Транзистор зачем нужен: простым языком для чайников, схемы

Содержание

Для чего нужен транзистор в электрической цепи

Любое электронное устройство состоит из радиоэлементов. Они могут быть пассивными, не требующими источника питания, и активными, работа которых возможна только при подаче напряжения. Активными элементами называют полупроводники. Одним из важнейших полупроводниковых приборов является транзистор. Этот радиоэлемент пришёл на смену ламповым приборам и полностью изменил схемотехнику устройств. Вся микроэлектроника и работа любой микросхемы базируется именно на нём.

Общие сведения

Название «транзистор» произошло от слияния двух английских слов: transfer — переносимый, и resistor — сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением — полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Параллельно с усовершенствованиями биполярного транзистора в 60-х годах начались разработки прибора на основе соединения металла с полупроводником. Такой радиоэлемент получил название МОП (металл-оксид-полупроводник) транзистор, сегодня более известный под обозначением «мосфет».

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, — потенциалом на затворе, а для биполярных транзисторов — потенциалом на базе или током базы.

Электронно-дырочный переход

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером. Биполярный прибор бывает двух типов:

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы. Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Общее определение для радиоэлемента можно сформулировать следующим образом: транзистор — это полупроводниковый элемент, предназначенный для преобразования электрических величин. Основное его применение заключается в усилении сигнала или работе в ключевом режиме.

Биполярный прибор

Принцип работы транзистора для «чайника» проще описать по аналогии с водопроводом. Сам элемент можно представить в виде вентиля. Кран небольшим поворотом позволяет регулировать поток воды (силу тока). Если немного повернуть рукоятку, вода потечёт по трубе (проводнику), если приоткрыть кран ещё сильнее, поток воды также увеличится. Таким образом, выход потока воды пропорционален её входу, умноженному на определённую величину. Этой величиной называется коэффициент усиления.

Биполярный транзистор имеет три вывода: эмиттер, база, коллектор. Эмиттер и коллектор имеют одинаковый тип проводимости, который отличный от базы. Дырочного типа транзисторы состоят из двух областей p -типа проводимости, и одной n -типа. Электронного типа наоборот. Каждая область имеет свой вывод.

При подаче на эмиттер сигнала нужной проводимости ток в области базы увеличивается. Основные носители заряда перемещаются в зону базы, что приводит к возрастанию тока и в обратной области подключения. Возникает объёмный заряд. Электрическое поле начинает втягивать в зону обратного подключения носители другого знака. В базе происходит частичная рекомбинация (уничтожение) зарядов противоположного знака, благодаря чему и возникает ток базы.

Эмиттером называют область прибора, служащую для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика, функция которой описывает зависимость между током и напряжением.

На схеме устройство подписывается латинскими буквами VT или Q. Выглядит как круг со стрелкой внутри, где стрелка указывает направление протекания тока. Для PNP (прямая проводимость) — стрелка внутрь, а NPN (обратная проводимость) — стрелка наружу. Для того чтобы сделать транзистор, используется германий или кремний. Отличаются эти материалы рабочей областью напряжения базового перехода. Для германиевых он лежит в диапазоне 0,1−0,4 В, а для кремниевых от 0,4 до 1,2 В. Обычно используется кремний.

Полевой транзистор

Отличие полевого транзистора от биполярного в том, что в нём за прохождение тока отвечает величина напряжения, приложенная к управляемому контакту.

Основное назначение мосфетов связывают с их хорошей скоростью переключения при весьма небольшой мощности, приложенной к выводу управления. Полевой элемент имеет три вывода: затвор, сток, исток. При работе мосфета с управляющим n-p переходом потенциал на затворе либо равен нулю (прибор открыт), или имеет определённое значение, превышающее ноль (прибор закрыт). Когда обратное напряжения достигает определённого уровня, то открывается запирающий слой, и устройство переходит в режим отсечки.

В мосфете с p-n переходом управляющим электродом (затвором) служит слой полупроводника, имеющий проводимость р-типа, а противоположной проводимости — канал n-типа.

Изображение его на схеме сходно биполярному устройству, только все линии выполняются прямыми, а стрелка внутри подчёркивает разновидность прибора. В основе принципа действия МОП приборов лежит эффект изменения проводимости полупроводника на границе области с диэлектриком при воздействии электрического поля. Полевые устройства в зависимости от управляемого p-n перехода могут быть:

  1. Со встроенным каналом. Работают в двух режимах: обеднения и обогащения. В первом режиме величина потенциала на затворе превышает значение на истоке, что приводит к снижению значения тока на нём. Если приложенный потенциал больше напряжения отсечки, то ток между выводами стока и истока отсутствует. При обогащении, наоборот, чем больше величина потенциала между выводами затвор-исток, тем больше ток стока.
  2. С индуцированным (наведённым) каналом. Для p-канального устройства при отсутствии потенциала на выводе затвор-исток ток стока близок к нулю. Такой тип работает только в режиме обогащения. При этом напряжение на выводах исток-затвор должно быть больше нуля. Когда это напряжение превысит значение порогового, то между стоком и истоком возникнет проводимость p-типа. Связано это с тем, что количество дырок под затвором увеличится. Это явление называется инверсией.

Каждый вид может иметь проводимость как p-типа, так и n-типа. В общем понимании принцип работы не зависит от проводимости, меняется только полярность источника напряжения.

Принцип действия для чайников

Транзистор — это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор — это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора — это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

В прошлой статье мы рассматривали схему без биполярного транзистора. Для того, чтобы понять, как работает транзистор, мы с вами соберем простой регулятор мощности свечения лампочки накаливания с помощью двух резисторов и транзистора.

Как работает транзистор

Давайте вспомним, как ведет себя транзистор. По идее, биполярный транзистор представляет из себя управляемое сопротивление между коллектором и эмиттером, которое управляется силой тока базы. Про все это я писал еще в цикле статей про биполярник.

Если представить транзистор, как этот краник, то можно провести небольшую аналогию. С помощью одного мизинчика я могу включать бешеный поток воды, который тотчас побежит по трубе.

Также не забывайте, что регулируя угол положения рукоятки, я также могу плавно регулировать поток воды в трубе.

Открываю кран, поток воды бежит на полную катушку:

Закрываю краник, вода не бежит:

Ну что вспомнили?

Управление мощностью с помощью транзистора

Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:

На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора, а следовательно, мощность свечения самой лампы.

Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.

Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания. А как вы помните, если резисторы либо различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока. Правило делителя напряжения. То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы Iб. Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания. В ней будет протекать ток коллектора Iк.

Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток Iб , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора , который также течет и через лампочку накаливания.

Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток. А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора. Это и есть принцип работы биполярного транзистора.

Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома: I=U/R. Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉

И еще один небольшой нюанс.

Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит. Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли P-N переход базы-эмиттера. Поэтому, чтобы такого не было, мы должны подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.

Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники – мы должны подобрать такой резистор, который бы вогнал транзистор в границу насыщения, но не более того.

Такой резистор я подбирал с помощью магазина сопротивления. Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным. Как-то давненько даже писал отдельную статью про этот токоограничительный резистор.

Работа реальной схемы

Ну а теперь дело за практикой. Собираем схему в реале:

Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:

Кручу еще чуток и лампочка светит в пол накала:

Выкручиваю переменный резистор до упора и лампочка тухнет:

Вместо лампочки можно взять любую другую нагрузку, например, вентилятор от компьютера. В этом случае, меняя значение переменного резистора, я могу управлять частотой вращения вентилятора, тем самым убавляя или прибавляя силу потока воздуха.

Здесь вентилятор не крутится, так как я на переменном резисторе выставил большое сопротивление:

Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:

Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком ;-). Стало холодно – убавил обороты, стало слишком жарко – прибавил 😉

Прошаренные чайники-электронщики могут сказать: “А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?

Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная. В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток. Вспоминаем формулу выделяемой мощности на нагрузке: P=I 2 R. Переменный резистор сгорит (проверено не раз на собственном опыте).

В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.

Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.

Резюме

Главное предназначение транзистора – управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.

Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.

Резистор в базе служит для ограничения протекающего тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.

При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим – это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

Принцип работы прибора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

Для чего нужен транзистор в схеме

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

Принцип работы прибора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу.

А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства

постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили. Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Транзисторы лежат в основе большинства электронных устройств. Он могут быть в виде отдельных радиодеталей, или в составе микросхем. Даже самый сложный микро­процессор состоит из великого множества малюсеньких транзисторов, плотно разме­щенных в его могучем кристалле.

Транзисторы бывают разные. Две основ­ные группы – это биполярные и полевые. Биполярный транзистор обозначается на схеме, так как показано на рисунке 1. Он бывает прямой (р-п-р) и обратной (п-р-п) проводимости. Структура транзистора, и физические процессы, происходящие в нем изучается в школе, так что здесь о ней гово­рить не будем, – так сказать, ближе к прак­тике. В сущности, разница в том, что р-п-р транзисторы подключают так, чтобы на их эмиттер поступал положительный потенциал напяжения, а на коллектор – отрицательный. Для транзисторов n-p -п – все наоборот, на эмиттер дают отрицательный потенциал, на коллектор – положительный.

Зачем нужен транзистор? В основном его используют для усиления тока, сигналов, напряжения. А усиление происходит за счет источника питания. Попробую объяснить принцип работы «на пальцах». В автомаши­не есть вакуумный усилитель тормоза. Когда водитель нажимает на педаль тормоза, его мембрана перемещается и открывается клапан через который двигатель машины всасывает эту мембрану, добавляя ей усилие. В результате слабое усилие нажима на педаль тормоза приводит к сильному усилию на тормозных колодках. А добавка силы происходит за счет мощности работаю­щего мотора машины.

Вот и с транзистором похоже. На базу подают слабенький ток (рис. 2). Под действием этого тока проводимость коллек­тор – эмиттер увеличивается и через коллек­тор уже протекает куда более сильный ток, поступающий от источника питания. Изменя­ется слабый ток базы, – соответственно изменяется и сильный ток коллектора. В идеале, график изменения тока коллектора выглядит как увеличенная копия графика изменения тока базы.

Это различие между слабым током базы и сильным током коллектора называется коэф­фициентом усиления транзистора по току, и обозначается И21э. Определяется так: h31э = ik /i6 (ток коллектора делить на ток базы). Чем больше данный параметр, тем лучше усилительные свойства транзистора.

Но это все в идеале. На самом деле зависи­мость тока коллектора от напряжения на базе не так уж и линейна. Следует вспомнить bax диода, где в самом низу характеристики тока очень мал, и начинает резко наростать когда напряжение достигает определенного значения. Поскольку в основе транзистора лежат те же физические процессы, то и здесь имеется аналогичный «дефект».

Если мы соберем схему усилителя, показан­ную на рисунке 3, и будем говорить в микро­фон, в динамике звука не будет. Потому что напряжение на микрофоне очень мало, оно ниже порога открывания транзистора. Здесь не только не будет усиления, а даже наоборот, будет ослабление сигнала.

Чтобы транзистор заработал как усилитель нужно увеличить напряжение на его базе. Это можно сделать каким-то образом увели­чив напряжение на выходе микрофона. Но тогда теряеТся смысл усилителя. Или нужно схитрить, и подать на базу транзистора некоторое постоянное напряжение (рис.4) через резистор, такое чтобы транзистор приоткрыть. И слабое переменное напряже­ние подать на базу этого транзистора через конденсатор. Вот теперь самое важное, – слабое переменное напря­жение сложится с постоян­ным напряжением на базе. Напряжение на базе будет изменяться в такт слабому переменному напряжению. Но так как постоянное напряжение сместило рабо­чую точку транзистора на крутой линейный участок характеристики, происходит усиление.

Проще говоря, у слабого напряже­ния небыло сил чтобы открыть транзистор, и мы добавили ему в помощь постоян­ное напряжение, которое при­открыло транзис­тор. Еще проще (опять с водой), допустим, есть туго завинченный винтель, и ребенок повернуть его не может. Но папа может приоткрыть этот винтель, повернув его в приоткрытое положение, в котором он вращается легко. Теперь ребенок может регулировать напор воды в некоторых пределах. Вот здесь ребенок – это слабое переменное напряжение, а папа – это постоянное напряжение, поданное на базу транзистора через резистор.

Постоянное напряжение, которое подают на базу транзистора чтобы сместить его режим работы в участок с более крутой и линейной характеристикой, называется напряжением смещения. Изменяя это напряжение мы можем даже регулировать коэффициент усиления усилительного каскада.

Но транзисторы далеко не всегда исполь­зуются с напряжением смещения. Например, в усилительных каскадах передатчиков напряжение смещения на базы транзисторов могут и не подаваться, так как амплитуды входного переменного напряжения там впол­не достаточно для «раскачки» транзистора.

И если транзистор используется не в качестве усилителя, а в качестве ключа, то напряжение смещения тоже на базу не дают. Просто, когда ключ должен быть закрыт, – напряжение на базе равно нулю, а когда он должен быть открыт, – подают напряжение на базу достаточное для открывания транзистора. Это используется обычно в цифровой электронике, где есть только нули (нет напряжения) и единицы (напряжение есть) и никаких промежуточных значений.

На рисунке 5 показана практическая схема как сделать из репродуктора радиоточки компьютерную колонку. Нужен простой одно- программный репродуктор только с одной вилкой для подключения в радиосеть (у многопрограммного есть вторая вилка для электросети). Никаких изменений в схему репродуктора вносить не нужно. К коллек­тору транзистора он подключается так же как к радиосети.

Внутри однопрограммного репродуктора есть динамик, переменный резистор для регулировки громкости и трансформатор. Все это нужно, и оно остается. Когда вскроете корпус репродуктора, подпаивайте коллектор транзистора и плюс источника питания к тем местам, к которым подпаян его провод с вилкой. Сам провод можно убрать.

Для подключения к компьютеру нужен экранированный провод с соответствующим штекером на конце. Или обычный двухпро­водной провод. Если провод экранирован­ный, – оплетку подключайте к эмиттеру транзистора, а центральную жилу к конден­сатору С1.

Сигнал от компьютерной звуковой карты подают через штекер на конденсатор С1. Напряжение питания подают от сетевого блока питания. Лучше всего подходит блок питания от игровой приставки к телевизору, типа «Денди», «Кенга». Вообще годится любой блок питания с напряжением на выходе от 7 v до 12 v . Для подключения к блоку питания потребуется соответствующее гнездо, его нужно установить на корпусе репродуктора, просверлив для него отверстие. Хотя, конечно, можно подпаять провода от блока питания и непосредственно к схеме. Подключая источник питания нужно соблюдать полярность. Диод vd 1 в принципе не нужен, но он защищает схему от выхода из строя, если вы перепутаете плюс с минусом у блока питания. Без него при неправильном подключении питания транзис­тор можно сжечь, а с диодом, если полюса блока питания перепутаете, просто схема не включится.

Транзистор КТ315 в прямоугольном корпусе, у которого с одной стороны есть скос (на рисунке показано). Вот если этим скосом повернуть его от себя, а выводами вверх, то слева будет база, справа эмиттер, а коллектор посредине. Подойдет транзистор КТ315 с любой буквой (КТ315А, КТ315Б. ). Транзистор нужно запаять правильно, не перепутав его выводы. Если ошибетесь и включите питание он может сдохнуть. Поэтому, после того как все спаяете не поле­нитесь раза три проверить правильность монтажа, правильно ли подпаяны выводы транзистора, конденсаторов, диода. И только когда будете уверены на все 100%, – включайте.

Диод vd 1 типа КД209. На нем отмечен анод. Можно поставить и другой диод, например, 1 n 4004 или какой-то еще. Если диод впаяете неправильно схема работать

не будет. Так что, если все включили, но не работает, начинайте с проверки правиль­ности подключения диода.

Еще несколько причин того, что схема может не заработать:

– неправильно подключили источник питания.

– нет сигнала на выходе компьютера, либо громкость уменьшена или выключена регулировками в программе компьютера.

– регулятор громкости репродуктора в мини­мальном положении.

Конденсаторы – электролитические, на напряжение не меньше 12 v . Подойдут наши К50-16, К50-35 или импортные аналоги. Следует заметить, что у наших конденсато­ров на корпусе стоит плюсик возле положи­тельного вывода, а у импортных минусик или широкая вертикальная полоска у отрицатель­ного вывода. Вместо конденсатора 10 мкф можно выбрать на любую емкость от 2 мкф до 20 мкф. Вместо конденсатора на 100 мкФ подойдет конденсатор любой емкости не менее 100 мкФ.

На рисунке ниже схемы показана монтажная схема, на ней места паек отмечены точками. Не перепутайте места паек с пересечением проводов. Монтаж сделан навесным спосо­бом, используя выводы деталей и монтаж­ные проводки. Всю схему желательно поместить внутрь корпуса репродуктора (там обычно очень много места).

Если все работает, но сильно фонит, – значит, вы перепутали провода, идущие к звуковой карте. Поменяйте их местами.

Запитывать схему от источника питания компьютера НЕ СЛЕДУЕТ!

Для стереоварианта можно сделать две колонки, входы объединив в один стерео- кабель для подключения к звуковой карте, ну и запитать обе колонки от одного блока питания.

Конечно с одним транзисторным каскадом колонка будет звучать негромко, но достаточно для прослушивания в небольшой комнате. Громкость можно регулировать как регулятором компьютера, так и ручкой, что есть у репродуктора.

Для чего нужны транзисторы и как они работают

18 ноября 2020

Транзисторами можно назвать основу цифровой электроники 21 века. Они представлены в виде полупроводникового элемента, который необходим для управления электрическим током. Сегодня транзисторы применяются при производстве разнообразной техники. Они содержат благородные металлы, которые находятся на выводах и корпусе. Драгметаллы в транзисторах — это золото, платина или серебро. На некоторых из них имеется скрытая позолота, которую можно найти под крышкой устройства. Из-за этого приборы сегодня активно перерабатываются. Но нужно учитывать, что драгоценные металлы в транзисторах встречаются не всегда. Все зависит от года выпуска и производителя приборов.

Для чего в составе техники нужны транзисторы с драгметаллами

Главная функция транзисторов — управление электрическим током большого значения, используя небольшие усилия. Сегодня без этого прибора не смогут обойтись многие усовершенствованные электрические схемы. Транзисторы активно применяются при производстве вычислительной аппаратуры, аудиотехники, видеоаппаратуры. Сегодня известны разные виды полупроводниковых приборов. Но все они выполняют одну функцию и имеют схожий принцип работы.

Принцип работы транзистора и зачем нужны драгметаллы в транзисторах

Один из самых часто встречающихся видов транзистора — биполярный. Он представлен в виде кристалла проводника, который разделяется на три зоны с разными показателями электропроводности. Все эти зоны имеют свои названия — коллектор, база, эмиттер. Принцип работы прибора схож с функционированием водопроводного крана. Однако жидкость здесь заменяет электрический ток.

Выделяют два состояния транзистора — открытое и закрытое. Когда прибор закрыт, через него не проходит малый электрический ток. Когда на базу попадает ток, транзистор открывается. Далее большой ток начинает проходить через эмиттер и коллектор.

При подключении источника энергии между эмиттером и коллектором, электронный коллектора буду притягиваться к плюсу. Однако возникновения тока не произойдёт. Прохождению электричества в таком случае будет препятствовать база и поверхность эмиттера. Если же попробовать подсоединить источник сети между базой и эмиттером, электрон эмиттера будут внедряться в сферу баз. Это область станет обогащаться свободными электронами. Одна часть из них будет направляться в сторону плюса базы, другая — в сторону коллектора.

Так транзистор станет открытым, при этом через него будет проходить электрический ток. При повышении напряжения в области базы, будет увеличиваться и ток зоны коллектора и эмиттера. Даже при самых незначительных изменениях управляющего напряжения сила тока коллектора-эмиттера будет увеличена. По такому принципу и работает транзистор в электроприборах.

Особенности полевых транзисторов

Полевые транзисторы имеют особый принцип работы — ток в этом случае проходит только по одной полярности. По типу устройства эти приборы можно разделить на несколько видов: устройства с управляющим p-n переходом, приборы, имеющие изолированный затвор, транзисторы с устройством металл-диэлектрик-проводник.

Главная особенность полевых устройств — низкий процент потребления энергии. Для них характерна продолжительная работа от небольших аккумуляторов. В таком режиме они могут функционировать больше года. Из-за этого полевые транзисторы активно используют для производства современной электроники. Например, мобильных устройств, пультов дистанционного управления и иного цифрового оборудования. Для этих приборов полевой транзистор считается наиболее выгодным.

Устройство состоит из трех главных элементов — исток, сток и затвор. Исток и сток выполняют функцию генерирования и приёма носителей электрического заряда. Сам затвор помогает управлять током, который проходит через весь полевой транзистор. Сегодня в аппаратуре используются транзисторы полевого типа с p-n-переходом и приборы с изолированный затвором.


◄ Назад к новостям

Для чего нужен транзистор, что это такое, виды, как устроен и какой принцип работы

Больше всего вопросов у начинающих радиолюбителей вызывает транзистор. Без этих знаний нельзя починить даже старенький магнитофон, не говоря о современной электронике. Как работает и как устроен транзистор, можно прочитать в этой статье!

Что такое транзистор

У многих возникает вопрос «в каком году был изобретен транзистор». Формально инновацию можно приписать Уильяму Шокли, который положил теоретическую базу первого 2-электродного триода, управлять которым должно внешнее электромагнитное поле. Однозначно сказать, кто изобрел первый транзистор нельзя, так как над ним трудилась целая команда людей: Шокли, Бардин, Браттейн. Благодаря их трудам, компания Bell Labs заявила патент в 1948 году.

Что такое транзистор сейчас? Так называют полупроводниковый элемент радиоэлектроники, состоящий из 3 электродов. Он предназначен для управления и изменения электрического тока в цепи.

Устройство

Простыми словами триоды можно описать так: это — конструкция из нескольких полупроводниковых слоев, впрессованных в керамо-металлический, металл-стеклянный или пластиковый корпус.

Рассматривая схематично, триод состоит из 2 полупроводника, разделенного диэлектрическим промежутком. В зависимости от полярности напряжения, бывают NPN и PNP транзисторы.

Вот так из можно изобразить на рисунке.

Характеристики

Чтобы правильно подобрать транзистор, нужно знать основные параметры. Для бипол.триодов – это:

  1. Усиление по амперам с общей базы.
  2. Аналогичное усиление с эмиттером.
  3. Обратный коллекторный ток Iko.
  4. Hfe транзистора. Показывает, насколько больший ток может протечь по каналу «collector-emitter» в сравнении с каналом «bese-emitter». Кстати, Hfe транзистора относится только к биполярным триодам.

Кстати, относительно бипол.триодов стоит знать, что бывают PNP и NPN транзисторы:

  1. Транзистор NPN пускает ток от контакта «collector «к контакту «emitter».
  2. Транзистор PNP работает наоборот.

Основные параметра транзистора полевого типа заключаются в:

  1. Вольтаж отсечки – напряжение, которое нужно пустить на базу, чтобы закрыть p-n проход.
  2. Максимальный ампераж стока.
  3. Напряжение между выводами триода.

Способ работы

Объяснить, как работает полевой транзистор для чайников – непросто. Придется вообразить себе всю схему. Он состоит из 3 частей:

  1. Коллектор — приемник. На открытый коллектор поступает большой ток, который и нужно изменить. От него он идет в эмиттер.
  2. База – ключ. На этот вывод транзистора подаются малые токи. Они и открывают «большой».
  3. Эмиттер — это выходной канал. На него поступает ток с коллектора.

Как понятно из описания, ток течет между коллектором и эмиттером. Но если база находится в состоянии покоя, транзистор работать не будет.

Может показаться, что работа транзистора похожа на сочетания резистора и выключателя. На самом деле, все хитрее. Если подавать на контакт базы аналоговые токи, то их амплитуда будет сохраняться и на эмиттере, даже если на коллекторе он подавался с другими характеристиками.

Получается, что триод функционирует в ключевом режиме или выполняет функцию изменения (усиления) выходного сигнала.

Чтобы понять принцип действия транзистора, можно посмотреть эту картинку:

Маркировка на схемах

Стандартизированным маркировкой транзистора является литера «Q». Также допускается «VT». Если в схеме больше 1 штуки, часто добавляют позиционное обозначение (например, VT1, VT2…, VTN).

Схема подключения рисуется линиями, с кольцом или без. Направление движения электричества показывается стрелочкой.

Виды триодов

Полупроводниковые транзисторы делятся на 3 категории:

  1. Полевой;
  2. Биполярный;
  3. Комбинированный.

По факту они выполняют схожую функцию, но вот их тип действия отличается. Поэтому многие из них невзаимозаменяемые.

Виды транзисторов стоит рассмотреть предметно и знать хотя бы поверхностно.

Полевые

Также прижилось название «однополярные» (униполярные), так как могут пропускать ток лишь в одном направлении. Стоит помнить, что есть разные виды полевых транзисторов. Всего их 3:

  1. С управляем п-н переходом.
  2. С закрытым затвором.
  3. Имеющие структуру: металл – диэл – проводник.

Эти виды транзисторов состоят из: стока, истока и затвора.

Отличаются высокой чувствительностью к статическому напряжению, поэтому при работе с ними необходимо:

  1. Заземление инструмента. Пинцет должен быть антистатическим, а паяльник заземленным. Если это обычный ЭПСН, то к болтику нужно привязать провод и направить в землю.
  2. Нужна защита от пыли, которая хорошо накапливает статическое напряжение.

Потребляют минимум электроэнергии, поэтому их устанавливают в пульты ДУ и схожую технику.

Биполярные

Структура биполярного транзистора такова, что он может по одному каналу пропускать заряд с разным знаком (+ и -). Из особенность в том, что на выходе у них очень низкое сопротивление, поэтому они используются в качестве коммутационных устройств.

Комбинированные

Поняв принцип работы полевого транзистора или биполярного, с комбинированными трудностей не возникнет. По сути, это 2 и более триода, внедренные в один корпус. Составные транзисторы можно разделить так:

  1. Биполярный триод с резистором.
  2. Соединенные 2 транзистора в одном корпусе. Причем они могут быть одинаковыми, так и отличными.
  3. Лямбда. Так называют 2 триода, комбинированные в одном корпусе. Они образуют место с минусовым сопротивлением.
  4. Схема полевого транзистора с закрытым затвором, управляющий бипол.триодом.

Как работает биполярный триод

Рассматривать устройство биполярного транзистора лучше всего на примерах с небольшой теоретической базой.

Работа бипол.транзистора построена на комбинации разных полупроводников (ПП). Кремнвые, германиевые и другие ПП имеют одно свойство: добавляя к ним другие элементы, они меняют свои качества. Некоторые добавки увеличивают количество свободных электронов (они называются донорами), другие образуют «дыры» (акцепторы).

Это называется электронно-дырочной рекомбинацией. Свободные электроны на коллекторе стремятся рекомбинировать дыры в эмиттере. Осуществляется p-n канальный переход, между полупроводниками. А подаваемый небольшой ток с базы задает амплитуду.

Схемы включения

Схема биполярного транзистора выглядит так:

Из картинки видно, что включение делится на:

  1. Схему включения транзистора с общей базой. Для нее характерно низкое сопротивление на входе, минимальное тепловыделение и большой вольтаж.
  2. Схему включения транзистора с общим коллектором. Высокий вольтаж на входе и низкое на выходе, а также низкий К. вольтажа по усилению.
  3. Схему включения транзистора с общим эмиттером. Большое усиление вольт и ампер, и малое по мощности. Также характерна инверсия входного электричества.

Как работает полевой триод

Здесь p-n канального перехода нет, а заряд идет по заданному «маршруту». Он называется затвором и регулируется подаваемым напряжением.

Упрощенно, пнп зона «ссужается» и «увеличивается», в зависимости от канала, которое создает электромагнитное поле.

Схемы включения

Полевые типы транзисторов имеют схожую схему включения с биполярными:

  1. Общий исток. Дает большее усилие вольт и ватт.
  2. Общий затвор. Малое вводное сопротивление и выходное усиление.
  3. Общий сток. аналогично эмиттеру на бипол.транзисторе.

Как работает биполярный транзистор. Зачем нужен полевой транзистор

Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод.

В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.


А если взять и прикрыть одну любую часть транзисто, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.

Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой.

Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.

В чем разница между PNP и NPN транзисторами? Я постарался в этом видео показать разницу в работе двух видов биполярных транзисторов. Я использовал доступные радиодетали, такие как светодиод (и резистор для защиты), для демонстрации работы. В кпримера я использовал транзисторы типа 2n2907 и bc337. Регулировал напряжение с помощью переменного резистора (потенциометра).

В начальный период развития полупроводниковой электроники их изготавливали только из германия по технологии вплавления примесей, поэтому их назвали сплавными. Например, в основе кристалл германия и в него вплавляю маленькие кусочки индия.

Атомы индия проникаю в тело германиевого кристалла, создают в нем две области – коллектор и эмиттер. Между ними остается очень тонкая в несколько микрон прослойка полупроводника противоположного типа — база. А чтобы спрятать кристалл от света его прячут в корпус.

На рисунке показано, что к металлическому диску приварен кристаллодержатель, являющийся выводом базы, а снизу диска имеется ее наружный проволочный вывод.


Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов.

С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы.

Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя.

Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.

В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов.

Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.

Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.



Работа транзистора практический опыт для начинающих

Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания.

А теперь представим эту схему в структурном виде:

Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами.

Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок.

Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора . И чем он будет выше, тем сильнее будет гореть лампочка накаливания.

Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.


Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.

Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.


Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.

Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет.

Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.


Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение.

Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.


Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась.

Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть.

Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта.

Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.

Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы.

Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база.

Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи.

В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от напряжения на базе

Транзистор это очень распространенный активный радиокомпонент, который попадается почти во всех схемах, и очень часто, особенно во время эксперементальных курсов по изучению азов электроники, он выходит из строя. Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться. Вот и давайте разбираться, как проверить транзистор.

Транзистором называется полупроводниковый прибор, который может усиливать, преобразовывать и генерировать электрические сигналы. Первый работоспособный биполярный транзистор был изобретен в 1947 году. Материалом для его изготовления служил германий. А уже в 1956 году на свет появился кремниевый транзистор.

В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Кроме биполярных существуют униполярные (полевые) транзисторы, у которых используется лишь один тип носителей — электроны или дырки. В этой статье будут рассмотрены .

Большинство кремниевых транзисторов имеют структуру n-p-n, что также объясняется технологией производства, хотя существуют и кремниевые транзисторы типа p-n-p, но их несколько меньше, нежели структуры n-p-n. Такие транзисторы используются в составе комплементарных пар (транзисторы разной проводимости с одинаковыми электрическими параметрами). Например, КТ315 и КТ361, КТ815 и КТ814, а в выходных каскадах транзисторных УМЗЧ КТ819 и КТ818. В импортных усилителях очень часто применяется мощная комплементарная пара 2SA1943 и 2SC5200.

Часто транзисторы структуры p-n-p называют транзисторами прямой проводимости, а структуры n-p-n обратной. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь. На рисунке 1 показано схематичное устройство транзисторов и их условные графические обозначения.

Рисунок 1.

Кроме различия по типу проводимости и материалу, биполярные транзисторы классифицируются по мощности и рабочей частоте. Если мощность рассеивания на транзисторе не превышает 0,3 Вт, такой транзистор считается маломощным. При мощности 0,3…3 Вт транзистор называют транзистором средней мощности, а при мощности свыше 3 Вт мощность считается большой. Современные транзисторы в состоянии рассеивать мощность в несколько десятков и даже сотен ватт.

Транзисторы усиливают электрические сигналы не одинаково хорошо: с увеличением частоты усиление транзисторного каскада падает, и на определенной частоте прекращается вовсе. Поэтому для работы в широком диапазоне частот транзисторы выпускаются с разными частотными свойствами.

По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц. Если же рабочая частота превышает 300 МГц, то это уже сверхвысокочастотные транзисторы.

Вообще, в серьезных толстых справочниках приводится свыше 100 различных параметров транзисторов, что также говорит об огромном числе моделей. А количество современных транзисторов таково, что в полном объеме их уже невозможно поместить ни в один справочник. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками.

Существует множество транзисторных схем (достаточно вспомнить количество хотя бы бытовой аппаратуры) для усиления и преобразования электрических сигналов, но, при всем разнообразии, схемы эти состоят из отдельных каскадов, основой которых служат транзисторы. Для достижения необходимого усиления сигнала, приходится использовать несколько каскадов усиления, включенных последовательно. Чтобы понять, как работают усилительные каскады, надо более подробно познакомиться со схемами включения транзисторов.

Сам по себе транзистор усилить ничего не сможет. Его усилительные свойства заключаются в том, что малые изменения входного сигнала (тока или напряжения) приводят к значительным изменениям напряжения или тока на выходе каскада за счет расходования энергии от внешнего источника. Именно это свойство широко используется в аналоговых схемах, — усилители, телевидение, радио, связь и т.д.

Для упрощения изложения здесь будут рассматриваться схемы на транзисторах структуры n-p-n. Все что будет сказано об этих транзисторах, в равной степени относится и к транзисторам p-n-p. Достаточно только поменять полярность источников питания, и , если таковые имеются, чтобы получить работающую схему.

Всего таких схем применяется три: схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ). Все эти схемы показаны на рисунке 2.

Рисунок 2.

Но прежде, чем перейти к рассмотрению этих схем, следует познакомиться с тем, как работает транзистор в ключевом режиме. Это знакомство должно упростить понимание в режиме усиления. В известном смысле ключевую схему можно рассматривать как разновидность схемы с ОЭ.

Работа транзистора в ключевом режиме

Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме.

Такой режим работы транзистора рассматривался уже давно. В августовском номере журнала «Радио» 1959 года была опубликована статья Г. Лаврова «Полупроводниковый триод в режиме ключа». Автор статьи предлагал изменением длительности импульсов в обмотке управления (ОУ). Теперь подобный способ регулирования называется ШИМ и применяется достаточно часто. Схема из журнала того времени показана на рисунке 3.

Рисунок 3.

Но ключевой режим используется не только в системах ШИМ. Часто транзистор просто что-то включает и выключает.

В этом случае в качестве нагрузки можно использовать реле: подали входной сигнал — реле включилось, нет — сигнала реле выключилось. Вместо реле в ключевом режиме часто используются лампочки. Обычно это делается для индикации: лампочка либо светит, либо погашена. Схема такого ключевого каскада показана на рисунке 4. Ключевые каскады также применяются для работы со светодиодами или с оптронами.

Рисунок 4.

На рисунке каскад управляется обычным контактом, хотя вместо него может быть цифровая микросхема или . Лампочка автомобильная, такая применяется для подсветки приборной доски в «Жигулях». Следует обратить внимание на тот факт, что для управления используется напряжение 5В, а коммутируемое коллекторное напряжение 12В.

Ничего странного в этом нет, поскольку напряжения в данной схеме никакой роли не играют, значение имеют только токи. Поэтому лампочка может быть хоть на 220В, если транзистор предназначен для работы на таких напряжениях. Напряжение коллекторного источника также должно соответствовать рабочему напряжению нагрузки. С помощью подобных каскадов выполняется подключение нагрузки к цифровым микросхемам или микроконтроллерам.

В этой схеме ток базы управляет током коллектора, который, за счет энергии источника питания, больше в несколько десятков, а то и сотен раз (зависит от коллекторной нагрузки), чем ток базы. Нетрудно заметить, что происходит усиление по току. При работе транзистора в ключевом режиме обычно для расчета каскада пользуются величиной, называемой в справочниках «коэффициент усиления по току в режиме большого сигнала», — в справочниках обозначается буквой β. Это есть отношение тока коллектора, определяемого нагрузкой, к минимально возможному току базы. В виде математической формулы это выглядит вот так: β = Iк/Iб.

Для большинства современных транзисторов коэффициент β достаточно велик, как правило, от 50 и выше, поэтому при расчете ключевого каскада его можно принять равным всего 10. Даже, если ток базы и получится больше расчетного, то транзистор от этого сильнее не откроется, на то он и ключевой режим.

Чтобы зажечь лампочку, показанную на рисунке 3, Iб = Iк/β = 100мА/10 = 10мА, это как минимум. При управляющем напряжении 5В на базовом резисторе Rб за вычетом падения напряжения на участке Б-Э останется 5В — 0,6В = 4,4В. Сопротивление базового резистора получится: 4,4В / 10мА = 440 Ом. Из стандартного ряда выбирается резистор с сопротивлением 430 Ом. Напряжение 0,6В это напряжение на переходе Б-Э, и при расчетах о нем не следует забывать!

Для того, чтобы база транзистора при размыкании управляющего контакта не осталась «висеть в воздухе», переход Б-Э обычно шунтируется резистором Rбэ, который надежно закрывает транзистор. Об этом резисторе не следует забывать, хотя в некоторых схемах его почему-то нет, что может привести к ложному срабатыванию каскада от помех. Собственно, все про этот резистор знали, но почему-то забыли, и лишний раз наступили на «грабли».

Номинал этого резистора должен быть таким, чтобы при размыкании контакта напряжение на базе не оказалось бы меньше 0,6В, иначе каскад будет неуправляемым, как будто участок Б-Э просто замкнули накоротко. Практически резистор Rбэ ставят номиналом примерно в десять раз больше, нежели Rб. Но даже если номинал Rб составит 10Ком, схема будет работать достаточно надежно: потенциалы базы и эмиттера будут равны, что приведет к закрыванию транзистора.

Такой ключевой каскад, если он исправен, может включить лампочку в полный накал, или выключить совсем. В этом случае транзистор может быть полностью открыт (состояние насыщения) или полностью закрыт (состояние отсечки). Тут же, сам собой, напрашивается вывод, что между этими «граничными» состояниями существует такое, когда лампочка светит вполнакала. В этом случае транзистор наполовину открыт или наполовину закрыт? Это как в задаче о наполнении стакана: оптимист видит стакан, наполовину налитый, в то время, как пессимист считает его наполовину пустым. Такой режим работы транзистора называется усилительным или линейным.

Работа транзистора в режиме усиления сигнала

Практически вся современная электронная аппаратура состоит из микросхем, в которых «спрятаны» транзисторы. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Но, несмотря на это, достаточно часто применяются каскады на дискретных («рассыпных») транзисторах, и поэтому понимание работы усилительного каскада просто необходимо.

Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.

При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.

Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β , то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h31э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.

Коэффициент h31э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h31э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.

Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.

Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы.

Рисунок 5.

Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, — защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.

Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.

Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h31э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.

Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.

Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Во-вторых, от температуры окружающей среды, — с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи — ООС.

На рисунке 6 показана схема с фиксированным напряжением смещения.

Рисунок 6.

Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5.

Схемы с термостабилизацией

Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7.

Рисунок 7.

В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается.

Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада.

Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, — при замене транзистора не приходится заново подбирать режимы работы каскада.

Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора.

Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема с общим коллектором (ОК) Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов.

Рисунок 8.

Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал.

В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС (батарея питания) имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт.

Более подробно работу схемы ОК можно рассмотреть на рисунке 9.

Рисунок 9.

Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0,5…0,7В, поэтому можно принять его в среднем 0,6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0,6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0,6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза?

Схема ОК усиливает сигнал по току в h31э раз, что говорит о том, что входное сопротивление схемы в h31э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу (без ограничительного резистора) напряжение. Просто взять вывод базы и соединить его с шиной питания +U.

Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом (комплексное сопротивление), например, пьезоэлектрический звукосниматель. Если такой звукосниматель подключить к каскаду по схеме ОЭ, то низкое входное сопротивление этого каскада просто «посадит» сигнал звукоснимателя, — «радио играть не будет».

Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению.

Как показано на рисунке 9 ток в эмиттерной нагрузке (он же ток эмиттера) Iн = Iк + Iб. Принимая во внимание, что ток базы Iб ничтожно мал по сравнению с током коллектора Iк, можно полагать, что ток нагрузки равен току коллектора Iн = Iк. Ток в нагрузке будет (Uвх — Uбэ)/Rн. При этом будем считать, что Uбэ известен и всегда равен 0,6В.

Отсюда следует, что ток коллектора Iк = (Uвх — Uбэ)/Rн зависит лишь от входного напряжения и сопротивления нагрузки. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь — сотку, то никакой транзистор не выдержит!

Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h31э. Как это сделать, показано на рисунке 10.

Рисунок 10.

Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: либо в амперах, либо в миллиамперах. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: h31э ≈ Iн/Iб.

Следует отметить, что при увеличении тока нагрузки h31э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке 11.

Рисунок 11.

Рисунок 12.

Включение транзисторов по схеме с общей базой ОБ

Такая схема дает только усиление по напряжению, но обладает лучшими частотными свойствами по сравнению со схемой ОЭ: те же транзисторы могут работать на более высоких частотах. Основное применение схемы ОБ это антенные усилители диапазонов ДМВ. Схема антенного усилителя показана на рисунке 12.

Первоначальное название радиодетали – триод, по числу контактов. Этот радиоэлемент способен управлять током в электрической цепи, под воздействием внешнего сигнала. Уникальные свойства применяются в усилителях, генераторах и других аналогичных схемных решениях.

Обозначение транзисторов на схеме

Долгое время в радиоэлектронике царствовали ламповые триоды. Внутри герметичной колбы, в специальной газовой или вакуумной среде размещались три основных компонента триода:

Когда на сетку подавался управляющий сигнал небольшой мощности, между катодом и анодом можно было пропускать несравнимо большие значения. Величина рабочего тока триода многократно выше, чем управляющего. Именно это свойство позволяет радиоэлементу выполнять роль усилителя.

Триоды на основе радиоламп работаю достаточно эффективно, особенно при высокой мощности. Однако габариты не позволяют применять их в современных компактных устройствах.

Представьте себе мобильный телефон или карманный плейер, выполненный на таких элементах.

Вторая проблема заключается в организации питания. Для нормального функционирования, катод должен быть сильно разогрет, чтобы началась эмиссия электронов. Нагрев спирали требует много электроэнергии. Поэтому ученые всего мира всегда стремились создать более компактный прибор с такими же свойствами.

Первые образцы появились в 1928 году, а в середине прошлого столетия был представлен работающий полупроводниковый триод, выполненный по биполярной технологии. За ним закрепилось название «транзистор».

Что такое транзистор?

Транзистор – полупроводниковый электроприбор в корпусе или без него, имеющий три контакта для работы и управления. Главное свойство такое же, как у триода – изменение параметров тока между рабочими электродами при помощи управляющего сигнала.

Благодаря отсутствию необходимости разогрева, транзисторы затрачивают мизерное количество энергии на обеспечение собственной работоспособности. А компактные размеры рабочего полупроводникового кристалла, позволяют использовать радиодеталь в малогабаритных конструкциях.

Благодаря независимости от рабочей среды, кристаллы полупроводника можно использовать как в отдельном корпусе, так и в микросхемах. В комплекте с остальными радиоэлементами, транзисторы выращивают прямо на монокристалле.

Выдающиеся механические свойства полупроводника нашли применение в подвижных и переносных устройствах. Транзисторы нечувствительны к вибрации, резким ударам. Обладают неплохой температурной стойкостью (при сильной нагрузке применяют радиаторы охлаждения).

Любое электронное устройство состоит из радиоэлементов. Они могут быть пассивными, не требующими источника питания, и активными, работа которых возможна только при подаче напряжения. Активными элементами называют полупроводники. Одним из важнейших полупроводниковых приборов является транзистор. Этот радиоэлемент пришёл на смену ламповым приборам и полностью изменил схемотехнику устройств. Вся микроэлектроника и работа любой микросхемы базируется именно на нём.

Название «транзистор» произошло от слияния двух английских слов: transfer — переносимый, и resistor — сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением — полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Параллельно с усовершенствованиями биполярного транзистора в 60-х годах начались разработки прибора на основе соединения металла с полупроводником. Такой радиоэлемент получил название МОП (металл-оксид-полупроводник) транзистор, сегодня более известный под обозначением «мосфет».

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, — потенциалом на затворе, а для биполярных транзисторов — потенциалом на базе или током базы.

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером. Биполярный прибор бывает двух типов:

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы. Основное разделение приборов происходит по следующим признакам:

Общее определение для радиоэлемента можно сформулировать следующим образом: транзистор — это полупроводниковый элемент, предназначенный для преобразования электрических величин. Основное его применение заключается в усилении сигнала или работе в ключевом режиме.

Принцип работы транзистора для «чайника» проще описать по аналогии с водопроводом. Сам элемент можно представить в виде вентиля. Кран небольшим поворотом позволяет регулировать поток воды (силу тока). Если немного повернуть рукоятку, вода потечёт по трубе (проводнику), если приоткрыть кран ещё сильнее, поток воды также увеличится. Таким образом, выход потока воды пропорционален её входу, умноженному на определённую величину. Этой величиной называется коэффициент усиления.

Биполярный транзистор имеет три вывода: эмиттер, база, коллектор. Эмиттер и коллектор имеют одинаковый тип проводимости, который отличный от базы. Дырочного типа транзисторы состоят из двух областей p -типа проводимости, и одной n -типа. Электронного типа наоборот. Каждая область имеет свой вывод.

При подаче на эмиттер сигнала нужной проводимости ток в области базы увеличивается. Основные носители заряда перемещаются в зону базы, что приводит к возрастанию тока и в обратной области подключения. Возникает объёмный заряд. Электрическое поле начинает втягивать в зону обратного подключения носители другого знака. В базе происходит частичная рекомбинация (уничтожение) зарядов противоположного знака, благодаря чему и возникает ток базы.

Эмиттером называют область прибора, служащую для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика, функция которой описывает зависимость между током и напряжением.

На схеме устройство подписывается латинскими буквами VT или Q. Выглядит как круг со стрелкой внутри, где стрелка указывает направление протекания тока. Для PNP (прямая проводимость) — стрелка внутрь, а NPN (обратная проводимость) — стрелка наружу. Для того чтобы сделать транзистор, используется германий или кремний. Отличаются эти материалы рабочей областью напряжения базового перехода. Для германиевых он лежит в диапазоне 0,1−0,4 В, а для кремниевых от 0,4 до 1,2 В. Обычно используется кремний.

Отличие полевого транзистора от биполярного в том, что в нём за прохождение тока отвечает величина напряжения, приложенная к управляемому контакту.

Основное назначение мосфетов связывают с их хорошей скоростью переключения при весьма небольшой мощности, приложенной к выводу управления. Полевой элемент имеет три вывода: затвор, сток, исток. При работе мосфета с управляющим n-p переходом потенциал на затворе либо равен нулю (прибор открыт), или имеет определённое значение, превышающее ноль (прибор закрыт). Когда обратное напряжения достигает определённого уровня, то открывается запирающий слой, и устройство переходит в режим отсечки.

В мосфете с p-n переходом управляющим электродом (затвором) служит слой полупроводника, имеющий проводимость р-типа, а противоположной проводимости — канал n-типа.

Изображение его на схеме сходно биполярному устройству, только все линии выполняются прямыми, а стрелка внутри подчёркивает разновидность прибора. В основе принципа действия МОП приборов лежит эффект изменения проводимости полупроводника на границе области с диэлектриком при воздействии электрического поля. Полевые устройства в зависимости от управляемого p-n перехода могут быть:

Каждый вид может иметь проводимость как p-типа, так и n-типа. В общем понимании принцип работы не зависит от проводимости, меняется только полярность источника напряжения.

Транзистор — это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор — это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора — это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Виды транзистора

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы :

  1. биполярные
  2. полярные

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев . Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход . Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Полевой

Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.

Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности . Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.

Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:

  • МДП (к ним можно отнести и МОП — металл-оксид-проводник)

МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему :

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример .

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого . В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+», а «n» подключается к «-«) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-«, а к «n» — «+». Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт .

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

Что такое транзистор? (принцип действия, назначение и применение, как выглядит)

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор — это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники — сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла — затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Устройство и принцип работы для начинающих

Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние — в этом заключается двойная работа приборов.

Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:

  • выводы из металла;
  • диэлектрические изоляторы;
  • корпус транзисторов из стекла, металла, пластика, металлокерамики.

До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.

Преимущества и недостатки замены ламп транзисторами

Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:

  • небольшие габариты и малый вес, что важно для миниатюрной электроники;
  • возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
  • использование малогабаритных источников тока из-за потребности в низком напряжении;
  • мгновенное включение, разогревание катода не требуется;
  • повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
  • прочность и надежность;
  • слаженное взаимодействие с дополнительными элементами в сети;
  • стойкость к вибрации и ударам.

Недостатки проявляются в следующих положениях:

  • кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
  • при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
  • уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
  • чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.

Схемы включения

Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:

  • для биполярного транзистора;
  • полярного устройства;
  • с открытым стоком (коллектором).

Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.

Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:

  • с общим эмиттером (ОИ) — соединение, аналогичное ОЭ модуля биполярного типа
  • с единым выходом (ОС) — план по типу ОК;
  • с совместным затвором (ОЗ) — похожее описание ОБ.

В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора — биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

MOSFET транзисторы. Устройство, принцип работы и разновидности.

Полевой транзистор с изолированным затвором

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов — IRFZ44N.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

  • Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

  • Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

  • Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как работают транзисторы (NPN и MOSFET)

Транзистор — это простой компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своей следующей схеме.

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах; NPN и MOSFET .

Транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей.Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

Но транзистор также можно частично включить, что полезно для создания усилителей.

Как работают транзисторы (тип NPN)

Начнем с классического транзистора NPN. Имеет три ножки:

  • База (б)
  • Коллектор (в)
  • Излучатель (д)

Если вы включите его, через него может течь ток от коллектора к эмиттеру.Когда он выключен, ток не может течь.

В приведенном ниже примере схемы транзистор выключен. Это означает, что через него не может протекать ток, поэтому светоизлучающий диод (LED) также выключен.

Чтобы включить транзистор, необходимо напряжение около 0,7 В между базой и эмиттером.

Если бы у вас была батарея 0,7 В, вы могли бы подключить ее между базой и эмиттером, и транзистор включился бы.

Поскольку у большинства из нас нет 0.Аккумулятор 7В, как включить транзистор?

Легко! Часть транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение , которое он «берет» из имеющегося напряжения. Если вы добавите резистор последовательно, остальная часть напряжения упадет на резисторе.

Таким образом, вы автоматически получите около 0,7 В, добавив резистор.

Это тот же принцип, который вы используете для ограничения тока через светодиод, чтобы он не взорвался.

Если вы также добавите кнопку, вы можете управлять транзистором и, следовательно, светодиодом, включаться и выключаться с помощью кнопки:

Выбор значений компонентов

Чтобы выбрать значения компонентов, вам нужно знать еще одну вещь о том, как работают транзисторы:

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Существует связь между величинами двух токов.Это называется усилением транзистора.

Для транзистора общего назначения, такого как BC547 или 2N3904, это может быть около 100.

Это означает, что если у вас есть ток 0,1 мА от базы к эмиттеру, у вас может быть 10 мА (в 100 раз больше), протекающее от коллектора к эмиттеру.

Резистор какого сопротивления нужен для R1, чтобы получить ток 0,1 мА?

Если батарея 9В, а база-эмиттер транзистора захватывает 0.7 В, на резисторе осталось 8,3 В.

Вы можете использовать закон Ома, чтобы найти номинал резистора:

Треугольник закона Ома

Значит нужен резистор на 83 кОм. Это не стандартное значение, но 82 кОм, и это достаточно близко.

R2 предназначен для ограничения тока светодиода. Вы можете выбрать значение, которое вы выбрали бы, если бы вы подключили светодиод и резистор непосредственно к батарее 9 В, без транзистора. Например, 1 кОм должен работать нормально.

Посмотрите видеообъяснение транзистора, которое я сделал несколько лет назад (простите за олдскульное качество):

Как выбрать транзистор

NPN-транзистор является наиболее распространенным из биполярных переходных транзисторов (BJT) .Но есть еще один транзистор, называемый PNP, который работает точно так же, только все токи идут в противоположном направлении.

При выборе транзистора важно помнить, какой ток транзистор может выдерживать. Это называется током коллектора (I C ).

БЕСПЛАТНЫЙ бонус: Загрузите основные электронные компоненты [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

Как работает полевой МОП-транзистор

MOSFET-транзистор — еще один очень распространенный тип транзисторов. Он также имеет три контакта:

  • Gate (g)
  • Source (s)
  • Drain (d)
Символ MOSFET (N-канал)

MOSFET работает аналогично NPN-транзистору, но с одним важным отличием:

В NPN-транзисторе , ток от базы к эмиттеру определяет, сколько тока может протекать от коллектора к эмиттеру.

В MOSFET-транзисторе напряжение между затвором и истоком определяет, сколько тока может протекать от стока к истоку.

Пример: как включить полевой МОП-транзистор

Ниже приведен пример схемы включения полевого МОП-транзистора.

Значение R1 не критично, но около 10 кОм должно работать нормально. R2 устанавливает яркость светодиода. 1 кОм подойдет для большинства светодиодов. Q1 может быть практически любым n-канальным MOSFET, например BS170.

Чтобы включить MOSFET-транзистор, вам необходимо напряжение между затвором и истоком, которое выше порогового напряжения вашего транзистора.Например, BS170 имеет пороговое напряжение затвор-исток , равное 2,1 В. (Вы найдете эту информацию в таблице).

Пороговое напряжение полевого МОП-транзистора — это фактически напряжение, при котором он отключается. Итак, чтобы правильно включить транзистор, вам нужно напряжение немного выше этого.

Насколько выше, зависит от того, какой ток вы хотите иметь (и вы найдете эту информацию в таблице). Если вы поднимете на пару вольт выше порогового значения, этого обычно более чем достаточно для слаботочных вещей, таких как включение светодиода.

Обратите внимание, что даже если вы используете достаточно высокое напряжение для протекания тока 1 А, это не означает, что вы получите 1 А. Это просто означает, что у может быть ток с током 1А, если вы захотите. Но то, что вы к нему подключаете, определяет фактический ток.

Таким образом, вы можете подниматься настолько высоко, насколько хотите, при условии, что вы не превышаете максимально допустимое напряжение затвор-исток (которое составляет 20 В для BS170).

В приведенном выше примере ворота подключаются к напряжению 9 В, когда вы нажимаете кнопку.Это включает транзистор.

Как выключить полевой МОП-транзистор?

Одна важная вещь, которую нужно знать о MOSFET, заключается в том, что он также действует как конденсатор. То есть часть затвор-исток. Когда вы прикладываете напряжение между затвором и истоком, это напряжение остается там, пока не разрядится.

Без резистора (R1) в приведенном выше примере транзистор не выключился бы. С резистором есть путь для разряда конденсатора затвор-исток, чтобы транзистор снова отключился.

Как выбрать МОП-транзистор

В приведенном выше примере используется полевой МОП-транзистор с N-каналом . P-channel MOSFET работают точно так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным, чтобы включить его.

Существуют тысячи различных полевых МОП-транзисторов на выбор. Но если вы хотите построить схему, приведенную выше, и получить конкретную рекомендацию, BS170 и IRF510 — два обычных.

При выборе полевого МОП-транзистора следует учитывать две вещи:

  • Пороговое напряжение затвор-исток .Для включения транзистора требуется более высокое напряжение.
  • Непрерывный ток утечки . Это максимальное количество тока, которое может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от того, что вы делаете. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем нужен транзистор?

Мне часто задают вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к аккумулятору?

Преимущество транзистора в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большими током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое с Raspberry Pi / Arduino / микроконтроллера. Выходные контакты этих плат обычно могут обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять уличным освещением 110 В для патио, вы не можете сделать это напрямую с помощью булавки.

Вместо этого вы можете сделать это через реле. Но даже реле обычно требует большего тока, чем может обеспечить вывод. Итак, вам понадобится транзистор для управления реле:

Подключите левую сторону резистора к выходному контакту (например, от Arduino) для управления реле.

Но транзисторы также полезны для более простых схем датчиков, таких как эта схема светового датчика, схема сенсорного датчика или схема H-моста.

Транзисторы используются практически во всех схемах. Это действительно самый важный компонент в электронике.

Транзистор как усилитель

Транзистор — это еще и то, что заставляет работать усилители. Вместо двух состояний (ВКЛ. / ВЫКЛ.) Он также может находиться в любом месте между «полностью включено» и «полностью выключено».

Это означает, что слабый сигнал почти без энергии может управлять транзистором, чтобы создать гораздо более сильную копию этого сигнала в части коллектор-эмиттер (или сток-исток) транзистора.Таким образом, транзистор может усиливать слабые сигналы.

Ниже представлен простой усилитель для управления динамиком. Чем выше входное напряжение, тем выше ток от базы к эмиттеру и тем выше ток через динамик.

Изменяющееся входное напряжение приводит к изменению тока в динамике, что создает звук.

Усилитель с общим эмиттером

Обычно вы добавляете еще пару резисторов к смещению транзистора. В противном случае вы получите много искажений.Но это уже для другой статьи.

Если вы хотите узнать больше об использовании транзистора в качестве усилителя, на сайте electronics-lab.com есть несколько хороших руководств по трем базовым настройкам усилителя BJT.

Вопросы?

Вы понимаете, как сейчас работают транзисторы? Или вы все еще в замешательстве? Позвольте мне знать в комментариях ниже.

Транзистор

| Определение и использование

Транзистор , полупроводниковое устройство для усиления, управления и генерации электрических сигналов.Транзисторы — это активные компоненты интегральных схем или «микрочипов», которые часто содержат миллиарды этих крохотных устройств, выгравированных на их блестящих поверхностях. Транзисторы, глубоко укоренившиеся почти во всем электронном, стали нервными клетками информационного века.

Британская викторина

Изобретатели и изобретения

Наши самые ранние человеческие предки изобрели колесо, но кто изобрел шарикоподшипник, уменьшающий трение вращения? Позвольте колесам в вашей голове крутиться, проверяя свои знания об изобретателях и их изобретениях в этой викторине.

Обычно в транзисторе три электрических вывода, называемых эмиттером, коллектором и базой, или, в современных коммутационных приложениях, истоком, стоком и затвором. Электрический сигнал, подаваемый на базу (или затвор), влияет на способность полупроводникового материала проводить электрический ток, который в большинстве случаев протекает между эмиттером (или истоком) и коллектором (или стоком). Источник напряжения, такой как батарея, управляет током, а скорость тока, протекающего через транзистор в любой момент, определяется входным сигналом на затворе — так же, как кран крана используется для регулирования потока воды через сад. шланг.

NMOS-транзистор Металлооксидные полупроводники с отрицательным каналом (NMOS) используют положительное вторичное напряжение для переключения мелкого слоя полупроводникового материала типа p под затвором в тип n . Для металлооксидных полупроводников с положительным каналом (PMOS) все эти полярности меняются на противоположные. Транзисторы NMOS дороже, но быстрее, чем транзисторы PMOS.

Encyclopædia Britannica, Inc.

Первые коммерческие применения транзисторов были в слуховых аппаратах и ​​«карманных» радиоприемниках в 1950-х годах.Благодаря своему небольшому размеру и низкому энергопотреблению, транзисторы были желанной заменой электронных ламп (известных как «клапаны» в Великобритании), которые затем использовались для усиления слабых электрических сигналов и создания слышимых звуков. Транзисторы также начали заменять электронные лампы в схемах генераторов, используемых для генерации радиосигналов, особенно после того, как были разработаны специализированные структуры для обработки более высоких частот и задействованных уровней мощности. Низкочастотные и мощные приложения, такие как инверторы источников питания, преобразующие переменный ток (AC) в постоянный (DC), также были транзисторными.Некоторые силовые транзисторы теперь могут выдерживать токи в сотни ампер при электрических потенциалах более тысячи вольт.

На сегодняшний день транзисторы наиболее часто применяются в микросхемах памяти компьютеров, включая твердотельные мультимедийные запоминающие устройства для электронных игр, камеры и MP3-плееры, а также в микропроцессорах, где миллионы компонентов встроены в единую интегральную схему. Здесь напряжение, приложенное к электроду затвора, обычно несколько вольт или меньше, определяет, может ли ток течь от истока транзистора к его стоку.В этом случае транзистор работает как переключатель: если ток течет, задействованная цепь включена, а если нет, то она выключена. Эти два различных состояния, единственные возможности в такой схеме, соответствуют соответственно двоичным единицам и нулям, используемым в цифровых компьютерах. Подобные применения транзисторов встречаются в сложных коммутационных схемах, используемых в современных телекоммуникационных системах. Потенциальные скорости переключения этих транзисторов сейчас составляют сотни гигагерц, или более 100 миллиардов включений и выключений в секунду.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Разработка транзисторов

Транзистор был изобретен в 1947–1948 годах тремя американскими физиками, Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли, в лабораториях Белла американской телефонной и телеграфной компании. Транзистор оказался жизнеспособной альтернативой электронной лампе и к концу 1950-х годов вытеснил последнюю во многих приложениях. Его небольшие размеры, низкое тепловыделение, высокая надежность и низкое энергопотребление сделали возможным прорыв в миниатюризации сложных схем.В течение 1960-х и 1970-х годов транзисторы были включены в интегральные схемы, в которых множество компонентов (например, диоды, резисторы и конденсаторы) сформированы на одной «микросхеме» из полупроводникового материала.

Мотивация и ранние радиолокационные исследования

Электронные лампы громоздки и хрупки, они потребляют большое количество энергии для нагрева своих катодных нитей и генерации потоков электронов; Кроме того, они часто сгорают после нескольких тысяч часов работы. Электромеханические переключатели или реле работают медленно и могут застревать во включенном или выключенном положении.Для приложений, требующих тысяч ламп или переключателей, таких как общенациональные телефонные системы, развивающиеся по всему миру в 1940-х годах, и первые электронные цифровые компьютеры, это означало, что требовалась постоянная бдительность, чтобы минимизировать неизбежные поломки.

Альтернатива была найдена в полупроводниках, материалах, таких как кремний или германий, электрическая проводимость которых находится на полпути между проводимостью изоляторов, таких как стекло, и проводников, таких как алюминий. Проводящими свойствами полупроводников можно управлять, «допируя» их избранными примесями, и несколько провидцев увидели потенциал таких устройств для телекоммуникаций и компьютеров.Однако именно военное финансирование разработки радаров в 1940-х годах открыло двери для их реализации. Для «супергетеродинных» электронных схем, используемых для обнаружения радиолокационных волн, требовался диодный выпрямитель — устройство, позволяющее току течь только в одном направлении, — которое могло бы успешно работать на сверхвысоких частотах более одного гигагерца. Электронных ламп просто было недостаточно, и твердотельные диоды на основе существующих полупроводников из оксида меди также были слишком медленными для этой цели.

На помощь пришли

Кристаллические выпрямители на основе кремния и германия.В этих устройствах вольфрамовая проволока вставлялась в поверхность полупроводникового материала, который был легирован крошечными количествами примесей, таких как бор или фосфор. Примесные атомы заняли позиции в кристаллической решетке материала, вытесняя атомы кремния (или германия) и тем самым создавая крошечные популяции носителей заряда (таких как электроны), способных проводить полезный электрический ток. В зависимости от природы носителей заряда и приложенного напряжения ток может течь от провода к поверхности или наоборот, но не в обоих направлениях.Таким образом, эти устройства служили столь необходимыми выпрямителями, работающими на гигагерцовых частотах, необходимых для обнаружения отраженного микроволнового излучения в военных радиолокационных системах. К концу Второй мировой войны миллионы кристаллических выпрямителей ежегодно производились такими американскими производителями, как Sylvania и Western Electric.

Ваше полное руководство по их использованию в электронике

Здесь вы найдете полное руководство по транзисторам.

В этом руководстве по транзисторам я расскажу вам об основах транзисторов, различных типах, наиболее популярных частях и способах их использования в схемах.

Это часть нашей серии статей, посвященных диодам и транзисторам.

Что такое транзистор?

Давайте начнем с простого для понимания определения транзистора. Чтобы дать определение транзистору, мы хотим взглянуть на общую картину и на то, как она вписывается в электронику.

Мы можем определить это следующим образом:

транзистор = электронное устройство, которое может использоваться для переключения или усиления электрической энергии

# 1 Уроки: из транзисторов получаются отличные переключатели и усилители, и два основных типа из них:

Биполярные переходные транзисторы (BJT) — вы используете ток для управления

полевых транзисторов (FET) — вы используете напряжение для управления

Транзистор — это фундаментальный строительный блок современной электроники.Когда он был изобретен, он привел к электронной революции, которая открыла новую эру технологий.

Транзисторный радиоприемник был одним из первых, кто произвел революцию в этой технологии. Размер радиоприемника резко уменьшился, поскольку больше не было необходимости использовать электронные лампы

Без транзистора не существовало бы современной электроники.

Кто изобрел транзистор?

Вы можете спросить: а когда же был изобретен транзистор? В отношении изобретения транзистора есть три важные даты:

1927 — Юлиус Лилиенфельд запатентовал полевой транзистор, но не смог произвести его в то время из-за ограничений технологии.

1947 — Уильям Шокли, Джон Бардин и Уолтер Браттейн изобрели транзистор с точечным контактом в компании Bell Telephone Laboratories, Inc.

1956 — Нобелевская премия по физике присуждена Шокли, Бардину и Браттейну за транзистор.

Что делает транзистор?

Две основные функции транзистора — усилитель и переключатель, работают как с отдельными транзисторами, так и с их комбинациями.

Соединение нескольких транзисторов с другими электрическими компонентами, такими как резисторы и диоды, может даже создать логические вентили.

Далее мы рассмотрим каждый из них более подробно

Транзисторный усилитель

Каждый раз, когда вы хотите использовать немного чего-то, чтобы получить еще больше, это называется усилением.

Рассмотрим аналогию с механическим рычагом. Когда вам нужно выполнить механическую работу над чем-то, если вы добавите рычаги воздействия, вы сможете усилить свою работу.

Физика транзисторов позволяет нам использовать напряжение или ток для управления передачей электрической энергии в транзисторе.

В результате мы можем использовать небольшое напряжение или ток для управления гораздо большим напряжением или током. Это то, что мы называем усилителем.

Мы рассмотрим это более подробно, когда рассмотрим различные типы транзисторов позже.

Транзисторный переключатель

Одна из лучших особенностей транзисторов, которые позволяют использовать современную цифровую электронику, заключается в том, что транзистор может действовать как переключатель.

Когда вы включаете выключатель света в своем доме, вы делаете небольшую механическую работу руками, которая позволяет электричеству течь через ваши лампочки.

Использование транзистора в качестве переключателя, подобного выключателю света, позволяет нам использовать напряжение или ток для его включения или выключения, что затем позволяет току течь через другую часть схемы.

Соединение множества разных переключателей вместе в различных комбинациях позволяет нам создавать всевозможные различные логические вентили, которые мы рассмотрим далее.

Транзисторный вентиль

Типичный логический вентиль в наши дни имеет несколько транзисторов, а также другие компоненты. создание логических вентилей в схемах претерпело долгую эволюцию по мере того, как производственные технологии становились все лучше и лучше.

Логические вентили транзисторов в наши дни обычно изготавливаются из полевых МОП-транзисторов, а точнее — из КМОП. Мы рассмотрим их подробно позже.

Транзистор И затвор, например, может быть выполнен как минимум с двумя транзисторами. Чтобы увидеть, как другие вентили могут быть сделаны из транзисторов, ознакомьтесь с этим замечательным средством.

С годами развития транзисторы становятся все меньше и меньше. Например, еще в 1971 году транзисторы были 10 микрометров.

По состоянию на 2014 год они составляют 14 нанометров с ожидаемыми 10 нанометрами к 2017 году.Если посчитать, то всего за 46 лет размер уменьшится примерно на 1000 человек.

Имейте в виду, что это то, что можно производить. Есть группы исследований и разработок, которые достигли размера транзисторов в 1 нанометр. Это самый маленький из известных транзисторов на 2017 год.

Уменьшение размера транзистора позволяет размещать все больше и больше транзисторов в таких устройствах, как центральные процессоры (ЦП) в компьютерах.

Общая тенденция уменьшения размера компонентов, ведущая к удвоению количества, которое вы можете разместить в устройстве, известна как закон Мура.Всегда интересно увидеть количество транзисторов в устройствах за разные годы.

Например, количество транзисторов современных процессоров Intel исчисляется миллиардами и продолжает расти. Популярный процессор i7 содержит около 1,75 миллиарда транзисторов.

Кроме того, способ оптимизации количества транзисторов, используемых в затворах, называется логикой проходных транзисторов.Технология всегда раздвигает границы, позволяя получить больше при меньшем размере и меньшем количестве компонентов. Это приводит к тому, что в одном и том же физическом пространстве помещается больше возможностей.

Обозначение транзистора

Итак, как выглядит схема транзистора? Давай выясним.

Чтобы упростить задачу, мы рассмотрим 6 различных типов транзисторов, с которыми вы чаще всего сталкиваетесь.

Символ транзистора NPN и символ транзистора PNP являются наиболее распространенными. Они являются частью биполярной семьи.

Также будет включать N-канальный JFET и P-канальный JFET, которые представляют собой полевые транзисторы с переходным затвором.

И, наконец, что не менее важно, у нас есть полевые МОП-транзисторы с N-каналом и P-каналом, которые представляют собой металлооксидные полупроводниковые полевые транзисторы.

Обратите внимание на то, что на схеме для NMOS и PMOS (MOSFET) пунктирная линия в середине означает, что они находятся в расширенном режиме. Если бы они были прямыми линиями без тире, это были бы транзисторы с режимом истощения.

Мы рассмотрим каждый из этих типов транзисторов более подробно. Вот символы для каждого из них:

Обратите внимание, что направление стрелки на символах обычно указывает на n-тип по сравнению с p-типом.

Распиновка транзистора

Как видно из символьной диаграммы, у нас есть несколько разных выводов для каждого типа транзистора.

Для биполярного транзистора три основных контакта — это база (B), коллектор (C) и эмиттер (E).

В то время как для полевых транзисторов (JFET и MOSFET), контакты являются нашими Source (S), Gate (G) и Drain (D).

Мы рассмотрим, что эти контакты делают в следующем разделе.

Как работает транзистор?

Мы рассмотрели, что такое транзисторы, для чего они нужны и какие символы мы используем для них в схемах. Теперь давайте посмотрим, как работает транзистор более подробно

Мы рассмотрим некоторые основы работы с транзисторами, а затем покажем вам режимы работы каждого типа.

Вся цель транзистора состоит в том, чтобы позволить вам использовать немного электрической энергии для управления гораздо большим количеством электрической энергии.

Мы можем сделать это либо в двоичном режиме (включен или выключен), как в переключателе, либо мы можем использовать полный диапазон работы транзистора и создать усилитель.

С учетом сказанного, есть два основных транзистора типы, которые работают по-разному. Мы собираемся поддерживать теорию на высоком уровне, чтобы вы могли использовать ее на практике в электронике.

Если вас интересует вся физика, лежащая в основе этого, есть целые области изучения полупроводников и множество книг, которые вы можете изучить.Помните, что люди делают карьеру из этого материала.

Биполярный переходной транзистор

Первый тип называется биполярным переходным транзистором (БЮТ). Биполярный транзистор использует как электронные, так и дырочные носители, как и диоды.

Дырки и носители создаются полупроводниковыми материалами, известными как P-тип (дырки) и N-тип (электроны).

Материалы как N-типа, так и P-типа ведут себя определенным образом, и, если их сложить вместе, можно получить еще более интересные эффекты.

Типичный диод обычно представляет собой материал N-типа и P-типа вместе. В то время как BJT — это их три вместе.Транзисторы бывают как типа NPN, так и PNP.

Например, NPN — это именно то, как оно названо, где есть сэндвич из материала N-типа, P-типа и N-типа, взятого вместе.

В свое время германиевые транзисторы были обычным способом изготовления биполярных транзисторов.Однако сейчас кремниевые транзисторы стали нормой.

Несколько ключевых моментов, касающихся BJT, заключаются в том, что hfe (иногда называемый бета) — это быстрый индикатор способности транзистора к усилению, также известный как усиление постоянного тока.

Кроме того, насыщение транзистора просто означает, что больше тока через базу не даст больше тока через коллектор и эмиттер.

Теперь давайте посмотрим на транзисторы NPN и PNP, чтобы лучше понять, как они работают.

Транзистор NPN

NPN — это именно то, как его называют, где есть сэндвич из материалов N-типа, P-типа и N-типа вместе взятых.Пример конструкции можно увидеть ниже.

Конструкция этого устройства устроена так, что ток обычно не течет между двумя материалами N-типа, потому что материал P-типа разделяет их.

Что интересно, так это то, что когда мы манипулируем материалом P-типа током, мы можем создать мост между двумя материалами N-типа, который позволяет току течь между ними.

Например, для типичного одиночного NPN , если мы подадим на базу около 0,7 Вольт, то ток будет течь через базу к эмиттеру.

Это, в свою очередь, позволит току легче проходить через материал P-типа. Это позволяет току течь от коллектора к эмиттеру в качестве конечного результата. Это позволяет манипулировать материалами.

Основы, которые вам необходимо знать здесь на высоком уровне, следующие:

Для BJT NPN, когда ток течет от базы к эмиттеру, он включает транзистор и позволяет гораздо больше. ток течет от коллектора к эмиттеру.

Вот почему мы часто называем BJT устройствами, управляемыми током.

NPN Operation

Теперь давайте рассмотрим несколько общих способов работы с NPN. Мы знаем, что контакты — это база (B), коллектор (C) и эмиттер (E).

  • Cut Off («off»): Emitter> Base
  • Saturation («on»): Emitter Collector
  • Forward Active («пропорционально»): Emitter
  • Reverse Active («отрицательный пропорциональный»): Emitter> Base> Collector

Для этих различных режимов переключатель будет использовать режимы отсечки и насыщения.

Усилитель будет использовать прямой активный режим, в котором ток от коллектора к эмиттеру пропорционален току от базы к эмиттеру.

Обратный активный режим — это когда ток течет от эмиттера к коллектору, что является обратным нормальному активному режиму. Этот режим используется нечасто.

Ключевым моментом здесь является то, что напряжение между базой и эмиттером (Vbe), обычно около 0,7 В, является одним из основных ингредиентов для включения NPN.

Конечно, поведение NPN намного сложнее, но это это общий вынос.

Транзистор PNP

Аналогичным образом, PNP имеют порядок материалов P-типа, N-типа и P-типа, как показано ниже.

PNP похожи на NPN, но направление тока другое.

Основная идея этого устройства заключается в том, что два материала P-типа разделены между собой N-типом, что означает, что ток не будет нормально течь между двумя материалами P-типа.

Однако, когда мы добавляем ток в смесь, мы можем управлять материалом N-типа, чтобы он действовал как мост между материалами P-типа, позволяя току течь.

Вот наш главный вывод:

Для BJT PNP, когда ток течет от эмиттера к базе, гораздо больше тока может течь от эмиттера к коллектору.

Работа PNP

Далее мы рассмотрим различные способы работы PNP. Мы помним, что контакты — это база (B), коллектор (C) и эмиттер (E).

  • Cut Off («off»): эмиттер Collector
  • Saturation («on»): Emitter> Base
  • Forward Active («пропорционально»): Emitter> Base> Collector
  • Reverse Active («отрицательный пропорциональный»): Эмиттер <База <Коллектор

PNP аналогичен NPN, но токи меняются местами.Использование NPN гораздо более распространено, но иногда вы можете встретить PNP.

Часто NPN и PNP используются вместе, чтобы получить более сложное поведение схемы. Хорошим примером является схема двухтактного усилителя.

Опять же, PNP немного сложнее, но для большинства схем это все, что вам нужно знать

Полевой транзистор

Что может быть круче, чем манипулирование материалом с помощью тока? Вместо этого манипулируем напряжением! Именно это мы и делаем с полевыми транзисторами (FET).

Полевые транзисторы

позволяют нам использовать электрическое поле для управления электропроводностью канала в них, который управляет переключателем.

Давайте подробнее рассмотрим два основных типа полевых транзисторов.

JFET-транзистор

Переходный полевой транзистор (JFET) — очень простое устройство.

Основная идея состоит в том, что полевой транзистор обычно проводит ток между источником и стоком, если на затвор не подается напряжение.

Это означает, что JFET обычно включен, пока напряжение на затворе не отключит его.

Напряжение создает электрическое поле, которое «зажимает» канал, по которому течет ток. Точно так же, как если бы вы зажали садовый шланг, чтобы вода не протекала через него.

Здесь есть два аромата, где для канала можно использовать материал N-типа или P-типа. Тип материала будет определять, какое напряжение необходимо приложить к затвору.

N-канальный JFET

Типичная конструкция n-канального JFET-транзистора показана ниже.

Основные сведения о N-канальном JFET:

  • Напряжение между источником и стоком вызывает протекание тока. Повышение напряжения увеличивает ток до определенного момента. В режиме насыщения ток остается неизменным при увеличении напряжения от стока до источника, Vds.
  • Подача напряжения на затвор и источник ограничит общий поток тока от источника к стоку в зависимости от величины напряжения. Как только напряжение затвора к источнику достигает напряжения отсечки, ток не течет от источника к стоку.Это отключает устройство.

Чтобы разобраться в этом, посмотрите эту потрясающую визуализацию.

P-Channel JFET

Напротив, типичная конструкция JFET с p-каналом показана ниже.

P-канальный JFET работает очень похоже на N-канальный JFET, за исключением того, что токи и напряжения меняются местами.

МОП-транзистор

Гораздо более популярной формой полевого транзистора является металлооксидный полупроводниковый полевой транзистор (МОП-транзистор).Иногда люди для краткости называют их МОП-транзисторами.

Как мы увидим, часть имени MOS происходит от структуры транзистора, что упрощает запоминание его общей функции.

MOSFET обычно выключен до тех пор, пока напряжение на затворе не включит транзистор и позволяет току течь между источником и стоком.

Они обычно используются в цифровой электронике и процессорах.

Существует две формы полевого МОП-транзистора. Это N-канал (NMOS) и P-канал (PMOS).Давайте теперь подробно рассмотрим различия.

NMOS-транзистор

Для NMOS у нас есть простая структура, в которой исток и сток представляют собой материал N-типа, и они разделены материалом P-типа. Поверх разделения находится оксидный слой, а поверх него — металлический слой, который является затвором.

Вы можете увидеть эту структуру ниже.

По сути, всякий раз, когда на Воротах Источника присутствует напряжение (Vgs), создаваемое электрическое поле воздействует на материал P-типа, образуя канал между двумя другими материалами N-типа, которые являются Источником и Стоком.

Это напряжение создает канал и позволяет току течь по нему между Источником и Стоком.

Далее давайте более подробно рассмотрим различные режимы работы для режима расширения NMOS.

Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).

  • Отсечка: Vgs
  • Омический: Vgs> Vth и Vds
  • Насыщение : Vgs> Vth и Vds> Vds-sat, канал полностью сформирован, увеличение Vds не вызывает увеличения тока

Здесь можно найти отличную визуализацию для этих режимов.В таблице данных для вашей части NMOS должно быть несколько графиков, отображающих ток стока (Id) в зависимости от Vds, с линиями, представляющими разные Vgs.

Отличным примером сильноточного NMOS является IRLML6344TRPBF.

Если вы откроете таблицу данных для этой части, вы увидите, что для этого требуется, чтобы напряжение Vgs было выше 1,1 вольт (Vth). Кривая показывает нам, что для разных уровней Vgs выше этого порогового напряжения мы получаем разные кривые тока стока.

В большинстве случаев напряжение Vds-sat составляет около 1 В, и именно здесь кривые переходят в плоскую линию.

Для CMOS, когда напряжение на затворе высокое, транзистор включен, а когда напряжение на затворе низкое, транзистор выключен.

Транзистор PMOS

Для PMOS он очень похож на NMOS, за исключением того, что материалы N-типа и P-типа поменяны местами. Вы можете увидеть структуру ниже.

PMOS работает очень похоже на NMOS, за исключением того, что некоторые вещи работают наоборот. Давайте посмотрим на разные режимы.

Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).

  • Отсечка: Vgs> -Vth, ток не течет от источника к стоку
  • Омический: Vgs <-Vth и -Vds> -Vds-sat, канал формируется на основе Vgs, -Vds, становясь более отрицательным, вызывает больший ток линейно
  • Насыщенность: Vgs <-Vth и -Vds <-Vds-sat, канал полностью сформирован, -Vds становится более отрицательным, не вызывает больше тока

Вот основной момент:

Для PMOS, когда напряжение на затворе высокое, транзистор выключен, а когда напряжение на затворе низкое, транзистор включен.

Транзистор CMOS

Что произойдет, если объединить NMOS и PMOS в одной детали? Вы получаете очень удобный компонент.

Фактически, комплементарная MOS (CMOS) лежит в основе процессоров, SRAM и логических микросхем. Использование КМОП дает множество технических преимуществ, подробности см. Здесь

Упаковка транзисторов

Транзисторы поставляются в различных вариантах корпусов, включая сквозное отверстие, поверхностный монтаж и монтаж на шасси.

В большинстве конструкций электроники используется поверхностный монтаж.Однако любители часто используют варианты со сквозным отверстием.

Для более высокого рассеивания мощности может потребоваться установка через отверстие или монтаж на шасси для отвода тепла от схемы

Распространенным корпусом со сквозными отверстиями является TO-92, который имеет пластиковый корпус с тремя выводами. Популярным корпусом для поверхностного монтажа является SOT-23, который также имеет 3 контакта.

Самые популярные транзисторы

Транзистор Дарлингтона

Допустим, вам нужен усилитель или переключатель тока NPN, но найденные вами одиночные транзисторы просто не имеют достаточно высокого коэффициента усиления (hfe), чтобы подавать низкотоковый вход на высокий выходной ток.

Мы знаем, что мы можем усилить ток одним транзистором, тогда почему мы не можем сделать это дважды, чтобы получить еще больше?

Ответ — мы можем.Многочисленные транзисторы вызывают несколько ступеней усиления, которые умножаются друг на друга, что дает нам гораздо больший общий коэффициент усиления.

Это так же просто, как соединить два коллектора NPN вместе и подключить эмиттер первого к основанию второго.

Символ Дарлингтона показан ниже, чтобы проиллюстрировать эту установку.

Оказывается, это очень мощный аппарат. Конечно, мы могли бы создать его с двумя дискретными транзисторами, но он сэкономит намного больше места, если будет выполнен на той же интегральной схеме.

Например, с FZT605TA мы могли бы использовать 1 миллиампер для управления первым транзистором, который усиливается для управления вторым транзистором и позволяет нам управлять током, протекающим от коллектора к эмиттеру, более 1 ампер.

Это усиление более чем в 1000 раз!

Силовой транзистор

Когда мы говорим силовой транзистор, мы обычно подразумеваем транзисторы, которые могут обрабатывать более 1 А на выходной стороне.Это означает, что для BJT, тока коллектора и эмиттера, а также для полевых транзисторов, ток источника и стока имеет максимальное значение более 1 А.

Некоторые вещи, на которые следует обратить внимание при поиске такого транзистора, — это его внутреннее сопротивление и максимальное тепловыделение.

Кроме того, если вы имеете дело с большим количеством тепла, есть ли у него упаковка, позволяющая подключать его к радиатору?

Корпус TO220 — это знаменитый корпус со сквозными отверстиями, в котором есть хорошая металлическая посадочная площадка и отверстие для винта для установки различных радиаторов.

Серия транзисторов TIP является популярным вариантом BJT в этом классе деталей. Вот несколько отличных примеров:

Транзистор TIP31 — ток коллектора макс = 3 А, hfe = 10, максимальная мощность = 2 Вт, л чернил

Транзистор TIP120 — ток коллектора макс = 5 А, hfe = 1000, максимальная мощность = 2 Вт, ссылка

Если вам нужен силовой полевой транзистор, то популярным выбором будет IRLML6344TRPBF. Он имеет максимальный ток стока 5 А и максимальную мощность 1,3 Вт. FET — это расширенный режим NMOS.

Фототранзистор

Если вы хотите преобразовать фотоны в ток, наиболее распространенным способом является использование фотодиода. Однако иногда диод не производит большого тока из-за количества света, которому он подвергается.

Поскольку мы уже знаем, что из транзисторов получаются отличные усилители тока, почему бы не использовать транзистор, чтобы довести выходной ток до желаемого уровня?

Здесь явно два варианта.

1. Как разработчик схем, мы могли бы использовать фотодиод с транзистором, чтобы получить более высокий выходной ток диода.Их часто называют схемами усилителя фототока.

2. Другой вариант заключается в том, что для специализированных случаев производители фактически делают отдельные детали (например, PT15-21B / TR8), в которых просто вырезано окно, чтобы подвергать транзистор фотонам, которые напрямую воздействуют на транзистор в детали. . Он также известен как оптический транзистор.

В зависимости от ситуации вы можете выбрать, какой из них использовать, исходя из ваших требований.

Есть несколько фототранзисторов, предлагаемых в диапазоне видимого света.Чаще они предназначены для инфракрасного диапазона спектра. Таким образом, они невидимы для человеческого глаза. Скорее всего, ваш ТВ-приемник для вашего пульта дистанционного управления использует один из них

Если вы можете найти решение, состоящее из одной детали, по приемлемой цене и для необходимой длины волны света, тогда сделайте это. В противном случае вы всегда можете использовать фотодиод и транзистор вместе, чтобы усилить ток с фотодиода.

Оказывается, Sharp выпустила отличное приложение для этих типов схем, которое охватывает все различные варианты.Вы можете найти его здесь: SMA99017

Оптоизоляторы

Кроме того, оптоизоляторы (также известные как оптопары) — это части, которые работают за счет встроенных в корпус светодиода и фототранзистора.

См. Например, FOD817. Таким образом, вы получаете настоящую электрическую изоляцию, так как внутренние части взаимодействуют только с помощью фотонов.

Photointerruptor

С механической стороны, если вам нужен способ обнаружить что-то движущееся, которое может точно пройти через прорезь в материале , то фотопрерыватель — это изящное маленькое устройство.

Он работает таким же образом, имея светодиод и фототранзистор, так что ваша схема может определять, когда свет между ними прерывается, а когда нет. GP1S094HCZ0F — отличный тому пример.

2n2222 Транзистор

На протяжении многих лет одним из самых популярных транзисторов для малых токов и малой мощности был транзистор 2n2222. Его также часто называют 2n2222a. Эта часть является BJT NPN.

Вот типичные характеристики 2n2222a:

  • Максимальный ток коллектора = 0.8 А
  • Максимальная мощность = 0,5 Вт
  • Коэффициент усиления постоянного тока = 100
  • Пробой между коллектором и эмиттером = 40 В

Деталь до сих пор очень популярна. Большинство людей выбирают вариант в пластиковом корпусе, поскольку он намного экономичнее. Эта версия известна как Pn2222a, а примером является PN2222ABU.

2n3055 Транзистор

Если вам нужен сильноточный транзистор, то 2n3055 — отличный вариант. Это BJT NPN, и он поставляется в мощной упаковке TO-3.

Вот типичные характеристики 2 n30 55:

  • Максимальный ток коллектора = 15 А
  • Максимальная мощность = 115 Вт
  • Коэффициент усиления постоянного тока = 20
  • Пробой коллектора к эмиттеру = 60 Вольт

2n3904 Транзистор

Другой чрезвычайно популярный слаботочный транзистор — 2n3904. Это также BJT NPN.

Этот транзистор — один из лучших вариантов для усилителей тока цепи общего назначения, если он соответствует вашим требованиям.

Вот типичные характеристики транзистора 3904:

  • Максимальный ток коллектора = 0,2 А
  • Максимальная мощность = 0,625 Вт
  • Коэффициент усиления постоянного тока = 100
  • Пробой коллектора к эмиттеру = 40 Вольт

Деталь предлагается в пластиковом корпусе TO-92, что делает ее очень экономичной для большинства применений, где требуются детали со сквозными отверстиями. Любители часто выбирают этот транзистор.

Транзистор 2n3906 является версией PNP, и здесь можно найти один из самых популярных транзисторов.

2n4401 Транзистор

Если вам нужен транзистор общего назначения, но требуется немного больше тока, чем у 2n3904, то 2n4401 — хороший выбор.

Вот типичные спецификации для 2n4401:

  • Максимальный ток коллектора = 0,6 А
  • Максимальная мощность = 0,625 Вт
  • Усиление постоянного тока = 100
  • Разрыв между коллектором и эмиттером = 40 В

BC547 Транзистор

Еще один популярный слаботочный транзистор — BC547.Это также BJT NPN. Он известен своим сверхвысоким коэффициентом усиления по току.

Вот типичные характеристики BC547:

  • Максимальный ток коллектора = 0,1 А
  • Максимальная мощность = 0,5 Вт
  • Усиление постоянного тока = 420
  • Пробой коллектора к эмиттеру = 45 В

Использование транзисторов

Теперь, когда мы ознакомились с большей частью теории и различными частями, давайте рассмотрим некоторые полезные схемы транзисторов.

Прежде чем мы перейдем к некоторым учебным пособиям по транзисторам, давайте рассмотрим очень базовую концепцию, которую важно знать дальше.

Смещение транзистора

Проще говоря, смещение транзистора устанавливает уровни напряжения и / или тока на оптимальном уровне, чтобы транзистор должным образом усиливал сигнал переменного тока по своему вкусу.

Очевидно, это во многом зависит от используемого транзистора, а также от окружающей цепи и напряжений.

Лучший совет — внимательно изучить техническое описание транзистора, так как там можно найти все напряжения и токи для различных режимов.

В таблицах данных также обычно есть несколько отличных примеров схем, которые вы можете использовать в качестве справочника для своего проекта

Следующий совет — использовать программное обеспечение типа SPICE для моделирования вашей схемы. Удивительно, чему вы можете научиться, когда можете быстро преодолеть массивный отказ с молниеносной скоростью с помощью программного обеспечения для моделирования.

Следующее лучшее решение — смонтировать схему и поиграть. Вы можете пойти на больший риск, если имеете дело с дешевыми запчастями на случай, если что-то взорвется.Однако, если вы имеете дело с дорогими деталями, которые трудно заменить, сначала выполните описанные выше действия. использование транзистора — вариант.

Основы просто заключаются в том, что вы используете транзистор для тяжелой работы с током.

Есть несколько способов сделать это:

  1. Emitter F ollower — один из наиболее распространенных, также известный как обычный коллектор, см. Пример
  2. Common Emitter — см. Пример
  3. Push Pull — см. Пример

Для простых усилителей лучше использовать транзистор.Если вам нужно более продвинутое усиление, вам действительно стоит подумать об использовании операционного усилителя. Таким образом вы сможете лучше контролировать полосу пропускания и уровень шума в цепи.

Если вы этого еще не знали, операционные усилители в основном состоят из транзисторов. В Spa rkfun есть отличная статья, в которой они познакомят вас с самыми основными схемами усиления, а в конечном итоге соберут все вместе и покажут основы внутреннего устройства операционного усилителя.

Есть причина, по которой операционные усилители имеют много транзисторов. в них, чтобы контролировать все маленькие эффекты.Не бойтесь использовать операционный усилитель по назначению.

Операционный усилитель общего назначения будет стоить столько же, сколько один или два транзистора, так зачем создавать сложную схему усилителя из транзисторов, если можно просто взять операционный усилитель и получить гораздо лучший результат.

Транзисторный переключатель NPN

Часто у нас есть процессор или микроконтроллер с цифровым выводом, который может подавать только около 10–20 мА (проверьте свое техническое описание). Следовательно, мы не можем напрямую управлять чем-либо с большим током.

Транзистор — отличный буфер, который мы можем использовать для усиления тока для управления вещами. Например, вентилятор, обогреватель или другое устройство со средним или большим током. BJT NPN является популярным выбором для таких ситуаций.

Пример конструкции

В следующей схеме транзистора NPN мы используем NPN для управления большим током вентилятора, позволяя нам управлять вентилятором с помощью слаботочного цифрового вывода.

В этом примере мы используем BJT в качестве переключателя NPN, поскольку два рабочих состояния либо включены, либо выключены.

На схеме видно, что распиновка транзистора NPN такова, что база подключена к управляющему сигналу с помощью резистора, коллектор подключен к нижнему концу вентилятора, а эмиттер подключен к земле.

Выбор транзистора

Итак, как выбрать подходящий транзистор для работы? В этом случае мы рассмотрим несколько ключевых спецификаций, и нам нужно снизить номинальные характеристики, выбрав для нашего транзистора значения 2x-3x.

  • Максимальный ток от коллектора к эмиттеру должен быть в 2–3 раза больше тока через вентилятор.Пример: если вентилятор потребляет 0,15 А, NPN должен иметь ток коллектора (Ic) max более 0,3 А.
  • ВЧ должно быть достаточно высоким, чтобы, по крайней мере, быть током через вентилятор, деленным на ток с нашего цифрового вывода. Пример: если наш вентилятор потребляет 0,15 А, и мы можем подавать 0,01 А через наш цифровой вывод, тогда hfe должно быть больше 15 (0,15 / 0,01)
  • Максимальное напряжение пробоя коллектора NPN-эмиттер (Vce) должно быть в 2 раза больше. -3x напряжение питания для нашего вентилятора. Пример: если у нас есть вентилятор на 12 В, то нам нужно максимальное напряжение 24 В или больше

Это основные вещи, на которые следует обращать внимание при выборе транзистора для этой схемы.Имейте в виду, что в разработку этой схемы было вложено гораздо больше, над чем кто-то давно работал.

Когда мы смотрим на доступные детали, мы обнаруживаем, что PN2222ABU отвечает всем нашим требованиям. Он имеет Ic = 1 А макс., Vce = 40 В макс. И hfe = 50 мин при Ic = 0,15 А.

Чтобы получить дополнительную маржу, мы можем разделить hFE на 2, что станет 25. Это больше, чем наши требуемые 15, что мы и хотим.

Это означает, что нам, вероятно, сойдет с рук 0.006 А базового тока для управления током коллектора 0,15 А (0,15 / 25). Мы планируем использовать базовый ток 0,01 А, что еще больше переведет нас в режим насыщения.

Что делать, если ваш вентилятор или нагрузка потребляют намного больший ток, чем в нашем примере? Возможно, вам понадобится более мощный NPN. TIP120 — это чудовище с минимальным hFE 1000 на многих токах коллектора. Это также не намного дороже, чем наш предыдущий выбор.

Выбор резистора

Для пытливых умов, чтобы выбрать правильное значение резистора, R1, нам нужно заглянуть в лист данных транзистора и увидеть максимальное напряжение между базой и эмиттером, Vbe.Для этого транзистора его 1,2 Вольт.

Затем, какой бы логический уровень мы ни использовали, мы можем рассчитать резистор. Например:

3.3 Вольтовая логика — 0.6 Вольт Vbe = 2.7 В

Теперь мы берем:

2.7 В / 0,01 А Базовый ток = 270 Ом для R1

Это ограничивает ток с нашего цифрового вывода до 0,01 А макс. 0,6 Vbe, а ток составляет 0,008 ампер мин при 1,2 Vbe. Мы должны быть в насыщении NPN для обоих из них.

Выбор диода

Диод присутствует из-за индуктивной нагрузки вентилятора.Диод не нужен, если нагрузка представляет собой нагреватель, светодиод или другую резистивную нагрузку.

Типичным диодом для D1 в этой ситуации является 1N4001. Он имеет прямой ток 1 А и максимальное обратное смещение 50 В.

Транзистор hFE

При выборе правильного транзистора hFE:

Большинство интернет-источников имеют практическое правило рассматривать каждый транзистор как имеющий значение 10. Это своего рода глупо, поскольку отчасти устраняется необходимость наличия большого количества различных транзисторов. Выбери из.

Какой нормальный путь выбрать для определения того, имеет ли транзистор достаточно высокое значение hfe и какой ток базы требуется, — это посмотреть в таблице данных.

Вы хотите найти кривые насыщения, сопоставить максимальный ток коллектора для вашей схемы и определить базовый ток, который переводит транзистор в режим полного насыщения. Кривая будет похожа на хоккейную клюшку.

Насыщение означает, что больший базовый ток не дает больше коллекторного тока на кривой.Пройдите немного дальше по кривой после того, как она выровнена ровно. Это золотая середина.

В некоторых таблицах данных нет этих кривых, поэтому вам придется полагаться на таблицу, которая сообщает вам hFE при определенных токах коллектора. Это типичный сценарий.

Попытайтесь сопоставить ток коллектора вашей схемы в таблице, а затем выберите минимальное значение hFE. В целях безопасности вы можете разделить hFE на 2, чтобы получить достаточно места для ошибки.

Многие люди здесь ошибаются и получают ток коллектора из таблицы, который не соответствует их цепи, поэтому hfe, которое они используют, неправильное. .

Затем соберите и протестируйте свою схему, чтобы убедиться, что она работает правильно. Попробуйте поменять местами несколько транзисторов с одинаковым номером детали, чтобы убедиться, что все они работают.Схема должна работать, а транзистор не должен нагреваться.

Если ваша схема требует, чтобы вы подавали ток через транзистор (вместо потребляемого тока для NPN), вы можете вместо этого сделать схему переключения транзистора PNP. Хотя это не так часто, как использование NPN в этой ситуации. .

Тестирование транзисторов

Время от времени вам может потребоваться убедиться, что часть транзистора работает правильно.

Оказывается, довольно легко проверить транзистор, если вы можете изолировать часть от цепи. Далее мы рассмотрим некоторые методы:

Как проверить транзистор

Есть два основных способа проверить транзистор, и мы рассмотрим их оба ниже. Важно удалить транзистор из схемы.

Если он находится в цепи, эти тесты, вероятно, не будут работать эффективно

Ручной метод мультиметра

Большинство современных мультиметров имеют режим проверки диодов.Иногда это сочетается с измерением сопротивления или это может быть отдельный режим регулятора. Ниже приведен пример счетчика Craftsman. Обратите внимание на символы диодов, кнопку и режим регулятора.

Чтобы проверить транзистор, нам нужно удалить его из схемы. В противном случае тест может быть неточным.

Чтобы измерить наш транзистор, мы делаем эти 4 шага:

1. Мы переводим нашу ручку-селектор в режим измерения диодов. В зависимости от нашего измерителя нам может потребоваться дополнительно нажать кнопку режима вверху, чтобы перейти от звукового сигнала к диодному режиму.Визуальный дисплей должен сообщить нам, в каком режиме мы находимся.

2. Для NPN поместите красный датчик на вывод Base, а черный датчик на вывод эмиттера. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.

3. Для PNP поместите красный щуп на вывод эмиттера, а черный щуп на вывод основания. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.

4. Для NPN или PNP поместите один датчик на коллектор, а другой датчик на излучатель.Здесь вы не должны получить достоверное прочтение. Поменяйте местами датчики, и снова вы не должны получить правильные показания.

Если транзистор проходит эти шаги, это хорошо. Если нет, то это плохо.

Автоматический метод мультиметра

В этом методе мы воспользуемся преимуществами тестера транзисторов, встроенного во многие мультиметры. Конечно, вам понадобится мультиметр, поддерживающий эту возможность.

Этот тест предназначен для деталей со сквозным отверстием. Если ваша деталь монтируется на поверхность, вам понадобится тестовые провода для подключения вашей детали к измерителю.

Если в вашем глюкометре есть эта функция, то где-то на элементах управления вы найдете несколько отверстий с прорезями с метками для NPN и PNP. См. Пример ниже для счетчика мастера.

Этот тест состоит из трех этапов:

1. Сначала переместите ручку переключателя в раздел, обозначенный «hFE». Это переводит измеритель в транзисторный режим.

2. Затем обратите внимание на то, что отверстия помечены внизу для разных выводов NPN и PNP. Вам просто нужно совместить эти отверстия с выводами детали.Есть две строки, одна для NPN и одна для PNP.

3. Если наш транзистор вставлен правильно, измерение hFE должно соответствовать техническим характеристикам нашей детали. Мы можем найти это в таблице данных транзистора.

Если измеренное значение hFE соответствует нашему ожидаемому hFE, то транзистор в порядке. Если нет, то это плохо

Заключение

Вот и все, что вам нужно для вашего руководства по транзисторам. Надеюсь, это было полезно для вас.

Если у вас есть какие-либо вопросы или забавные истории о транзисторах, дайте мне знать об этом в комментариях ниже!

arduino — Нужен ли мне резистор на базе транзистора?

arduino — мне нужен резистор на базе транзистора? — Обмен электротехнического стека
Сеть обмена стеков

Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 432 раза

\ $ \ begingroup \ $

Когда я подключаю вывод IO микроконтроллера к базе транзистора, нужен ли мне токоограничивающий резистор между выводом IO и базой? Или можно просто пин напрямую подключить?

Я думаю, что я могу просто опустить резистор, потому что микроконтроллер (attiny85 в моем случае) имеет абсолютный максимальный ток потребления / источника 40 мА для контактов ввода-вывода, поэтому он не будет подавать больше 40 мА на базу транзистор.

Нужен ли мне токоограничивающий резистор между базой транзистора и выводом ввода-вывода микроконтроллера?

Создан 09 фев.

eezeeeze

57211 золотой знак66 серебряных знаков1717 бронзовых знаков

\ $ \ endgroup \ $ 7 \ $ \ begingroup \ $

Когда я подключаю вывод IO микроконтроллера к базе транзистора, нужен ли мне токоограничивающий резистор между выводом IO и базой? Или можно просто пин напрямую подключить?

Да!

Если транзистор подключен с общим коллектором, резистор не требуется.

, если это обычный эмиттер (более распространенный способ их использования), тогда вам понадобится резистор,

Я думаю, что я могу просто опустить резистор, потому что микроконтроллер (attiny85 в моем случае) имеет абсолютный максимальный ток потребления / источника 40 мА для контактов ввода-вывода, поэтому он не будет подавать больше 40 мА на базу транзистор.

Эти 40 мА обещают, что вы должны сделать микроконтроллер, а не наоборот.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *