометра, который применяют для точного измерения температуры в верхних слоях масляного носителя.

Достоинства

У масляных трансформаторов немало преимуществ, особенно в сравнении с устройствами сухого охлаждения:
  • защита обмоток от негативных внешних воздействий;
  • способность выдерживать колебания температурного режима от -60 до +40 градусов;
  • низкий уровень реактивного сопротивления;
  • отсутствие необходимости проведения профилактических и ремонтных работ.
Чтобы аппарат служил долго и без проблем, нужно соблюдать правила его эксплуатации. Большое значение имеет качество масла. Коэффициент различных примесей и пыли не должен превышать значения, указанного в инструкции прибора. Вдобавок надо регулярно следить за возможными утечками масла. Также нельзя допускать расположения вблизи трансформатора взрывоопасных элементов, способных повлиять на целостность конструкции.

Торговая сеть «Планета Электрика» имеет в своем ассортименте широкий выбор масляных трансформаторов от известных российских производителей.

Режимы работы трансформатора. Описание режима холостого хода и КЗ

Трансформаторы за время эксплуатации работают в разных режимах. Но не все они одинаково сказываются на сроке службы электромагнитного оборудования. Режимы работы силового трансформатора зависят от его нагрузки, напряжения обмоток, температуры масла и обмоток, условий окружающей среды и других параметров.

Режимы работы трансформатора:

  • нормальный;
  • перегрузочный;
  • аварийный.

Нормальные режимы работы трансформатора

К ним относятся номинальный, оптимальный, режим холостого хода и режим параллельной работы.

Номинальный и оптимальный режим

Еще эти режимы трансформатора называют рабочими. Потому что при них напряжение и ток близки к номинальным (на которые рассчитано оборудование) условиям.

Номинальный режим – это когда ток и напряжение на первичной обмотке соответствуют номинальным показателям. Но на деле трансформатор редко работает в таких условиях. Потому что в сети происходят постоянные колебания нагрузки. При таком режиме трансформатор работает исправно. Но коэффициент полезного действия (КПД) оборудования не достигает максимума.

Оптимальный режим – это режим, при котором трансформатор имеет максимальный КПД. Как правило, максимальные КПД трансформатор показывает под нагрузкой 50-70% от номинальной. Современные силовые трансформаторы работают с КПД 90% и выше.

На деле большинство трансформаторов не работают в одном и том же режиме. Потому что нагрузка в сети непостоянная. 

Холостой режим трансформатора

При режиме холостого хода на первичную обмотку трансформатора поступает напряжение, а вторичная обмотка не подключена к сети потребителя электроэнергии. В таком режиме КПД равен 0.

На холостом ходу силового трансформатора определяют коэффициент трансформации, мощность потерь в металле и параметры намагничивающей ветви схемы замещения. Для таких измерений на первичную обмотку трансформатора пускают электрический ток номинального напряжения.

А для трансформатора напряжения режим холостого хода является рабочим.

Режим параллельной работы

Два трансформатора устанавливаются в сетях, питающих энергией потребителей первой и второй категории. Важно подключить трансформаторы так, чтобы ни один из них не испытывал перегрузки.

Для этого у трансформаторов:

  • должны быть одни и те же группы соединений обмоток;
  • коэффициенты трансформации не должны отличаться больше, чем на 0,5 %;
  • номинальные мощности должны соотноситься не более, чем один к трем;
  • напряжения короткого замыкания должны различаться не более, чем на 10 %;
  • должна выполняться фазировка трансформаторов.

Перегрузочный режим

Трансформатор испытывает перегрузки при воздействии нагрузок и температур выше допустимой нормы. Для каждой модели эти показатели свои. Производители силовых трансформаторов предусматривают возможность работы оборудования в условиях перегрузки. Но если устройство испытывает их продолжительное время или регулярно – это уменьшает срок службы оборудования. Допустимые перегрузки описаны в стандартах. Например, для масляных трансформаторов разработан ГОСТ 14209-97.   

Аварийный режим

Трансформатор находится в аварийном режиме, если на него воздействует электрический ток, который сильно превосходит номинальные величины. Дальше давать работать оборудованию нельзя. Как правило, в трансформаторах существуют автоматические выключатели. Они отключают питание оборудования.

Признаки аварийного режима:

  • громкий и неритмичный шум и треск в баке трансформатора;
  • повышение температуры рабочей части трансформатора;
  • утечка трансформаторного масла.

Часто аварийный режим возникает из-за короткого замыкания во вторичной обмотке. Исключение – трансформаторы тока и сварочные трансформаторы. Для них режим короткого замыкания является рабочим.

Напряжение во время короткого замыкания (КЗ) – это еще и важный показатель, который влияет на эксплуатацию трансформатора. Его измеряют в процентах. Для трансформаторов со средним показателем мощности напряжение КЗ составляет 5-7%, а для более мощных – 6-12 %.

Важно не допускать работы трансформатора в аварийном режиме вообще и ограничивать его перегрузки. В этом случае оборудование прослужит вам заявленный производителем срок.

Описание трансформаторов | nord-eksim.ru

Трансформаторы Описание трансформаторов

Описание трансформаторов

Раздел: Трансформаторы /  Дата: 25 мая, 2016 в 6:45 /  Просмотров: 1117


Трансформаторы ТМГ – это трехфазные понижающие масляные трансформаторы, оснащённые двойной обмоткой (первичная до 10 Кв, вторичная — 0,4 кВ) и овальными или прямоугольными баками. Такие трансформаторы широко применяются в системах электроснабжения различных промышленных объектов. Диапазон мощности ТМГ находится в пределах от 25 до 2500 кВА. Трансформаторы этого типа используются для преобразования тока в сетях распределительных энергосистем и в качестве составляющих электроустановок с напряжением от 6 до 10 кВ и частотой 50 Гц. Характерной особенностью конструкции трансформатора является использование гофрированных стенок для увеличения поверхности радиатора агрегата.

Трансформатор ТМ – один из наиболее распространённых и испытанных временем типов трансформаторов. Эти серийные масляные трехфазные трансформаторы широко применяются для преобразования тока в распределительных энергосистемах. Основной задачей этого оборудования является обеспечение электропитания в сетях переменного тока с частотой 50 Гц. Силовые трансформаторы ТМ используются как составляющие наружных и внутренних электроустановок. Эти агрегаты способны эффективно функционировать в условиях умеренного (от +40°С — У1), а также холодного климата (до-60°С — УХЛ1).
Отличительные конструктивные особенности этих устройств :
-Пятиступенчатая регулировка напряжения, реализованная в диапазоне + 2х2,5% от номинала на стороне ВН.
-Расширительный бак со встроенным воздухоочистителем, компенсирующий изменения объёма масла, который размещён на верхней крышке.

Трансформаторы ТМЗ — тип силовых масляных понижающих трехфазных трансформаторных агрегатов с двумя обмотками. Силовые трансформаторы ТМЗ производятся в диапазоне мощностей 250 кВт-2500 кВт. Характерной особенностью этих трансформаторов является герметичность и система защиты масла. Технические характеристики и условия эксплуатации позволяют использовать силовые трансформаторные установки ТМЗ как на крупных промышленных объектах, так и на комплектных трансформаторных подстанциях напряжением до 10 кВ с внутренним и наружным размещением.

Трансформаторы ТМФ — это тип трехфазных трансформаторных агрегатов с фланцевыми выводами, а также естественным масляным и воздушным охлаждением.
Эти Силовые трансформаторные установки используются в промышленной энергетике, а также для нужд муниципального энергоснабжения. Трансформаторы оснащены баками прямоугольной формы. На узких стенках бака укреплены вводы, закрывающиеся коробами с уплотнителем. Контроль за уровнем масла осуществляется при помощи специального визуального индикатора.

Трансформатор ТСЗ – тип трехфазного сухого трансформаторного агрегата, оснащенного системой естественного воздушного охлаждения.
ТСЗ обладают рядом преимуществ:
— Выдерживают эксплуатацию в сетях с грозовыми и коммутационными напряжениями;
— Устойчивы к коротким замыканиям; • Экологически безопасны;
— Имеют хорошую пожароустойчивость;
— Трансформаторы ТСЗ успешно применяются в комплектных подстанциях таких типов как — КТП, 2КТ П, УЗТТ, БКТП, а также на подстанциях ТП.
Этот агрегат особенно востребован на объектах требующих специальных условий безопасности (экология, пожаробезопасность, низкий уровень шума).
Трансформатор ТМЗ выпускается в диапазоне мощностей от 16 до 2500 кВт и напряжением 6(10)кВ / 0,4 кВ.

Трансформатор ТСЗГЛ — это особый тип сухого силового трансформатора, оснащенный обмотками, созданными из проводов с геафолевой литой изоляцией (особый эпоксидный компаунд с кварцевым наполнителем). Такая обмотка не требует дополнительного технического обслуживания и соответствует передовым экологическим стандартам. Трансформаторные агрегаты ТСЗГЛ выпускаются в специальном защитном, звуко-изолированном кожухе, и имеют естественное воздушное охлаждение.
Производятся 2 типа трансформаторов ТСЗГЛ напряжением первичной обмотки на 6 кВ или 10 кВ, напряжение вторичной обмотки составляет 0.4 кВ. Номинальная мощность трансформаторной установки равна 100 кВт. Трансформаторы этого типа используются для некоторых целей промышленного и муниципального электроснабжения, как правило на объектах где необходим высокий уровень пожарной безопасности.

  • Рекомендуем
  • Комментарии

Рекомендуем наши товары

Определение трансформатора | PCMag

Устройство, которое в основном используется для изменения напряжения переменного тока (AC). Однако трансформатор также может использоваться для поддержания того же напряжения, но действует как электрический изолятор. Самый распространенный тип — трансформатор с ламинированным сердечником, используемый в источниках питания. Сделанный из стальных пластин, обернутых двумя катушками проволоки, соотношение витков между «первичной» входной катушкой и «вторичной» выходной катушкой определяет изменение напряжения. Например, если первичная обмотка имеет 1000 обмоток, а вторичная — 100, входное напряжение 120 В будет изменено на 12 В.

Через электромагнитную индукцию
Существует множество архитектур трансформаторов, и они охватывают весь диапазон размеров. Маленькие используются в бесчисленных черных ящиках, которые подключаются к стене и создают низкое напряжение постоянного тока для каждого электронного устройства, в то время как трансформаторы весом в тонны используются для передачи 50 000 вольт переменного тока по национальной электросети. Однако все они работают за счет электромагнитной индукции. Изменяющийся ток в первичной катушке индуцирует напряжение на вторичной катушке.

Импульсные источники питания
Чем больше ток, необходимый для питания устройства, тем толще провода в катушках и тем больше трансформатор.Однако, если используется высокая частота, количество обмоток может быть уменьшено, чтобы трансформатор был небольшим. Для этого поступающее напряжение преобразуется в постоянное (выпрямленное), и высокочастотный генератор подает импульсы на транзистор, который передает выпрямленное напряжение в виде прямоугольных волн в «импульсный трансформатор». Импульсы включения / выключения постоянного тока вызывают изменение тока в первичной катушке точно так же, как и переменный ток. Генерация прямоугольной волны превращает источник питания в «импульсный источник питания». См. Адаптер питания, источник питания и бородавку.


Импульсный источник питания

Для уменьшения количества обмоток в катушках трансформатора используется высокочастотный импульсный трансформатор. Это гипотетический пример; напряжения и частоты меняются. Например, генератор может генерировать частоты от 1 кГц до 200 кГц. Ниже представлена ​​упрощенная принципиальная схема этого источника питания.



Трансформатор напряжения

— обзор

I.A Краткая история

Основы современной передачи электроэнергии были заложены в 1882 году, когда Томас А.Станция Эдисона на Перл-Стрит, генератор постоянного тока и система радиальной линии передачи, используемая в основном для освещения, была построена в Нью-Йорке. Развитие передачи переменного тока в Соединенных Штатах началось в 1885 году, когда Джордж Вестингауз купил патенты на системы переменного тока, разработанные Л. Голаром и Дж. Д. Гиббсом из Франции. Энергетические системы переменного и постоянного тока в то время состояли из коротких радиальных линий между генераторами и нагрузками и обслуживали потребителей в непосредственной близости от генерирующих станций.

Первая высоковольтная линия электропередачи переменного тока в США была построена в 1890 году и прошла 20 км между водопадом Уилламетт в Орегон-Сити и Портлендом, штат Орегон.Технология передачи переменного тока быстро развивалась (Таблица I), и вскоре были построены многие линии переменного тока, но в течение нескольких лет большинство из них работали как изолированные системы. По мере увеличения расстояний передачи и роста спроса на электроэнергию возникла потребность в перемещении более крупных блоков мощности, стали важны факторы надежности, и начали строиться взаимосвязанные системы (электрические сети). Взаимосвязанные системы обеспечивают значительные экономические преимущества. Меньше генераторов требуется в качестве резервной мощности на период пикового спроса, что снижает затраты на строительство для коммунальных предприятий.Точно так же требуется меньше генераторов во вращающемся резерве, чтобы справиться с внезапным, неожиданным увеличением нагрузки, что еще больше снижает инвестиционные затраты. Электросети также предоставляют коммунальным предприятиям возможности для выработки электроэнергии, позволяя использовать наименее дорогие источники энергии, доступные для сети в любое время. Энергетические системы продолжают расти, и типичные региональные электрические сети сегодня включают десятки крупных генерирующих станций, сотни подстанций и тысячи километров линий электропередачи. Развитие обширных региональных сетей и сетей в 1950-х и 1960-х годах привело к большей потребности в согласовании критериев проектирования, схем защитных реле и управления потоком энергии и привело к развитию компьютеризированных систем диспетчерского управления и сбора данных (SCADA).

ТАБЛИЦА I. Исторические тенденции в высоковольтной передаче электроэнергии

Напряжение системы (кВ)
Номинальное Максимальное Год введения Типичный пропускная способность (МВт) Типовая ширина полосы отвода (м)
Переменный ток
115 121 1915 50–200 15–25
230 242 1921 200–500 30–40
345 362 1952 400–1500 35–40
500 550 1964 1000–2500 35–45
765 800 1965 2000–5000 40–55
1100 1200 Протестировано 1970-х годов 3000–10000 50–75
Постоянный ток
50 1954 50–100 25–30
200 (± 100) 1961 200–500 30–35
500 (± 250) 1965 750–1500 30–35
800 (± 400) 1970 1500–2000 35–40
1000 (± 500) 1984 2000–3000 35–40
1200 (± 600) 1985 3000–6000 40–55

Первое коммерческое применение высоковольтной передачи постоянного тока было разработано R.Тюри во Франции на рубеже веков. Эта система состояла из ряда генераторов постоянного тока, соединенных последовательно у источника для получения желаемого высокого напряжения. Позже были разработаны ионные преобразователи, и в 1930-х годах в штате Нью-Йорк был установлен демонстрационный проект на 30 кВ. Первая современная коммерческая система передачи постоянного тока высокого напряжения с использованием ртутных дуговых клапанов была построена в 1954 году и соединила подводным кабелем остров Готланд и материковую часть Швеции. С тех пор за ним последовали многие другие системы передачи постоянного тока, в последнее время использующие тиристорную технологию.Проекты включают воздушные линии и подземные кабели, а также подводные кабели, чтобы полностью использовать мощность постоянного тока, чтобы снизить стоимость передачи на большие расстояния, избежать проблем с реактивной мощностью, связанных с длинными кабелями переменного тока, и служат в качестве асинхронных связей между сетями переменного тока. .

Сегодня коммерческие энергосистемы с напряжением до 800 кВ переменного тока и ± 600 кВ постоянного тока работают по всему миру. Созданы и испытаны опытные образцы систем переменного тока напряжением от 1200 до 1800 кВ. Возможности передачи электроэнергии увеличились до нескольких тысяч мегаватт на линию, а экономия на масштабе привела к повышению номинальных характеристик оборудования подстанции.Распространены блоки трансформаторов сверхвысокого напряжения (СВН) мощностью 1500 МВА и выше. Подстанции стали более компактными, так как все шире используются шины с металлической обшивкой и газовая изоляция SF 6 . Автоматическое регулирование выработки электроэнергии и потока мощности имеет важное значение для эффективной работы взаимосвязанных систем. Для этих приложений широко используются компьютеры и микропроцессоры.

IB Компоненты системы

Целью системы передачи электроэнергии является передача электроэнергии от генерирующих станций к центрам нагрузки или между регионами безопасным, надежным и экономичным способом с соблюдением применимых требований федерального, государственного и местного уровня. правила и положения.Удовлетворение этих потребностей наиболее эффективным и безопасным образом требует значительных капиталовложений в линии электропередачи, подстанции и оборудование для управления и защиты системы. Ниже приведены некоторые из основных компонентов современной системы передачи электроэнергии высокого напряжения.

Воздушные линии электропередачи передают электроэнергию от генерирующих станций и подстанций к другим подстанциям, соединяющим центры нагрузки с электрической сетью, и передают блоки основной мощности на стыках между региональными сетями.Линии передачи высокого напряжения переменного тока представляют собой почти исключительно трехфазные системы (по три проводника на цепь). Для систем постоянного тока типичны биполярные линии (два проводника на цепь). Воздушные линии электропередачи рассчитаны на заданную мощность передачи при конкретном стандартизованном напряжении (например, 115 или 230 кВ). Уровни напряжения обычно основываются на экономических соображениях, и линии строятся с учетом будущего экономического развития в местности, где они заканчиваются.

Подземные кабели служат тем же целям, что и воздушные линии электропередачи.Подземные кабели требуют меньше полосы отчуждения, чем воздушные линии, но, поскольку они проложены под землей, их установка и обслуживание дороги. Подземная передача часто в 5–10 раз дороже, чем воздушная передача той же мощности. По этим причинам подземные кабели используются только в местах, где воздушное строительство небезопасно или технически неосуществимо, где земля для проезда недоступна или где местные власти требуют прокладки под землей.

Подстанции или коммутационные станции служат в качестве соединений и точек коммутации для линий передачи, фидеров и цепей генерации, а также для преобразования напряжений до требуемых уровней.Они также служат точками для компенсации реактивной мощности и регулирования напряжения, а также для измерения электроэнергии. Подстанции имеют шинные системы с воздушной или газовой изоляцией (CGI). Основное оборудование может включать трансформаторы и шунтирующие реакторы, силовые выключатели, разъединители, батареи конденсаторов, устройства измерения тока и напряжения, измерительные приборы, разрядники для защиты от перенапряжения, реле и защитное оборудование, а также системы управления.

Преобразовательные подстанции переменного / постоянного тока — это специальные типы подстанций, на которых осуществляется преобразование электроэнергии из переменного в постоянный (выпрямление) или из постоянного в переменный (инвертирующее).Эти станции содержат обычное оборудование подстанции переменного тока и, кроме того, такое оборудование, как клапаны преобразователя постоянного тока (тиристоры), соответствующее оборудование управления, преобразовательные трансформаторы, сглаживающие реакторы, реактивные компенсаторы и фильтры гармоник. Они также могут содержать дополнительные средства управления демпфированием или средства контроля устойчивости при переходных процессах.

Силовые трансформаторы используются на подстанциях для повышения или понижения напряжения и для регулирования напряжений. Для получения желаемого напряжения и поддержания соотношения фазовых углов используются разные схемы обмоток.Обычно используются автотрансформаторы и многообмоточные трансформаторы. Силовые трансформаторы обычно оснащены переключателями ответвлений под нагрузкой или без нагрузки для регулирования напряжения и могут иметь специальные обмотки для подачи электроэнергии на станцию. Фазовращатели, заземляющие трансформаторы и измерительные трансформаторы — это специальные типы трансформаторов.

Шунтирующие реакторы используются на подстанциях для поглощения реактивной мощности для регулирования напряжения в условиях низкой нагрузки и повышения стабильности системы. Они также помогают снизить переходные перенапряжения во время переключения.Иногда используются специальные схемы шунтирующих реакторов для настройки линий передачи для гашения вторичной дуги в случае однополюсного переключения.

Силовые выключатели используются для переключения линий и оборудования, а также для отключения токов короткого замыкания во время аварийных ситуаций в системе. Срабатывание силового выключателя инициируется вручную оператором или автоматически цепями управления и защиты. В зависимости от изоляционной среды между главными контактами силовые выключатели бывают с воздушной, масляной или газовой изоляцией (SF 6 ).

Выключатели-разъединители используются для отключения или обхода линий, шин и оборудования в зависимости от условий эксплуатации или технического обслуживания. Выключатели-разъединители не подходят для отключения токов нагрузки. Однако они могут быть оснащены последовательными прерывателями для прерывания токов нагрузки.

Синхронные конденсаторы — это вращающиеся машины, которые улучшают стабильность системы и регулируют напряжения при различных нагрузках, обеспечивая необходимую реактивную мощность; они не распространены в Соединенных Штатах.Иногда они используются в преобразовательных подстанциях постоянного тока для обеспечения необходимой реактивной мощности при низкой пропускной способности приемной системы переменного тока.

Шунтирующие конденсаторы используются на подстанциях для подачи реактивной мощности для регулирования напряжения в условиях большой нагрузки. Шунтирующие конденсаторные батареи обычно переключаются группами, чтобы минимизировать скачкообразные изменения напряжения.

Статические вольт-амперные реактивные компенсаторы (ВАР) сочетают в себе функции шунтирующих реакторов и конденсаторов и связанного с ними управляющего оборудования. В статических компенсаторах VAR часто используются конденсаторы с тиристорным управлением или насыщающийся реактор для получения более или менее постоянного напряжения в сети путем непрерывной регулировки реактивной мощности, передаваемой в энергосистему.

Ограничители перенапряжения состоят из последовательно соединенных нелинейных резистивных блоков из оксида цинка (ZnO) или карбида кремния (SiC) и, иногда, из последовательных или шунтирующих разрядников. Ограничители перенапряжения используются для защиты трансформаторов, реакторов и другого основного оборудования от перенапряжений.

Стержневые зазоры служат той же цели, что и разрядники для защиты от перенапряжений, но при меньших затратах, но с меньшей надежностью. В отличие от разрядников для защиты от перенапряжений, зазоры в стержнях при срабатывании вызывают короткое замыкание, что приводит к срабатыванию выключателя.

Конденсаторы серии

используются в линиях передачи на большие расстояния для уменьшения последовательного импеданса линии для управления напряжением.Снижение импеданса линии снижает реактивные потери в линии, увеличивает пропускную способность и улучшает стабильность системы.

Релейное и защитное оборудование устанавливается на подстанциях для защиты системы от аномальных и потенциально опасных условий, таких как перегрузки, сверхтоки и перенапряжения, путем срабатывания силового выключателя.

Коммуникационное оборудование жизненно важно для потока информации и данных между подстанциями и центрами управления. Линия передачи, радио, микроволновая и волоконно-оптическая линии связи широко используются.

Центры управления, мозг любой электрической сети, используются для управления системой. Они состоят из сложных систем диспетчерского управления, систем сбора данных, систем связи и управляющих компьютеров.

Трансформатор — Энергетическое образование

Рис. 1. Трансформатор, устанавливаемый на площадку для распределения электроэнергии. [1]

Трансформатор — это электрическое устройство, которое использует электромагнитную индукцию для передачи сигнала переменного тока от одной электрической цепи к другой, часто изменяя (или «преобразуя») напряжение и электрический ток.Трансформаторы не пропускают постоянный ток (DC) и могут использоваться для снятия постоянного напряжения (постоянного напряжения) из сигнала, сохраняя при этом изменяющуюся часть (напряжение переменного тока). Трансформаторы в электрической сети являются ключом к изменению напряжений, чтобы уменьшить потери энергии при передаче электроэнергии.

Трансформаторы изменяют напряжение электрического сигнала, выходящего из электростанции, обычно увеличивая (также известное как «повышение») напряжение. Трансформаторы также снижают («понижают») напряжение на подстанциях, а также в распределительных трансформаторах. [2] Трансформаторы также используются в составе устройств, как трансформаторы тока.

Как работают трансформаторы

Часто кажется удивительным, что трансформатор сохраняет общую мощность неизменной при повышении или понижении напряжения. Следует иметь в виду, что при повышении напряжения ток падает:

[математика] P = I_1 V_1 = I_2 V_2 [/ математика]

Трансформаторы используют электромагнитную индукцию для изменения напряжения и тока.Это изменение называется действием трансформатора и описывает, как трансформатор изменяет сигнал переменного тока с его первичного на вторичный компонент (как в приведенном выше уравнении). Когда на первичную катушку подается сигнал переменного тока, изменяющийся ток вызывает изменение магнитного поля (становится больше или меньше). Это изменяющееся магнитное поле (и связанный с ним магнитный поток) будет проходить через вторичную катушку, индуцируя напряжение на вторичной катушке, тем самым эффективно связывая вход переменного тока от первичного ко вторичному компоненту трансформатора.Напряжение, приложенное к первичному компоненту, также будет присутствовать во вторичном компоненте.

Как упоминалось ранее, трансформаторы не пропускают вход постоянного тока. Это известно как изоляция постоянного тока. [2] Это потому, что изменение тока не может быть произведено постоянным током; Это означает, что нет изменяющегося магнитного поля, индуцирующего напряжение на вторичном компоненте.

Рисунок 1. Простой рабочий трансформатор. [3] Ток [math] I_p [/ math] поступает с напряжением [math] V_p [/ math].Ток проходит через [math] N_p [/ math] обмотки, создавая магнитный поток в железном сердечнике. Этот поток проходит через [math] N_s [/ math] витков провода на другом контуре. Это создает ток [math] I_s [/ math] и разность напряжений во второй цепи [math] V_s [/ math]. Электроэнергия ([математика] V \ умноженная на I [/ математика]) остается прежней.

Основным принципом, который позволяет трансформаторам изменять напряжение переменного тока, является прямая зависимость между соотношением витков провода в первичной обмотке и вторичной обмотке и отношением первичного напряжения к выходному напряжению.Отношение числа витков (или петель) первичной обмотки к числу витков вторичной обмотки известно как коэффициент витков . Соотношение витков устанавливает следующую взаимосвязь с напряжением:

[математика] \ frac {N_p} {N_s} = \ frac {V_p} {V_s} = \ frac {I_s} {I_p} [/ math]
  • [math] N_p [/ math] = Количество витков в первичной катушке
  • [math] N_s [/ math] = Количество витков вторичной катушки
  • [math] V_p [/ math] = напряжение на первичной обмотке
  • [math] V_s [/ math] = Напряжение на вторичной обмотке
  • [math] I_p [/ math] = Ток через первичный
  • [math] I_s [/ math] = Ток через вторичную обмотку

Из этого уравнения, если количество витков в первичной обмотке больше, чем количество витков во вторичной обмотке ([math] N_p \ gt N_s [/ math]), то напряжение на вторичной катушке будет на меньше, чем на первичной катушке.Это известно как понижающий трансформатор, потому что он понижает или понижает напряжение. В таблице ниже показаны распространенные типы трансформаторов, используемых в электрической сети.

Тип трансформатора Напряжение Передаточное число Текущий Мощность
Понизить входное (первичное) напряжение> выходное (вторичное) напряжение [math] N [/ math] p > [math] N [/ math] s [math] I [/ math] p <[math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
Step up входное (первичное) напряжение <выходное (вторичное) напряжение [math] N [/ math] p <[math] N [/ math] s [math] I [/ math] p > [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
Один к одному входное (первичное) напряжение = выходное (вторичное) напряжение [math] N [/ math] p = [math] N [/ math] s [math] I [/ math] p = [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s

Преобразователь один к одному будет иметь равных значений для всего и используется в основном для цель обеспечения изоляции постоянного тока.

Понижающий трансформатор будет иметь на более высокое первичное напряжение на , чем вторичное напряжение, но на более низкое значение первичного тока, чем его вторичный компонент.

В случае повышающего трансформатора , первичное напряжение будет на ниже, чем вторичное напряжение, что означает на больший первичный ток , чем вторичный компонент.

КПД

В идеальных условиях напряжение и ток изменяются с одинаковым коэффициентом для любого трансформатора, что объясняет, почему значение первичной мощности равно значению вторичной мощности для каждого случая в приведенной выше таблице.По мере того, как одно значение уменьшается, другое увеличивается, чтобы поддерживать постоянный равновесный уровень мощности. [2]

Трансформаторы могут быть чрезвычайно эффективными. Трансформаторы большой мощности могут достигать отметки КПД 99% в результате успехов в минимизации потерь в трансформаторе. Однако трансформатор всегда будет выдавать немного меньшую мощность, чем его входная мощность, поскольку полностью исключить потери невозможно. Есть некоторое сопротивление трансформатора.

Чтобы узнать больше о трансформаторах, см. Гиперфизику.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Что такое трансформатор?

Введение

Если вы долгое время работали с электрическим оборудованием, возможно, вы слышали о трансформаторе. Да, это огромные громоздкие вещи, которые можно найти на углах улицы, которые издают случайные пугающие звуки и иногда срывают искры.В зарядном устройстве для телефона также есть что-то вроде небольшого трансформатора, но гораздо меньше по размеру и с другим механизмом.

Каталог

Трансформатор Определение

Трансформатор — это устройство, которое преобразует одно напряжение или ток в другое, используя принципы электромагнетизма. Он состоит из пары намоток вокруг магнитопровода изолированного провода. Обмотка, к которой подключается преобразовываемое напряжение или ток, называется первичной обмоткой, а вторичная обмотка — выходной обмоткой.

Трансформаторы

бывают двух типов: повышающие, которые увеличивают напряжение или ток, и понижающие, снижающие входное напряжение или ток. Например, трансформаторы в вашей микроволновой печи — это вторичный трансформатор, который используется в микроволновой печи для подачи около 2200 Вольт на вакуумную лампу.

Следует помнить, что трансформаторы работают только с переменным напряжением или регулировками и не работают с постоянным током. Теперь мы поймем почему.

I mportan ce из T трансформаторов в E lectrical S ystem

Примерно в 1856 г. соперничество двух блестящих умов, Николы Теслы и Томаса Эдисона. Это были дни, когда электричество и его применение можно было просто заметить по включению лампы и управлению двигателем. Именно Эдисон и его сотрудники первыми открыли систему постоянного тока (DC), а затем Тесла разработал свою систему переменного тока (AC).С тех пор оба пытались показать, что их схема более выгодна, чем другая.

Пришло время, чтобы к тому времени дома были подключены к электричеству. Хотя Эдисон был занят демонстрацией того, насколько опасен переменный ток, убивая слонов электрическим током, Тесла и его команда придумали трансформаторы, которые сделали передачу электричества намного проще и эффективнее. Кроме того, сегодня трансформаторы играют ключевую роль в системе передачи. Узнаем почему.

Высоковольтная и слаботочная передача электроэнергии поможет нам минимизировать толщину проводов передачи и, следовательно, стоимость, что также улучшит производительность системы.Для этой цели типичная система передачи может быть от 22 кВ до 66 кВ, хотя некоторые генераторы имеют выходное напряжение всего 11 кВ на электростанции и требуют только 220 В / 110 В для бытового блока переменного тока. Итак, где происходит эта передача напряжения и кто это делает?

Трансформаторы — это ответ на этот вопрос. В системе от электростанции до вашего дома будут трансформаторы, которые будут либо повышать напряжение (повышать напряжение), либо понижать (понижать напряжение), чтобы сохранить эффективность системы.Поэтому трансформаторы называют сердцем системы передачи электроэнергии. В этом посте мы узнаем о них больше.

Обозначения трансформатора

Для трансформатора символ цепи — это просто две катушки индуктивности, расположенные рядом друг с другом и имеющие общий центр. Тип используемого сердечника показан наличием линии между двумя обмотками: пунктирная линия представляет феррит, две параллельные линии представляют слоистое железо, и никакая линия не представляет сердечник воздуха.

Количество «выпуклостей» часто используется как грубая мера роли безтрансформаторных выпуклостей с одной стороны и большего количества с другой, что означает, что количество витков на первой стороне меньше, чем на другой.

Работа Принцип трансформатора

Нам нужно вернуться во времени, в лабораторию Майкла Фарадея, чтобы понять работу трансформатора. Возможно, отцом трансформатора можно назвать Майкла Фарадея, поскольку именно его эксперименты помогли нам понять электромагнетизм и создать такие устройства, как двигатели и генераторы.

В конце 1800-х годов была гонка, чтобы попытаться создать практическую систему, которая могла бы использовать силу магнитов для производства электричества, когда было обнаружено, что электричество и магнетизм являются взаимосвязанными явлениями.

Фарадей выяснил, что, поднося магнит к катушке с проволокой, можно производить электричество. Он обнаружил, что только при сдвиге магнитного поля может создаваться напряжение, то есть независимо от того, смещается ли катушка или магнит относительно друг друга.

В постоянном токе движение тока постоянно, как и магнитное поле. На вторичной обмотке не генерируется напряжение, потому что поле постоянно и не меняется, а трансформатор выглядит как обычная катушка из резистивного провода, ведущего к источнику питания. Итак, при постоянных токах трансформаторы не работают.

Он также обнаружил, что ток, протекающий в одной катушке, может вызвать ток в другой катушке, когда две катушки с проволокой находятся близко друг к другу.Это определение называется взаимной индуктивностью, которая определяет работу всех современных трансформаторов.

Трансформатор состоит из двух обмоток, намотанных на магнитопровод, как показано на рисунке.

Цель наличия сердечника заключается в том, что воздух не очень хорошо поддерживает магнитное поле, поэтому наличие магнитного сердечника увеличивает магнитное поле для определенного количества тока, протекающего через одну обмотку, что, в свою очередь, генерирует более сильный ток в другой, повышение общей производительности устройства.

Магнитное поле создается в сердечнике по мере прохождения тока через первичную обмотку и ограничивается в основном сердечником. Это магнитное поле проходит через центр вторичной обмотки и, таким образом, закон обратной индукции вызывает ток в другой.

Прелесть этого метода в том, что соотношение между входным напряжением и выходным напряжением — это просто соотношение между основной и вторичной обмотками, выраженное следующей формулой:

Vout / Vin = Nsec / Npri

Vin — входное напряжение, Nsec — количество витков вторичной обмотки, Npri — количество витков в основной обмотке, где Vout — выходное напряжение.

Итак, если у вас есть два трансформатора, один на 100 витков на первичной обмотке и 1000 витков на вторичной и один с 10 витками на первичной и 100 витков на вторичной обмотках, вы можете измерить соотношение витков как 1:10 на обоих. из них, так что они оба увеличивают напряжение в одинаковой степени.

Свойства трансформатора

Если мы внимательно рассмотрим приведенный выше пример, первый трансформатор будет иметь более высокое сопротивление обмотки (поскольку используется больше проводов) и будет ограничивать величину тока, которая может быть в некоторых случаях извлекается из трансформатора.Это свойство называется сопротивлением обмотки, но поскольку используемый медный провод обычно имеет низкое сопротивление, в большинстве случаев это не имеет значения.

Еще одна вещь, которую вы видите, это то, что основная и вторичная обмотки не имеют прямого электрического соединения. Это называется гальванической развязкой и, как мы видим, может быть очень полезным. Глядя на каждую из обмоток трансформатора, мы видим, что они имеют форму индукторов, а также имеют индуктивность — катушку с проволокой, намотанную вокруг магнитного центра.

Эта индуктивность, определяемая этой формулой, пропорциональна квадрату числа витков:

Lpri / Lsec = Npri2 / Nsec2

Где Lpri — индуктивность первичной обмотки, Lsec — индуктивность вторичной обмотки, Npri — количество витков на первичных обмотках, а Nsec — количество витков на вторичных обмотках.

Константу пропорциональности можно найти в таблице данных для данного сердечника, и она обычно выражается в единицах мкГн / виток2.Точное значение зависит от формы и масштаба сердечника.

Предположим, у вас есть сердечник трансформатора со спецификацией 1 мкГн / виток2. Если вы намотаете одну обмотку на это сердце, значение константы, умноженное на количество витков в квадрате, будет индуктивностью, в данном случае 1. Таким образом, индуктивность обмотки этой обмотки будет 1 мкГн. Если намотать этот же сердечник с другой обмоткой на 10 витков, то индуктивность будет:

(1 мкГн / оборот2) * (10 витков) 2 = 100 мкГн

Поскольку обмотки имеют индуктивность, они обеспечивают импеданс для сигналов переменного тока, определяемый формулой:

XL = 2π * f * L

Где XL — полное сопротивление в омах, f — частота в омах, а L — индуктивность в единицах Генри.

Допустим, вы хотите спроектировать трансформатор на 50 Гц, которая является стандартной частотой электросети, которая потребляет 3 А при 220 В переменного тока. Тогда по закону Ома полное сопротивление главной цепи должно быть 73,3 Ом. Теперь, когда мы знаем соответствующий импеданс и частоту, мы можем изменить формулу, чтобы узнать индуктивность, необходимую для обмотки:

L = (XL) / (2π * f)

Подставляя значения, мы находим, что требуемая индуктивность составляет 233 мГн.

Мы можем рассчитать количество обмоток, необходимых для получения необходимой индуктивности, используя эту информацию и значение мкГн / витки2 из таблицы данных.

Предполагая, что значение составляет 50 мкГн / виток2, мы можем изменить формулу для оценки индуктивности:

Где N — количество витков, L — требуемая индуктивность, а член t2 / мкГн — это просто величина, обратная значению, указанному в таблице данных.

Получаем необходимое количество витков 2158 при сложении наших значений в формулу. Итак, как видите, вы можете создавать трансформаторы практически для любого приложения, как только освоите формулы!

Конструкция трансформатора

Осведомленность о конструкции трансформатора жизненно важна для тех, кто хочет наматывать свои собственные трансформаторы.

Трансформатор состоит из нескольких основных компонентов:

7,1 БОББИН

Для каждого трансформатора бобина является основной структурой. Он обеспечивает катушку, на которую будут наматываться обмотки, а также удерживает сердечник на месте. Обычно он состоит из термостойкого пластика. Также иногда используются металлические штыри, на которые, например, можно приварить концы обмоток, если вы хотите установить его на печатную плату.

7.2 CORE

Возможно, это наиболее важный аспект трансформатора. Ядра могут быть разных форм и размеров, как показано на изображении. Именно магнитные свойства сердечника определяют электрические свойства трансформатора, построенного вокруг сердечника.

7,3 ОБМОТКИ

Проволока, используемая в доме, хоть и может показаться тривиальной вещью, но так же важна, как и любой другой элемент. Обычно используется сплошной эмалированный медный провод, потому что изоляция прочная и тонкая, поэтому пластиковые изоляционные оболочки не занимают лишнее пространство.

Трансформаторы Применение

• ПРЕОБРАЗОВАНИЕ СЕТЕВОГО НАПРЯЖЕНИЯ

Это, пожалуй, наиболее распространенное применение трансформатора, понижающее сетевое напряжение для низковольтных устройств. Такие вещи, как микроволновые печи, старые телевизоры и блоки питания из кирпича, вы можете даже найти внутри. Эти трансформаторы имеют железные сердечники, что делает их громоздкими и намного менее эффективными, чем у других типов, что обеспечивает отличную проницаемость.

Три вторичных провода маркируют их как 12-0-12 или 6-0-6. Если вы сделаете центральный провод заземлением, это означает, что на выходе двух внешних проводов будет среднеквадратичное значение 12 В переменного тока. Если вы рассчитаете обмотку 12 В для каждой, вы получите 24 В переменного тока RMS. Это дает вам гибкость в использовании трансформатора по своему усмотрению.

• ПЕРЕКЛЮЧАТЕЛЬНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Это очень специфический тип источников питания, которые генерируют выход постоянного тока и принимают входной ток. Здесь расположены оба современных зарядных устройства для телефонов.Трансформаторы, используемые в этих блоках питания, больше похожи на катушки индуктивности со средней и высокой магнитной проницаемостью с ограниченным количеством витков и ферритовых сердечников. В течение короткого периода на «первичную обмотку» подается постоянное напряжение, так что ток нарастает до определенной величины и сохраняет некоторую магнитную энергию в сердечнике. При более низком напряжении эта энергия затем передается во вторичную обмотку, поскольку она имеет меньшее количество витков. Они работают и достигают выдающейся эффективности на высоких частотах и ​​очень тонкие.

• ЭЛЕКТРИЧЕСКАЯ ИЗОЛЯЦИЯ

Существуют специальные трансформаторы с соотношением витков 1: 1, так что напряжения на входе и выходе одинаковы.Они используются для отключения оборудования от земной сети. Поскольку сеть называется землей, прикосновение даже к одному проводу приведет к поражению электрическим током, поскольку обратный путь — это просто земля. Блок отделен от основного заземления с помощью изолирующих трансформаторов, так как трансформаторы гальванически изолированы.

• ТРАНСФОРМАТОРЫ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ

Многие страны используют 220 В переменного тока в качестве нормального напряжения питания по всему миру, но в некоторых странах используется 110 В переменного тока, например в США.Это означает, что не во всех странах можно использовать определенные устройства, например блендеры. С этой целью можно использовать трансформаторы, которые преобразуют из 110 В в 220 В или наоборот, чтобы гарантировать, что приборы могут использоваться в любом регионе.

• СОГЛАСОВАНИЕ ИМПЕДАНСА

Существуют уникальные типы трансформаторов, которые используются для балансировки импеданса источника и нагрузки. Обычно используются радиочастотные и аудиосхемы.

Отношение витков равно квадратному корню источника и сопротивлению нагрузки.

• АВТОТРАНСФОРМАТОР

Это трансформатор особого типа, который имеет только одну обмотку, которая образует вторичную обмотку с отводным выходом. Этот отвод обычно является регулируемым, поэтому выходное переменное напряжение можно изменять, как в делителе напряжения.

Заключение

Трансформаторы — полезные инструменты, и может быть очень полезно научиться их создавать и работать с ними! Хотя мы рассмотрели здесь основы, это то, что можно обсудить в другой статье, чтобы построить трансформатор прямо с нуля, так что в другой раз.Но теперь вы узнаете, почему он там и как работает, когда снова увидите трансформатор.

Ⅹ FAQ

1. Как трансформатор преобразует переменный ток в постоянный?

Трансформатор не предназначен для преобразования переменного тока в постоянный. Это чистое устройство переменного тока, используемое для понижения / повышения уровней напряжения с сохранением постоянной частоты, мощности и потока. В мобильном зарядном устройстве мы используем трансформатор вместе с мостовым выпрямителем для преобразования домашнего переменного тока в постоянный. (с рябью) Наконец, такой трансформатор, который преобразует переменный ток в постоянный, еще не разработан.

2. Будет ли трансформатор работать с постоянным током?

Трансформаторы

работают по принципу закона «взаимной индукции» Фарадея, согласно которому ЭДС индуцируется во вторичной обмотке трансформатора магнитным потоком, создаваемым напряжениями и токами, протекающими в обмотке первичной катушки. Как и в случае постоянного тока (напряжение всегда постоянное), изменение магнитного потока равно нулю, поэтому нет взаимной индукции, поэтому трансформаторы не могут работать с источником постоянного тока. Более того, если на клеммы трансформатора подается постоянный или аналогичный переменный ток (напряжение и ток), существует высокая вероятность того, что он сожжет первичную обмотку.

3. Каково простое определение трансформатора?

Трансформатор, устройство, которое передает электрическую энергию из одной цепи переменного тока в одну или несколько других цепей, увеличивая (повышая) или понижая (понижая) напряжение.

4. Какая польза от трансформатора?

Трансформаторы

чаще всего используются для увеличения низкого переменного напряжения при высоком токе (повышающий трансформатор) или снижения высокого переменного напряжения при низком токе (понижающий трансформатор) в электроэнергетических приложениях, а также для соединения этапов обработки сигналов. схемы.

5. Каков основной принцип трансформатора?

Трансформатор состоит из двух электрически изолированных катушек и работает по принципу «взаимной индукции» Фарадея, в котором ЭДС индуцируется во вторичной катушке трансформатора магнитным потоком, создаваемым напряжениями и токами, протекающими в обмотке первичной катушки.

6. Какие два типа трансформатора?

Различные типы трансформаторов: повышающий и понижающий трансформатор, силовой трансформатор, распределительный трансформатор, измерительный трансформатор, содержащий трансформатор тока и напряжения, однофазный и трехфазный трансформатор, автотрансформатор и т. Д.

7. Какие основные части трансформатора?

Трансформатор состоит из трех основных частей:

• железный сердечник, служащий магнитопроводом,

• первичная обмотка или катушка с проводом.

• вторичная обмотка или моток провода.

8. Как выглядит трансформатор?

Трансформатор поддерживает питание проводных дверных звонков при правильном напряжении для оптимальной работы.Он выглядит как небольшая металлическая коробочка и может быть серебристого, кремового или даже латунного цвета. Если ваш дверной звонок больше не работает, вам может потребоваться устранить неисправность трансформатора, чтобы выполнить ремонт.

9. Что такое коэффициент трансформации?

Коэффициент трансформации трансформатора — это количество витков первичной обмотки, деленное на количество витков вторичной обмотки. Соотношение витков трансформатора обеспечивает ожидаемую работу трансформатора и соответствующее напряжение, требуемое на вторичной обмотке.

10. Какие трансформаторы идеальны?

Трансформатор без потерь, таких как медь и сердечник, известен как идеальный трансформатор. В этом трансформаторе выходная мощность эквивалентна входной. КПД этого трансформатора составляет 100%, что означает отсутствие потери мощности внутри трансформатора.

Альтернативные модели

Деталь Сравнить Производителей Категория Описание
Производитель.Номер детали: W25Q128FVFIG Сравнить: Текущая часть Производитель: Winbond Electronics Категория: Чип памяти Описание: Flash Serial-SPI 3V / 3.3V 128M-бит 16M x 8 7ns 16Pin SOIC
Номер детали производителя: W25Q128FVFIG TR Сравнить: W25Q128FVFIG VS W25Q128FVFIG TR Производитель: Winbond Electronics Категория: Чип памяти Описание: NOR Flash Serial-SPI 3V / 3.3V 128M-бит 16M x 8 7ns 16Pin SOIC
Номер детали производителя: N25Q128A13ESF40E Сравнить: W25Q128FVFIG против N25Q128A13ESF40E Производитель: Micron Категория: Флэш-память Описание: NOR Flash Serial-SPI 3V / 3.3V 128Mbit 128M / 64M / 32M x 1Bit / 2Bit / 4Bit 7ns 16Pin SO W Tray
Номер детали производителя: S25FL128P0XMFI000 Сравнить: W25Q128FVFIG VS S25FL128P0XMFI000 Производители: Spansion Категория: Чип памяти Описание: IC FLASH 128 Мбит 104 МГц 16SO
Силовой трансформатор

: определение, типы и применение

Что такое силовой трансформатор? Трансформатор — это электрический прибор, который используется для передачи энергии от одной цепи к другой в условиях электромагнитной индукции.Передача мощности осуществляется без изменения частоты. В электронной сети государственный силовой трансформатор применяется для представления ряда источников переменного тока с несколькими напряжениями и подходящими значениями тока от электросети общего пользования, а также используется для представления трансформаторов с диапазоном 500 кВА или выше.

Что такое силовой трансформатор?

Силовой трансформатор — это трансформатор одного типа, который используется для передачи электроэнергии в любом компоненте электронной или электрической цепи между первичными цепями распределения и генератором.Эти трансформаторы используются в распределительных сетях для согласования понижающих и повышающих напряжений. Обычно силовой трансформатор погружается в жидкость, а срок службы этих инструментов составляет примерно 30 лет. Силовые трансформаторы можно разделить на три типа по диапазонам. Это трансформаторы большой мощности, трансформаторы средней мощности и трансформаторы малой мощности.

  • Диапазон мощных трансформаторов может составлять от 100 МВА и более
  • Диапазон трансформаторов средней мощности может составлять от -100 МВА
  • Диапазон трансформаторов малой мощности может составлять от 500 до 7500 кВА

Эти трансформаторы передают напряжение .Он поддерживает низкое напряжение, цепь высокого тока на одной секции трансформатора, а на другой стороне трансформатора — цепь высокого напряжения и низкого тока. Силовой трансформатор работает по принципу индукционного закона Фарадея. В нем поясняется электросеть в областях, где каждое оборудование, подключенное к системе, спроектировано в соответствии со скоростью, установленной силовым трансформатором.

Подробнее о Linquip

Типы трансформаторов: статья о различиях между трансформаторами по конструкции и конструкции

Определение силового трансформатора

Силовой трансформатор — это статическое устройство, используемое для преобразования мощности из одной цепи в другую без изменения частоты.Это очень простое определение трансформатора. Поскольку здесь нет движущихся или вращающихся компонентов, трансформатор представлен как статическое устройство. Силовые трансформаторы работают на базе переменного тока. Трансформатор работает по правилам взаимной индукции.

Что такое силовой трансформатор? (Ссылка: electric4u.com )

История силовых трансформаторов

Если мы хотим обсудить историю трансформаторов, мы должны вернуться в 1880-е годы. Свойство индукции было обнаружено примерно за 50 лет до этого, в 1830 году, и это основа работы трансформатора.Позже было разработано моделирование трансформатора, что привело к уменьшению размера и большей эффективности. Большой потенциал трансформаторов в несколько кВА, МВА возник постепенно.

Силовой трансформатор 400 кВ был изобретен в высоковольтной электрической сети в 1950 году. Блок мощностью 1100 МВА был создан в начале 1970-х годов. Несколько конструкторов изготовили трансформаторы класса 800 кВ и даже выше в 1980 году.

Конструкция силового трансформатора

Конструкция силового трансформатора смоделирована из металла, покрытого листами.Он фиксируется либо в оболочке, либо в типе сердечника. Конструкции трансформатора намотаны и прикреплены с использованием проводников для создания трех однофазных или одного трехфазного трансформатора. Aurogra http://www.pharmacynewbritain.com/aurogra/

Для трех однофазных трансформаторов необходимо, чтобы каждый блок был изолирован от дополнительных частей, чтобы обеспечить непрерывность обслуживания после отказа одного блока. Одиночный трехфазный трансформатор, будь то сердечник или оболочка, не будет работать даже при выходе из строя одной батареи. Трехфазный трансформатор экономичен в производстве, занимает меньше места и работает сравнительно с более высоким КПД.Конструкция силового трансформатора

(Ссылка: elprocus.com )

Конструкция трансформатора покрыта огнестойкой жидкостью внутри резервуара. Консерватория наверху резервуара для жидкости позволяет растущему маслу полностью покрыть его. Зарядное устройство нагрузки сливается в сторону бака, меняя количество поворотов в секции низкого тока-высокого напряжения для более точной регулировки напряжения.

Втулки бака позволяют деталям точно входить и выходить из системы без повреждения внешней оболочки.Силовой трансформатор может работать за пределами своего низкого номинала, пока он остается в пределах 65 ° C повышения температуры. В трансформаторы встроены специальные вентиляторы, которые охлаждают центр трансформатора для работы в вышеуказанном стандартном режиме до точки ниже сертифицированной температуры.

Потери мощности в линиях электропередачи

Есть несколько причин для использования силового трансформатора в электрических сетях. Но одна из наиболее важных причин для использования этого устройства — снижение потерь мощности при передаче электроэнергии.{2} R

Здесь I — ток по проводнику, R — сопротивление детали.

Итак, потери мощности напрямую связаны с квадратом тока, протекающего по проводнику или линии передачи. Таким образом, чем меньше сила тока, протекающего в проводнике, тем меньше потери мощности. Как мы воспользуемся этим явлением, обсуждается ниже:

Возьмем начальное напряжение 100 В, потребляемая нагрузка 5 А, а выдаваемая мощность — 500 Вт. Тогда системы передачи здесь должны пропускать ток величиной 5А от источника питания к нагрузке.Но если мы увеличим напряжение в первой секции до 1000 В, то системы передачи должны выдерживать ток 0,5 А для обеспечения идентичной мощности 500 Вт. Ксанакс без рецепта http://sellersvillepharmacy.com/xanax.php

Итак, мы увеличим напряжение на первичной ступени системы передачи с помощью силового трансформатора и применим другой силовой трансформатор для понижения выхода в конце сеть передачи. В этой конфигурации величина тока, протекающего через систему передачи +100 км, значительно снижается, тем самым снижая потери мощности во время передачи.

Разница между силовым трансформатором и распределительным трансформатором

Силовой трансформатор обычно работает при полной нагрузке, так как он моделируется с высоким КПД при 100% нагрузке. В противном случае распределительный трансформатор имеет высокий КПД, если нагрузка составляет от 50% до 70%. Таким образом, распределительные трансформаторы не желательно постоянно работать при 100% нагрузке.

Поскольку силовые трансформаторы создают большие напряжения при понижении и повышении, обмотки имеют отличную изоляцию по сравнению с распределительными трансформаторами или измерительными трансформаторами.Поскольку в них применяется изоляция высокого уровня, они очень массивны и к тому же слишком тяжелы.

Разница между силовым трансформатором и распределительным трансформатором (Ссылка: elprocus.com )

Поскольку силовые трансформаторы обычно не подключаются к дому напрямую, они испытывают небольшие колебания нагрузки, в то время как, с другой стороны, распределительные типы испытывают большие колебания нагрузки.

Они полностью загружены 24 часа в сутки, поэтому отходы железа и меди возникают в течение всего дня.Плотность магнитного потока в силовом трансформаторе также больше, чем у распределительного типа.

Принцип работы силового трансформатора

Силовой трансформатор работает по принципу «закона индукции Фарадея». Это главное правило электромагнетизма, разъясняющее принцип работы двигателей, индукторов, генераторов и электрических трансформаторов.

Закон указывает: «Как только замкнутый или закороченный компонент приближается к флуктуирующему магнитному полю, в этом замкнутом контуре возникает протекающий ток».Чтобы лучше описать закон, поясним его подробнее. Во-первых, давайте рассмотрим схему ниже.

Принцип работы силового трансформатора 1 (Ссылка: circuitdigest.com )

Предположим, что проводник и постоянный магнит изначально поднесены друг к другу. Затем провод закорачивают на обоих участках, используя провод, как показано на рисунке.

В этом случае не будет тока, протекающего через проводник или петлю, поскольку магнитное поле, пересекающее петлю, является постоянным, и, как указано в законе, только изменяющееся магнитное поле может вызвать ток в сети.Итак, на первом этапе постоянного магнитного поля в контуре или проводнике будет движение нуля.

Теперь представьте, что если магнит движется вперед и назад, например, маятник, то магнитное поле, разрезающее проводник, возобновляет колебания. Поскольку на этом этапе доступно модифицирующее магнитное поле, закон Фарадея приведет к тому, что мы сможем увидеть ток, движущийся в петле.

Принцип работы силового трансформатора 2 (Ссылка: circuitdigest.com )

Как показано на рисунке, после того, как магнит скользит вперед и назад, мы можем видеть ток «I», перемещающийся по замкнутому контуру и проводнику.Теперь давайте удалим постоянную батарею, чтобы восстановить ее с помощью других источников модифицирующего магнитного поля, таких как ниже.

Принцип работы силового трансформатора 3 (Ссылка: circuitdigest.com )

Теперь источник переменного напряжения и проводник используются для создания переменного магнитного поля.

После того, как петля приблизится к диапазону магнитного поля, можно увидеть ЭДС, генерируемую через проводник. Из-за этой стимулированной ЭДС у нас может быть ток «I».

Величина стимулированного напряжения связана с напряженностью поля, испытываемого вторичным контуром, поэтому чем больше напряженность магнитного поля, тем больше ток, протекающий в замкнутом контуре.

Хотя можно применить простую конфигурацию проводов, чтобы знать закон Фарадея, для более практической работы предпочтительнее использовать катушку на обеих секциях.

Принцип работы силового трансформатора 4 (Ссылка: circuitdigest.com )

Здесь переменный ток проходит через первую первичную катушку, которая создает модифицирующее магнитное поле рядом с проводящими катушками.И когда вторая катушка входит в рейтинг магнитного поля, создаваемого первой катушкой, то ЭДС создается во второй катушке из-за закона индукции Фарадея. А из-за создаваемого напряжения во второй катушке ток «I» течет во вторичной замкнутой сети.

Теперь мы должны помнить, что обе катушки висят в воздухе, поэтому проводящей средой, создаваемой магнитной средой, является воздух. Воздух имеет большее сопротивление по сравнению с металлами в случае условий магнитного поля, поэтому, если мы используем ферритовый или металлический сердечник в качестве среды для электромагнитной сети, тогда мы можем получить электромагнитную индукцию более подходящим образом.

Итак, теперь заменим воздушное окружение железным зазором для дальнейшего развития.

Принцип работы силового трансформатора 5 (Ссылка: circuitdigest.com )

Как показано на рисунке, мы можем применить ферритовый или железный сердечник, чтобы уменьшить потери магнитного потока во время передачи энергии от одной катушки к другой. В течение этого времени магнитный поток, теряемый в атмосферу, будет заметно меньше, чем время, в течение которого мы использовали воздушную среду, поскольку зазор является подходящим проводником магнитного поля.

В то время как поле создается первой катушкой, оно будет перемещаться по железному сердечнику, достигая второй катушки, и в соответствии с законом Фарадея вторая катушка создает ЭДС, которая будет обнаруживаться гальванометром, подключенным через вторую катушку. . Теперь, если мы внимательно исследуем, мы обнаружим эту конфигурацию, похожую на однофазный трансформатор. И да, каждое устройство, представленное сегодня, работает по тому же принципу. Посетите здесь, чтобы полностью узнать основы силового трансформатора.

Использование силовых трансформаторов
  • Производство электроэнергии низкого напряжения слишком рентабельно. Эта низковольтная номинальная мощность теоретически может быть передана в приемную секцию. Эта низковольтная мощность, если она передается, вызывает больший ток в линиях, что действительно приводит к большему количеству потерь в линии.
  • Но если уровень напряжения мощности повышается, ток мощности уменьшается, что приводит к уменьшению омических или I 2 R потерь в сети, уменьшению стороны поперечного сечения контура i .е. снижение общей стоимости сети, а также улучшение регулировки напряжения системы. Из-за этого следует увеличивать низкую мощность для эффективных применений электроэнергии.
  • Это выполняется повышающим устройством в передающей секции энергосети. Поскольку эта большая мощность напряжения не может быть распределена между пользователями напрямую, ее следует понизить до подходящей скорости на приемной стороне с помощью понижающего устройства. В результате силовые трансформаторы играют важную роль в случаях передачи электроэнергии.
  • Двухобмоточные трансформаторы обычно используются там, где уровень высокого и низкого напряжения выше 2. Рентабельно применять автотрансформатор, где уровень между высоким и низким напряжением меньше 2.
  • Опять же, a простой трехфазный трансформаторный блок более эффективен, чем блок из трех однофазных устройств в трехфазной сети. Но простой трехфазный комплект немного проблематичен в использовании, и его следует полностью прекратить работать, если одна из фазовых секций выходит из строя.

Типы силовых трансформаторов

Трансформаторы можно классифицировать по нескольким методам в зависимости от их назначения, применения, производства и т. Д. Учтите, что эти классификации иногда пересекаются — например, трансформатор может быть одновременно трехфазным и повышающим. Для получения дополнительных объяснений в некоторых важных книгах по электротехнике более подробно обсуждается работа трансформатора.

Типы трансформаторов включают следующие:

Повышающий трансформатор и понижающий трансформатор
  • Повышающие трансформаторы преобразуют низковольтные (LV) и сильноточные входные сигналы от первичной части трансформатора. к значению высокого напряжения (HV) и низкого тока на вторичной части устройства.
  • Понижающие типы преобразуют значения высокого напряжения (HV) и низкого тока из первичной части устройства в выход низкого напряжения (LV) и высокого тока на вторичной части типа.

Трехфазный трансформатор и однофазный трансформатор

Трехфазный трансформатор обычно используется в трехфазной электросети, поскольку он более эффективен, чем однофазные типы. Но при импорте размера рекомендуется использовать банк из трех однофазных vs.трехфазный трансформатор, так как его проще передавать, чем один одиночный трехфазный комплект.

Электрический трансформатор, распределительный трансформатор и измерительный трансформатор
  • Электрические трансформаторы обычно используются в системах передачи для понижения или повышения номинального напряжения. Он работает в основном во время пиковых или высоких нагрузок и имеет максимальную эффективность при полной или близкой к ней нагрузке.
  • Распределительные трансформаторы понижают мощность для распределительных шкафов коммерческим или бытовым потребителям.Он имеет соответствующую регулировку напряжения и работает 24 часа в сутки с максимальной эффективностью при 50% полной нагрузки.
  • Измерительные трансформаторы содержат трансформатор тока и силовой трансформатор, которые используются для понижения высокого напряжения и тока на меньшие выходы, которыми можно управлять с помощью обычных устройств.

Двухобмоточный трансформатор и автотрансформатор

Двухобмоточный трансформатор особенно используется там, где разница между сторонами низкого и высокого напряжения превышает 2.Он более эффективен для автотрансформатора в условиях, когда соотношение сторон меньше 2.

Внешний трансформатор и внутренний трансформатор

Как следует из названия, наружные типы предназначены для установки на открытом воздухе. В то время как внутренние формы предназначены для установки в помещении.

Трансформатор сухого и масляного охлаждения

Этот тип связан с конфигурацией охлаждения трансформатора, используемой в трансформаторе.В типах с масляным охлаждением метод охлаждения — трансформаторное масло. В то время как в сухих типах вместо этого применяется воздушное охлаждение.

Типы силовых трансформаторов на основе обмоток

В силовых трансформаторах есть два основных типа обмоток: оболочки и сердечники. Существуют также трансформаторы ягодного типа, предназначенные для конкретных применений.

Трансформатор с сердечником

Трансформатор с сердечником имеет два вертикальных плеча или плеча с двумя горизонтальными сторонами, выступающими в виде ярма.Форма сердечника прямоугольная с типичной магнитной цепью. Цилиндрические катушки (ВН и НН) устанавливаются на обеих ногах.

Трансформатор кожухового типа

Трансформатор кожухового типа включает два внешних и одно центральное плечо. Катушки высокого и низкого напряжения установлены в центральной части. Имеется двойная магнитная цепь.

Трансформатор ягодного типа

Сердечник похож на спицы колеса в трансформаторе ягодного типа. Баки из листового металла плотно прилегают и используются для размещения трансформатора с маслом, заполненным внутри трансформатора.

Технические характеристики силового трансформатора

Силовые трансформаторы можно моделировать как трехфазные, так и однофазные. При поиске силового трансформатора необходимо изучить несколько важных характеристик. Технические характеристики силового трансформатора содержат максимальную номинальную мощность, максимальное номинальное напряжение, максимальный номинальный вторичный ток и тип o / p. Технические характеристики силового трансформатора в основном состоят из:

  • Первичное напряжение 22.9 кВ
  • Вторичное напряжение 6,6 / 3,3 кВ
  • Частота при 60 Гц, 50 Гц
  • Фаза 3Ø
  • Вектор Dd0, Dyn11 и т. Д.
  • Напряжение ответвления 23.9-R22.9-21.9-20.9-19.9kV
Технические характеристики силового трансформатора (Ссылка: elprocus.com )

Применение силового трансформатора

Силовые трансформаторы можно использовать для перехода от одного типа напряжения к другому при высоких номинальных мощностях. Эти трансформаторы используются в различных электронных сетях, а также представлены в различных типах и приложениях.

Применения силового трансформатора включают передачу и распределение электрической энергии. Эти инструменты широко используются на промышленных предприятиях, электростанциях и традиционных электроэнергетических компаниях. Применение силовых трансформаторов

(Ссылка: circuitdigest.com )

Силовые трансформаторы применяются в высоковольтных линиях передачи для понижения и повышения напряжения. Эти трансформаторы обычно используются для передачи больших нагрузок.

Эти приборы огромны по размеру по сравнению с типами распределения, которые используются на генерирующих станциях и передающих сетях. Силовые трансформаторы используются в передающих сетях, поэтому они не используются напрямую для потребителей. Таким образом, вариации нагрузки у них меньше.

Эти устройства используются в качестве повышающей системы для передачи, так что потери I 2 R могут быть уменьшены до определенного потока мощности.

Силовые трансформаторы в основном используются в производстве электроэнергии и на распределительных станциях.

Они также используются в системах изоляции, шестиимпульсных и двенадцати импульсных выпрямительных трансформаторах, заземляющих трансформаторах, трансформаторах ветряных электростанций, трансформаторах солнечных фотоэлектрических ферм и пускателях автотрансформаторов.

Некоторые другие применения силового трансформатора включают:

  • Снижение потерь мощности при передаче электроэнергии
  • Понижение высокого напряжения и повышение высокого напряжения
  • При использовании на больших расстояниях с потребителями
  • В случаях, когда нагрузка работает на полная мощность 24 × 7

Резюме

Силовые трансформаторы, как правило, сконструированы с максимальным использованием основной части и будут работать очень близко к вершине кривой BH (петля магнитного гистерезиса).Это значительно снижает массу сердечника. Обычно силовые трансформаторы имеют соответствующие отходы меди и железа при большей нагрузке.

Таким образом, речь идет о принципе работы силового трансформатора, технических характеристиках и применении. Мы надеемся, что вы узнали о них больше. Кроме того, любые вопросы относительно этого предмета или определения силового трансформатора, пожалуйста, оставьте свой отзыв, комментируя в разделе комментариев ниже.

Описание работы, обязанности и работа специалиста по ремонту трансформаторов

Должностные обязанности и задачи для: «Мастер по ремонту трансформаторов»

1) Фиксирует входные и выходные провода в нужном положении.

2) Осматривает трансформатор на предмет дефектов, таких как трещины в сварных деталях.

3) Демонтирует ламинатор перед чисткой и осмотром.

4) Очищает корпус трансформатора скребками и растворителем.

5) Заполняет повторно собранный трансформатор маслом до тех пор, пока катушки не будут погружены в воду.



6) Собирает трансформатор.

7) Слив и фильтрация трансформаторного масла.

8) Разбирает распределительные устройства, уличный фонарь или измерительные трансформаторы.

9) Заменяет изношенные или дефектные детали, используя ручной инструмент.

10) Намотывает сменные катушки, используя мотальную машину.

11) Подает сигнал крановщику о необходимости поднять узлы компонентов тяжелого трансформатора.

Быть мастером по ремонту трансформаторов

и — ваш лучший выбор в карьере?

Наш тест на интерес к карьере покажет вам, какая карьера соответствует вашим интересам.

Наш бесплатный тест личности покажет вам, какая профессия соответствует вашей личности и почему.

Описание работы для «Ремонтник трансформаторов» продолжение здесь …

Часть 1
Обязанности / Задачи Часть 2
мероприятия Часть 3
Навыки и умения Часть 4
Способности Часть 5
Знания


«Мастер по ремонту трансформаторов» Голландия / RIASEC Карьерный код: R-C-E SOC: 49-2092.04


Щелкните здесь, чтобы просмотреть вакансии «Ремонтник трансформаторов»

См. «Перспективы на будущее» и требования к образованию для «Ремонтник трансформаторов»





Что такое трансформатор ?. Введение в трансформаторы и… | Максим | Машинное обучение изнутри

Новые модели глубокого обучения внедряются все чаще, и иногда бывает сложно уследить за всеми новинками.Тем не менее, одна конкретная модель нейронной сети оказалась особенно эффективной для общих задач обработки естественного языка. Модель называется Transformer, и в ней используются несколько методов и механизмов, которые я здесь расскажу. Статьи, на которые я ссылаюсь в посте, предлагают более подробное и количественное описание.

В документе «Внимание — это все, что вам нужно» описываются трансформаторы и так называемая архитектура «последовательность-последовательность». Sequence-to-Sequence (или Seq2Seq) — это нейронная сеть, которая преобразует заданную последовательность элементов, например последовательность слов в предложении, в другую последовательность.(Что ж, это может не удивить вас, учитывая название.)

Модели Seq2Seq особенно хороши при переводе, когда последовательность слов одного языка преобразуется в последовательность разных слов на другом языке. Популярным выбором для этого типа моделей являются модели на основе Long-Short-Term-Memory (LSTM). С данными, зависящими от последовательности, модули LSTM могут придавать значение последовательности, запоминая (или забывая) те части, которые она считает важными (или неважными). Например, предложения зависят от последовательности, поскольку порядок слов имеет решающее значение для понимания предложения.LSTM — естественный выбор для этого типа данных.

Модели Seq2Seq состоят из кодировщика и декодера. Кодировщик берет входную последовательность и отображает ее в пространство более высокой размерности (n-мерный вектор). Этот абстрактный вектор подается в декодер, который превращает его в выходную последовательность. Последовательность вывода может быть на другом языке, символах, копией ввода и т. Д.

Представьте себе кодировщик и декодер как переводчиков, говорящих только на двух языках. Их первый язык — их родной язык, который у них обоих разный (e.грамм. Немецкий и французский) и их второй общий язык — воображаемый. Для перевода немецкого на французский Encoder преобразует немецкое предложение на другой язык, который он знает, а именно на воображаемый язык. Поскольку декодер может читать этот воображаемый язык, теперь он может переводить с этого языка на французский. Вместе модель (состоящая из кодировщика и декодера) может переводить с немецкого на французский!

Предположим, что изначально ни кодировщик, ни декодер не очень хорошо владеют воображаемым языком.Чтобы научиться этому, мы обучаем их (модель) на множестве примеров.

Самый простой выбор для кодировщика и декодера модели Seq2Seq — это один LSTM для каждого из них.

Вам интересно, когда же Трансформер наконец войдет в игру, не так ли?

Чтобы упростить понимание трансформаторов, нам нужна еще одна техническая деталь: Внимание . Механизм внимания смотрит на входную последовательность и на каждом этапе решает, какие другие части последовательности важны.Это звучит абстрактно, но позвольте мне уточнить простой пример: читая этот текст, вы всегда сосредотачиваетесь на прочитанном слове, но в то же время ваш разум по-прежнему удерживает в памяти важные ключевые слова текста, чтобы обеспечить контекст.

Механизм внимания работает аналогично для данной последовательности. Для нашего примера с человеческим кодировщиком и декодером представьте, что вместо того, чтобы записывать только перевод предложения на воображаемом языке, кодировщик также записывает ключевые слова, которые важны для семантики предложения, и передает их декодеру в дополнение к обычному переводу.Эти новые ключевые слова значительно упрощают перевод для декодера, поскольку он знает, какие части предложения важны и какие ключевые термины задают контекст предложения.

Другими словами, для каждого входа, который считывает LSTM (кодировщик), механизм внимания одновременно учитывает несколько других входов и решает, какие из них важны, присваивая этим входам разные веса. Затем декодер примет на вход закодированное предложение и веса, предоставленные механизмом внимания.Чтобы узнать больше о внимании, прочтите эту статью. А если вам нужен более научный подход, чем предложенный, прочтите о различных подходах, основанных на внимании к моделям «последовательность-последовательность», в этой замечательной статье под названием «Эффективные подходы к нейронному машинному переводу на основе внимания».

В статье «Внимание — это все, что вам нужно» представлена ​​новая архитектура под названием Transformer. Как видно из названия, он использует механизм внимания, который мы видели ранее. Как и LSTM, Transformer — это архитектура для преобразования одной последовательности в другую с помощью двух частей (кодировщика и декодера), но она отличается от ранее описанных / существующих моделей последовательности-в-последовательности, поскольку не подразумевает никаких рекуррентных сетей ( ГРУ, LSTM и др.).

Рекуррентные сети до сих пор были одним из лучших способов фиксировать своевременные зависимости в последовательностях. Однако команда, представившая документ, доказала, что архитектура только с механизмами внимания без каких-либо RNN (рекуррентных нейронных сетей) может улучшить результаты в задаче перевода и других задачах! Одно улучшение в задачах естественного языка представлено командой, представляющей BERT: BERT: предварительное обучение глубоких двунаправленных преобразователей для понимания языка.

Итак, что такое трансформатор?

Изображение стоит тысячи слов, поэтому начнем с него!

Рис. 1. Из статьи Vaswani et al.

Кодировщик находится слева, а декодер — справа. И кодировщик, и декодер состоят из модулей, которые можно устанавливать друг на друга несколько раз, что описано как Nx на рисунке. Мы видим, что модули состоят в основном из слоев Multi-Head Attention и Feed Forward. Входы и выходы (целевые предложения) сначала встраиваются в n-мерное пространство, поскольку мы не можем использовать строки напрямую.

Одна небольшая, но важная часть модели — позиционное кодирование различных слов.Поскольку у нас нет повторяющихся сетей, которые могут запомнить, как последовательности вводятся в модель, нам нужно каким-то образом присвоить каждому слову / части в нашей последовательности относительное положение, поскольку последовательность зависит от порядка ее элементов. Эти позиции добавляются к встроенному представлению (n-мерному вектору) каждого слова.

Давайте внимательнее рассмотрим эти блоки Multi-Head Attention в модели:

Рисунок 2. Из «Attention Is All You Need» Vaswani et al.

Начнем с описания механизма внимания слева.Это не очень сложно и может быть описано следующим уравнением:

Q — матрица, содержащая запрос (векторное представление одного слова в последовательности), K — все ключи (векторные представления всех слов в последовательности) и V — значения, которые снова являются векторными представлениями всех слов в последовательности. Для кодера и декодера, модулей внимания с несколькими головами, V состоит из той же последовательности слов, что и Q. Однако для модуля внимания, который принимает во внимание последовательности кодера и декодера, V отличается от последовательности, представленной Q.

Чтобы немного упростить это, мы могли бы сказать, что значения в V умножаются и суммируются с некоторыми весами внимания a, , где наши веса определяются как:

Это означает, что веса a определяются как как на каждое слово последовательности (представленной Q) влияют все другие слова в последовательности (представленные K). Кроме того, функция SoftMax применяется к весам и , чтобы иметь распределение от 0 до 1. Эти веса затем применяются ко всем словам в последовательности, которые вводятся в V (те же векторы, что и Q для кодера и декодера, но разные для модуля, имеющего входы кодировщика и декодера).

На картинке справа показано, как этот механизм внимания можно распараллелить на несколько механизмов, которые можно использовать бок о бок. Механизм внимания повторяется несколько раз с линейными проекциями Q, K и V. Это позволяет системе учиться на различных представлениях Q, K и V, что полезно для модели. Эти линейные представления выполняются путем умножения Q, K и V на весовые матрицы W, которые изучаются во время обучения.

Эти матрицы Q, K и V различны для каждой позиции модулей внимания в структуре в зависимости от того, находятся ли они в кодере, декодере или промежуточном кодере и декодере.Причина в том, что мы хотим обработать либо всю входную последовательность кодера, либо часть входной последовательности декодера. Модуль внимания с несколькими головами, который соединяет кодер и декодер, будет следить за тем, чтобы входная последовательность кодера учитывалась вместе с входной последовательностью декодера до заданной позиции.

После головок с множественным вниманием и в кодировщике, и в декодере у нас есть точечный слой прямой связи. Эта небольшая сеть прямой связи имеет идентичные параметры для каждой позиции, которые можно описать как отдельное идентичное линейное преобразование каждого элемента из данной последовательности.

Обучение

Как дрессировать такого «зверя»? Обучение и вывод на основе моделей Seq2Seq немного отличается от обычной задачи классификации. То же самое и с Трансформерами.

Мы знаем, что для обучения модели задачам перевода нам нужны два предложения на разных языках, которые являются переводами друг друга. Когда у нас будет много пар предложений, мы можем приступить к обучению нашей модели. Допустим, мы хотим перевести с французского на немецкий. Наш закодированный ввод будет предложением на французском языке, а ввод для декодера будет предложением на немецком языке.Однако вход декодера будет смещен вправо на одну позицию. .. Подождите, а почему?

Одна из причин заключается в том, что мы не хотим, чтобы наша модель научилась копировать входные данные декодера во время обучения, но мы хотим узнать, что с учетом последовательности кодера и конкретной последовательности декодера, которая уже была замечена моделью, мы прогнозируем следующее слово / символ.

Если мы не изменим последовательность декодера, модель научится просто «копировать» вход декодера, поскольку целевым словом / символом для позиции i будет слово / символ i на входе декодера.Таким образом, сдвигая ввод декодера на одну позицию, наша модель должна предсказать целевое слово / символ для позиции i , увидев только слово / символы 1,…, i-1 в последовательности декодера. Это мешает нашей модели изучить задачу копирования / вставки. Мы заполняем первую позицию ввода декодера токеном начала предложения, поскольку в противном случае это место было бы пустым из-за сдвига вправо. Точно так же мы добавляем маркер конца предложения во входную последовательность декодера, чтобы отметить конец этой последовательности, и он также добавляется к целевому выходному предложению.Через мгновение мы увидим, насколько это полезно для вывода результатов.

Это верно для моделей Seq2Seq и для трансформатора. В дополнение к сдвигу вправо, Трансформатор применяет маску к входу в первом модуле внимания с несколькими головами, чтобы не видеть потенциальных «будущих» элементов последовательности. Это характерно для архитектуры Transformer, потому что у нас нет RNN, в которые мы можем вводить нашу последовательность последовательно. Здесь мы вводим все вместе, и если бы не было маски, внимание с несколькими головками рассматривало бы всю входную последовательность декодера в каждой позиции.

Процесс подачи правильного сдвинутого ввода в декодер также называется принудительной подачей учителя, как описано в этом блоге.

Целевая последовательность, которую мы хотим для наших расчетов потерь, — это просто вход декодера (немецкое предложение) без его сдвига и с маркером конца последовательности в конце.

Вывод

Вывод с помощью этих моделей отличается от обучения, что имеет смысл, потому что в конце концов мы хотим перевести французское предложение, не имея немецкого предложения.Уловка здесь заключается в том, чтобы повторно загружать нашу модель для каждой позиции выходной последовательности, пока мы не встретим токен конца предложения.

Еще один пошаговый метод:

  • Введите полную последовательность кодировщика (французское предложение), и в качестве входных данных декодера мы берем пустую последовательность только с токеном начала предложения на первой позиции. Это выведет последовательность, в которой мы возьмем только первый элемент.
  • Этот элемент будет заполнен во второй позиции нашей входной последовательности декодера, которая теперь имеет маркер начала предложения и первое слово / символ в нем.
  • Введите в модель как последовательность кодировщика, так и новую последовательность декодера. Возьмите второй элемент вывода и поместите его во входную последовательность декодера.
  • Повторяйте это, пока не найдете маркер конца предложения, который отмечает конец перевода.

Мы видим, что нам нужно несколько прогонов нашей модели для перевода нашего предложения.

Я надеюсь, что эти описания сделали архитектуру Transformer немного понятнее для всех, кто начинает с Seq2Seq и структур кодер-декодер.

Мы видели архитектуру Transformer и знаем из литературы и авторов «Attention is All you Need», что модель очень хорошо справляется с языковыми задачами. Давайте теперь протестируем Transformer на примере использования.

Вместо задачи перевода давайте реализуем прогноз временных рядов для почасового потока электроэнергии в Техасе, предоставленный Советом по надежности электроснабжения Техаса (ERCOT). Здесь вы можете найти почасовые данные.

Прекрасное подробное объяснение трансформатора и его реализации предоставлено harvardnlp.Если вы хотите глубже изучить архитектуру, я рекомендую пройти через эту реализацию.

Поскольку мы можем использовать последовательные модели на основе LSTM для составления многошаговых прогнозов, давайте взглянем на Трансформатор и его возможности для таких прогнозов. Однако сначала нам нужно внести несколько изменений в архитектуру, поскольку мы работаем не с последовательностями слов, а со значениями. Кроме того, мы делаем авторегрессию, а не классификацию слов / символов.

Данные

Имеющиеся данные дают нам почасовую нагрузку для всей области управления ERCOT. Я использовал данные с 2003 по 2015 год в качестве обучающей выборки и 2016 года в качестве тестовой. Имея только значение нагрузки и метку времени загрузки, я расширил метку времени на другие функции. Из метки времени я извлек день недели, которому он соответствует, и закодировал его в горячем режиме. Кроме того, я использовал год (2003, 2004,…, 2015) и соответствующий час (1, 2, 3,…, 24) как само значение.Это дает мне в общей сложности 11 функций на каждый час дня. В целях сходимости я также нормализовал нагрузку ERCOT, разделив ее на 1000.

Чтобы предсказать заданную последовательность, нам нужна последовательность из прошлого. Размер этих окон может варьироваться от варианта к варианту использования, но здесь, в нашем примере, я использовал почасовые данные за предыдущие 24 часа, чтобы спрогнозировать следующие 12 часов. Помогает то, что мы можем регулировать размер этих окон в зависимости от наших потребностей. Например, мы можем изменить это на ежедневные данные вместо почасовых данных.

Изменения в модели из бумаги

В качестве первого шага нам нужно удалить вложения, так как у нас уже есть числовые значения во входных данных. Вложение обычно отображает данное целое число в n-мерное пространство. Здесь вместо использования встраивания я просто использовал линейное преобразование для преобразования 11-мерных данных в n-мерное пространство. Это похоже на вложение со словами.

Нам также необходимо удалить слой SoftMax из выходных данных Transformer, потому что наши выходные узлы являются не вероятностями, а реальными значениями.

После этих незначительных изменений можно начинать обучение!

Как уже упоминалось, я использовал принуждение учителя для обучения. Это означает, что кодер получает окно из 24 точек данных в качестве входных данных, а входные данные декодера представляют собой окно из 12 точек данных, где первая представляет собой значение «начала последовательности», а следующие точки данных представляют собой просто целевую последовательность. Введя значение «начало последовательности» в начале, я сдвинул ввод декодера на одну позицию относительно целевой последовательности.

Я использовал 11-мерный вектор только с -1 в качестве значений «начала последовательности». Конечно, это можно изменить, и, возможно, было бы полезно использовать другие значения в зависимости от варианта использования, но для этого примера это работает, поскольку у нас никогда не бывает отрицательных значений ни в одном измерении последовательностей ввода / вывода.

Функция потерь для этого примера — это просто среднеквадратичная ошибка.

Результаты

Два графика ниже показывают результаты. Я взял среднее значение почасовых значений за день и сравнил его с правильными значениями.Первый график показывает 12-часовые прогнозы, сделанные за 24 предыдущих часа. Для второго графика мы предсказали один час с учетом предыдущих 24 часов. Мы видим, что модель очень хорошо улавливает некоторые колебания. Среднеквадратичная ошибка для обучающего набора составляет 859, а для набора проверки — 4 106 для 12-часовых прогнозов и 2583 для 1-часовых прогнозов. Это соответствует средней абсолютной процентной ошибке прогноза модели 8,4% для первого графика и 5,1% для второго.

Рисунок 3: 12-часовой прогноз с учетом предыдущих 24 часов за один год Рисунок 4: 1-часовой прогноз с учетом предыдущих 24 часов за один год

Результаты показывают, что можно было бы использовать архитектуру Transformer для прогнозирования временных рядов. Однако во время оценки это показывает, что чем больше шагов мы хотим спрогнозировать, тем выше будет ошибка. Первый график (рис. 3) выше был получен с использованием 24 часов для прогнозирования следующих 12 часов. Если мы спрогнозируем только один час, результаты будут намного лучше, как мы видим на втором графике (рисунок 4).

Есть много возможностей поиграть с параметрами преобразователя, такими как количество слоев декодера и кодировщика и т. Д. Это не было задумано как идеальная модель, и при лучшей настройке и обучении результаты, вероятно, улучшатся.

Это может быть большим подспорьем для ускорения обучения с использованием графических процессоров.

Добавить комментарий

Ваш адрес email не будет опубликован.