Устройство защиты от импульсных напряжений: Устройства защиты от импульсных перенапряжений

Содержание

Устройства защиты от импульсных перенапряжений

Принцип действия УЗИП

Устройства УЗИП защищают электрические сети и электрооборудование от повышенного напряжения, вызванного прямым или удаленным разрядом молнии. Непрямой разряд молнии выводит из строя работу не только пораженного объекта, но и соседних объектов, если они объединены между собой кабельными коммуникациями, водопроводными трубами и др.Распространенным видом импульсного перенапряжения являются индуктированные перенапряжения, связанные с распространением помех через электромагнитное поле.

Импульсные перенапряжения могут возникать и по другим причинам, например, когда электросеть не выдерживает работы мощного электрического оборудования.Поэтому для бесперебойной работы обязательно требуется защита от импульсных перенапряжений.

Принцип действия всех УЗИП заключается в ограничении переходных перенапряжений и отводе импульсов тока. Устройство содержит по крайне мере один нелинейный элемент — варистор, диод и др.

УЗИП защищает участок сети определенной длины, обусловленной параметрами волны воздействующего перенапряжения, а также типом кабельной линии.

Типы и область применения УЗИП

Чтобы правильно выбрать и купить устройство защиты от импульсных перенапряжений, нужно знать, в какой сфере оно будет применяться.

Существует три типа УЗИП — коммутирующие, ограничивающие и комбинированные. К коммутирующим относятся искровые разрядники, газоразрядные трубки, тиристоры. В качестве нелинейных устройств в УЗИП ограничивающего типа используются варисторы и диоды. Комбинированные представляют синтез элементов двух предыдущих типов — они могут и коммутировать, и ограничивать напряжение.

Существуют устройства защиты от импульсных перенапряжений для бесперебойной работы систем электроснабжения. Это  мощные УЗИП классов I, I+II, класса II, класса II для систем постоянного тока, класса III и УЗИП в защитной оболочке.

УЗИП I класса предназначены для защиты от прямых ударов молнии в сеть или в те места, где объекты находятся на небольшом расстоянии от молниеотвода. Устанавливаются на вводе питания в объект (ГРЩ, ВРУ).

УЗИП класса II предназначены для защиты токораспределительной сети объекта от коммутаторных помех или используются в качестве второй ступени защиты при ударе молнии. Устанавливаются в распределительных щитах.

Устройства защиты от импульсных перенапряжений (УЗИП) класса II для систем постоянного тока применяются для защиты полюсов в системах постоянного тока. Они представляют собой двухполюсное УЗИП класса II комбинированного типа. 

УЗИП класса III предназначены для защиты потребителей от остаточных перенапряжений после срабатывания УЗИП первой и второй ступени защиты, от наводок во внутренней информационно-распределительной сети объекта.

Для информационных систем есть следующие виды устройств защиты от импульсных перенапряжений, цена которых отличается от первого вида.  

Это УЗИП комбинированного типа для защиты оборудования слаботочных цепей, предназначенные для сохранения систем передачи данных, управления, контроля и измерения, а также передачи информации с помощью различных видов интерфейсов. Также мы предлагаем универсальные УЗИП для промышленного Ethernet.

В зависимости от типа защиты от импульсных перенапряжений различается и цена оборудования.

Не знаете какой УЗИП выбрать?

Воспользуйтесь алгоритмом выбора УЗИП 


Защита от гнева богов. Устройства защиты от импульсных перенапряжений

Продолжаем тему электроликбеза про устройства защиты, и этот пост — знакомство с устройствами защиты от импульсных перенапряжений (УЗИП). Это устройства для вашего электрощита, призванные бороться с кратковременными всплесками напряжения, например из-за грозы. Текст рассчитан для нетехнарей, так что добро пожаловать) Видеоверсия в конце.


Начнем с того, что знают сегодня даже дети — молния представляет собой разряд электричества, иногда ударяет в рукотворные объекты и способна испортить технику. Хоть это предложение и звучит по детски, но человечеству понадобились века, для понимания таких простых и очевидных сегодня вещей. Знание о природе и характеристиках разряда не далось человечеству без жертв, помянем Георга Вильгельма Рихмана.

Первыми регулярный ущерб, от удара молниями, стали испытывать связисты — телеграфные линии, растянутые по полям на столбах, регулярно приносили к дорогому и нежному оборудованию станций кратковременные всплески высокого напряжения. Причем не только от ударов молнии в сами провода, но даже от ударов молний неподалеку от линий! И уже тогда пришлось изобретать способы защиты оборудования  от этих всплесков.  Когда, спустя десятилетия свои провода стали растягивать на столбах уже энергетики, для только появившегося электрического освещения, некоторые наработки телеграфистов пригодились.

Статистика ударов молний, ломавших телеграф в Бельгии по месяцам и времени суток. Вырезка из журнала Electrical Review за 1885 год.

Стоит сказать, что для современной техники молния уже не является чем то запредельно мощным и умопомрачительным.

Если взять все эти миллионы вольт и сотни тысяч ампер, умножить на время — мы получим энергию разряда, а это всего порядка 1 ГДж энергии. Если перевести в привычные кВт*ч, то это всего 277 кВт*ч, можно даже посчитать стоимость одного разряда молнии.  Проблема лишь в том, что это количество энергии выделяется за доли секунды, что порождает проблемы, с которыми и борются разными техническими приемами.

Что происходит при ударе молнии в линию электропередач? Энергия молнии растекается по проводникам в поисках пути ухода в землю. Это вызывает рост напряжения до огромных величин, из-за чего изоляция не выдерживает, и ее пробивает.  В тех местах, где протекал разряд, повреждения оставляет как нагрев, так и электромагнитные силы. И про электромагнитные силы хочу отметить особо: из-за очень большой скорости нарастания тока при ударе молнии, даже разряд в непосредственной близости, наводит токи в окружающих проводниках. Поэтому даже, если молния ударила в молниеотвод на крыше и ушла по металлоконструкциям в землю, на проводах внутри здания могут появиться всплески напряжения опасной величины.

Поэтому защита строится не только от прямых попаданий молнией, но и от различных наведенных ею явлений.

Вопрос защиты от атмосферного электричества и от импульсных перенапряжений достаточно обширен, поэтому пост  рассчитан дать лишь крайне поверхностное представление и не претендует на полноту. Для более полного и глубокого изучения темы в конце есть ссылки на дополнительные материалы. Если сформулировать кратко физический смысл устройств защиты — их задача сбросить в заземление всю энергию, наведенную в линиях  молнией, не допуская чрезмерного роста напряжения.  Эти устройства назвали УЗИП — устройства защиты от импульсных перенапряжений.

▍Акт первый. Приманиваем молнию и отправляем ее в землю.

Про громоотводы (они же молниеотводы, и они же молниеприёмники) наверняка слышали и видели все:

Молниеотвод на куполе деревянной церкви. Источник.

Это не обязательно торчащий в небо шпиль,  у линий электропередач он выполнен в виде грозозащитного троса, который выше всех и не имеет изоляторов:

Пара грозозащитных тросов над ЛЭП. Источник.

Принцип простой — это проводник, электрически соединенный с землей, и размещенный как можно выше. Если на данном участке создадутся условия для удара молнией, то наиболее вероятно (но не 100% гарантированно!) разряд произойдет именно в заземленный проводник, а не в окружающие объекты. Сечение проводника выбирается достаточным, чтобы провести разряд к заземлению без повреждений. Громоотвод выполняет собой роль «зонтика» принимая всю стихию на себя. Аналогия с зонтиком становится еще более явной, если посмотреть на формулы расчета радиуса защищаемой громоотводом площади — она тем больше, чем выше громоотвод. Стоит отметить, что существует несколько методик определения защищаемой молниеотводом области, и даже среди специалистов по молниезащиты нет единогласного мнения, какая методика точнее. Например фото из энциклопедии Британника показывает два подхода к расчету защищаемой области — конус по высоте молниеотвода и метод катящейся сферы.

Защищаемые молниеотводом области. Источник.

Громоотвод оказался чертовски важен для использования в деревянных домах. Если раньше удар молнии в крышу мог устроить пожар (энергия разряда на пути в землю частично превращалась в тепло, поджигавшее все вокруг), то перенаправление разряда по металлическому штырю в землю спасало от таких страшных последствий. И если присмотреться — то все современные здания и строения имеют на крыше громоотвод.  А особо важные объекты вообще могут иметь довольно сложные конструкции громоотводов. В тех местах, где надлежащее заземление сделать трудно (на скале, песках) молниезащита становится совсем нетривиальной задачей. Так выглядят громоотводы на газовой станции в Нигерии:

Разработчики решили, что молниеотводы такой формы работают лучше. Источник

Но, если бы способ работал без нареканий, то текст бы оборвался на этом месте. Он и обрывался, до появления чувствительной и нежной аппаратуры.

▍Акт второй. Минимолнии.

Не все высоко поднятые проводники могут быть заземлены, для успешного перенаправления энергии разряда в землю. Например антенны — она должна быть высоко и заземлять ее нельзя, иначе она перестанет принимать сигналы.  А можно ли сделать устройство, которое бы соединяло бы например антенну  с землей только в момент удара молнии, и при этом не оказывала влияния в остальное время?

Можно, и устройство это называется искровой разрядник. Вот пример разрядника для электрооборудования конца 19 века:

Идея защиты проста — между защищаемым проводником и заземлением в разряднике создается минимально допустимый зазор так, чтобы при нормальной работе напряжение не превышало напряжение пробоя зазора. Если в защищаемой линии по какой то причине напряжение возрастет (из-за удара молнии или из-за всплесков от работы электрооборудования) то в зазоре происходит электрический пробой — зажигается электрическая дуга, которая из-за ионизации газа неплохо проводит ток. Именно эта дуга обеспечивает временное электрическое соединение с землей, и гаснет, если напряжение понизилось ниже напряжения гашения дуги.

Но есть две проблемы. Первая — малопредсказуемое напряжение пробоя разрядника — изменение температуры, влажности воздуха — и напряжение изменилось. Немного коррозии — напряжение изменилось. Кривые ручки регулировщика — очень сильно изменилось. Второй недостаток — более фундаментальный — напряжение при котором происходит пробой, и напряжение, при котором дуга гаснет отличаются. Причем напряжение зажигания дуги еще зависит от скорости нарастания напряжения. График на картинке как раз показывает «горб» — пока разрядник не сработал напряжение успевает вырасти, затем зажигается дуга и напряжение падает. Пунктиром показан график напряжения  при защите варистором.

Картинка взята отсюда.

Если первый недостаток получилось побороть, заключив разрядник в герметичную колбу, заполненную заранее приготовленной смесью газов, то со вторым ничего поделать не получилось. Да, разными ухищрениями можно уменьшить разницу между напряжением пробоя и напряжением, когда дуга гаснет, но не радикально. Причем напряжение гашения должно быть ВЫШЕ напряжения источника питания (*с оговорками). Иначе может получиться неприятная ситуация, когда разряд молнии пробил разрядник и ушел в землю, но дуге погаснуть уже не даст генератор, питающий линию. И дуга в разряднике будет гореть пока кто-то из них не сломается. Вот пример разрядника РБ-5, отечественного производства из аппаратуры связи — колба герметична и заполнена инертным газом:

В принципе, до широкого распространения полупроводниковых приборов (где-то до середины 60х) защита в виде разрядников всех устраивала. При должном запасе прочности изоляции, кратковременный всплеск напряжения на пару кВ (пока не сработает разрядник) большинство аппаратуры могло вынести. Но потом в широкий обиход вошли полупроводниковые устройства, для которых даже небольшое кратковременное повышение напряжения означало смерть.

Разрядники применяются до сих пор и очень широко. Причем разрядники выпускаются огромным ассортиментом на все случаи жизни, от маленьких для защиты линий связи до огромных для зашиты линий электропередач. Вот например как выглядит разрядники в плате мини-АТС (цилиндрические с брендом производителя EPCOS), для защиты от импульсов высокого напряжения, которые могут оказаться в телефонной линии:

▍Акт третий. Полупроводники защищают полупроводники.

На замену разрядникам в деле защиты линий (причем не только линий электропередач, но и например линий связи, но пост в основном посвящен линиям электропередач напряжением 220-230В) пришли варисторы. Это особый тип резисторов, сопротивление которых зависит от приложенного напряжения. Вот так выглядит их Вольт-амперная характеристика, которая показывает связь тока через прибор и приложенного напряжения:

Источник

То есть они ведут себя примерно как разрядники. Если напряжение ниже порогового — то их сопротивление велико, есть только мизерный ток утечки. Если напряжение превышает пороговое, то варистор довольно сильно меняет свое сопротивление, начиная хорошо проводить ток. Но, в отличии от разрядника, возвращается в исходное состояние с высоким сопротивлением, стоит лишь напряжению опуститься ниже порогового. В итоге напряжение на контактах варистора получается относительно стабильным, повышение напряжения он скомпенсирует увеличением тока через себя, что не даст напряжению расти.

Чисто технически, варистор представляет собой таблетку спеченной керамики из вещества, которое обладает свойством полупроводника, например  гранул оксида цинка в матрице из смеси оксидов металлов, поэтому его и называют MOV — Metal Oxide Varistor. Гранулы создают огромное количество pn переходов, проводящих ток в одном направлении. Но так как их образуется много и в случайном порядке, для выпрямления тока они бесполезны. Но свойство устраивать электрический пробой при превышении определенного напряжения (а электрический пробой pn перехода обратим), оказалось очень кстати. Регулируя толщину таблетки, можно добиться достаточно стабильного порогового напряжения при производстве. А увеличивая объем шайбы, можно увеличить максимальную энергию импульса, который способен поглотить варистор.

Варистор получился не идеальным, поэтому он не заменил, а лишь дополнил разрядники. За огромный плюс — отсутствие разницы между напряжением пробоя и напряжением восстановления, варисторам прощают токи утечки, ограниченный ресурс (после некоторого количества срабатываний может потерять характеристики), большой габарит при скромных допустимых энергиях разряда. Включенный в линию варистор будет гасить всплески напряжения примерно таким образом:

Так как варистор может со временем прийти в негодность, и например начать проводить ток, когда не требуется, устраивая короткое замыкание, необходимо предусматривать защиту от  короткого замыкания. Большие могучие варисторы на DIN рейку, для защиты силовых линий, часто содержат в себе встроенную защиту. Вот например так выглядит начинка варистора в щиток от IEK:


Видно саму таблетку варистора (синего цвета). К ней присоединены электроды и подпружиненный флажок опирается на электрод, припаянный легкоплавким припоем… Если варистор нагревается свыше разумного (не важно, от пришедшего импульса с молнии, или по причине деградации) то припой плавится, электрод отсоединяется, разрывая цепь, и пружина опускает флажок, показывает неисправность варистора. Если защиты не предусмотреть, неконтролируемый нагрев варистора может устроить пожарчик.

Варисторы небольших размеров можно встретить во множестве электронных устройств, для защиты от случайно пришедших по сети всплесков высокого напряжения. В большинстве удлинителей, именующих себя «сетевыми фильтрами» вся фильтрация сводится к наличию пары варисторов внутри. Вот на фото можно разглядеть варисторы (синего цвета) в разных удлинителях:

▍Акт четвертый. Защита для самых нежных.

Этот раздел я включил полноты ради.

Помимо варисторов и разрядников есть еще устройства защиты — полупроводниковые супрессоры (TVS-transient voltage suppressor), они же TVS-диоды, они же полупроводниковые ограничители напряжения. Это специально спроектированные диоды, которые работают на обратной ветви вольт-амперной характеристики (да, той самой, где происходит обратимый электрический пробой у варисторов). Физически они выполняют ту же самую функцию, что и остальные устройства защиты — не проводят ток, если напряжение в норме и начинают проводить ток, если напряжение почему-то превысило допустимое значение, тем самым выполняя роль ограничителя.   На фото довольно крупный экземпляр, они бывают совсем миниатюрные:

Фото из каталога моей любимой Промэлектроники. TVS-диоды бывают как в выводных корпусах, так и в корпусах для поверхностного монтажа. Бывают сборки с несколькими TVS диодыми для защиты групп линий.

Полупроводниковые ограничители напряжения почти прекрасны всем, кроме одного — величина энергии импульса, который они способны ограничить, поглотив излишки, очень мала.  Создание на их базе защиты, способной хоть как то сравниться по характеристикам с разрядниками или варисторами будет слишком дорогой. Поэтому они нашли применение там, где нужна компактная защита самой нежной и чувствительной электроники от небольших по мощности всплесков, например от статического электричества. Будьте уверены — в вашем телефоне все контакты, что ведут внутрь (USB, наушники) защищены маленькими TVS диодами, которые не позволят напряжению на этих контактах повыситься выше 5 В, даже если вы случайно «щелкните» по ним электричеством снимая свитер.

Если хочется узнать поподробнее про полупроводниковые ограничители напряжения, это можно сделать тут, и тут. Но, если вы не разработчик электроники, то врядли вы будете как-то взаимодействовать с этими устройствами защиты.

▍Акт пятый. Концепция зональной защиты.


А можно поставить в электрощиток на вводе в дом универсальное устройство защиты от импульсных перенапряжений, и не знать проблем? К сожалению — нет.  Хотя бы потому что даже если вы подавили все нежелательные всплески на входе в дом, можно повторно словить их проводкой внутри здания, например когда ток разряда молнии будет следовать от громоотвода в землю где-то за стенкой — электромагнитное поле столь мощное, что в любом проводнике наведет импульс тока. Или например, что в сеть импульс повторно проникнет через телефонный аппарат, придя по телефонной линии. Поэтому процесс построения защиты усложняется — нужно анализировать все пути проникновения электромагнитного импульса от молнии внутрь защищаемого объекта.

Чтобы не ставить на каждое устройство полный комплект устройств для защиты от прямого попадания молнией (было бы слишком дорого), придумали концепцию зональной защиты, и соответствующих классов устройств. Объект, электрическая начинка которого защищается от повреждения молнией, разделяется на зоны, согласно степени воздействия  молнией. Все линии (силовые, связи), переходящие из зоны в зону, на границе зон оснащаются устройствами защиты. Проще понять это на абстрактном примере дома:

Картинка взята из руководства OBO Betterman. Lightning protection guide

(LPZ — lightning protection zone — зона защиты от молнии)
Зона 0а — это зона, куда непосредственно может ударить молния. В проводнике может оказаться полный ток молнии
Зона 0b — это зона, куда молния напрямую уже не ударит, но в проводнике может оказаться частичный ток молнии — как из-за электромагнитного поля, так и просто из-за пробоя изоляции.
Зона 1 — Это зона, где может появиться наведенный молнией ток.
Зона 2,3,4 и т.д. — зона, где наведенный молнией ток ослаблен и меньше, чем в вышестоящей зоне. Зон может быть сколь угодно много, как в матрешке.

То есть понятно — при переходе из зоны в зону, электромагнитный импульс молнии ослабевает, в том числе из-за устройств защиты на границах зон, и за счет экранирования и ослабления в пространстве. Например бетонная стенка с заземленной арматурой внутри может служить таким экраном. Зоны обычно  разделяются по естественным препятствиям — стена, корпус шкафа, корпус прибора и т.д.

И вот для удобства, устройства защиты разделили на классы. И когда понятно деление на зоны — достаточно взять из каталога устройство соответствующего класса.
Класс I (B)- это устройства способные выдержать частичный ток молнии (зона 0), и предназначены для установки на вводном щите. (где зона 0 переходит в зону 1)
Класс II (С)- это устройства способные выдержать меньший ток, чем устройство класса I, но они дешевле и напряжение, до которого они срежут импульс меньше. Предназначены для установки на распределительном щите. (Как раз где  зона 1 переходит в зону 2)
Класс III- (D)Это устройства способные выдержать импульс еще меньшей величины, чем класс II, но зато срезающие импульс почти полностью. И предназначены для установки уже на щит конечного потребителя. Многие грамотно спроектированные устройства имеют подобную защиту уже внутри себя.

Почему бы не ставить везде устройства защиты  класса I? А просто потому что установка устройства класса I там, где с лихвой хватит класса III, например у конечного потребителя — неоправданный перерасход бюджета. Это как строить полностью укомплектованную пожарную часть там, где достаточно поставить огнетушитель. Кроме того, чем брутальнее и мощнее устройство защиты, тем больше величина напряжения импульса, который просачивается через нее в потребителя. (тем выше напряжение ограничения, см картинку выше)

Картинка из руководства Шнайдер электрик

Но если хочется всё и сразу, существуют комбинированные устройства, например  Класс I+II которые соответствуют параметрам сразу нескольких классов, но за такую универсальность производитель попросит дополнительных денег.

▍Акт шестой. Стандартная молния.

Каждый удар молнии уникален по своим характеристикам. Но устройства защиты нужно как то тестировать, сравнивать, разрабатывать, поэтому пришлось договариваться о некоторых характеристиках электромагнитного импульса, который наводит молния. Поэтому на лицевой панели устройств защиты, а также в документации можно увидеть: (поглядите маркировку на распиленном УЗИПе от IEK на фото выше)

  1. Пиковое значение тока, который проходит через прибор без его повреждения, в тысячах ампер (кА). Например 50 кА — означает, что пиковый ток в импульсе достигает 50 000 Ампер.
  2. Запись о длительности  импульса, в микросекундах. Она указывается через дробь. Например 10/350 означает, что импульс нарастает до максимального значения тока за 10 микросекунд, а потом плавно спадает до нуля за 350 микросекунд. Или например 8/20. (10/350 — длинный и мощный импульс, характерный для прямого попадания разрядом, а 8/20 — короткий, более характерный наведенному от молнии неподалеку)
  3. Рабочее напряжение. Это нормальное напряжение в линии, к которой подключается защита.
  4. Напряжение ограничения, в вольтах. Это величина остаточного напряжения импульса на клеммах устройства (позже укажу почему это важно), до которого устройство защиты сможет его уменьшить.
  5. Класс устройства (см. часть про зональную концепцию).

Стоит отметить, что даже многолетняя собранная статистика не исключает, что конкретно вы не согрешили настолько, что по вам ударит аномально мощная молния, но вероятность этого весьма низкая. (Например МЭК 62305-1 считает, что даже по самым отъявленным грешникам молнии с зарядом более 300 Кл выпускаются менее чем в 1% случаев.)

Вот прекрасная в своей наглядности иллюстрация из руководства OBO BETTERMANN, где иллюстрируется статистика разрядов молний по току, и как разные уровни защит от молний (LPL) их покрывают:

Так как процесс предсказания тока у молнии, которая ударит в объект в будущем сродни процессу предсказания курса биткоина (то есть гадание), и придумали разные уровни защит от молний, и картинка выше наглядно показывает как они соотносятся. Необходимый уровень защиты выбирается согласно оценке рисков ущерба от попадания молнии.

▍Акт седьмой. Портим всё забыв про мелочи.

Описанное выше актуально для сферического коня в вакууме. В реальной жизни есть огромное количество тонкостей, которые опускаются для упрощения, но рано или поздно дадут о себе знать. Вот примеры некоторых из них:

1. Собственная индуктивность и сопротивление проводников.
Отрезок  провода  длинной 1 метр  обладает индуктивностью примерно  1 мкГ и ненулевым сопротивлением. А значит при высоких темпах нарастания тока (а для молний они как раз характерны) лишний запас провода может свести смысл защиты к нулю. Многие производители в своих руководствах явно указывают, что длина проводников от линии к клеммам устройства защиты должны быть максимально короткой, и в сумме не превышать 0,5 м. Вот наглядная картинка из руководства OBO BETTERMANN, как лишние 2 метра провода повлияли на защиту. Если УЗИП (оранжевый) срезает пришедший импульс до величины 1,5 кВ, то на проводниках падает дополнительно 2 кВ, и в итоге в нагрузку придет импульс напряжением 3,5 кВ.

Весьма изящным способом уменьшить влияние проводников является подключение вот таким образом:


Некоторые производители, для удобства монтажа вообще предусматривают двойные клеммы, например как на этом устройстве (отечественное кстати):


2. Сопротивление играет роль.
При токе разряда молнии в 50 кА, на проводнике с сопротивлением в 0,1 Ом при протекании тока создастся разница напряжения в 5 кВ. Поэтому УЗИП следует подключать максимально толстым проводником, не менее 6 мм2, даже если сама по себе линия 2,5 или даже 1,5 мм2. Если вы подключили УЗИП V-образно как на фото выше, то толстым у вас останется только заземляющий проводник.

3. Устройства защиты без согласования бесполезно соединять параллельно.
Может закрасться мысль, что если параллельно поставить несколько устройств защиты, то мы получим Мегазащиту. Но это так не работает. Когда по линии прилетит импульс — то первым сработает кто-то один, и примет на себя весь удар. Чтобы каскад из защит работал согласованно, и по мере необходимости в дело поглощения импульса подключались все более и более мощные устройства, они должны согласоваться специальными дросселями. Но так как расчет такого каскада задача непростая, то и устройства согласования в каталогах производителей УЗИП найти крайне трудно. Производитель  стал выпускать комбинированные устройства согласуя их внутри сам. То есть вместо установки рядом УЗИП II и УЗИП III класса нужно взять готовое устройство II+III класса.

4. Ставим автомат вместо предохранителя.
Если вы внимательно прочитаете документацию на устройства защиты от импульсных перенапряжений, то многие производители требуют установку предохранителей для защиты от короткого замыкания — если устройство выйдет из строя, оно может устроить короткое замыкание защищаемой линии на землю. И при таком сценарии лучше, если сгорит предохранитель и отключит устройство защиты от линии, чем это сделает вводной автомат обесточив нагрузку. Но см. п.1 — глупо сначала добиваться минимальной индуктивности проводников, чтобы затем воткнуть автоматический выключатель, внутри которого  электромагнитный расцепитель в виде катушки индуктивности. В итоге автоматический выключатель будет работать как дополнительные виртуальные несколько метров провода (см п1) увеличивая напряжение импульса, дошедшего в нагрузку. И именно поэтому крайне желательно использовать именно предохранители. (это еще если не брать во внимание, что есть опасность что импульс тока в 10-50-100 кА вызовет спекание контактов в автомате)

5. УЗИП на базе варисторов имеют ток утечки.
Он небольшой, но при этом не нулевой. И тут здравый смысл отходит на второй план перед электросетевой компанией, которая имеет свое мнение на то, где должно быть установлено УЗИП. Так что может получиться так, что УЗИП вы поставите после счетчика. Но так как счетчик — собственность электросетевой компании, можете делать кулфейс когда после грозы сгорит счетчик и вам придут его менять.

6. Отсутствие контроля.
Представьте, что вы оснастили УЗИПами электрощит, который питает  метеостанцию в безлюдном месте. Рядом прошла гроза, УЗИПы выполнили свою функцию, спасли начинку станции от повреждения, но погибли сами — их отключила защита. И получается ситуация, когда станция нормально работает, но при этом не имеет защиты, и следующая гроза может вывести ее из строя. Именно от таких неприятных ситуаций, существуют УЗИП с контактами, которые размыкаются/замыкаются, когда защита выходит из строя (например на фото УЗП-220 это контакты 4 и 5). В таком случае умерший УЗИП может подать сигнал в систему диспетчеризации, что пора высылать монтажника для замены защиты.

▍Акт восьмой. Практический.

Дочитавший до этого места наверняка уже задался вопросом — а зачем мне надо УЗИП и как его включать? Переходим к конкретике.

Если вы живете в частном доме и электричество в дом поступает по воздушной линии электропередач, то вам требуется УЗИП, причем класса I. (В некоторых случаях может хватить и II класса, но тут уже  очень много «но») Если вы живете в многоквартирном доме, все инженерные системы которого в порядке, то в УЗИП  не является устройством первой необходимости, но хуже не сделает. Типовая схема использования УЗИПов выглядит вот так (опять взял картинку из руководства OBO BETTERMANN:

Ввод слева. УЗИПы класса I располагаются сразу после вводного автомата (ну или после электросчетчика, если электросетевая компания желает) по одному на каждую фазу.  Видно повторное заземление (5) и TN-C превращается в TN-C-S.  Без заземления УЗИП не работает — куда ему отводить энергию импульса, кроме как в землю?

Внутри здания на промежуточном щите, например этажном, используются УЗИП класса II, которые подавят то, что смогло пройти через УЗИПы на вводе. Обратите внимание — между N и PE стоит УЗИП специально для этого предназначенный, так как в норме напряжение между N и PE невелико.

Ну и наконец рядом с потребителем ставится УЗИП класс III. У хорошо спроектированных устройств внутри уже предусмотрена производителем защита от перенапряжений.

▍Резюме:


  1. Электронная техника у вас дома уязвима перед электромагнитными импульсами, которые может принести разряд молнии, даже неподалеку.
  2. Для защиты от этих импульсов (а также от импульсов, возникающих при коммутации индуктивных нагрузок) придумали УЗИП — устройства защиты от импульсных перенапряжений. УЗИП может содержать внутри себя как разрядник, так и варистор, все зависит от характеристик, которые должен обеспечивать УЗИП.
  3. УЗИП выпускают разных классов, от I до III. Для установки на вводной щит дома подходят устройства I класса. Но существуют также устройства, способные обеспечить защиту, соответствующую нескольким классам.
  4. Весь защитный эффект от УЗИП можно свести на нет некорректным подключением.
  5. УЗИП может выйти из строя, и при отсутствии регулярного осмотра это останется незамеченным.

Видео версия поста, не слово в слово, но близко к тексту, для тех кто любит слушать и смотреть:

▍Что еще почитать для углубления знаний:

1. Прежде всего нормативная документация. Говорим Окей, гугл, «Устройство молниезащиты зданий, сооружений и промышленных коммуникаций: Сборник документов. Серия 17. Выпуск 27» и внимательно изучаем, в сборнике собраны нормативные документы: Инструкция по устройству молниезащиты зданий и сооружений (РД 34.21.122-87) и Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (СО 153-34.21.122-2003) а также отдельно гуглим и смотрим ГОСТ Р МЭК 62305. Он состоит из большого количества частей, но ни один блогер в интернете не может быть выше нормативных требований.

2. Есть прекрасный сайт

https://zandz.com

Ребята не только записали вебинары с приглашенными специалистами сферы, но и сделали их стенограммы, так что можно быстро прочитать вместо просмотра видео. Все это великолепие они выложили бесплатно, но потребуется регистрация. Респект. Видеозаписи вебинаров у них на ютуб канале лежат и доступны без регистрации, например вебинары проф. Базеляна (

https://www. youtube.com/watch?v=R-KbjRb4Yuw&list=PLjJ4-onvu94qpAA_zsCLkrTzJMBLXU0ns

)

3. Неплохая статья на хабрахабре

https://habr.com/ru/post/188972/

4. Многие производители выпускают руководства по проектированию — такая завуалированная реклама, где простым языком объясняются основы и заодно приводится выдержки из каталога оборудования, которое решает проблему. На русском языке есть прекрасное руководство от шнайдер электрик (

https://www.se.com/ru/ru/download/document/MKP-CAT-ELGUIDE-19/

), нас интересует раздел J, посвященный защите от перенапряжений. В нем все довольно просто, наглядно и точно.

5. Если вы владеете английским языком, то фирмы, производящие все для молниезащиты, выпустили замечательные руководства. Конечно с перекосом в свою продукцию, но как видите некоторые иллюстрации я позаимствовал у них. Это

OBO BETTRMAN lightning protection guide

Dehn lightning protection guide

.

Также хочу выразить благодарность Павлу, Денису, Евгению и Виктору за рецензирование черновика статьи.
Другие статьи цикла: Про предохранители, про автоматические выключатели, про УЗО, про выбор автоматического выключателя, про устройства защиты.


назначение, принцип работы выбор по классу и установка по схеме

С началом грозы принято отключать дорогостоящие бытовые приборы из розетки, а ethernet кабели от компьютеров. Это нужно, чтобы защитить их от неожиданного удара молнии в ЛЭП и выхода из строя из-за перенапряжения. Но есть способ гораздо удобнее — установить на ввод в квартиру устройство защиты от импульсных перенапряжений.

Причины и последствия импульсных перенапряжений сети

Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:

  1. Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
  2. Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.

Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.

Для чего нужно УЗИП

Задача УЗИП состоит в защите электроприборов от перенапряжения. Устройство оберегает бытовую сеть от скачков тока в следующих случаях:

  • неполадки на трансформаторной подстанции и замыкания ВВ проводов на НВ линию;
  • прямое попадание грозового разряда в ЛЭП;
  • разряд молнии вблизи воздушных линий электроснабжения или жилых зданий.
УЗИП для частного дома

Строение и принцип работы УЗИП

Принцип работы УЗИП основан на зависимости его сопротивления от приложенного к контактам напряжения. Например, если вольтаж в сети равен типичным 220 В, то сопротивление устройства составляет порядка 1-100 Мом. Если напряжение возрастает до критического уровня, то УЗИП резко снижает сопротивление до единиц ом и шунтирует квартиру от чрезмерно высоких токов.

Внутри устройства имеется полупроводниковый элемент — варистор. Именно он за несколько микросекунд сбрасывает сопротивление до минимальных значений.

Дополнительная информация. Варистор — это круглая, светло-синяя или черная радиодеталь с двумя ножками. Ее диаметр составляет от 7 до 30 мм. Варистор часто встречается в бытовой технике. Он включается между фазным и нулевым проводами электроприбора или впаивается в его плату. В случае с домашней техникой варистор также служит для защиты от перенапряжения, только не всей квартиры, а конкретного бытового прибора, в котором он установлен.

Виды УЗИП

Существующие УЗИП отличаются по быстроте срабатывания. Различия объясняются неодинаковыми конструкциями и принципами работы приборов. Поэтому принято выделять 3 вида устройств молниезащиты:

  1. Искровые промежутки (разрядники). Представляют собой воздушный зазор между электродами.
  2. Варисторные ограничители перенапряжения (ОПН). Полупроводниковые устройства. Резко снижают сопротивления при возрастании напряжения. Встречаются в УЗИП, устанавливаемых в квартирные щитки, на платах бытовой техники и на опорах ЛЭП.
  3. Комбинированные устройства. Сочетают в себе оба из перечисленных типов устройств.

Искровые промежутки (разрядники)

Наиболее старый и простой тип защиты от перенапряжения. Как правило, разрядники используются в трансформаторных подстанциях и распределительных устройствах. На таких объектах возможны резкие скачки напряжения при коммутационных процессах.

Имеется 2 электрода. Один подключается к заземлению. Второй к защищаемой линии. Пока разность потенциалов между электродами находится в пределах нормы, разрядник обладает большим сопротивлением воздуха. Как только напряжение между электродами превышает заданный уровень, происходит пробой воздушного промежутка (пролетает искра). Разрядник на доли секунды сбрасывает сопротивление.

УЗИП на основе искровых разрядников

Напряжение срабатывания разрядника регулируется расстоянием между электродами. Чем оно больше, тем выше вольтаж, при котором произойдет пробой воздушного промежутка.

Важно! Если долго проходить в помещении в синтетической куртке, а потом прикоснуться к чему-то металлическому, то между пальцем и железным предметом пролетит искра. Произойдет пробой воздушного промежутка между заряженной от трения курткой и железным предметом. Разрядники работают по аналогичному принципу.

Варисторные ограничители перенапряжения

Низковольтный вариант данного устройства применяется в квартирных электрощитах. Для этого на корпусе предусмотрено стандартное крепление под DIN-рейку. Прибор работает с напряжениями 220/380 В и предохраняет от перенапряжения отдельную квартиру или трехфазного потребителя.

Высоковольтный вариант устанавливается на линии 10 кВ и выше. Обладает сравнительно большими размерами и мощным керамическим корпусом белого или коричневого цвета. Данный ограничитель импульсных перенапряжений еще называют вентильным разрядником (не путать с искровым промежутком).

Ограничитель импульсных напряжений на варисторах

Комбинированные устройства

Комбинированные УЗИП сочетают достоинства от вышеперечисленных защитных устройств. Основные из них таковы:

  1. Низкое напряжение срабатывания варисторных ОПН. Как следствие, высокая чувствительность к самым незначительным превышениям напряжения.
  2. Большая рассеиваемая мощность искровых разрядников. Некоторые модели способны пропускать токи в десятки килоампер.

Классы УЗИП

Различные модели УЗИП отличаются по типу защищаемого потребителя, месту установки и техническим требованиям. Поэтому их принято разделять на 3 класса.

Класс УЗИП Назначение устройства Технические требования Предельный импульсный ток, кА
1-й (B) Защита от прямых ударов молнии, бросков напряжения при КЗ. Необходима защита от прямого прикосновения человека к частям устройства. Отсутствиериска возгорания УЗИП при его неисправности или КЗ в системе электроснабжения. От 0,5 до 50 кА при импульсном токе в течение 350 мкС.
2-й (C) Для защиты ЛЭП и подстанций от перенапряжений при переключениях. Как дополнительные мерызащиты при ударе молнии. Аналогичные1 классу. Защита от прямого прикосновения. Отсутствие риска возгорания при КЗв сети или неисправности защитного устройства. 5 кА при импульсе в 20 мкС.
3-й (D) Для гашения остаточных сетевых помех и скачков напряжения. Защита от низковольтного перенапряжения между фазой и нулем. От прямого прикосновения ивозгорания. До 1,5 кА при 20 мкС

Маркировка защитного устройства

Для правильного выбора и установки устройства необходимо ознакомиться с его маркировкой. Она представлена в буквенно-цифровом виде и находится на корпусе УЗИП. Расшифровка обозначений приведена ниже.

  • L/N — винтовые клеммы для подключения кабелей защищаемой сети;
  • символ «земля» — клемма для подключения нулевого защитного проводника;
  • зеленый флажок на корпусе — указывает на исправность прибора;
  • Un — номинальное рабочее напряжение защищаемой сети;
  • Umax — предельное допустимое напряжение;
  • 50 Гц — частота тока;
  • In — номинал разрядного тока;
  • Imax — предельный разрядный ток, который способны выдержать устройство;
  • Uр — напряжение срабатывания УЗИП.

Схемы подключения

Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:

  • однофазная, TN-S;
  • однофазная, TN-C;
  • трехфазная, TN-S;
  • трехфазная, TN-C;

УЗИП с однофазным питанием и системе TN-S

На картинке ниже представлена схема подключения. УЗИП включается после вводного автоматического выключателя. Как фазный, так и нулевой провод, на защитное устройство поступает с автомата. Заземляющий же проводник идет с PE клеммника.

УЗИП с однофазным питанием по системе TN-C

Применяется однополюсной прибор. Заземляющий проводник отсутствует. Поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. При критическом скачке напряжения в L проводе лишний ток, минуя квартиру, потечет в N провод.

УЗИП с трехфазным питанием и по системе TN-S

Устройство защиты устанавливается после вводного автомата. Если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. Все 3 фазы поступают на УЗИП в соответствии с маркировкой его клемм. При таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.

УЗИП с трехфазным питанием по системе TN-C

В трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. Но при необходимости допустимо воспользоваться и 3 однофазными УЗИП. Независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.

Автоматы или предохранители перед УЗИП

На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.

УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.

В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.

Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям. В идеале лучше иметь пробки на запас или установить автоматические выключатели.

Ошибки монтажа УЗИП

При правильной установке защитное устройство гарантирует безопасность бытовых электроприборов. Распространенные примеры ошибок при монтаже УЗИП следующие:

  1. Монтаж УЗИП в щиток с неисправным заземлением. Для работы устройство требует надежной земли. Поэтому перед установкой необходимо убедиться в исправности заземления.
  2. Неправильное подключение с нарушением схемы. Корректно подключить УЗИП может только человек, разбирающийся в электрике. В случае затруднений следует обратиться к типовым схемам в технической документации на устройство.
  3. Применение защитного аппарата, не подходящего по классу. При ударе молнии такое устройство в лучшем случае выйдет из строя. В худшем оно пропустит высокое напряжение в квартирную электрическую сеть.

В подавляющем большинстве случаев УЗИП защитит ваш дом от импульсных перенапряжений. Они возникают в результате ударов молнии вблизи ЛЭП или аварий на трансформаторных подстанциях. Подобные вещи невозможно предсказать заранее, поэтому защита от перенапряжений пойдет на пользу любому электрощиту.

Независимо от того, приобретается УЗИП для частного дома или квартиры, следует обратить внимание на его класс. Другие важные параметры — это минимальное напряжение срабатывания, предельный импульсный ток КЗ и количество защищаемых фаз. Не менее значимо правильно выбрать схему подключения прибора к сети.

Устройство защиты от импульсных перенапряжений (УЗИП): назначение, принцип работы выбор по классу и установка по схеме

Ограничитель импульсных напряжений серии ОПВ-C/4P In 20кА 400В (с сигнализацией) EKF PROxima

Технические характеристики Ограничителя импульсных напряжений ОПВ-С/4P In 20кА 400В с сигн.

EKF PROxima

Уровень защиты напряжения N-PE: 1,8.
Максимальное постоянное напряжение переменного тока: 440.
Максимальное поперечное сечение гибкого проводника (тонкожильный: 25.
Уровень защиты напряжения L-N: 1,8.
Максимальное сечение твердого проводника (в твердой оболочке, многожильный): 16.
Способ/место крепления: DIN рейка 35 мм.
Конструктивный размер: 4 модуля.
Вес: 0,61.
Серия: PROxima.
С удаленным сигналом: да.
Сигнал на устройстве: Оптическая.
Встроенный резервный предохранитель: нет.
Гарантия, лет: 7.
Уровень защиты напряжения: 1,8.
Тип полей: 4.
Номинальный сброс импульсного тока (8/20): 20.
Номинальное напряжение переменного тока: 400

Преимущества Ограничителя импульсных напряжений ОПВ-С/4P In 20кА 400В с сигн. EKF PROxima

Наличие подключаемого аварийного контакта
Насечки на контактах
Наличие индикатора износа
Сменный варисторный модуль
Возможность подключения посредством гребенчатой и U-образной шины

Применение Ограничителя импульсных напряжений ОПВ-С/4P In 20кА 400В с сигн.

EKF PROxima

Ограничитель импульсных перенапряжений ОПВ является устройством защиты от импульсных перенапряжений (УЗИП), ограничения переходных перенапряжений и отвода импульсов тока в сетях 380/220 В переменного тока частоты 50 Гц.
Ограничитель предназначен для защиты:
1) от грозовых перенапряжений электроустановок, возникающих при непосредственном ударе молнии в наружную цепь, при косвенном ударе молнии (внутри облака, между облаками или в находящиеся вблизи объекты), при ударе молнии в грунт
2) от коммутационных перенапряжений электроустановок, появляющихся в результате:
– переключений в мощных системах энергоснабжения
– переключений в системах электроснабжения в непосредственной близости от электроустановок
– резонансных колебаний напряжения в электрических схемах
– повреждений в системах, например при КЗ на землю, дуговых разрядах.
Гарантийные обязательства составляют 5 лет.

  • Способ монтажа DIN-рейка (с Ω-профилем) 35 мм
  • Ширина 0. 07 м.
  • Код товара EKF#opvc4
  • Высота 0.1 м.
  • Глубина 0.08 м.
  • Частота 50 Гц
  • Количество проводников (без заземления) 4
  • Конструктивный размер (габарит) 4 модуля
  • Номин. напряжение перемен. тока (AC) 400 В
  • Уровень защиты по напряжению 2 кВ
  • Номин. сброс импульсного тока (8/20) 20 кА
  • Сигнал на устройстве Оптический
  • Макс. длительное напряжение перемен. тока АС 440 В
  • Уровень защиты по напряжению L-N 2 кВ
  • Уровень защиты по напряжению N-PE 2 кВ
  • Макс. сечение жесткого проводника (одно-/многопроволочного) 25 мм²
  • Макс. сечение гибкого проводника (тонкопроволочного) 16 мм²
  • Напряжение 380 В
  • Вес 0. 4 кг.
  • Уровень защиты по напряжению L-PE/N-PE 1.8 кВ
  • Материал проводника Медь
  • Диапазон рабочих температур от -40 до +55
  • Сфера применения Промышленное и бытовое
  • Тип изделия Ограничитель импульсных перенапряжений
  • Материал изделия Пластик
  • Степень защиты IP IP20
  • Род тока Переменный (AC)
  • Максимальное сечение подключаемого кабеля 16 мм2
  • Климатическое исполнение УХЛ4
  • Нормативный документ ГОСТ Р51992-2002 (МЭК 61643-1-98)
  • Количество силовых полюсов 4
  • Толщина материала изделия 4
  • Сигнализация в устройстве Оптический
  • Уровень напряжения защиты 1. 8 кВ
  • Уровень напряжения защиты N-PE 1.8 кВ
  • Уровень напряжения защиты, тип l-n 1.8 кВ
  • Номинальное напряжение постоянного тока DС В
  • Наибольшее длительное напряжение постоянного тока DC В
  • Номинальный разрядный ток In 20 кА
  • Сертификат соответствия POCC CN.АГ75.B11852
  • Исполнение полюсов 4
  • Количество модулей DIN 4

Сертификаты товара

  • Сертификат соответствия

УЗИП, разрядник, устройство защиты от импульсных перенапряжений для дома

УЗИП предназначен для защиты от импульсных перенапряжений возникающих при кратковременных скачках напряжения, длительностью доли миллисекунды, но значение этих скачков может быть равно и 1000 вольт  и 10000 вольт. Изоляция кабелей и проводов  электропроводки в домах или квартирах рассчитана на кратковременные скачки напряжения равные, примерно, 1500 вольт. Если величина напряжения при кратковременном скачке больше расчетной, то возникает пробой изоляции, а пробой изоляции — это искра — одна из самых распространенных  причин пожара.

Принцип работы разрядника основан на отводе в землю токов, вызванных перенапряжениями.

Схема подключения:

Скачать схему подключения разрядника перенапряжений для дома.

Существует несколько ступеней (уровней) защиты от импульсных перенапряжений. Первый и самый распространенный уровень защиты от импульсных скачков напряжений  возникающих из-за ударов молнии. В этом случае модуль УЗИП устанавливают в ВРЩ (вводно-распределительном щите) в самом начале схемы, перед счетчиком. Это защита от пожара, который может  возникнуть  от искры при пробое изоляции кабелей электропроводки, а  пробой изоляции это следствие импульсных перенапряжений.  Любой дом который подключен к воздушным электрическим линиям должен иметь защиту от импульсных перенапряжений. Это обязательное требование при сдаче отдельно стоящего  строения  и оформлении документов. Первый уровень может защитить дом от пожара, но не защитит бытовую технику и электронику, так как не способен снизить импульсное напряжение до уровня безопасного для электроники. Импульсные скачки напряжения возникают не только от ударов молнии, но и по другим причинам. Следующая по значимости причина — это отключение очень мощных потребителей. Ситуации могут быть разные — например отключили соседнюю большую группу домов или рядом промзона с цехами и отключили цех. Скачки напряжения возникают и по менее значимым причинам — при работе сварочным аппаратом, при включении оборудования с электродвигателем и по ряду других причин.

Для защиты бытовой техники и электроники существует следующий, второй уровень защиты. В этом случае модули УЗИП устанавливают в этажных щитках, на выбранные группы, например кухонная розеточная группа или на группу розеток для компьютера.

Следующая, третья ступень защиты служит для защиты очень дорогой электроники и устанавливается либо модуль УЗИП в щитке для отдельной розетки, либо непосредственно около прибора в блоке розеток, либо как наружный сетевой фильтр с защитой от перенапряжений.

Устройство рассчитано на 5 — 15 срабатываний как разрядник, затем необходима замена варисторного модуля.

Монтируется на DIN-рейку в любом щитке. УЗИП — оборудование дорогое, но по сравнению с возможным ущербом, например  от пожара возникшего из-за импульсных перенапряжений  —  расходы оправданные.

Похожие статьи

  1. Трёхфазный ограничитель мощности ОМ-310.
  2. ОМ-110: ограничитель мощности однофазный.
  3. Стабилизатор напряжения для дома.
  4. УЗО ‒ устройство защитного отключения.
  5. Дифференциальный автомат.

Устройства защиты от перенапряжения

Перенапряжение, амплитуда которого может в 20 раз превысить номинальное напряжение, как правило, возникает в результате атмосферных разрядов, коммутационных процессов в распределительных электрических сетях и коммутационных процессов силовых элементов и устройств в технологических цепях.

Без устройства защиты повышенное напряжение достигает электрооборудование. Импульс тока протекает через оборудование и выводит его из строя.

Устройства защиты от перенапряжений ограничивают импульсные перенапряжения и отводят импульсы тока в землю. Они также ограничивают перенапряжения до значений, совместимых с характеристиками подсоединенных устройств или оборудования.

Устойчивость к перенапряжениям является составной частью электромагнитной совместимости, т.е. способности электрооборудования нормально работать при наличии электромагнитных помех. Вот почему защита от перенапряжения является актуальной задачей.

Устройства защиты от перенапряжения (УЗИП) обладают очень большим сопротивлением при номинальном напряжении и, следовательно, не проводят электрический ток.

Устройство защиты от перенапряжений содержит, как минимум, один нелинейный компонент:
– при нормальной работе устройства защиты от перенапряжения действуют как разомкнутая цепь.
– при возникновении перенапряжения устройство ведет себя, как замкнутая цепь.

Основными параметрами устройства защиты от перенапряжений являются его способность замыкать большие токи на землю (т.е. рассеивать значительное количество энергии) и ограничивать напряжение на минимально возможном уровне.

Требования к внутренней защите с использованием концепции зон молниезащиты приводятся в стандарте IEC 1312-1. В международной норме IEC 61643-1 приводится классификация ограничителей перенапряжения (I – B, II – C и III – D).

УЗИП класса I (B) – тип 1 предназначены для защиты от перенапряжений категории III согласно стан- дарту ГОСТ P.51 992-2002, в котором установлено максимальное перенапряжение 4 кВ за счет координации изоляции для сетей 230/400 В. Эти УЗИП служат для выравнивания потенциалов при прямом попадании молнии. Они устанавливаются в месте ввода электроэнергии в главном распределительном щите.

УЗИП класса II (C) – тип 2 предназначены для защиты от перенапряжений категории II, для которой установлено максимальное перенапряжение 2,5 кВ за счет координации изоляции для сетей 230/400 В. Эти УЗИП служат для отвода энергии импульсов перенапряжения в распределительной электросети объекта. Они устанавливаются в основном во второстепенных распределительных щитах. Их также можно устанавливать в главном распределительном щите вместе с УЗИП класса I, однако, в этом случае между ограничителями следует установить импульсный разделительный дроссель.

УЗИП класса III (D) – тип 3 предназначены для защиты от перенапряжений категории I, для которой установлено максимальное перенапряжение 1,5 кВ за счет координации изоляции для сетей 230/400 В. Эти УЗИП служат для отвода энергии импульсов перенапряжения в конце цепи с розетками или в распределительных щитках электрооборудования.

Устройство защиты от импульсного перенапряжения (УЗИП)

Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.

Причины появления ИП

Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.

Назначение УЗИП

Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от  резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).

В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.

Виды УЗИП

По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.

По типу нелинейного элемента делятся на:

● УЗИП коммутирующего типа;

● УЗИП ограничивающего типа;

● УЗИП комбинированного типа.

  1. УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
  2. УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
  3. Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.

Классы УЗИП

УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.

УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.

УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.

Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.

Схемы подключения УЗИП в частном доме

УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.

Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.

По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.

Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.

Что такое СПД | Институт защиты от перенапряжения NEMA

Устройство защиты от перенапряжения (SPD) — это защитное устройство для ограничения переходных напряжений путем отклонения или ограничения импульсного тока и способное повторять эти функции, как указано. УЗИП ранее были известны как ограничители перенапряжения переходных процессов (TVSS) или вторичные разрядники перенапряжения (SSA). Вторичный ограничитель перенапряжения — это устаревший термин (часто используемый коммунальными службами) и чаще всего используется для устройства, которое не было сертифицировано по ANSI / UL 1449.В 2009 году, после принятия стандарта ANSI / UL 1449 (3-е издание), термин «ограничитель скачков напряжения» был заменен на «Устройство защиты от скачков напряжения».

Защита от перенапряжения — это экономичное решение для предотвращения простоев, повышения надежности системы и данных, а также устранения повреждения оборудования из-за переходных процессов и скачков напряжения как на силовых, так и на сигнальных линиях. Подходит для любого объекта или нагрузки (1000 вольт и ниже). Типичные приложения SPD в промышленных, коммерческих и жилых помещениях включают:

  • Распределение энергии, шкафы управления, программируемые логические контроллеры, электронные контроллеры двигателей, мониторинг оборудования, цепи освещения, измерения, медицинское оборудование, критические нагрузки, резервное питание, ИБП, ОВК оборудование
  • Цепи связи, телефонные или факсимильные линии, каналы кабельного телевидения, системы безопасности, цепи сигнализации, развлекательный центр или стереооборудование, кухня или бытовая техника

Согласно Национальному электротехническому кодексу® (NEC) и ANSI / UL 1449, УЗИП имеют следующие обозначения:

  • Тип 1: Постоянно подключенные, предназначены для установки между вторичной обмоткой служебного трансформатора и стороной линии устройства максимального тока служебного выключателя (служебное оборудование). Их основная цель — защитить уровни изоляции электрической системы от внешних скачков напряжения, вызванных молнией или переключением батареи конденсаторов электросети.
  • A Тип 2: Постоянно подключенный, предназначен для установки на стороне нагрузки устройства перегрузки по току сервисного отключения (сервисное оборудование), включая расположение фирменных панелей. Их основная цель — защитить чувствительную электронику и нагрузки на базе микропроцессоров от остаточной энергии молнии, скачков напряжения, генерируемых двигателем, и других внутренних событий.
  • Тип 3: УЗИП в точке использования, установленный на минимальной длине проводника 10 метров (30 футов) от электрической сервисной панели до точки использования. Примеры включают в себя SPD, подключаемые шнуром, с прямым подключением и с розеткой.

. Для получения дополнительной информации о типах SPD (включая тип 4, тип 5 и компоненты в сборе) см. Документ под названием «Рекомендации по применению типа SPD» на странице справочных материалов.

Услуги по тестированию и сертификации устройств защиты от перенапряжения

Наш проверенный опыт в области науки и техники безопасности позволяет нам обслуживать всю отрасль устройств защиты от перенапряжения (SPD), от простых SPD для легких коммерческих и жилых приложений до сложных SPD, которые отслеживают и записывают количество скачков и указывает состояние SPD.Наш обширный и гибкий портфель услуг охватывает исследования и разработки, доступ к мировому рынку, установку и конечное использование.

Обзор

УЗИП

предназначены для защиты от скачков и скачков напряжения, в том числе вызванных прямо или косвенно молнией. УЗИП используются как в виде законченных устройств, так и в качестве компонентов в электрическом оборудовании, установленном в системах питания переменного (AC) и постоянного (DC) тока.

Использование SPD часто определяется конечным пользователем или предписывается кодексом или местными требованиями.Например, Национальная ассоциация противопожарной защиты (NFPA) 780 и UL 96A, стандарт требований к установке систем молниезащиты, требуют использования защиты от перенапряжения как неотъемлемой части системы молниезащиты. Кроме того, Национальный электрический кодекс (NEC®), NFPA 70, требует установки устройств защиты от перенапряжения (статья 285):

  • В тех случаях, когда средства отключения определены для обеспечения нагрузки аварийной системы в лифтах, лифтах, эскалаторах, движущихся дорожках, подъемниках платформ и лестничных подъемниках
  • Для систем данных критических операций оборудования информационных технологий
  • Для промышленного оборудования со схемами защитной блокировки
  • В или на контроллерах пожарных насосов
  • В или на всех щитах и ​​щитах аварийных систем
  • На всех уровнях распределительного напряжения в энергосистемах критических операций (COPS)

Использование SPD увеличилось в связи с распространением более сложной электроники, светодиодного освещения, фотоэлектрических элементов и устройств с микропроцессорным управлением, которые более подвержены повреждениям из-за скачков напряжения, вызванных молнией и коммутационными помехами. Потребности в защите от перенапряжения в здании будут варьироваться в зависимости от способности защищаемого оборудования выдерживать перенапряжения, желаемого уровня защиты, географии или местоположения оборудования, а также критичности его функций.

Услуги

Благодаря комбинированному тестированию устройств защиты от импульсных перенапряжений мы можем одновременно предоставлять решения для доступа к мировому рынку с маркировкой UL в Северной Америке, а также другие сертификаты и схемы для рынков по всему миру.Один процесс сертификации позволяет получить прибыль за счет более быстрого вывода на рынок. Этот оптимизированный и ускоренный процесс помогает сэкономить время и деньги благодаря хорошо зарекомендовавшей себя глобальной программе сертификации.

UL оценивает SPD на соответствие и безопасность следующим стандартам, но не ограничиваясь:

  • США: UL 1449, Стандарт для устройств защиты от перенапряжения (SPD), издание 5, выпущенный 8 января 2021 г.
  • Канада: CSA C22.2 NO. 269, серия стандартов SPD
  • Мексика: NOM-003-SCFI (NMX-J-515-ANCE)
  • Другие мировые рынки: IEC / EN 61643-11, -311, -321, -331, IEC 61643-31, IEC 61051

Области экспертизы

Мы предоставляем услуги по исследованию, тестированию и сертификации следующих типов УЗИП, но не ограничиваясь ими:

  • Постоянно подключенные — УЗИП типов 1, 2 и 3
  • Шнур подключен — УЗИП типа 3
  • Шнур для наружного использования (RV) подключен — УЗИП типа 3
  • Прямое подключение — УЗИП типа 3
  • Тип розетки — УЗИП типа 3
  • Открытого типа — УЗИП типов 1, 2 и 3
  • УЗИП в литом корпусе — УЗИП типов 1 и 2
  • УЗИП, сертифицированных для использования в указанном оборудовании — УЗИП типов 1 и 2
  • Автоматические выключатели / УЗИП — УЗИП типов 1 и 2
  • Фотогальваника (PV) — сборка компонентов 1, 2 и 4 типов и компонентные SPD 5 типа
  • УЗИП постоянного тока — компоненты в сборе типа 1, 2, 3 и 4 и компонентные УЗИП типа 5
  • Модульные компоненты SPD — сборка компонентов 1, 2, 3 и 4 типов и компонент 5 типа
  • УЗИП дискретных компонентов — компонентный узел типа 4 и компонент типа 5, включает:
    • УЗИП металлооксидные варисторы (MOV)
    • Трубки газоразрядные (ГДЦ)
    • Кремниевые лавинные диоды (SAD) / лавинные диоды (ABD)
    • Гибридные устройства, состоящие из MOV, GDT, SAD и / или других компонентов
Возможности тестирования импульсных перенапряжений в Северной Америке и на Тайване

Мы инвестировали в оборудование для импульсных испытаний, чтобы упростить их и предложить гибкие варианты тестирования, которые могут сократить время вывода на рынок. Оборудование включает генератор импульсного тока, расположенный как в Северной Америке, так и на Тайване. Оборудование может подвергаться импульсным испытаниям в соответствии с мировыми стандартами устройств защиты от импульсных перенапряжений для устройств защиты от перенапряжения, рассчитанных на применение переменного, постоянного тока и фотоэлектрических (PV) приложений.

5 лучших устройств защиты от перенапряжений 2021

Наш выбор

Tripp Lite Protect It Устройство защиты от перенапряжения на 12 розеток TLP1208TELTV

При тестировании этот фильтр был одним из лучших по предотвращению попадания дополнительного напряжения на его розетки.Он также безопасно отключает все питание после износа защиты и имеет 12 розеток переменного тока, а также коаксиальный и телефонный порты.

Варианты покупки

* На момент публикации цена составляла 42 доллара.

Если вам нужен сетевой фильтр для домашнего офиса или развлекательной системы, Tripp Lite Protect It 12-розеточный сетевой фильтр TLP1208TELTV — ваш лучший выбор. Он имеет критически важную функцию автоматического отключения, более чем достаточно розеток для питания всех ваших гаджетов, а также коаксиальные и телефонные разъемы.Он предлагает отличную защиту от скачков напряжения, которые исходят от другого оборудования в вашем доме, или от колебаний электросети. Кроме того, у него большой 8-футовый шнур, и он кажется прочным и надежным.

Также отлично

Accell Power Air

Благодаря шести розеткам переменного тока и двум USB-портам на 2,4 А, Power Air в компактной конструкции обеспечивает надежную защиту.

Для легких условий эксплуатации, например, под прикроватной тумбочкой или торцевым столиком, Accell Power Air — это способ защитить гаджеты, такие как телефоны, планшеты или будильники, от скачков напряжения.Он предлагает два порта USB и шесть розеток переменного тока в круглой упаковке, которая меньше обеденной тарелки. Комбинированные порты USB выдают 2,4 А, чего достаточно для зарядки одного смартфона или планшета на высокой скорости или двух устройств на низкой скорости. Благодаря круглому расположению розеток Power Air можно использовать с вилками различных размеров. Его 6-футовый шнур на 2 фута короче, чем у модели Tripp Lite с 12 розетками, но все же должен быть достаточно длинным для большинства людей. Power Air показал почти так же хорошо, как наш лучший выбор, против индивидуальных скачков, хотя он мог не выдержать такого количества скачков в течение своего срока службы, учитывая его более низкий рейтинг в джоулях (который приблизительно описывает, сколько энергии он может поглотить, прежде чем умрёт — по оценкам компании он выдерживает около 1080 джоулей использования, тогда как многие более крупные модели рассчитаны на более 2000 джоулей).

Также отлично

Tripp Lite Protect It 3-розеточный сетевой фильтр SK30USB предлагает портативность наших любимых небольших удлинителей для путешествий, но с еще большей защитой. Он имеет механизм автоматического отключения, что делает его одним из немногих обнаруженных нами вариантов с тремя розетками, которые отключают питание при износе защиты от перенапряжения. В дополнение к трем розеткам переменного тока он оснащен двумя портами USB, которые обеспечивают комбинированный ток 2,1 А для зарядки телефона, планшета или пары устройств с низким энергопотреблением.Он работает хорошо по сравнению с другими небольшими опциями, которые мы тестировали, блокируя почти столько же вольт, сколько и более крупные модели. В отличие от многих сопоставимых моделей, его компактный размер, заземленная (трехконтактная) вилка и дополнительный винт в центре устройства помогают надежно прикрепить его к розетке, что важно для предотвращения возгорания или поражения электрическим током. Мы бы выбрали SK30USB для защиты нескольких небольших бытовых приборов — скажем, диффузора эфирного масла, док-станции Nintendo Switch и кофемолки — и пары смартфонов, или даже для того, чтобы бросить ручную кладь, когда мы путешествия.

Также отлично

Tripp Lite Protect It Устройство защиты от перенапряжения с 8 розетками TLP825

Устройство TLP825 с восемью розетками от Tripp Lite оснащено 25-футовым шнуром, который в три-четыре раза длиннее большинства шнуров для защиты от перенапряжения. У него меньше выходов, чем у нашего лучшего выбора, и нет дополнительных портов, но он показал почти такие же хорошие результаты в наших импульсных тестах.

Со шнуром длиной 25 футов, 8-розеточное устройство защиты от перенапряжения Tripp Lite Protect It TLP825 имеет самый длинный шнур из всех наших медиаплееров, что делает его идеальным выбором для гаража, подвала или любой комнаты, где мало розеток. и далеко между ними.В наших импульсных испытаниях он показал себя примерно так же, как TLP1208TELTV от Tripp Lite с 12 розетками (и лучше, чем у Accell Power Air и Tripp Lite с тремя розетками SK30USB). Поскольку подключать сетевой фильтр к удлинителю или последовательно соединять несколько устройств защиты от перенапряжения небезопасно, вам следует приобрести эту модель, если устройства, которые вы хотите защитить, находятся на расстоянии более 8 футов от розетки. У него на четыре розетки меньше, чем у нашего лучшего выбора, и нет дополнительных портов (коаксиальный, телефонный или USB), но это небольшая жертва, если вам нужна дополнительная длина шнура.

Выбор для обновления

Furman Power Station 8 (PST-8)

Overkill Если у вас нет домашнего кинотеатра, офиса или мультимедийного оборудования высокого класса, это устройство подавляет скачки напряжения лучше, чем любая другая модель, которую мы пробовали, включая стоимость глушителей в два раза больше.

Варианты покупки

* На момент публикации цена составляла 140 долларов.

Наш лучший выбор в большинстве случаев защитит большую часть оборудования. Но Furman Power Station 8 (PST-8) идет дальше, обеспечивая лучшее подавление скачков напряжения из всех протестированных нами моделей — достаточно, чтобы не беспокоить владельцев высококлассной электроники.Он превратил скачок напряжения 5000 вольт всего в 40 вольт, отчасти благодаря схеме отключения, которая отключает все питание при обнаружении скачка напряжения. PST-8 фактически пропускает меньшее напряжение в наших тестах, чем высокопроизводительные устройства для устранения перенапряжений, которые могут стоить на сотни больше. Но обычное оборудование, такое как компьютерный монитор, будет хорошо защищено одним из наших менее дорогих вариантов, поэтому эта модель лучше всего подходит для людей, которые настаивают на дополнительной защите особенно ценного оборудования. Кроме того, он имеет прочный алюминиевый корпус и шнур длиной 8 футов.

Устройство защиты от перенапряжения, тип 2, 20/40/60/80 кА

Устройства защиты от перенапряжения (SPD) подходят для систем питания IT, TT, TN-C, TN-S, TN-CS с частотой 50/60 Гц, номинальным напряжением 400 В переменного тока и ниже, защищая их от прямого и непрямого удара молнии и другие переходные перенапряжения. С макс. ток разряда 20кА / 40кА / 60кА / 80кА, SPD спроектирован в соответствии с IEC Class II, имеет надежную работу и низкую цену.

Параметры

Модель АТО-ЗМП1-20 АТО-ЗМП1-40 АТО-ЗМП1-60 АТО-ЗМП1-80
Номинальное напряжение Un (В перем. Тока) 275 385 420 275 385 420 275 385 420 275 385 420
Макс.Постоянное рабочее напряжение Uc (VAC) 275 385 420 275 385 420 275 385 420 275 385 420
Повышение уровня защиты по напряжению (кВ) ≤1,2 кВ ≤1,8 кВ ≤1,9 кВ ≤1,4 кВ ≤2.0кВ ≤2,1 кВ ≤1,4 кВ ≤2,2 кВ ≤2,3 кВ ≤1,6 кВ ≤2,4 кВ ≤2,5 кВ
Номинальный ток разряда (8/20 мкс) In (кА) 10кА 20кА 30кА 40кА
Макс. Ток разряда (8/20 мкс) Imax (кА) 20кА 40кА 60кА 80кА
Количество полюсов 1 полюс, 2 полюса, 3 полюса, 4 полюса
Время отклика (нс) <25 нс
Уровень тестирования Класс II
Степень защиты IP20
Температура окружающей среды -40 ℃ ~ + 80 ℃
Предохранитель или автоматический выключатель (А) 20A 25A 32A 32A
Материал корпуса Армированный огнестойкий PBT
Установка DIN-рейка 35 мм
Характеристики провода Фаза / нейтраль: 2. 5 ~ 35 мм²
Заземляющий провод: 4,0 ~ 35 мм²
Сигнальная линия: 1,5 мм²

Примечание. Чтобы обеспечить нормальную работу силовой сети после выхода из строя SPD, предохранитель или автоматический выключатель должны быть последовательно подключены к L-линии.

Размеры (Единицы: мм)


Советы: Что такое устройство защиты от перенапряжения?

Устройство защиты от перенапряжения (SPD) — это электронное устройство, обеспечивающее защиту электрического оборудования, сети связи и т. Д.от воздействия скачков напряжения. Когда скачок тока или скачок напряжения внезапно возникает в электрической цепи или линии связи из-за внешних помех, SPD может провести шунт за очень короткое время, тем самым избегая повреждения от скачка напряжения для другого оборудования в цепи.

Устройства защиты от перенапряжения

разработаны для минимизации воздействия непрямых и прямых ударов молнии или других переходных перенапряжений, подходят для защиты от перенапряжений в жилых, промышленных и других промышленных помещениях. SPD имеет несколько режимов защиты: L-L, L-G, L-N, N-G и их комбинации.

Устройство защиты от перенапряжения SPD является незаменимым устройством для защиты от молний в электронном оборудовании. Его роль заключается в ограничении переходного перенапряжения, которое попадает в линию электропередачи и линию передачи сигнала, до диапазона напряжений, который может выдержать устройство или система, или в разрядке мощного тока молнии в землю, тем самым защищая оборудование или системы от ударов.

Eaton MTL »Управление, эксплуатация и защита активов в суровых и опасных зонах

Отображение продуктов в разделе Защита от скачков напряжения

Диапазон ZoneSentinel

Линейка ZoneSentinel разработана для применения в распределительных щитах и ​​небольших сервисных центрах, а также…

Серия ZoneDefender PRO

Серия ZoneDefender PRO — это универсальные высокопроизводительные сетевые фильтры, предназначенные для использования в…

MA3100 диапазон

Этот экономичный ограничитель перенапряжения предназначен для приложений, описанных в стандарте IEC 61312, где перенапряжение…

MA30 диапазон

Устройства защиты от перенапряжения MA30 предназначены для защиты источников питания электронного оборудования и компьютерных сетей…

MA15 диапазон

Серия устройств защиты от перенапряжения MA15 защищает электронное оборудование и компьютерные сети от…

MA05 / 10 диапазон

Устройства ЭМС / защиты от перенапряжения MA05 / 10 могут быть встроены в отдельные элементы или установлены рядом с ними.

Диапазон ZoneMaster

Серия ZoneMaster доступна в устройствах с защитой от перенапряжения 200 или 170 кА.

MA3350 диапазон

MA3350 идеально подходит для приложений переменного или постоянного тока, где защита от импульсных перенапряжений…

ZoneMaster PRO

Продукция типа 1 для комплексных требований защиты.Максимальный импульсный ток от 340 до 400 кА.

ZoneMaster Все режимы

Линейка устройств защиты от перенапряжения ZoneMaster All-Mode сочетает в себе непревзойденные возможности управления мощностью, универсальность применения,…

LS Диапазон

Защита систем освещения LS. Компактный корпус с последовательным или параллельным подключением.

Как работает устройство защиты от перенапряжения

Рекомендовано Национальной ассоциацией противопожарной защиты и Институтом безопасности бизнеса и дома. Устройства защиты от перенапряжения защищают электрические устройства в вашем доме в случае скачков напряжения и скачков напряжения. Но как сетевой фильтр обеспечивает безопасность ваших электрических устройств, когда вся эта усиленная энергия атакует? Науку, лежащую в основе технологий, не так сложно понять, как вы думаете.

Как работают устройства защиты от перенапряжения

«Когда происходит внезапное повышение напряжения, например, в результате удара молнии или повреждения линии электропередачи, устройство защиты от перенапряжения обнаруживает избыточный ток и безопасно отводит его через заземляющий провод в доме». Простое заявление и звучит здорово, но что это значит? Как сетевой фильтр знает, как это сделать? Чтобы понять это, нам просто нужно немного упростить терминологию . ..

Расплывчатость электрического словаря

Понимание напряжения и силы тока может помочь вам лучше понять, как работают устройства защиты от перенапряжения:

  • Напряжение:
    Если использовать аналогию с водой в шланге, напряжение эквивалентно электрическому давлению.
  • Сила тока
    Используя ту же аналогию, сила тока — это скорость потока или количество жидкости, проходящей через шланг.

Сетевые фильтры: исключая излишки

Используя нашу надежную аналогию со шлангом, слишком большое давление на шланг может в конечном итоге привести к его разрыву. Однако в случае перебоев в электроснабжении электрические линии и приборы не взрываются, а сгорают или, по крайней мере, со временем изнашиваются. Отводя избыточное давление в шланге (проводах вашего дома), устройства защиты от перенапряжения защищают проводку и приборы.Для этого им нужны специальные компоненты.

Управление давлением

Как отводится все это давление или избыточная электрическая энергия? Когда напряжение достигает определенной точки, устройства защиты от перенапряжения просто перенаправляют эту дополнительную энергию с помощью клапана, чувствительного к давлению. При правильном напряжении ток течет как обычно, но при резком скачке или скачке напряжения устройство немедленно срабатывает и перенаправляет избыток. Обычно используемые устройства для управления этим давлением в устройствах защиты от перенапряжения включают металлооксидные варисторы (MOV) и разрядники газа, которые позволяют электрическим устройствам продолжать работу, отводя избыточную энергию на заземляющие провода.

Многослойная защита обязательна

В связи с особенностями устройств защиты от перенапряжения, все три из следующих типов защиты от перенапряжения — или, по крайней мере, устройства типа 2 и 3 — необходимы для адекватной защиты:

  • Тип 1: Охрана всего дома
    Устанавливается между линиями электропередач на улице и вашим счетчиком.
  • Тип 2: Защита всего дома
    Устанавливается между вашим счетчиком и блоком выключателя.
  • Тип 3: точка использования
    Меньшие защитные кожухи в розетках, к которым вы подключаете электроприборы.

Разве это не перебор?

Нет. Сетевой фильтр для всего дома не выдерживает 100% скачков напряжения. Небольшое превышение напряжения может привести к утечке до 15 процентов. Они также не справятся с скачками напряжения в вашем доме. Они подавляют скачки напряжения от внешних источников, таких как проблемы энергокомпании и трансформатора, но не могут защитить от множества скачков напряжения, происходящих внутри вашего дома от вашей бытовой техники — например, когда ваш кондиционер или холодильник включаются и выключаются.

Только настолько хорошо, насколько хорошо ваше заземление

Старым домам с незаземленными розетками или домам с неправильной проводкой и заземлением не поможет устройство защиты от перенапряжения без необходимых обновлений.Даже самый лучший сетевой фильтр выйдет из строя, если нет надлежащего пути эвакуации через заземление для отвода избыточного электричества. Если в вашем доме есть проблемы с заземлением, быстро устраните их, так как затраты на ремонт или модернизацию электропроводки будут бледнее по сравнению с заменой жареной техники.

Вас заинтересовала защита от перенапряжения в вашем доме? Свяжитесь с Mr. Electric®, чтобы получить бесплатное ценовое предложение для защиты от перенапряжения для дома сегодня.

SineUP | Защита от грозовых перенапряжений | Продукты и услуги

Панель управления Молниезащита

Защита от грозовых разрядов источника питания
Устройство защиты от грозовых перенапряжений типа 2 устанавливается на входе и выходе источника питания контрольной панели (120 В переменного тока) и выходе (24 В постоянного тока).Он имеет схему частотной характеристики для фильтрации пика тока, индуцированного молнией, и EMI / RFI в линии электропередачи. Устройство фильтрует остаточное напряжение, оставшееся от устройства Main Panel Type 1. Блок поставляется в корпусе NEMA4 для установки внутри помещения. Он имеет удаленные светодиодные индикаторы для каждой фазы, которые установлены на панели управления. В стандартную комплектацию блока входит кабель с сухим релейным контактом, который можно подключить к системе SCADA. Это позволяет удаленно контролировать целостность агрегатов.
Загрузить брошюру по устройствам защиты от перенапряжения TS2 SineUp.

Защита от грозовых разрядов токовой петли
A Устройство защиты от перенапряжения токовой петли, тип 1, 4-20 мА, 24 В постоянного тока, используется для защиты цепей управления ПЛК, контролирующих с помощью датчика уровня в резервуаре. К медной паре проложен экранированный провод. Во время грозовых разрядов в этих линиях возникает перегрузка по току и напряжению, что повреждает цепь управления. Устройство защиты от перенапряжения, устанавливаемое на клемме, фильтрует эти перенапряжения. Устройство отключается, когда наступает время замены.
Загрузить брошюру по устройствам защиты от перенапряжения DTS SineUp.

Защита от молний MODBUS
Устройство защиты от перенапряжения MODBUS, тип 1, 24 В постоянного тока, используется для защиты цепей управления ПЛК, контролирующих с помощью датчика уровня в резервуаре.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *