В чем измеряется работа силы: Недопустимое название — Викиверситет

Содержание

В чем измеряется работа силы?

Помогите пожалуйста!Двигаясь с постоянным ускорением тело за 5 секунд прошло путь 50 м. какой путь прошло тело за пятую секунду своего движения?​

Помогите пожалуйста оформите по школьной программе ​

Помогите пожалуйста, оформите по школьной программе ​

Помогите пожалуйста оформите по школьной программе ​

Физика,сириус1.) Из одинаковых компонентов собрали две схемы, как показано на рисунке. Параметры схем: U0=4, r=1 Ом. Сопротивления приборов: RA=4 Ом,  … RV=1,6 кОм. Для каждой схемы, разделив показания вольтметра на показания амперметра, определяют сопротивление резистора R=UV/IA. Поскольку приборы неидеальные, для первой и второй схемы получаются различные значения — R1 и R2 соответственно. R1 и R2 можно рассматривать как результат измерения R, полученный в каждом случае с разной степенью точности. Вычислите R1 и R2, предполагая, что истинное значение R равно 400 Ом. Ответы выразите в омах, округлите до целых чисел.

R2 На сколько процентов R1 и R2 отличаются от R соответственно? Ответы округлите до целых чисел. Найти: R1, R2, На сколько процентов R1 и R2 отличаются от R соответственно? 2.) Ответы округлите до целых чисел.​В условиях предыдущей задачи найдите R, для которого отношение значений R2 и R1, то есть R1, минимально. Ответ выразите в омах, округлите до целого числа. Указание. Если x>0, a>0 и b>0, то минимум выражения xa+bx достигается при √x=ab.

60 балловУМОЛЯЮ ПОМОГИТЕ ПОЖАЛУЙСТА ! Рассчитай, какое количество теплоты нужно для обращения в пар эфира массой 93 г, взятого(-ой) при температуре 19 … °C. (Удельная теплоемкость эфира с = 2300 Дж/кг:°С, температура кипения эфира равна 35 ° С, удельная теплота парообразования эфира L=352000 Дж/кг). Ответ (округли до целого числа): кДж.

СРОЧНО !!!! 50 баллов В сосуде, теплоемкость которого равна 196 Дж/°C, находится 2 л воды и 0,5 кг льда при 0°С. Чтобы получить воду с температурой 8 … °C, в сосуд впускают водяной пар при 100 °С. Рассчитай массу пара. Док (Удельная теплоемкость воды с= 4200- — удельная теплота парообразования L = 2260000 Дж/кг, удельная теплота плавления льда = 330000 Дж/кг). ке.

СРОЧНО !!! 100 баллов Помогите Сколько энергии рассеялось при превращении 152 голова в жидкое агрегатное состояние, если было израсходовано 14 г бензи … на, а начальная температура олова равна 18 °С. Удельная теплоемкость олова — 250- температура плавления олова равна 232 °C, а удельная теплота кес плавления олова — 0,59. 105 Дж/кг, удельная теплота сгорания бензина — 47 — 100 Дж/кг. Ответ (округли до десятых): кДж З

В вертикально расположенном сосуде с сечениями S1 и S2 (S1 = 9S2) находятся два невесомых поршня. Пространство между поршнями заполнено водой. Концы с … осуда открыты в атмосферу. К верхнему поршню прикреплена пружина жесткостью k, к нижнему подвешен груз массой m. В начальный момент времени пружина не растянута, поршни закреплены, расстояние между поршнями h0. Найдите, на сколько просядет верхний поршень, если оба поршня отпустить

Круглая горизонтальная платформа вращается вокруг своей оси с угловой скоростью 2 рад/с. Кубик М движется со скоростью 9 м/с в направлении МО. В некот … орый момент времени расстояние МО = 6м. Найдите скорость кубика относительно наблюдателя, стоящего в центре платформы в этот момент времени.

Работа равнодействующей силы, тяжести, трения, упругости. Мощность, коэффициент полезного действия. Примеры, формулы

Тестирование онлайн

Работа

Работа — это скалярная величина, которая определяется по формуле

Работу выполняет не тело, а сила! Под действием этой силы тело совершает перемещение.

Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией, необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.

Угол между вектором силы и перемещением

1) Верно определяем направление силы, которая выполняет работу; 2) Изображаем вектор перемещения; 3) Переносим вектора в одну точку, получаем искомый угол.

На рисунке на тело действуют сила тяжести (mg), реакция опоры (N), сила трения (Fтр) и сила натяжения веревки F, под воздействием которой тело совершает перемещение r.

Работа силы тяжести


Работа реакции опоры


Работа силы трения


Работа силы натяжения веревки


Работа равнодействующей силы

Работу равнодействующей силы можно найти двумя способами: 1 способ — как сумму работ (с учетом знаков «+» или «-«) всех действующих на тело сил, в нашем примере
2 способ — в первую очередь найти равнодействующую силу, затем непосредственно ее работу, см. рисунок

Работа силы упругости

Для нахождения работы, совершенной силой упругости, необходимо учесть, что эта сила изменяется, так как зависит от удлинения пружины.

Из закона Гука следует, что при увеличении абсолютного удлинения, сила увеличивается.

Для расчета работы силы упругости при переходе пружины (тела) из недеформированного состояния в деформированное используют формулу

Мощность

Скалярная величина, которая характеризует быстроту выполнения работы (можно провести аналогию с ускорением, которое характеризует быстроту изменения скорости). Определяется по формуле

Коэффициент полезного действия

КПД — это отношение полезной работы, совершенной машиной, ко всей затраченной работе (подведенной энергии) за то же время

Коэффициент полезного действия выражается в процентах. Чем ближе это число к 100%, тем выше производительность машины. Не может быть КПД больше 100, так как невозможно выполнить больше работы, затратив меньше энергии.

КПД наклонной плоскости — это отношение работы силы тяжести, к затраченной работе по перемещению вдоль наклонной плоскости.

Главное запомнить

1) Формулы и единицы измерения;
2) Работу выполняет сила;
3) Уметь определять угол между векторами силы и перемещения

Если работа силы при перемещении тела по замкнутому пути равна нулю, то такие силы называют консервативными или потенциальными.

Работа силы трения при перемещении тела по замкнутому пути никогда не равна нулю. Сила трения в отличие от силы тяжести или силы упругости является неконсервативной или непотенциальной.

Есть условия, при которых нельзя использовать формулу
Если сила является переменной, если траектория движения является кривой линией. В этом случае путь разбивается на малые участки, для которых эти условия выполняются, и подсчитать элементарные работы на каждом из этих участков. Полная работа в этом случае равна алгебраической сумме элементарных работ:

Значение работы некоторой силы зависит от выбора системы отсчета.

В чем измеряется работа силы тяжести. Определение механической работы

Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией , необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.


Угол между вектором силы и перемещением

1) Верно определяем направление силы, которая выполняет работу; 2) Изображаем вектор перемещения; 3) Переносим вектора в одну точку, получаем искомый угол.


На рисунке на тело действуют сила тяжести (mg), реакция опоры (N), сила трения (Fтр) и сила натяжения веревки F, под воздействием которой тело совершает перемещение r.

Работа силы тяжести


Работа реакции опоры


Работа силы трения


Работа силы натяжения веревки



Работа равнодействующей силы

Работу равнодействующей силы можно найти двумя способами: 1 способ — как сумму работ (с учетом знаков «+» или «-«) всех действующих на тело сил, в нашем примере
2 способ — в первую очередь найти равнодействующую силу, затем непосредственно ее работу, см.

рисунок


Работа силы упругости

Для нахождения работы, совершенной силой упругости, необходимо учесть, что эта сила изменяется, так как зависит от удлинения пружины. Из закона Гука следует, что при увеличении абсолютного удлинения, сила увеличивается.

Для расчета работы силы упругости при переходе пружины (тела) из недеформированного состояния в деформированное используют формулу

Мощность

Скалярная величина, которая характеризует быстроту выполнения работы (можно провести аналогию с ускорением , которое характеризует быстроту изменения скорости). Определяется по формуле

Коэффициент полезного действия

КПД — это отношение полезной работы, совершенной машиной, ко всей затраченной работе (подведенной энергии) за то же время

Коэффициент полезного действия выражается в процентах. Чем ближе это число к 100%, тем выше производительность машины. Не может быть КПД больше 100, так как невозможно выполнить больше работы, затратив меньше энергии.

КПД наклонной плоскости — это отношение работы силы тяжести, к затраченной работе по перемещению вдоль наклонной плоскости.

Главное запомнить

1) Формулы и единицы измерения;
2) Работу выполняет сила;
3) Уметь определять угол между векторами силы и перемещения

Если работа силы при перемещении тела по замкнутому пути равна нулю, то такие силы называют консервативными или потенциальными . Работа силы трения при перемещении тела по замкнутому пути никогда не равна нулю. Сила трения в отличие от силы тяжести или силы упругости является неконсервативной или непотенциальной .

Есть условия, при которых нельзя использовать формулу
Если сила является переменной, если траектория движения является кривой линией. В этом случае путь разбивается на малые участки, для которых эти условия выполняются, и подсчитать элементарные работы на каждом из этих участков. Полная работа в этом случае равна алгебраической сумме элементарных работ:

Значение работы некоторой силы зависит от выбора системы отсчета.

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа — это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 — 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай — когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай — когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай — когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт — это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 — 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. — 17-е изд. — М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. — 14-е изд., стереотип. — М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд. , стереотип. — М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A – работа, F – сила, s – пройденный путь.

ПОТЕНЦИА́Л (потенциальная функция), понятие, характеризующее широкий класс физических силовыхполей (электрических, гравитационных и т. п.) и вообще поля физических величин, представляемыхвекторами (поле скоростей жидкости и т. п.). В общем случае потенциал векторного поля a(x ,y ,z ) — такаяскалярная функция u (x ,y ,z ), что a=grad

35. Проводники в электрическом поле. Электроемкость. Проводники в электрическом поле. Проводники — это вещества, характеризующиеся наличием в них боль­шого количества свободных носителей зарядов, способ­ных перемещаться под действием электрического поля. К проводникам относятся металлы, электролиты, уголь. В металлах носителями свободных зарядов являются электроны внешних оболочек атомов, которые при взаи­модействии атомов полностью утрачивают связи со «своими» атомами и становятся собственностью всего проводника в целом. Свободные электроны участвуют в тепловом движении подобно молекулам газа и могут перемещаться по металлу в любом направлении. Электри́ческая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками

36. Емкость плоского конденсатора.

Емкость плоского конденсатора.

Т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

37. Магнитное взаимодействие токов в вакууме. Закон Ампера. Закон Ампера. В 1820 году Ампер (французский ученый (1775-1836)) установил экспериментально закон, по которому можно рассчитать силу, действующую на элемент проводника длины с током .

где – вектор магнитной индукции,– вектор элемента длины проводника, проведенного в направлении тока.

Модуль силы , где– угол между направлением тока в проводнике и направлением индукции магнитного поля.Для прямолинейного проводника длиной с токомв однородном поле

Направление действующей силы может быть определено с помощью правила левой руки :

Если ладонь левой руки расположить так, чтобы нормальная (к току) составляющая магнитного поля входила в ладонь, а четыре вытянутых пальца направлены вдоль тока, то большой палец укажет направление, в котором действует сила Ампера.

38.Напряженность магнитного поля. Закон Био-Савара-Лапласа Напряжённость магни́тного по́ля (стандартное обозначение Н ) — векторная физическая величина , равная разности вектора магнитной индукции B и вектора намагниченности J .

В Международной системе единиц (СИ) : где-магнитная постоянная .

Закон БСЛ. Закон, определяющий магнитное поле отдельного элемента тока

39. Приложения закона Био-Савара-Лапласа. Для поля прямого тока

Для кругового витка.

И для соленоида

40. Индукция магнитного поля Магнитное поле характеризуется векторной величиной, которая носит название индукции магнитного поля (векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства). МИ. (В) это не сила, действующая на проводники, это величина, которая находится через данную силу по следующей формуле: B=F / (I*l) (Словестно: Модуль вектора МИ. (B) равен отношению модуля силы F, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока в проводнике I и длине проводника l . Магнитная индукция зависит только от магнитного поля. В связи с этим индукцию можно считать количественной характеристикой магнитного поля. Она определяет, с какой силой(Сила Лоренца) магнитное поле действует назаряд, движущийся со скоростью. 2/R играет роль центростремительной силы. Период обращения равен T=2пиR/V=2пиm/qB и он не зависит от скорости частицы (Это справедливо только при V

Сила Л. определяется соотношением: Fл = q·V·B·sina (q — величина движущегося заряда; V — модуль его скорости; B — модуль вектора индукции магнитного поля; aльфа — угол между вектором V и вектором В) Сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно. Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца F л.

1.5. МЕХАНИЧЕСКАЯ РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Понятие энергии. Механическая энергия. Работа — количественная мера изменения энергии. Работа равнодействующей сил. Работа сил в механике. Понятие мощности. Кинетическая энергия как мера механического движения. Связь изменения ки нетической энергии с работой внутренних и внешних сил. Кинетическая энергия системы в различных системах отсчета. Теорема Кенига.

Энергия это универсальная мера различных форм движения и взаимодействия. Механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии , имеющихся в компонентах механической системы . Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Работа силы это количественная характеристика процесса обмена энергией между взаимодействующими телами.

Пусть частица под действием силы совершает перемещение по некоторой траектории 1-2 (рис. 5.1). В общем случае сила в процессе

движения частицы может изменяться как по модулю, так и по направлению. Рассмотрим, как показано на рис.5.1, элементарное перемещение , в пределах которого силу можно считать постоянной.

Действие силы на перемещении характеризуют величиной, равной скалярному произведению , которую называют элементарной работой силы на перемещении . Ее можно представить и в другом виде:

,

где — угол между векторами и — элементарный путь, проекция вектора на векторобозначена (рис. 5.1).

Итак, элементарная работа силы на перемещении

.

Величина — алгебраическая: в зависимости от угла между векторами силы и или от знака проекции вектора силы на вектор перемещения она может быть как положительной, так и отрицательной и, в частности, равной нулю, если т.е. . Единицей измерения работы в вивтеме СИ служит Джоуль, сокращенное обозначение Дж.

Суммируя (интегрируя) выражение (5.1) по всем элементарным участкам пути от точки 1 до точки 2, найдем работу силы на данном перемещении:

видно, что элементарная работа A численно равна площади заштрихованной полоски, а работа А на пути от точки 1 до точки 2 — площади фигуры, ограниченной кривой, ординатами 1 и 2 и осью s. При этом площадь фигуры над осью s берется со знаком плюс (она соответствует положительной работе), а площадь фигуры под осью s — со знаком минус (она соответствует отрицательной работе).

Рассмотрим примеры на вычисление работы. Работа упругой силы где — радиус-вектор частицы А относительно точки О (рис. 5.3).

Переместим частицу A, на которую действует эта сила, по произвольному пути из точки 1 в точку 2. Найдем сначала элементарную работу силы на элементарном перемещении :

.

Скалярное произведение где проекция вектора перемещения на вектор . Эта проекция равна приращению модуля вектора Поэтому и

Теперь вычислим работу данной силы на всем пути, т. е. проинтегрируем последнее выражение от точки 1 до точки 2:

Вычислим работу гравитационной (или аналогичной ей математически силы кулоновской) силы. Пусть в начале вектора (рис. 5.3) находится неподвижная точечная масса (точечный заряд). Определим работу гравитационной (кулоновской) силы при перемещении частицы А из точки 1 в точку 2 по произвольному пути. Сила, действующая на частицу А, может быть представлена так:

где параметр для гравитационного взаимодействия равен , а для кулоновского взаимодействия его значение равно . Вычислим сначала элементарную работу этой силы на перемещении

Как и в предыдущем случае, скалярное произведение поэтому

.

Работа же этой силы на всем пути от точки 1 до точки 2

Рассмотрим теперь работу однородной силы тяжести . Запишем эту силу в виде где орт вертикальной оси z с положительным направлением обозначен (рис.5.4). Элементарная работа силы тяжести на перемещении

Скалярное произведение гдепроекция на орт равная — приращению координаты z. Поэтому выражение для работы приобретает вид

Работа же данной силы на всем пути от точки 1 до точки 2

Рассмотренные силы интересны в том отношении, что их работа, как видно из формул (5.3) — (5.5), не зависит от формы пути между точками 1 и 2, а зависит только от положения этих точек. Эта весьма важная особенность данных сил присуща, однако, не всем силам. Например, сила трения этим свойством не обладает: работа этой силы зависит не только от положения начальной и конечной точек, но и от формы пути между ними.

До сих пор речь шла о работе одной силы. Если же на частицу в процессе движения действуют несколько сил, результирующая которых то нетрудно показать, что работа результирующей силы на некотором перемещении равна алгебраической сумме работ, совершаемых каждой из сил в отдельности на том же перемещении. Действительно,

Введем в рассмотрение новую величину — мощность. Она используется для характеристики скорости, с которой совершается работа. Мощность , по определению, — это работа, совершаемая силой за единицу времени . Если за промежуток времени сила совершает работу , то мощность, развиваемая этой силой в данный момент времени, есть Учитывая, что , получим

Единица мощности в системе СИ — Ватт, сокращенное обозначение Вт.

Таким образом, мощность, развиваемая силой , равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения данной силы. Как и работа, мощность — величина алгебраическая.

Зная мощность силы , можно найти и работу, которую совершает эта сила за промежуток времени t. В самом деле, представив подынтегральное выражение в (5.2) в виде получим

Следует также обратить внимание на одно весьма существенное обстоятельство. Когда говорят о работе (или мощности), то необходимо в каждом конкретном случае четко указывать или представлять себе, работа какой именно силы (или сил) имеется в виду. В ином случае, как правило, неизбежны недоразумения.

Рассмотрим понятие кинетической энергии частицы . Пусть частица массы т движется под действием некоторой силы (в общем случае эта сила может быть результирующей нескольких сил). Найдем элементарную работу, которую совершает эта сила на элементарном перемещении . Имея в виду, что и , запишем

.

Скалярное произведение где проекция вектора на направление вектора . Эта проекция равна — приращению модуля вектора скорости. Поэтому и элементарная работа

Отсюда видно, что работа результирующей силы идет на приращение некоторой величины стоящей в скобках, которую называют кинетической энергией частицы.

а при конечном перемещении из точки 1 в точку 2

(5. 10 )

т. е. приращение кинетической энергии частицы на некотором перемещении равно алгебраической сумме работ всех сил , действующих на частицу на том же перемещении. Если то т. е. кинетическая энергия частицы увеличивается; если же то то есть кинетическая энергия уменьшается.

Уравнение (5.9) можно представить и в другой форме, поделив обе части его на соответствующий промежуток времени dt:

(5. 11 )

Это значит, что производная кинетической энергии частицы по времени равна мощности N результирующей силы, действующей на частицу.

Теперь введем понятие кинетической энергии системы . Рассмотрим в некоторой системе отсчета произвольную систему частиц. Пусть частица системы имеет в данный момент кинетическую энергию . Приращение кинетической энергии каждой частицы равно, согласно (5.9), работе всех сил, действующих на эту частицу: Найдем элементарную работу, которую совершают все силы, действующие на все частицы системы:

где — суммарная кинетическая энергия системы. Заметим, что кинетическая энергия системы — величина аддитивная : она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они между собой или нет.

Итак, приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы . При элементарном перемещении всех частиц

а при конечном перемещении

т. е. производная кинетической энергии системы по времени равна суммарной мощности всех сил, действующих на все частицы системы ,

Теорема Кенига: кинетическую энергию K системы частиц можно представить как сумму двух слагаемых: а) кинетической энергии mV c 2 /2 воображаемой материальной точки, масса которой равна массе всей системы, а скорость совпадает со скоростью центра масс; б) кинетической энергии K отн системы частиц, вычисленной в системе центра масс.

Механическая работа. Единицы работы.

В обыденной жизни под понятием «работа» мы понимаем всё.

В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа .

Рассмотрим примеры механической работы.

Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

Итак, механическая работа совершается, только когда на тело действует сила, и оно движется .

Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути .

Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

работа = сила × путь

где А — работа, F — сила и s — пройденный путь.

За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

Единица работы — джоуль (Дж ) названа в честь английского ученого Джоуля. Таким образом,

1 Дж = 1Н · м.

Используется также килоджоули (кДж ) .

1 кДж = 1000 Дж.

Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.

Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом — работа.

Пример . Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м 3 .

Дано :

ρ = 2500 кг/м 3

Решение :

где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

Ответ : А =245 кДж.

Рычаги.Мощность.Энергия

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех — часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный — много лемехов), эту работу выполнит на 40-50 мин.

Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор — быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

Мощность равна отношению работы ко времени, за которое она была совершена.

Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время.

где N — мощность, A — работа, t — время выполненной работы.

Мощность — величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:

N ср = A/t . За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.

Эта единица называется ваттом (Вт ) в честь еще одного английского ученого Уатта.

1 ватт = 1 джоуль/ 1 секунда , или 1 Вт = 1 Дж/с.

Ватт (джоуль в секунду) — Вт (1 Дж/с).

В технике широко используется более крупные единицы мощности — киловатт (кВт ), мегаватт (МВт ) .

1 МВт = 1 000 000 Вт

1 кВт = 1000 Вт

1 мВт = 0,001 Вт

1 Вт = 0,000001 МВт

1 Вт = 0,001 кВт

1 Вт = 1000 мВт

Пример . Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее — 120 м3 в минуту.

Дано :

ρ = 1000 кг/м3

Решение :

Масса падающей воды: m = ρV ,

m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).

Сила тяжести, действующая на воду:

F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)

Работа, совершаемая потоком в минуту:

А — 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).

Мощность потока: N = A/t,

N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.

Ответ : N = 0.5 МВт.

Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).

Таблица 5.

Мощность некоторых двигателей, кВт.

На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

Из формулы N = A/t следует, что

Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

Запишем условие задачи и решим ее.

Дано :

Решение :

A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

Ответ A = 21 кДж.

Простые механизмы.

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки — рычага.

На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

Приспособления, служащие для преобразования силы, называются механизмами .

К простым механизмам относятся: рычаги и его разновидности — блок, ворот; наклонная плоскость и ее разновидности — клин, винт . В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.

Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

Рычаг. Равновесие сил на рычаге.

Рассмотрим самый простой и распространенный механизм — рычаг.

Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B , во втором — приподнимает конец B .

Рабочему нужно преодолеть вес груза P — силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома — точку его опоры О . Сила F , с которой рабочий действует на рычаг, меньше силы P , таким образом, рабочий получает выигрыш в силе . При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В . На другом рисунке показана схема этого рычага. Обе силы F 1 и F 2, действующие на рычаг, направлены в одну сторону.

Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА — плечо силы F 1; ОВ — плечо силы F 2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F 1 вращает рычаг по ходу часовой стрелки, а сила F 2 вращает его против часовой стрелки.

Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н . При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

На основании таких опытов было установлено условие (правило) равновесия рычага.

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Это правило можно записать в виде формулы:

F 1/F 2 = l2/ l1 ,

где F 1 и F2 — силы, действующие на рычаг, l 1 и l2 , — плечи этих сил (см. рис.).

Правило равновесия рычага было установлено Архимедом около 287 — 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово «установлено»?)

Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

Пример . С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

Запишем условие задачи, и решим ее.

Дано :

Решение :

По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р — вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

Ответ : F1 = 600 Н.

В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l 1 : l2 = 2,4 м: 0,6 м = 4).

Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

Момент силы.

Вам уже известно правило равновесия рычага:

F 1 / F2 = l 2 / l1 ,

Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

F 1l 1 = F2 l2 .

В левой части равенства стоит произведение силы F 1 на ее плечо l 1, а в правой — произведение силы F 2 на ее плечо l 2 .

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы ; он обозначается буквой М. Значит,

Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Это правило, называемое правилом моментов , можно записать в виде формулы:

М1 = М2

Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.

Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

Эта единица называется ньютон-метр (Н · м ).

Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

Рычаги в технике, быту и природе.

Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

Выигрыш в силе мы имеем при работе с ножницами. Ножницы это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F 1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F 2 — сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино — все это примеры рычагов, используемых в данных машинах и инструментах.

Примеры применения рычагов — это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

На принципе рычага основано действие и рычажных весов (рис.). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг . В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

Применение закона равновесия рычага к блоку.

Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r . Такой блок не дает выигрыша в силе. (F 1 = F 2), но позволяет менять направление действие силы. Подвижный блок — это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О — точка опоры рычага, ОА — плечо силы Р и ОВ — плечо силы F . Так как плечо ОВ в 2 раза больше плеча ОА , то сила F в 2 раза меньше силы Р :

F = P/2 .

Таким образом, подвижный блок дает выигрыш в силе в 2 раза .

Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р , а, значит, сама сила F в 2 раза меньше силы Р .

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

Уравновесив на рычаге две какие-нибудь разные по модулю силы F 1 и F 2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F 2 проходит больший путь s 2 , а точка приложения большей силы F 1 — меньший путь s 1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

s 1 / s 2 = F 2 / F 1.

Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

F 1 s 1 = F 2 s 2, т. е. А 1 = А 2.

Итак, при использовании рычага выигрыша в работе не получится.

Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: «Дайте мне точку опоры, и я переверну Землю!».

Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F , одинаковы, одинаковы и силы, а значит, одинаковы и работы.

Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики.

Коэффициент полезного действия механизма.

Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной ), равна полезной работе по подъему грузов или преодоления какого — либо сопротивления.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

Ап

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

Сокращенно коэффициент полезного действия обозначается КПД.

КПД = Ап / Аз.

КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как «эта»:

η = Ап / Аз · 100%.

Пример : На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h2 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h3 = 0,4 м. Найти КПД рычага.

Запишем условие задачи и решим ее.

Дано :

Решение :

η = Ап / Аз · 100%.

Полная (затраченная) работа Аз = Fh3.

Полезная работа Ап = Рh2

Р = 9,8 · 100 кг ≈ 1000 Н.

Ап = 1000 Н · 0,08 = 80 Дж.

Аз = 250 Н · 0,4 м = 100 Дж.

η = 80 Дж/100 Дж · 100% = 80%.

Ответ : η = 80%.

Но «золотое правило» выполняется и в этом случае. Часть полезной работы — 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

Энергия.

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях .

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Е п, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

А = Fh ,

где F — сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.

Кинетическая энергия тела обозначается буквой Е к.

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.

От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т.2 /2,

где m — масса тела, v — скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Превращение одного вида механической энергии в другой.

Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождается превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Физическая работа — урок. Физика, 8 класс.

Совершённая работа равна изменению энергии, потраченной на совершение работы.

Величину работы можно определить, вычитая из конечного значения энергии начальное значение энергии.

 

A=Eконеч.−Eнач.,или A=ΔE, где A — работа (Дж); E — энергия (Дж).

 

Работу, как и энергию, измеряют в джоулях (Дж).

 

Если энергия тела увеличивается, тогда общая совершённая работа является положительной.

Пример:

Когда автомобиль начинает двигаться, его кинетическая энергия увеличивается. Значит, двигатель автомобиля совершает положительную работу.

Если энергия тела уменьшается, тогда общая совершённая работа является отрицательной.

Пример:

Когда автомобиль свободно катится по горизонтальной поверхности, его скорость и кинетическая энергия уменьшаются. Значит, сила сопротивления совершает отрицательную работу.

 

В физике рассматривают физическую работу, которая связана с перемещением тел.

Если при прямолинейном движении на тело действует неизменная сила, направленная в сторону движения тела, тогда работа, произведённая приложенной силой, равна произведению величины силы на величину проделанного перемещения.

Если к телу приложена сила под вертикальным углом к направлению движения тела, как это показано на рисунке, тогда величина совершённой работы зависит от:

1) величины приложенной силы (F), которая совершает работу;

2) расстояния (l), на которое перемещается тело;

3) угла \(α\) между направлением действия силы и направлением движения тела.

Работа определяется по формуле: A=F⋅l⋅cosα.

  

  

Обрати внимание!

Если сила направлена параллельно направлению перемещения, тогда угол \(α = 0\), а \(косинус\) угла \(α\) равен \(1\). В этом случае формула упрощается: A=F⋅l.

Если проделанный путь является прямолинейным, тогда вместо пути \(l\) можно использовать перемещение (s). 

В этом случае формула для расчёта работы приобретает такой вид: A=F⋅s.

На трёх рисунках изображены случаи, когда направление силы и направление движения тела совпадают.

1) Действие силы и направление движения тела направлены горизонтально. Например, автомобиль едет по прямому пути, и сила тяги автомобиля приложена в том же направлении.

 

 

2) Действие силы и направление движения тела направлены под одинаковым углом наклона по отношению к горизонту. Например, автомобиль едет в гору.

  

  

3) Действие силы и направление движения тела направлены вертикально. Например, груз поднимается вверх, и сила упругости троса тоже направлена вверх. В этом случае величину совершённой работы можно рассчитать также по формуле A=m⋅g⋅h, где

(m) — масса тела, (g) — ускорение свободного падения,

(h) — высота подъёма тела над поверхностью земли.

 

 

Обрати внимание!

Если направление действия силы противоположно направлению движения, тогда совершаемая этой силой работа отрицательна.

Работа отрицательна, так как функция \(косинус\) в интервале значений угла \(90° — 180°\) является отрицательной.

Таким образом, любая работа, совершённая силой трения или сопротивления, является отрицательной.

Пример:

Когда автомобиль едет с равномерной скоростью по прямой дороге, как это показано на рисунке, работа силы тяги автомобиля является положительной, а работа силы сопротивления равна по величине, но является отрицательной. В результате этого кинетическая и потенциальная энергия автомобиля остаются неизменными. 

Если сила направлена прямо противоположно направлению движения, тогда работу вычисляют по формуле: A=−F⋅l.

 

Источники:

ОПРЕДЕЛЕНИЕ РАБОТЫ И РАБОТА СИЛЫ ТРЕНИЯ

1

Иванов Е.М.

Показано, что общепринятая формула для определения работы справедлива только для частных случаев. Правильное определение работы. Общепринятая формула работы тоже применима только к одному частному случаю.

Вот как определяет сущность работы О.Д. Хвольсон [1, Стр.91-92] «Сила совершает работу, когда её точка приложения перемещается… …следует отличать два случая производства работы: в первом сущность работы заключается в преодолевании внешнего сопротивления движению, которое совершается без увеличения скорости движения тела; во втором — работа обнаруживается увеличением скорости движения, к которому внешний мир относится индифферентно. На деле мы обыкновенно имеем соединение обоих случаев: сила  преодолевает какие-либо сопротивления и в то же время меняет скорость движения тела».

Для вычисления работы постоянной силы предлагается формула:

    (1)

где  S — перемещение тела под действием силы F, a — угол между направлениями силы и перемещения. При этом говорят [2], что «если сила перпендикулярна перемещению, то работа силы равна нулю. Если же, несмотря на действие силы, перемещение точки приложения силы не происходит, то сила никакой работы не совершает. Например, если какой-либо груз неподвижно висит на подвесе, то действующая на него сила тяжести не совершает работы».

В [2] также говорится: «Понятие работы как физической величины, введенное в механике, только до известной степени согласуется с представлением о работе в житейском смысле. Действительно, например, работа грузчика по подъёму тяжести расценивается тем больше, чем больше поднимаемый груз и чем на большую высоту он должен быть поднят. Однако с той же житейской точки зрения мы склонны называть «физической работой» всякую деятельность человека, при которой он совершает известные физические усилия. Но, согласно даваемому в механике определению, эта деятельность может и не сопровождаться работой. В известном мифе об Атланте, поддерживающем на своих плечах небесный свод, люди имели в виду усилия, необходимые для поддержания огромной тяжести, и расценивали эти усилия как колоссальную работу. Для механики же здесь нет работы, и мышцы Атланта могли бы быть попросту заменены прочной колонной».

Эти рассуждения напоминают известное высказывание И.В. Сталина: «Есть человек — есть проблема, нет человека — нет проблемы».

В учебнике физики для 10 класса [3, Стр.138] предлагается следующий выход из данной ситуации: «При неподвижном удержании человеком груза в поле тяжести Земли совершается работа и рука испытывает усталость, хотя видимое перемещение груза равно нулю. Причиной этого является то, что мышцы человека испытывают постоянные сокращения и растяжения, приводящие к микроскопическим перемещениям груза». Всё хорошо, вот только как рассчитать эти сокращения-растяжения?

Получается такая ситуация: человек пытается переместить шкаф на расстояние S, для чего он действует силой F в течение времени t, т.е. сообщает импульс силы . Если шкаф имеет небольшую массу и нет сил трения, то шкаф перемещается и значит, работа совершается. Но если шкаф большой массы и большие силы трения, то человек, действуя тем же импульсом силы, шкаф не перемещает, т.е. работа не совершается. Что-то тут не вяжется с так называемыми законами сохранения. Или взять пример, показанный на рис. 1. Если сила F направлена горизонтально ( ), то работа , а если под углом a, то . Так как , то, естественно, возникает вопрос, куда же исчезла энергия, равная разности работ ( )?

Рисунок 1. Сила F направлена горизонтально ( ), то работа , а если под углом a, то

Приведем пример, показывающий, что работа совершается, если тело остаётся неподвижным. Возьмем электрическую цепь состоящую из источника тока, реостата и амперметра магнитоэлектрической системы. При полностью введенном реостате сила тока бесконечно мала и стрелка амперметра стоит на нуле. Начинаем постепенно двигать реохорд реостата. Стрелка амперметра начинает отклоняться, закручивая спиральные пружины прибора. Это совершает работу сила Ампера: сила взаимодействия рамки с током с магнитным полем. Если остановить реохорд, то установится постоянная сила тока и стрелка перестает двигаться. Говорят, что если тело неподвижно, то сила работы не совершает. Но амперметр, удерживая стрелку в том же положении, по прежнему потребляет энергию , где U — напряжение, подведенное к рамке амперметра,  — сила тока в рамке. Т.е. сила Ампера, удерживая стрелку, по прежнему совершает работу по удержанию пружин в закрученном состоянии.

Покажем, почему возникают подобные парадоксы. Вначале получим общепринятое выражение для работы. Рассмотрим работу разгона по горизонтальной гладкой поверхности первоначально покоящегося тела массы m за счет воздействия на него горизонтальной силой F в течение времени t. Этому случаю соответствует угол  на рис.1. Запишем II закон Ньютона в виде . Умножим обе части равенства на пройденный путь S: . Поскольку , то получим  или . Отметим, что умножая обе части уравнения на S, мы тем самым отказываем в работе тем силам, которые не производят перемещение тела (). Кроме того, если сила F действует под углом a к горизонту, мы тем самым отказываем в работе всей силе F, «разрешая» работу только её горизонтальной составляющей: .

Проведем другой вывод формулы для работы. Запишем II закон Ньютона в дифференциальной форме

   (2)

Левая часть уравнения  — элементарный импульс силы, а правая  — элементарный импульс тела (количество движения). Отметим, что правая часть уравнения может быть равна нулю, если тело остается неподвижным ( ) или движется равномерно ( ), в то время как левая часть не равна нулю. Последний случай соответствует случаю равномерного движения, когда сила  уравновешивает силу трения .

Однако вернемся к нашей задаче о разгоне неподвижного тела. После интегрирования уравнения (2), получим , т.е. импульс силы равен импульсу (количеству движения), полученному телом. Возведем в квадрат и разделив на  обе части равенства, получим

 или    (3)

Таким образом мы получим другое выражение для вычисления работы

 (4)

где  — это импульс силы. Это выражение не связано с путем S, пройденным телом за время t, поэтому оно может быть использовано для вычисления работы, совершаемой импульсом силы и в том случае, если тело остается неподвижным.

В случае, если сила F действует под углом a (рис.1), то её раскладываем на две составляющие: силу тяги  и силу , которую назовем силой левитации, она стремится уменьшить силу тяжести. Если  будет равна , то тело будет находиться в квазиневесомом состоянии (состояние левитации). Используя теорему Пифагора: , найдем работу силы F

 или    (5)

Поскольку , а , то работу силы тяги можно представить в общепринятом виде: .

Если сила левитации , то работа левитации будет равна

        (6)

Это как раз та работа, которую выполнял Атлант, удерживая на своих плечах небесный свод.

А теперь рассмотрим работу сил трения. Если сила трения является единственной силой, действующей по линии движения (например, автомобиль, двигавшийся по горизонтальной дороге со скоростью , выключил двигатель и стал тормозить), то работа силы трения будет равна разности кинетических энергий и может быть рассчитана по общепринятой формуле:

         (7)

Однако, если тело движется по шероховатой горизонтальной поверхности с некоторой постоянной скоростью , то работу силы трения нельзя вычислять по общепринятой формуле , поскольку в данном случае движения надо рассматривать как движение свободного тела ( ), т.е. как движение по инерции, и скорость V создает не сила , она была приобретена ранее. Например, тело двигалось по идеально гладкой поверхности с постоянной скоростью, и в тот момент, когда оно въезжает на шероховатую поверхность, включается сила тяги . В данном случае путь S не связан с действием силы . Если взять путь м, то при скорости  м/с время действия силы будет составлять  с, при м/с время с, при м/с время с. Поскольку сила трения считают не зависящей от скорости, то, очевидно, на одном и том же отрезке пути м сила  совершит гораздо большую работу за 200 с, чем за 10 с, т.к. в первом случае импульс силы , а в последнем — . Т.е. в данном случае работу силы трения надо рассчитывать по формуле:

          (8)

Обозначая «обычную» работу трения через  и учитывая, что , формулу (8), опуская знак «минус», можно представить в виде

        (9)

Зависимость  от , выраженных в долях , показана на рис.2.

Рисунок 2. Зависимость  от , выраженных в долях

Рисунок 3. Зависимость суммы ( ) от величины , выраженных так же в долях

На рис.3. показана зависимость суммы ( ) от величины , выраженных так же в долях. Эта сумма имеет минимум, равный  при . То же самое относится и к случаю равномерного скольжения вниз по шероховатой наклонной плоскости (угол наклона ), когда сила трения равна скатывающей силе  или , т.е. . В этом случае, чтобы тело равномерно скользило вниз, оно должно получить начальный импульс . Тогда работа силы трения будет определяться не длиной наклонной плоскости S, а временем скольжения :

          (10)

Учитывая, что , , а , опуская знак «минус», получим

         (11)

Зависимость  от K совпадает с графиком (рис.2), только вместо  следует подставить ( ), то же самое относится и к графику на рис. 3.

СПИСОК ЛИТЕРАТУРЫ

  1. Хвольсон О.Д. Курс физики. Т. I. Р.С.Ф.С.Р. Госуд.Изд-во, Берлин, 1923.
  2. Элементарный учебник физики. Т. I. — М.: Наука, 1972.
  3. Касьянов В.А. Физика. 10 класс. Учебн.-М.: Дрофа, 2003.

Библиографическая ссылка

Иванов Е.М. ОПРЕДЕЛЕНИЕ РАБОТЫ И РАБОТА СИЛЫ ТРЕНИЯ // Успехи современного естествознания. – 2005. – № 8. – С. 10-13;
URL: https://natural-sciences.ru/ru/article/view?id=8991 (дата обращения: 11.08.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Формула работы в физике

Содержание:

Определение и формула работы

Определение

В том случае, если под воздействием силы происходит изменение модуля скорости движения тела, то говорят о том, что сила совершает работу.{2}}{2}(1)$$

Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи величины перемещения, которое совершает рассматриваемое тело под действием силы ($\bar{F}$).

Элементарная работа

Элментарная реабота $(\delta A)$ некоторой силы $\bar{F}$ определяется как скалярное произведение:

$$\delta A=\bar{F} \cdot d \bar{r}=F \cdot d s \cdot \cos \alpha(2)$$

$\bar{r}$ радиус – вектор точки, к которой приложена сила, $\bar{r}$ — элементарное перемещение точки по траектории, $\alpha$ – угол между векторами $d s=|d \bar{r}|$ и $d \bar{r}$. Если $\alpha$ является тупым углом работа меньше нуля, если угол $\alpha$ острый, то работа положительная, при $\alpha=\frac{\pi}{2} \delta A=0$

В декартовых координатах формула (2) имеет вид:

$$\delta A=F_{x} d x+F_{y} d y+F_{z} d z(3)$$

где Fx,Fy,Fz – проекции вектора $\bar{F}$ на декартовы оси.

При рассмотрении работы силы, приложенной к материальной точке можно использовать формулу:

$$\delta A=\bar{F} \bar{v} d t=\bar{v} d \bar{p}(4)$$

где $\bar{v}$ – скорость материальной точки, $\bar{p}$ – импульс материальной точки.{4}$$

Ответ. n=4

Читать дальше: Формула силы Ампера.

Работа, мощность, энергия — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Механическая работа

К оглавлению…

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой, совершаемой постоянной силой F, называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S:

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.

Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:

Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (Fупр = kx).

 

Мощность

К оглавлению…

Работа силы, совершаемая в единицу времени, называется мощностью. Мощность P (иногда обозначают буквой N) – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

По этой формуле рассчитывается средняя мощность, т.е. мощность обобщенно характеризующая процесс. Итак, работу можно выражать и через мощность: A = Pt (если конечно известна мощность и время совершения работы). Единица мощности называется ватт (Вт) или 1 джоуль за 1 секунду. Если движение равномерное, то:

По этой формуле мы можем рассчитать мгновенную мощность (мощность в данный момент времени), если вместо скорости подставим в формулу значение мгновенной скорости. Как узнать, какую мощность считать? Если в задаче спрашивают мощность в момент времени или в какой-то точке пространства, то считается мгновенная. Если спрашивают про мощность за какой-то промежуток времени или участок пути, то ищите среднюю мощность.

КПД – коэффициент полезного действия, равен отношению полезной работы к затраченной, либо же полезной мощности к затраченной:

Какая работа полезная, а какая затраченная определяется из условия конкретной задачи путем логического рассуждения. К примеру, если подъемный кран совершает работу по подъему груза на некоторую высоту, то полезной будет работа по поднятию груза (так как именно ради нее создан кран), а затраченной – работа, совершенная электродвигателем крана.

Итак, полезная и затраченная мощность не имеют строгого определения, и находятся логическим рассуждением. В каждой задаче мы сами должны определить, что в этой задаче было целью совершения работы (полезная работа или мощность), а что было механизмом или способом совершения всей работы (затраченная мощность или работа).

В общем случае КПД показывает, как эффективно механизм преобразует один вид энергии в другой. Если мощность со временем изменяется, то работу находят как площадь фигуры под графиком зависимости мощности от времени:

 

Кинетическая энергия

К оглавлению…

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела (энергией движения):

То есть если автомобиль массой 2000 кг движется со скоростью 10 м/с, то он обладает кинетической энергией равной Ек = 100 кДж и способен совершить работу в 100 кДж. Эта энергия может превратиться в тепловую (при торможении автомобиля нагревается резина колес, дорога и тормозные диски) или может быть потрачена на деформацию автомобиля и тела, с которым автомобиль столкнулся (при аварии). При вычислении кинетической энергии не имеет значения куда движется автомобиль, так как энергия, как и работа, величина скалярная.

Тело обладает энергией, если способно совершить работу. Например, движущееся тело обладает кинетической энергией, т.е. энергией движения, и способно совершать работу по деформации тел или придания ускорения телам, с которыми произойдёт столкновение.

Физический смысл кинетической энергии: для того чтобы покоящееся тело массой m стало двигаться со скоростью v необходимо совершить работу равную полученному значению кинетической энергии. Если тело массой m движется со скоростью v, то для его остановки необходимо совершить работу равную его первоначальной кинетической энергии. При торможении кинетическая энергия в основном (кроме случаев соударения, когда энергия идет на деформации) «забирается» силой трения.

Теорема о кинетической энергии: работа равнодействующей силы равна изменению кинетической энергии тела:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Применять данную теорему удобно в задачах на разгон и торможение тела.

 

Потенциальная энергия

К оглавлению…

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие потенциальной энергии или энергии взаимодействия тел.

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями (так называемые консервативные силы). Работа таких сил на замкнутой траектории равна нулю. Таким свойством обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести Земли рассчитывается по формуле:

Физический смысл потенциальной энергии тела: потенциальная энергия равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень (h – расстояние от центра тяжести тела до нулевого уровня). Если тело обладает потенциальной энергией, значит оно способно совершить работу при падении этого тела с высоты h до нулевого уровня. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Часто в задачах на энергию приходится находить работу по поднятию (переворачиванию, доставанию из ямы) тела. Во всех этих случаях нужно рассматривать перемещение не самого тела, а только его центра тяжести.

Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора начала координат оси OY. В каждой задаче нулевой уровень выбирается из соображения удобства. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Потенциальная энергия растянутой пружины рассчитывается по формуле:

где: k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Растяжение или сжатие х надо рассчитывать от недеформированного состояния тела.

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией. Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком (так как сила упругости всегда направлена против деформации тела):

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Работа силы трения зависит от пройденного пути (такой вид сил, чья работа зависит от траектории и пройденного пути называется: диссипативные силы). Понятие потенциальной энергии для силы трения вводить нельзя.

 

Коэффициент полезного действия

К оглавлению…

Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой (формула уже приведена выше).

КПД можно рассчитывать как через работу, так и через мощность. Полезная и затраченная работа (мощность) всегда определяются путем простых логических рассуждений.

В электрических двигателях КПД – отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника. В тепловых двигателях – отношение полезной механической работы к затрачиваемому количеству теплоты. В электрических трансформаторах – отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т.д.

Из–за неизбежных потерь энергии на трение, на нагревание окружающих тел и т.п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД характеризует как эффективно работает машина или механизм. КПД тепловых электростанций достигает 35–40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением – 40–50%, динамомашин и генераторов большой мощности – 95%, трансформаторов – 98%.

Задачу, в которой нужно найти КПД или он известен, надо начать с логического рассуждения – какая работа является полезной, а какая затраченной.

 

Закон сохранения механической энергии

К оглавлению…

Полной механической энергией называется сумма кинетической энергии (т.е. энергии движения) и потенциальной (т.е. энергии взаимодействия тел силами тяготения и упругости):

Если механическая энергия не переходит в другие формы, например, во внутреннюю (тепловую) энергию, то сумма кинетической и потенциальной энергии остаётся неизменной. Если же механическая энергия переходит в тепловую, то изменение механической энергии равно работе силы трения или потерям энергии, или количеству выделившегося тепла и так далее, другими словами изменение полной механической энергии равно работе внешних сил:

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему (т.е. такую в которой не действует внешних сил, и их работа соответственно равна нолю) и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной:

Это утверждение выражает закон сохранения энергии (ЗСЭ) в механических процессах. Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой силами упругости и тяготения. Во всех задачах на закон сохранения энергии всегда будет как минимум два состояния системы тел. Закон гласит, что суммарная энергия первого состояния будет равна суммарной энергии второго состояния.

Алгоритм решения задач на закон сохранения энергии:

  1. Найти точки начального и конечного положения тела.
  2. Записать какой или какими энергиями обладает тело в данных точках.
  3. Приравнять начальную и конечную энергию тела.
  4. Добавить другие необходимые уравнения из предыдущих тем по физике.
  5. Решить полученное уравнение или систему уравнений математическими методами.

Важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими силами действуют силы трения или силы сопротивления среды. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание). Таким образом энергия в целом (т.е. не только механическая) в любом случае сохраняется.

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.

 

Разные задачи на работу

К оглавлению…

Если в задаче требуется найти механическую работу, то сначала выберите способ её нахождения:

  1. Работу можно найти по формуле: A = FS∙cosα. Найдите силу, совершающую работу, и величину перемещения тела под действием этой силы в выбранной системе отсчёта. Обратите внимание, что угол должен быть выбран между векторами силы и перемещения.
  2. Работу внешней силы можно найти, как разность механической энергии в конечной и начальной ситуациях. Механическая энергия равна сумме кинетической и потенциальной энергий тела.
  3. Работу по подъёму тела с постоянной скоростью можно найти по формуле: A = mgh, где h – высота, на которую поднимается центр тяжести тела.
  4. Работу можно найти как произведение мощности на время, т.е. по формуле: A = Pt.
  5. Работу можно найти, как площадь фигуры под графиком зависимости силы от перемещения или мощности от времени.

 

Закон сохранения энергии и динамика вращательного движения

К оглавлению…

Задачи этой темы являются достаточно сложными математически, но при знании подхода решаются по совершенно стандартному алгоритму. Во всех задачах Вам придется рассматривать вращение тела в вертикальной плоскости. Решение будет сводиться к следующей последовательности действий:

  1. Надо определить интересующую Вас точку (ту точку, в которой необходимо определить скорость тела, силу натяжения нити, вес и так далее).
  2. Записать в этой точке второй закон Ньютона, учитывая, что тело вращается, то есть у него есть центростремительное ускорение.
  3. Записать закон сохранения механической энергии так, чтобы в нем присутствовала скорость тела в той самой интересной точке, а также характеристики состояния тела в каком-нибудь состоянии про которое что-то известно.
  4. В зависимости от условия выразить скорость в квадрате из одного уравнения и подставить в другое.
  5. Провести остальные необходимые математические операции для получения окончательного результата.

При решении задач надо помнить, что:

  • Условие прохождения верхней точки при вращении на нити с минимальной скоростью – сила реакции опоры N в верхней точке равна 0. Такое же условие выполняется при прохождении верхней точки мертвой петли.
  • При вращении на стержне условие прохождения всей окружности: минимальная скорость в верхней точке равна 0.
  • Условие отрыва тела от поверхности сферы – сила реакции опоры в точке отрыва равна нулю.

 

Неупругие соударения

К оглавлению…

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание). Для описания любых ударов Вам нужно записать и закон сохранения импульса, и закон сохранения механической энергии с учетом выделяющейся теплоты (предварительно крайне желательно сделать рисунок).

 

Абсолютно упругий удар

К оглавлению…

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

Частным случаем нецентрального упругого удара может служить соударения двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. В этом случае векторы скоростей шаров после упругого соударения всегда направлены перпендикулярно друг к другу.

 

Законы сохранения. Сложные задачи

К оглавлению…

Несколько тел

В некоторых задачах на закон сохранения энергии тросы с помощью которых перемещаются некие объекты могут иметь массу (т.е. не быть невесомыми, как Вы могли уже привыкнуть). В этом случае работу по перемещению таких тросов (а именно их центров тяжести) также нужно учитывать.

Если два тела, соединённые невесомым стержнем, вращаются в вертикальной плоскости, то:

  1. выбирают нулевой уровень для расчёта потенциальной энергии, например на уровне оси вращения или на уровне самой нижней точки нахождения одного из грузов и обязательно делают чертёж;
  2. записывают закон сохранения механической энергии, в котором в левой части записывают сумму кинетической и потенциальной энергии обоих тел в начальной ситуации, а в правой части записывают сумму кинетической и потенциальной энергии обоих тел в конечной ситуации;
  3. учитывают, что угловые скорости тел одинаковы, тогда линейные скорости тел пропорциональны радиусам вращения;
  4. при необходимости записывают второй закон Ньютона для каждого из тел в отдельности.
Разрыв снаряда

В случае разрыва снаряда выделяется энергия взрывчатых веществ. Чтобы найти эту энергию надо от суммы механических энергий осколков после взрыва отнять механическую энергию снаряда до взрыва. Также будем использовать закон сохранения импульса, записанный, в виде теоремы косинусов (векторный метод) или в виде проекций на выбранные оси.

Столкновения с тяжёлой плитой

Пусть навстречу тяжёлой плите, которая движется со скоростью v, движется лёгкий шарик массой m со скоростью uн. Так как импульс шарика много меньше импульса плиты, то после удара скорость плиты не изменится, и она будет продолжать движение с той же скоростью и в том же направлении. В результате упругого удара, шарик отлетит от плиты. Здесь важно понять, что не поменяется скорость шарика относительно плиты. В таком случае, для конечной скорости шарика получим:

Таким образом, скорость шарика после удара увеличивается на удвоенную скорость стены. Аналогичное рассуждение для случая, когда до удара шарик и плита двигались в одном направлении, приводит к результату согласно которому скорость шарика уменьшается на удвоенную скорость стены:

Задачи о максимальных и минимальных значениях энергии сталкивающихся шаров

В задачах такого типа главное понять, что потенциальная энергия упругой деформации шаров максимальна, если кинетическая энергия их движения минимальна – это следует из закона сохранения механической энергии. Сумма кинетических энергий шаров минимальна в тот момент, когда скорости шаров будут одинаковы по величине и направлены в одном направлении. В этот момент относительная скорость шаров равна нулю, а деформация и связанная с ней потенциальная энергия максимальна.

Как рассчитать работу, выполняемую силой

Работа — это энергия, прикладываемая к объекту, когда он перемещается на некоторое расстояние. Объем проделанной работы прямо пропорционален величине приложенной силы, а также перемещению объекта. В некоторых случаях может быть угол между направлением смещения и вектором силы.

Сила должна быть перпендикулярна направлению смещения, чтобы производить работу. Это можно учесть путем применения тригонометрии, где угол находится между расстоянием смещения и вектором силы.Когда сила противоположна направлению смещения, произведенная работа отрицательна.

Работа — это скалярная величина, поскольку у нее нет определенного направления. Единицей измерения работы является Ньютон-метр (Нм), поскольку сила измеряется в Ньютонах (Н), а перемещение измеряется в метрах (м). Чаще всего работа записывается в джоулях (Дж), единицах СИ. Все виды энергии, такие как тепло и потенциальная энергия, измеряются в джоулях.

Мы можем определить работу, выполняемую конкретными силами в различных сценариях.Когда хоккейная шайба скользит по поверхности, в ней участвуют несколько сил, которые играют разные роли. Нормальная сила или сила тяжести не совершают никакой работы, поскольку векторы перпендикулярны направлению смещения. С другой стороны, сила трения параллельна поверхности и действует на хоккейную шайбу. Однако сила трения производит отрицательную работу. Так будет всегда, поскольку трение постоянно препятствует движению.

На приведенной выше диаграмме ящик весом 8 кг тащится на 10 м через широкое помещение.Сила тяги была приложена 20 Н под углом 30 °. Коэффициент кинетического трения между обрешеткой и ковровым покрытием составляет 0,1. Какую работу выполняет каждая из сил, приложенных к обрешетке?

Можно создать диаграмму свободного тела, чтобы показать все силы, действующие на ящик. Приложенная сила может быть разбита на компоненты x и y с помощью тригонометрии. Поскольку они параллельны направлению движения, x-составляющая приложенной силы и сила трения создают работу.Остальные силы перпендикулярны и не производят работы.

Работа выполнена по F X : Вт FX = F ∙ d ∙ cosθW FX = 20 ∙ 10 ∙ cos30 ° W FX = 173,21 Дж
Работа выполнена по F f : Вт Ff = F f ∙ d ∙ cosω

W Ff = μ k ∙ F N ∙ d ∙ cosω

W Ff = μ k ∙ (F G — F Y ) ∙ d ∙ cosω

Вт Ff = μ k ∙ (мг — Fsinθ) ∙ d ∙ cosω

W Ff = 0.1 ∙ ((8 ∙ 9,81) — 20sin30 °) ∙ 10 ∙ cos180 °

Вт Ff = — 68,48 Дж

Основная формула работы может быть применена к обеим силам, хотя некоторые силы, возможно, придется разложить на более простые термины. Нисходящие и восходящие силы находятся в равновесии, и в результате может быть определена нормальная сила. Разница между гравитационной силой и y-составляющей приложенной силы эквивалентна нормальной силе. Общая работа системы может быть определена через сумму значений работы.

W всего = W FX + W Ff

Вт всего = 173,21 Дж — 68,48 Дж

Вт всего = 104,73 Дж

Измерительная сила: Урок для детей — Видео и стенограмма урока

Использование стрелок для иллюстрации силы

Когда мы рисуем силы, мы обычно рисуем стрелку в том направлении, в котором сила перемещает объект. Можете ли вы представить себе все силы, действующие на самолет?

Самолет в полете испытывает силу тяжести, направленную вниз, и подъемную силу, направленную вверх от крыльев.Он также испытывает силу тяги вперед (потому что двигатели толкают самолет вперед) и сопротивление воздуха. Давайте нарисуем все эти силы в нужных направлениях с помощью стрелок.

Измерение сил

Вы можете использовать прибор, называемый измерителем силы , для измерения величины силы. У большинства измерителей силы есть крючок, который можно использовать, чтобы что-то повесить или потянуть. Это заставит пружину двигаться и покажет вам, сколько силы приложено.

Мы измеряем силы с помощью единицы, называемой ньютонами.Они получили это имя от одного из самых известных ученых всех времен: Исаака Ньютона. Он был первым, кто описал силу, известную нам как гравитация.

Ньютон можно описать иначе, измеряя его в кг * (м / сек2).

Сила = Масса x Ускорение

Это потому, что:

  • Сила = Масса * Ускорение

Ньютон описал это в своих законах физики, которые говорят нам, что движение создается неуравновешенными силами. Он понял, что объекты, которые не движутся, останутся неподвижными, а объекты в движении останутся в движении, если не вмешается сила.

Сила, масса и ускорение взаимосвязаны. Если мы знаем любые два из трех, мы можем найти третий.

  • Ускорение = Сила / Масса
  • Масса = Сила / Ускорение

Ньютона интересовала сила тяжести, из-за которой яблоки падают с деревьев. Попробуем измерить силу тяжести, действующую на одно яблоко. Среднее яблоко весит около 1/3 фунта. Это примерно 0,13 кг. Ускорение свободного падения у поверхности Земли довольно близко к 9.8 м / с2. Следовательно, сила, которую испытывает одно яблоко, равна:

Сила = 0,1 кг * 9,8 м / с2 = 0,98

0,98 — это почти ровно один Ньютон! Разве это не замечательный факт, что на яблоко падает сила в один Ньютон?

Оценка больших сил

Представьте, что вы толкаете автомобиль весом 1500 кг. За каждую секунду, когда вы толкаете машину, ее скорость увеличивается на 0,05 м / с. В конце концов, машина наберет обороты и двинется с места, но какую силу вы прикладываете к машине, толкая ее?

Мы можем ответить на этот вопрос, используя определение силы, данное ранее.Чтобы найти силу, мы хотим умножить массу автомобиля на ускорение, которому автомобиль подвергается, когда мы его толкаем.

Сила = 1500 кг * 0,05 м / с2 = 75 ньютонов

Резюме урока

Силы заставляют вещи вокруг вас двигаться. Сила измеряется в ньютонах , что равно 1 кг * м / сек2. Вы можете рассчитать силу, которую испытывает объект, с помощью уравнения сила = масса * ускорение. Если вам известны любые два из этих значений, вы можете использовать их, чтобы найти третье.Измеритель силы используется для измерения силы, и силы показаны стрелками на диаграммах.

Что такое сила и как ее измерить?

Определения силы:

1) Сила — это толкание или тяга

2) Сила — это способность выполнять работу или вызывать физические изменения

3) Сила = масса, умноженная на ускорение (F = мА)

4) Сила — это сила, которая изменяет или стремится изменить состояние покоя или движения тела.

Примеры:

Для простоты все силы (взаимодействия) между объектами можно разделить на две большие категории: силы контакта и силы, возникающие в результате действия на расстоянии.

Контактные силы включают: силы трения, выталкивающие силы, нормальные силы и силы сопротивления воздуха

Силы, действующие на расстоянии , включают: гравитацию, электростатические и магнитные силы.

Измерительная сила:

Сила измеряется с использованием английской системы измерений или Международной системы единиц (СИ).

Общие единицы силы

— >> SI : Ньютон (Н) 1 Н = 0,225 фунта;

Один ньютон (Н) силы определяется как сила, необходимая для ускорения 1 килограмма (кг) массы со скоростью 1 метр в секунду в квадрате (м / с2).

1 Ньютон = 1 кг м / с2 (Килограмм — это вес, при котором сила 1 Н ускоряется со скоростью 1 м / с2.)

— >> Английская система : фунт (LB) 1 фунт = 4,448 Н

В английской системе измерений снаряд — это количество массы, которое 1 фунт силы ускоряет со скоростью 1 фут / с2, а масса фунта — это количество массы, которое 1 фунт силы ускоряет со скоростью 32 фута / с2.

Описание силы:

Сила — это векторная величина. Векторная величина — это величина, которая имеет как величину, так и направление. Чтобы полностью описать силу, действующую на объект, вы должны описать ее величину и направление. Таким образом, сила в 10 ньютонов не является полным описанием силы, действующей на объект. 10 ньютонов вниз — полное описание силы, действующей на объект.

(Примечание: в чем разница между векторными и скалярными величинами? Вектор имеет силу и направление, скалярная величина может быть описана с использованием только одной величины, величины.Примеры скалярных величин: время, энергия и объем, поскольку они представляют только величину, а не направление.

В чем разница между массой и весом?

Ниже показаны два типа весов, обычно используемых в классе: пружинные весы (слева) и простые весы для балансира справа.

На Земле пружинная шкала показывает 100 г с неизвестной массой внизу. Для балансировки шкалы справа также потребовалась масса в 100 г.

Если бы мы перенесли обе шкалы на Луну, что бы показала весенняя шкала? Сколько массы потребуется, чтобы уравновесить 100-граммовую массу на балансирном балке? Вы можете объяснить свой ответ? Для получения дополнительной информации см. Страницу «Масса и вес».


пружинная шкала

простые весы

Что делает применение силы?

Сила вызывает ускорение.

Второй закон Ньютона гласит, что: ускорение (а) объекта прямо пропорционально приложенной силе (F) и обратно пропорционально массе объекта (м).2


Что такое трение?

Трение — это сила, которая противодействует относительному движению или тенденции к такому движению двух соприкасающихся тел. Если мы пытаемся протолкнуть деревянный брусок по столу, действуют две противодействующие силы: сила, связанная с толчком, и сила, связанная с трением, действующим в противоположном направлении. По мере уменьшения сил трения (например, путем нанесения масла на стол) объект перемещается все дальше и дальше перед остановкой.Это демонстрирует закон инерции Галилея, который гласит: объект в состоянии движения обладает « инерцией », которая заставляет его оставаться в этом состоянии движения, если на него не действует внешняя сила.

Попробуйте это упражнение!

Пожалуйста введите свой ответ в отведенное для этого поле:

1) Какая полезная сила требуется для разгона автомобиля массой 1500 кг со скоростью 6,00 м / с2?

Пожалуйста, введите свой ответ в отведенное для этого поле:


2) Какова масса объекта, имеющего на Луне вес 115 Н? Сила тяжести Луны составляет 1/6 грамма (что составляет 9.8 м / с2).


3) Объект в свободном падении будет ускоряться со скоростью:

Расчет объема работы силовых

В предыдущей части Урока 1 работа описывалась как имеющая место, когда на объект действует сила, вызывающая смещение.Когда сила действует, заставляя объект смещаться, необходимо знать три величины, чтобы рассчитать работу. Эти три величины — сила, смещение и угол между силой и смещением. Затем работа рассчитывается как сила • смещение • косинус (тета), где тета — угол между векторами силы и смещения. В этой части Урока 1 концепции и математика работы будут применены для анализа различных физических ситуаций.

Проверьте свое понимание

Выразите свое понимание концепции и математики работы, ответив на следующие вопросы. Когда закончите, нажмите кнопку, чтобы просмотреть ответы.

1. Примените уравнение работы, чтобы определить объем работы, выполняемой приложенной силой в каждой из трех ситуаций, описанных ниже.

2.Во многих случаях на объект действует более одной силы. Диаграмма свободного тела — это диаграмма, которая отображает тип и направление всех сил, действующих на объект. Следующие ниже описания и сопровождающие их диаграммы свободного тела показывают силы, действующие на объект. Для каждого случая укажите, какие силы действуют на объект. Затем рассчитайте работу, совершаемую этими силами.

Свободное тело

Схема

Силы, выполняющие работу

на Объекте

Объем выполненных работ

каждой силой

Приложена сила 10 Н, чтобы толкнуть блок по поверхности, свободной от трения, на смещение 5.0 м вправо.

Сила трения 10 Н замедляет движущийся блок до остановки после смещения на 5,0 м вправо.

Приложена сила 10 Н, чтобы толкнуть блок по фрикционной поверхности с постоянной скоростью для перемещения 5.0 м вправо.

Объект весом около 2 кг скользит с постоянной скоростью по поверхности, свободной от трения, на 5 м вправо.

Объект весом около 2 кг тянется вверх с постоянной скоростью силой 20 Н для вертикального перемещения 5 м.

3. Перед началом спуска автомобиль с американскими горками всегда поднимается на первый холм на большую начальную высоту. Для достижения этой начальной высоты с автомобилем (обычно с помощью цепи) выполняются работы. Конструктор каботажного судна рассматривает три различных угла наклона, под которыми можно перетащить 2000-кг состав на вершину 60-метрового холма.В каждом случае сила, приложенная к автомобилю, будет прилагаться параллельно холму. Ее критический вопрос: какой угол потребует больше всего работы? Проанализируйте данные, определите проделанную работу в каждом конкретном случае и ответьте на этот важный вопрос.

Уголок Сила Расстояние Работа (J)

а.

35 град. 1,12 x 10 4 Н 105 кв.м.

г.

45 град. 1,39 x 10 4 Н 84,9 м

г.

55 град. 1,61 x 10 4 Н 73,2 м

4. Бен Травлун переносит чемодан 200-Н на три лестничных пролета (высота 10,0 м), а затем толкает его с горизонтальной силой 50,0 Н с постоянной скоростью 0,5 м / с на горизонтальное расстояние 35.0 метров. Сколько работы Бен делает со своим чемоданом во время этого движения за все движение ?


5. На блок действует сила 50 Н под углом, показанным на диаграмме. Блок перемещается на 3,0 м по горизонтали. Сколько работы совершает приложенная сила?

6. Сколько работы совершает приложенная сила, чтобы поднять 15-ньютонный блок 3.0 метров по вертикали с постоянной скоростью?


7. Студент массой 80,0 кг преодолевает три лестничных пролета за 12,0 сек. Студент прошел вертикальное расстояние 8,0 м. Определите объем работы, проделанной учеником, чтобы поднять свое тело на эту высоту. Предположим, что его скорость постоянна.


8.Рассчитайте работу, проделанную силой 2,0 Н (направленной под углом 30 ° к вертикали), чтобы переместить 500-граммовый ящик на горизонтальное расстояние 400 см по черновому полу с постоянной скоростью 0,5 м / с. (ПОДСКАЗКА: будьте осторожны с единицами.)


9. Уставшая белка (масса 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см.Оцените количество отжиманий, которое должна сделать уставшая белка, чтобы выполнить примерно 5,0 Джоулей работы.

Мы хотели бы предложить … Иногда просто прочитать об этом недостаточно. Вы должны с ним взаимодействовать! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения It’s All Uphill.Вы можете найти его в разделе Physics Interactives на нашем сайте. Интерактивная программа It’s All Uphill Interactive позволяет учащемуся изучить влияние угла наклона на силу и работу, выполняемую при подъеме тележки в гору с постоянной скоростью.

Работа, выполненная силой — Импульс, работа и мощность — Шлюз OCR — Объединенная научная версия GCSE — Шлюз OCR

Расчет выполненной работы

Для расчета работы, выполняемой над объектом, когда его перемещает сила, используйте уравнение:

проделанная работа = сила × расстояние

Это когда:

  • проделанная работа измеряется в джоулях (Дж)
  • сила измеряется в ньютонах (Н)
  • расстояние, пройденное вдоль линии действия силы, измеряется в метры (м)

Обратите внимание, что один джоуль работы выполняется, когда сила в один ньютон вызывает перемещение на один метр.Это означает, что проделанная работа также может быть измерена в ньютон-метрах (Нм).

1 Дж = 1 Нм

Важно не путать ньютон-метры (единицы выполненной работы) с ньютон-метрами (калиброванные пружинные весы, используемые для измерения веса).

Пример

Врач весит 600 Н. Лифт поднимает ее на 40 м на верхний этаж больницы. Рассчитайте работу, которую врач проделал у подъемника. 5 м с усилием в 1000 Н.Подсчитайте проделанную работу, переместив другую команду.

Выявить ответ

выполненная работа = сила × расстояние

выполненная работа = 1000 Н × 5 м

выполненная работа = 5000 Дж (или 5 кДж)

Работа: научное определение | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как объект должен перемещаться, чтобы сила, действующая на него, выполняла работу.
  • Объясните, как относительные направления силы и смещения определяют, является ли выполненная работа положительной, отрицательной или нулевой.

Что значит работать

Научное определение труда несколько отличается от его повседневного значения. Некоторые вещи, которые мы считаем тяжелой работой, например написание экзамена или ношение тяжелой ноши на ровной поверхности, не являются работой, как это определено ученым. Научное определение работы раскрывает ее связь с энергией — всякий раз, когда работа выполняется, энергия передается.

Для выполнения работы в научном смысле необходимо приложить силу и должно быть движение или смещение в направлении силы.

Формально, работа , совершаемая в системе постоянной силой, определяется как произведение составляющей силы в направлении движения на расстояние, на которое действует сила . Для одностороннего движения в одном измерении это выражается в форме уравнения как W = | F | (cos θ ) | d |, где W — работа, d — смещение системы, а θ — угол между вектором силы F и вектором смещения d , как на рисунке 1.Мы также можем записать это как W = Fd cos θ .

Чтобы найти работу, проделанную в системе, которая претерпевает движение, которое не является односторонним или которое находится в двух или трех измерениях, мы делим движение на односторонние одномерные сегменты и складываем работу, выполненную по каждому сегменту.

Что такое работа?

Работа, совершаемая в системе постоянной силой, равна произведению составляющей силы в направлении движения на расстояние, на котором действует сила .Для одностороннего движения в одном измерении это выражается в форме уравнения как W = Fd cos θ , где W — работа, F — величина силы, действующей на систему, d — величина смещения системы, а θ — угол между вектором силы F и вектором смещения d .

Рисунок 1. Примеры работы. (a) Работа, выполняемая силой F на этой газонокосилке, составляет Fd cos θ .Обратите внимание, что F cos θ — это составляющая силы в направлении движения. (б) Человек, держащий портфель, не работает с ним, потому что нет движения. Энергия не передается ни в чемодан, ни из него. (c) Человек, перемещающий портфель в горизонтальном направлении с постоянной скоростью, не работает с ним и не передает ему энергию. (d) Работа с портфелем выполняется путем его подъема по лестнице с постоянной скоростью, поскольку обязательно присутствует составляющая силы F в направлении движения.Энергия передается в портфель и, в свою очередь, может использоваться для работы. e) когда портфель опускается, энергия передается из портфеля в электрический генератор. Здесь работа, выполняемая генератором над портфелем, является отрицательной, что приводит к отведению энергии из портфеля, потому что F и d находятся в противоположных направлениях.

Чтобы изучить, что означает определение работы, давайте рассмотрим другие ситуации, показанные на рисунке 1. Например, человек, держащий портфель на рисунке 1b, не работает.Здесь d = 0, поэтому W = 0. Почему вы устаете просто держать груз? Ответ заключается в том, что ваши мышцы работают друг против друга, , но они не работают в интересующей системе («система портфель-Земля» — см. Подробнее «Энергия гравитационного потенциала»). Для выполнения работы должно быть движение, и должна быть составляющая силы в направлении движения. Например, человек, несущий портфель на ровной поверхности на рисунке 1c, не работает с ним, потому что сила перпендикулярна движению.То есть cos 90º = 0, и поэтому W = 0.

Напротив, когда сила, действующая на систему, имеет компонент в направлении движения, как на рисунке 1d, работа выполняется — энергия передается портфелю. Наконец, на рисунке 1e энергия передается от портфеля к генератору. Есть два хороших способа интерпретировать эту передачу энергии. Одно из объяснений состоит в том, что вес портфеля действительно воздействует на генератор, давая ему энергию. Другая интерпретация состоит в том, что генератор отрицательно воздействует на портфель, тем самым забирая из него энергию.На чертеже показано последнее, где сила от генератора направлена ​​вверх на портфель, а смещение — вниз. Это составляет θ = 180º, а cos 180º = -1; следовательно, W отрицательный.

Расчет работы

Работа и энергия имеют одинаковые единицы. Из определения работы мы видим, что эти единицы — это сила, умноженная на расстояние. Таким образом, в единицах СИ работа и энергия измеряются в ньютон-метрах . Ньютон-метр получает специальное имя джоуль (Дж), а 1Дж = 1Н · м = 1 кг · м 2 / с 2 .Один джоуль — это не большое количество энергии; он поднимет небольшое 100-граммовое яблоко на расстояние около 1 метра.

Пример 1. Расчет работы, которую вы выполняете, чтобы протолкнуть газонокосилку по большой лужайке

Сколько работы проделал с газонокосилкой человек, изображенный на Рисунке 1a, если он прикладывает постоянную силу 75,0 Н под углом 35º к горизонтали и толкает газонокосилку на 25,0 м по ровной поверхности? Преобразуйте объем работы из джоулей в килокалории и сравните его со средним дневным потреблением этого человека 10 000 кДж (около 2400 ккал) пищевой энергии.Одна калорий (1 кал) тепла — это количество, необходимое для нагрева 1 г воды на 1ºC, и эквивалентно 4,184 Дж, а одна калорий (1 ккал) эквивалентна 4184 Дж.

Стратегия

Мы можем решить эту проблему, подставив указанные значения в определение работы, выполняемой в системе, указанное в уравнении W = Fd cos θ . Приведены сила, угол и перемещение, поэтому неизвестна только работа W .{-4} \\ [/ латекс]

Обсуждение

Это соотношение — крошечная доля того, что человек потребляет, но это типичное значение. Очень мало энергии, выделяемой при потреблении пищи, используется для работы. Даже когда мы «работаем» весь день, менее 10% потребляемой нами энергии уходит на работу, а более 90% преобразуется в тепловую энергию или сохраняется в виде химической энергии в жире.

Сводка раздела

Работа — это передача энергии силой, действующей на объект при его перемещении.

Работа W , которую сила F производит на объект, является произведением величины F силы, умноженной на величину d смещения, умноженную на косинус угла θ между ними . В символах W = Fd cos θ .

Единицей измерения работы и энергии в системе СИ является джоуль (Дж), где 1 Дж = 1 Н · м = 1 кг · м 2 / с 2 .

Работа, совершаемая силой, равна нулю, если смещение равно нулю или перпендикулярно силе.

Выполненная работа является положительной, если сила и смещение имеют одинаковое направление, и отрицательной, если они имеют противоположное направление.

Концептуальные вопросы

  1. Приведите пример того, что мы считаем работой в повседневных обстоятельствах, что не является работой в научном смысле. В вашем примере энергия передается или изменяется по форме? Если да, объясните, как это достигается без выполнения работы.
  2. Приведите пример ситуации, в которой есть сила и смещение, но сила не работает.Объясните, почему это не работает.
  3. Опишите ситуацию, в которой сила действует в течение длительного времени, но не работает. Объяснять.

Задачи и упражнения

  1. Сколько работы кассир в супермаркете проделывает с банкой с супом, которую он толкает на 0,600 м по горизонтали с силой 5,00 Н? Выразите свой ответ в джоулях и килокалориях.
  2. Человек весом 75,0 кг поднимается по лестнице, набирая высоту 2,50 метра. Найдите работу, проделанную для выполнения этой задачи.
  3. (a) Рассчитайте работу, проделанную с кабиной лифта весом 1500 кг, чтобы поднять ее 40.0 м при постоянной скорости, предполагая, что трение в среднем составляет 100 Н. (b) Какую работу совершает в этом процессе сила тяжести на подъемнике? (c) Какова общая работа подъемника?
  4. Предположим, автомобиль проезжает 108 км со скоростью 30,0 м / с и использует 2,0 галлона бензина. Только 30% бензина расходуется на полезную работу за счет силы, которая позволяет автомобилю двигаться с постоянной скоростью, несмотря на трение. (В галлоне бензина 1,2 × 10 8 Дж.) (A) Какова величина силы, прилагаемой для поддержания постоянной скорости движения автомобиля? (b) Если требуемая сила прямо пропорциональна скорости, сколько галлонов будет использовано для проезда 108 км со скоростью 28.0 м / с?
  5. Рассчитайте работу, проделанную мужчиной весом 85,0 кг, который толкает ящик на 4,00 м вверх по пандусу, образующему угол 20,0 ° с горизонтом. (См. Рис. 2.) Он прилагает силу 500 Н к ящику параллельно рампе и перемещается с постоянной скоростью. Обязательно укажите работу, которую он проделывает с ящиком и телом, чтобы подняться по пандусу.

    Рис. 2. Мужчина толкает ящик по пандусу.

  6. Сколько работы выполняет мальчик, тащащий свою сестру 30,0 м в фургоне, как показано на рисунке 3? Предположим, что на вагон не действует трение.

    Рис. 3. Мальчик работает с системой телеги и ребенка, когда тянет их, как показано.

  7. Покупатель толкает тележку для продуктов на 20,0 м с постоянной скоростью по ровной поверхности, преодолевая силу трения 35,0 Н. Он толкает в направлении на 25,0 ° ниже горизонтали. а) Какая работа происходит с тележкой за счет трения? б) Какую работу совершает гравитационная сила на тележке? (c) Какую работу выполняет покупатель с тележкой? (d) Найдите силу, которую оказывает покупатель, используя соображения энергии.(e) Какова общая работа, проделанная с тележкой?
  8. Предположим, что лыжный патруль спускает спасательные сани и пострадавшего, общая масса которого составляет 90,0 кг, вниз по склону 60,0 ° с постоянной скоростью, как показано на рисунке 4. Коэффициент трения между санями и снегом составляет 0,100. а) Сколько работы совершает трение, когда сани движутся по холму на 30,0 м? б) Сколько работы на этом расстоянии совершает веревка на санях? (c) Какую работу совершает сила тяжести на санях? (г) Какова общая проделанная работа?

    Рисунок 4.Спасательные сани и пострадавший спускаются по крутому склону.

Глоссарий

энергия: работоспособность

работа: передача энергии силой, которая заставляет объект перемещаться; произведение составляющей силы в направлении смещения на величину смещения

джоуль: единица работы и энергии в СИ, равная одному ньютон-метру

Избранные решения проблем и упражнения

1.3,00 Дж = 7,17 × 10 −4 ккал

3. (а) 5.92 × 10 5 Дж; (б) −5,88 × 10 5 Дж; (c) Чистая сила равна нулю.

5. 3,14 × 10 3 Дж

7. (а) -700 Дж; (б) 0; (c) 700 Дж; (d) 38,6 N; (д) 0

Что такое единица силы в системе СИ?

Международная система единиц (СИ) широко используется в торговле, науке и технике

Единицей силы в системе СИ является ньютон, символ N.Базовые единицы, относящиеся к силе:

  • Метр, единица длины — условное обозначение м
  • Килограмм, единица массы — условное обозначение кг
  • Секунда, единица времени — символ s

Сила определяется как скорость изменения количества движения. Для неизменной массы это эквивалентно ускорению массы x.
Итак, 1 Н = 1 кг м / с -2 , или 1 кг м / с 2 .

Исторически сложилось так, что существовало множество единиц силы и коэффициентов пересчета.Некоторые из них приведены в таблице ниже. Точные преобразования выделены жирным шрифтом, остальные указаны до семи значащих цифр.

Блок

Символ

Эквивалентное значение в системе СИ

дин

дин

10.0 мкН

зерно-сила

гр

635,460 2 мкН

грамм-сила

gf

9.806 65 мН

фунтов стерлингов

pdl

138.255 0 мН

унция-сила (avdp)

унций

278,013 9 мН

фунт-сила

фунтов

4.448 222 N

килограмм-сила

кгс

9.806 65 N

килопонд

кп

9.806 65 N

зен

зен

1.0 кН

тысяч фунтов (= 1000 фунтов-силы)

тысячных фунтов

4.448 222 кН

Тонна сила США (= 2000 фунт-сила) (короткая)

тс (США)

8,896 443 кН

тонна сила (= 1000 кгс) (метрическая система)

тс

9.806 65 кН

Тонна сила, Великобритания (= 2240 фунт-сила) (длинная)

тс (Великобритания)

9.964 016 кН

Система СИ поощряет использование сокращенных форм для больших и малых чисел. Префиксы SI представляют собой кратные 10 3 или 10 ‑3 .

Добавить комментарий

Ваш адрес email не будет опубликован.