Вертикальные ветрогенераторы – Вертикальный ветрогенератор нового поколения, схема, своими руками

Содержание

Делаем для дачи вертикальный ветрогенератор своими руками

Пожалуй, ни один дачник не будет спорить с тем, что сегодня необходимо иметь какой-либо альтернативный источник электроэнергии, ведь свет могут отключить в любую минуту. Большую популярность, как источник бесплатной энергии, сегодня получили самодельные ветрогенераторы. Разнообразные модели таких устройств предлагаются на рынке, а в интернете можно увидеть схемы, чертежи и видео, позволяющие собрать их своими руками.

Стоит отметить, что самодельный ветрогенератор будет очень полезен даже при его небольшой мощности. Уже одно то, что среди кромешной тьмы дача будет освещена, и можно будет без проблем посмотреть телевизор или зарядить мобильное устройство, подстрахует от неприятностей и поднимет престиж перед соседями.

к содержанию ↑

Три маленьких секрета

Первый секрет заключается в том, на какую высоту будет установлен самодельный ветрогенератор. Понятно, что проще смонтировать его на высоте нескольких метров от земли, но и толку от него тогда будет не особенно много. Следует учитывать, что чем выше ветрогенератор, тем сильнее ветер, быстрее крутятся его лопасти, и тем больше энергии можно получить от сделанной своими руками электростанции.

Второй секрет заключается в выборе АКБ. В интернете советуют не мудрить и ставить автомобильный аккумулятор. Да, это проще и, на первый взгляд, дешевле. Но, необходимо знать, что автомобильные аккумуляторы следует устанавливать в хорошо проветриваемом помещении, они требуют ухода, а их срок службы не превышает 3-х лет. Будет лучше приобрести специальный аккумулятор. Хотя он и стоит дороже, но это себя оправдает.

Третий секрет, какой ветрогенератор лучше подходит для изготовления своими руками — горизонтальный или вертикальный? У каждого варианта свои достоинства и недостатки. Мы рассмотрим ветрогенераторы вертикального типа, принцип работы которых показан на рис.2.

Сначала о недостатках: вертикальный ветрогенератор имеет низкий КПД по сравнению с горизонтальными моделями, на его сборку уходит больше материалов, что, соответственно, ведёт к удорожанию конструкции. С другой стороны, вертикальные ветряки могут работать при более слабом ветре, чем их горизонтальные аналоги, что компенсирует их невысокий КПД. Их не требуется поднимать на слишком большую высоту, они проще и дешевле при монтаже и установке, что сводит на нет разницу в стоимости материалов.

Немаловажным фактором является и то, что вертикальный ветрогенератор надёжнее при резких порывах ветра и ураганах, так как его устойчивость растёт с повышением скорости вращения. Кроме того, вертикальные конструкции практически бесшумны, что позволяет устанавливать их в любом месте, вплоть до крыши жилого дома. Всё вышеперечисленное ведёт к тому, что эти установки пользуются растущим спросом и выпускаются в различных модификациях, применительно к требуемой мощности и ветрам, преобладающим в определённых регионах, с чем, кстати, можно ознакомиться на видео ниже.


к содержанию ↑

Простейшая конструкция

Маломощный вертикальный ветрогенератор нетрудно собрать своими руками из, без преувеличения, бросовых материалов: большой пластиковой бутылки или жестяной банки, стальной оси и старого электромотора. Достаточно пополам разрезать банку или бутылку и закрепить эти половины на связанной с генератором оси вращения (рис.3). Такой вертикальный ветряк несложно сделать разборным и брать его с собой на рыбалку или в поход, где он не только осветит место ночлега, но и позволит подзарядить телефон или другое мобильное устройство.

к содержанию ↑

Собственная электростанция для дачи

А вот изготовление более мощного ветрогенератора придётся начать с покупки ведра и это не розыгрыш. Да, для начала, придётся купить обычное оцинкованное ведро. Это, конечно, в том случае, если такое прохудившееся ведро не завалялось где-либо в сарае. Размечаем его на четыре части и делаем ножницами по металлу прорези, так, как это показано на рис.4.

Ведро крепится за днище к шкиву генератора. Крепить следует четырьмя болтами, расположив их строго симметрично и на одном расстоянии от оси вращения, что позволит избежать дисбаланса.

Итак, практически всё готово, осталось выполнить следующие действия:

  1. Отогнуть металл на прорезях, чтобы получить лопасти. Если чаще всего господствует сильный ветер, достаточно слегка отогнуть бока. Если ветер слабый, отогнуть можно и посильнее. В любом случае, величину изгиба можно отрегулировать позднее;
  2. Соединить все необходимые приборы (кроме генератора) так, как это показано на рис.5;
  3. Закрепить генератор с идущими от него проводами на мачте;
  4. Укрепить мачту;
  5. Подсоединить провода, идущие от генератора, к контроллеру.

Всё. Изготовленный своими руками ветрогенератор готов к работе.

к содержанию ↑

Электрическая схема

Рассмотрим подробнее электрическую схему. Понятно, что ветер может в любую минуту прекратиться. Поэтому ветрогенераторы не подключают напрямую к бытовым приборам, а вначале заряжают от них аккумуляторные батареи, для обеспечения сохранности которых, применяется контроллер заряда. Далее, учитывая то, что АКБ дают постоянный ток малого напряжения, в то время как практически все бытовые приборы потребляют переменный ток напряжением 220 вольт, устанавливается преобразователь напряжения или, как его ещё называют, инвертор и только потом подключают всех потребителей.

Для того чтобы ветрогенератор обеспечивал работу персонального компьютера, телевизора, сигнализации и нескольких энергосберегающих ламп достаточно установить аккумулятор ёмкостью 75 ампер/час, преобразователь напряжения (инвертор) мощностью 1,0 кВт, плюс генератор соответствующей мощности. А что ещё нужно, когда отдыхаешь на даче?

к содержанию ↑

Подведём итоги

Вертикальный ветрогенератор, который можно сделать по приведённым выше инструкциям, может работать при довольно слабом ветре и независимо от его направления. Его конструкция упрощается за счёт того, что в ней отсутствует флюгер, разворачивающий по ветру винт горизонтального ветрогенератора.

Основным недостатком вертикально-осевых ветряных турбин является небольшой КПД, но это искупается рядом других преимуществ:

  • Скорость и простота сборки;
  • Отсутствие ультразвуковой вибрации, характерной для горизонтальных ветрогенераторов;
  • Нетребовательность к техническому обслуживанию;
  • Достаточно тихая работа, позволяющая установить вертикальный ветряк практически в любом месте.

Конечно, сделанный своими руками ветряк может не выдержать излишне сильного ветра, который окажется способным сорвать ведро. Но это не проблема, просто придётся купить новое или приберечь где-либо в сарае отслужившее свой срок старое.

На видео ниже можно посмотреть как запитываются бытовые приборы на даче. Правда, ветрогенератор здесь сделан не из ведра, но тоже своими руками.

mirenergii.ru

Ветрогенератор бесшумный вертикальный

Ветрогенераторы вертикального типа предназначены для тех мест, где бесшумность работы и надёжность конструкции являются главными требованиями к электроустановкам. Сочетают в себе комфорт солнечных батарей и эффективность горизонтальных ветрогенераторов.

к содержанию ↑

Введение

Каждый, кто путешествовал на автомобиле по Европе наверняка хорошо запомнил поля ветряков вдоль дорог. Такие ветрогенераторы называются горизонтальным, основная их масса нацелена на промышленное применение в составе целых сетей. Однако использование подобных ветряных электроустановок (ВЭУ) в быту не так распространено даже в развитых странах. Появление новых ветрогенераторов вертикального типа позволяет надеяться на повышение популярности и массовости этого экологического способа получения электроэнергии. Вертикальный ветрогенератор отличается надёжностью, работой даже при слабом ветре, безопасностью и, самое главное, бесшумностью.

к содержанию ↑

Принцип работы


Для работы ротора вертикального ветряка используется эффект магнитной левитации, что позволяет ему фактически парить в воздухе. Применение магнитов из редкоземельных металлов позволяет компенсировать силу тяжести, а специальные автоматизированные системы удерживают механизм в нужной точке. Такой подход делает возможным начало раскручивания ротора при совсем малых порывах ветра на уровне лёгкого бриза (от 0.17 м/c). Уменьшение количества механических частей существенно повышает надёжность и долговечность всей конструкции, а также положительно сказывается на акустическом комфорте (уровень шума до 20 дб).

к содержанию ↑

Особенности

Многих потенциальных покупателей ветрогенераторов часто останавливает требовательность этих устройств к постоянному наличию ветра достаточной силы. Горизонтальный ветрогенератор стартует в среднем при ветре 7-8 м/c. Вертикальный генератор начинает работу уже при ветре 0.17 м/c, а на номинальную мощность выходит при 3 м/c.

Особенности ротора и лопастей, созданных с использованием принципов паруса, Савониса и Жуковского, позволяют осуществлять выработку электроэнергии при любом направлении и силе ветра.

Ветряки вертикального типа практически не требуют технического обслуживания. В работе используется тихоходный генератор на неодимовых магнитах без щёток. Классические горизонтальный генератор потребует технического обслуживания каждые полгода.

В требованиях к установке вертикального ветряка отсутствуют пункты о шумоизоляции или минимальном расстоянии до жилых объектов. Бесшумный режим работы достигается за счёт применения эффекта магнитной левитации, который позволяет свести на нет практически все вибрации и добиться шумовой нагрузки меньше 20 дб. Мачту ветряка можно установить даже на крышу дома, так как генератор практически бесшумный.

Многие вертикальные ветрогенераторы имеют модульную конструкцию. Это позволяет наращивать мощность уже существующих ветряков без полной перестройки проекта.

Для многих пользователей ветроустановки важно, чтобы генератор был устойчивым к агрессивной окружающей среде. Вся рабочая конструкция заключена в герметичный алюминиевый блок и не подвержена воздействию влаги. Кроме того, сама конструкция вертикального ветряка даёт возможность переносить даже ураганные порывы ветра.

к содержанию ↑

Минусы

Вертикальный ветрогенератор обладает рядом достоинств, но идеальных устройств пока сделать не удалось никому. Технологии позволяют улучшить отдельные моменты, но зачастую чем-то приходится жертвовать. Вертикальные ветрогенераторы не исключение, поэтому важно понимать какие минусы есть у данного класса устройств.

Одним из главных недостатков вертикального ветряка является низкий КПД в сравнении с горизонтальным ветрогенератором. Диапазон в 15-25% достаточно солидный в сравнении с солнечными батареями, но уступает горизонтально осевым ВЭУ, которые показывают КПД 35-45%. Цена одного ватта вырабатываемой энергии также уступает зачастую в несколько раз.

Вертикальный ветрогенератор достаточно сложная конструкция, что негативно сказывается на весе, а это, в свою очередь, затрудняет подъём устройства на большую высоту. Из-за этого появляются проблемы при «ловле» ветра, так как сильные порывы наблюдаются чаще всего на хорошей высоте. Выиграв в нижней границе старта ротора, можно проиграть из-за более низкой скорости ветра на высоте мачты вертикального ветряка.

Основные плюсы вертикальной схемы в принципе достижимы и в горизонтальных вариантах. Небольшое увеличение бюджета поспособствует установке дополнительной шумоизоляции и систем подстройки под направление ветра, исследованию розы ветров региона и выбору оптимальной высоты мачты.

к содержанию ↑

Области применения

Однозначно советовать именно вертикальные ветрогенераторы нельзя, всё зависит от того где планируется применять ВЭУ. Если позволяет пространство, на местности наблюдается стабильный хороший ветер и есть варианты для шумоизоляции, то горизонтальный ветрогенератор небольшой мощности с одной лопастью станет отличным выбором.

Использовать вертикальный ветрогенератор следует тогда, когда его главные преимущества действительно являются краеугольными в проекте. Самый яркий пример — вертикальный генератор на яхте. Отсутствие вибраций, низкий шум и возможность установки на любую поверхность сделают вертикальный ВЭУ незаменимым для любого транспортного средства, которое используется для длительных путешествий. Таким образом, основными критериями выбор в пользу вертикальной схемы можно назвать — близкое расположение ВЭУ к жилому объекту, стеснённость в пространстве установки, слабый ветер в области установки. В этом случае тихоходные бесшумные ветряки станут отличным выбором.

Полезная статья по теме: Преимущества и недостатки вертикальных ветроустановок в сравнении с «пропеллерами»

Оцените статью:

Загрузка…

Поделитесь с друзьями:

mirenergii.ru

плюсы и минусы, производители устройств и необычные конструкции

Возрастающий интерес конструкторов к ветроэнергетике, стремление обеспечить автономность, независимость жилья от поставщиков ресурсов, вызвали появление множества разработок, функционально опережающих традиционные образцы. Обилие конструкций и разновидностей ветряков заставляет рассмотреть их внимательнее.

Основные виды ветрогенераторов

В первую очередь, ветрогенераторы принято разделять на вертикальные и горизонтальные. Эти группы называются так из-за расположения оси вращения крыльчатки. Горизонтальные конструкции напоминают пропеллер или вентилятор, а вертикальные по своему строению близки к карусели. Такое разделение условно, в настоящее время имеются конструкции, сочетающие в себе элементы и той, и другой группы. Есть также отдельные устройства, которые не могут быть причислены к этим категориям.

Горизонтальные конструкции, их особенности, достоинства и недостатки

Горизонтальные устройства имеют более высокую эффективность, поскольку энергия потока усваивается ими намного полнее. Все горизонтальные ветряки созданы практически по одной конструктивной схеме, есть некоторые отличия лишь в строении ротора. К недостаткам этой группы можно отнести необходимость настройки на ветер, которая хоть и производится автоматически, но требует наличия дополнительного шарнирного соединения, обеспечивающего вращение устройства вокруг вертикальной оси.

Кроме того, для горизонтальных устройств важно наличие высокой опоры — мачты, обеспечивающей оптимальный режим контакта с потоками ветра. Специфика работы требует наличия защиты от ураганного ветра, которая при увеличении силы потока отводит ротор от ветра, вследствие чего частота вращения резко падает.

Вертикальные генераторы, особенности, плюсы и минусы

Вертикальные ветрогенераторы менее эффективны вследствие наличия останавливающего воздействия потока ветра на обратные стороны лопастей. Этот недостаток практически единственный. Вертикальные конструкции не нуждаются в наведении на ветер, не требуют установки на высокие мачты, доступны для ремонта, обслуживания или самостоятельного изготовления.

Именно вертикальные конструкции обеспечивают такое разнообразие форм и моделей ротора, созданных профессиональными конструкторами и талантливыми любителями. Рассмотрим некоторые варианты конструкции вертикальных роторов:

Ротор Дарье

Отличается конфигурацией лопастей, которые расположены вертикально и по касательной к окружности вращения. Кроме того, форма лопасти имеет строение как у крыла самолета, поэтому при вращении создается подъемная сила, облегчающая движение и способствующая работе со слабыми потоками ветра.

Ветровая турбина Савониуса

Этот вид имеет две лопасти, установленные напротив друг друга. Форма лопастей напоминает желоб, при воздействии ветрового потока на обратную сторону происходит расщепление струи воздуха, которая частично уходит в сторону, а частично соскальзывает с обратной стороны одной лопасти на рабочую часть второй. Ветрогенератор Савониуса является одной из самых старых разработок, но до сих пор вполне успешно используется как в промышленных, так и в самодельных устройствах.

Выбор вертикального ветрогенератора

Для того, чтобы правильно подобрать конструкцию вертикального ветрогенератора, надо учесть размеры ротора, силу ветра в регионе, потребность в определенном количестве электроэнергии, и сопоставить эти величины. Чем больше ротор, тем он тяжелее и тем труднее ему начинать вращение. Способность начинать вращаться при слабых ветрах присуща не каждому виду вертикальных устройств, поэтому следует для больших ветряков использовать наиболее чувствительные конструкции.

Вариантов выбора много, их параметры мало отличаются друг от друга, но некоторая разница присутствует. Если рассматриваемая конструкция не способна обеспечить желаемое количество энергии, следует отказаться от нее и рассмотреть другой вариант.

Кроме указанных параметров надо помнить, что самодельное устройство во многих случаях выгоднее и надежнее, так как легче ремонтируется и не требует больших расходов, что при выборе может сыграть решающую роль.

Генераторы российского производства

Российские фирмы-производители ветряков пока не могут в полную силу конкурировать с зарубежными изготовителями. При этом, отечественные конструкторы учитывают специфику и потребности российского пользователя. Конструкции российских фирм рассчитаны на потребление в масштабах одного дома, или одной небольшой системы (освещение, водяной насос и т.д.). Такой подход позволяет создавать устройства, доступные по цене и удобные по параметрам.

Приобретение крупных образцов отечественному пользователю не по карману, а удовлетворить потребности одной усадьбы можно одним-двумя небольшими комплексами. Поэтому российские фирмы выпускают более привлекательные модели, что создает для них неплохие перспективы и повышает конкурентоспособность.

Необычные конструкции ветрогенераторов

Среди широкого ряда конструкций ветряков встречаются устройства весьма специфического вида. При этом, они полностью функциональны и выполняют свою работу на достаточно высоком уровне (для опытных или пилотных образцов). Некоторые конструкции совершенно выбиваются из общего ряда и обладают уникальными свойствами, другие намного ближе к традиционным формам. Рассмотрим их поближе:

Устройство на водяных каплях

Из необычных ветрогенераторов этот — самый необычный. Он не похож ни на одну известную конструкцию. Он даже не имеет вращающихся частей. Представляет собой раму, внутри которой расположены горизонтально трубки с водой. На поверхности трубок имеются сопла, из которых выпускаются капли воды, заряженной положительно при помощи электродов, находящихся внутри трубок. При порыве ветра капли попадают на противоположные электроды, изменяя их заряд, что вызывает возникновение электрического тока в системе.

Дизайнерский ветрогенератор revolution air

Этот ветрогенератор создан, по сути, с декоративными целями. Его свойства таковы, что пользоваться им как полноценным устройством вряд ли получится. Для запуска ему нужна скорость потока от 14 м/сек, а при минимальной цене в 2500 евро такие характеристики нельзя рассматривать как нормальные рабочие параметры. Устройство имеет оригинальный внешний вид, хотя, по сути, является переосмысленным в художественном смысле вариантом ветрогенератора ортогонального типа.

Парусный ветряк

Еще одна оригинальная конструкция ветряка, имеющего весьма широкие лопасти. Они изготовлены в виде рам, на которые натягивается плотное полотно, образующее парус. Такая конструкция способствует получению больших лопастей при малом весе.

Имеется также конструкция, где парус создает давление на систему поршней без вращения. Большая площадь позволяет эффективно использовать полученную энергию ветра, но имеется опасность выхода из строя мачты ветряка при сильном порыве. Конструкция практически не шумит, не имеет движущихся частей, что увеличивает срок службы и снижает расходы на обслуживание устройства.

Конструкция Третьякова

Ротор ветрогенератора Третьякова имеет довольно сложную конструкцию, хотя, по сути, он является разновидностью ротора с диффузором. Устройство имеет вертикальный ротор-крыльчатку. Вокруг нее располагается подвижный воздухоприемник со стабилизатором, автоматически устанавливающим конструкцию по ветру. Воздухоприемник имеет также ряд направляющих, организующих поступление потока в нужном направлении.

Воздух, попадая внутрь корпуса, обходит рабочее колесо снизу и направляется к лопаткам. Такой сложный путь потока способствует получению правильного направления струи и отсутствию противодействующего контакта с обратными сторонами лопастей. Ротор способен начинать вращение при ветре от 1,4 м/сек, что очень ценно в условиях нашей страны, не отличающейся сильными и ровными ветрами.

Летающий ветрогенератор-крыло

Идея создания такой конструкции опирается на тот факт, что на высоте потоки ветра более активны и имеют большие скорости. Разработчики используют приспособление, напоминающее гигантский воздушный змей, который поднимается на большую высоту и летает по заранее задуманной траектории, вырабатывая электрический ток. Устройство позволяет отказаться от создания высоких мачт, поднимать ветряк на большие высоты и обеспечивать максимально возможные скорости ветра.

Внимание! Большинство необычных разработок до сих пор не запущено в массовое производство. Причиной этого стали относительно невысокие показатели, которые демонстрируют конструкции, и сложности в осуществлении некоторых операций эксплуатационного характера (например, запуск ветряка-крыла).

Мощные генераторы электроэнергии

Мощные ветрогенераторы используются для выработки электроэнергии в промышленных масштабах. Их создание было необходимостью, вызванной полным отсутствием других возможностей. Созданные большие ветряки имеют большую мощность и действуют в составе ветроэнергетических станций (ВЭС).

В них входят десятки таких ветряков, обеспечивающих суммарную выработку 400-500 мВт энергии, что уже сопоставимо с возможностями ГЭС, хотя и не может перекрыть их. Размеры таких ветряков действительно огромны, размах лопастей турбины «Энеркон» составляет 126 м, а высота от земли до оси ротора — 135 м.

Такие габариты вызвали массу домыслов о вреде для здоровья человека, об опасности для пролетающих птиц и прочих небылицах. Использование этих гигантов дает возможность снабжать энергией целые регионы Германии, Дании и прочих государств, расположенных на побережье Атлантики и Балтики.

Возникающие слухи свидетельствуют лишь о неграмотности населения и не имеют ничего общего с реальной ситуацией. Эксплуатация крупных ветрогенераторов была бы попросту невозможной, если бы они имели какое-либо отрицательное воздействие на природу или человека. Европейские законы на этот счет весьма строги и не допускают исключений.

Рекомендуемые товары

energo.house

Ветрогенератор с вертикальным ротором | Синтезгаз

Самодельный ветрогенератор в сборе

Группой умельцев была разработана конструкция ветрогенераторной установки с вертикально расположенной осью вращения. Ниже, представлено подробное руководство по изготовлению этой установки. Внимательно прочитав это руководство, вы сможете сделать подобный вертикальный ветрогенератор своими руками.

Конструкция ветрогенератора получилась достаточно надежной, с низкой стоимостью обслуживания, простой в изготовлении и не дорогой по комплектующим. Представленный ниже список деталей носит ознакомительный и ориентировочный характер. Соблюдать его не обязательно, можно внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Для изготовления этого ветрогенератора использовались недорогие и качественные детали.

Схема вертикального ветрогенератора

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4″ при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2″ x 1″ x 1/2″ неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2″-13tpi x 3“ шпилька 1 TPI – кол-во витков резьбы на дюйм
1/2″ гайка 16  
1/2″ шайба 16  
1/2″ гровер 16  
1/2″.-13tpi колпачковая гайка 16  
1″ шайба 4 Для того, чтобы выдержать зазор между роторами
     
Список используемых деталей и материалов для турбины:
3″ x 60″ Оцинкованная труба 6  
ABS пластик 3/8″ (1.2×1.2м) 1  
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4″ винт 48  
1/4″ шайба 48  
1/4″ гровер 48  
1/4″ гайка 48  
2″ x 5/8″ уголки 24  
1″ уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1″ уголка 12 (опционально)  
     
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л  
1/4″ винт нерж. 3  
1/4″ шайба нерж. 3  
1/4″ гайка нерж. 3  
1/4″ кольцевой наконечник 3 Для эл. соединения
1/2″-13tpi x 3“ шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет «тормозить» ротор
1/2″ гайка 6  
Стеклоткань Если нужна  
0.51мм эмал. провод   24AWG
     
Список используемых деталей и материалов для монтажа:
1/4″ x 3/4″ болт 6  
1-1/4″ фланец трубы 1  
1-1/4″ оцинк. труба L-18″ 1  
     
Инструменты и оборудование:
1/2″-13tpi x 36“ шпилька 2 Используется для поддомкрачивания
1/2″ болт 8  
Анемометр Если нужен  
1″ лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1  
Паяльник и припой 1  
Дрель 1  
Ножовка 1  
Керн 1  
Маска 1  
Защитные очки 1  
Перчатки 1  

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Описание изготовления турбины ветрогенератора

Турбина ветрогенератора

  1. Соединяющий элемент – предназначен для соединения ротора к лопастям ветрогенератора.
  2. Схема расположения лопастей – два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Крепление лопастей уголками

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Общий вид расположения уголков, крепящих лопасти

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Описание изготовления ротора ветрогенератора

Разметка роторов с помощью бумажных шаблонов

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве “тестера полярности” можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Крепление магнитов на основании ротора

  5. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  6. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  7. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  8. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  9. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Описание изготовления статора ветрогенератора

Изготовление статора – это очень трудоемкая часть процесса изготовления ветрогенератора. Можно, конечно попробовать купить готовый статор (его еще надо найти у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Катушка статора

Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:

  • 320 витков, 0.51 мм (24AWG) = 100В * 120 об/мин.
  • 160 витков, 0.0508 мм (16AWG) = 48В * 140 об/мин.
  • 60 витков, 0.0571 мм (15AWG) = 24В * 120 об/мин.

Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки рекомендуется изготовить простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособление сделано из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Крупный вид приспособления для намотки катушек

Вы можете придумать свою конструкцию намоточного станка, или возможно у вас уже имеется готовый.

После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Подробный вид приспособления для намотки катушек

Схема соединения катушек статора

Внимание!

Категорически запрещается подключать домашние бытовые потребители напрямую к ветрогенератору во избежании выхода их из строя! Также соблюдайте меры безопасности при обращении с электричеством!

Схема соединения катушек статора

Последовательность действий соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
  • А. Конфигурация «звезда». Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
  • B. Конфигурация «треугольник». Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
  • C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  1. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  2. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  3. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Изготовление статора

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Вокруг катушек помещается стеклоткань

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор, залитый эпоксидкой с кронштейном

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Изготовление кронштейна статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

Крепление оси

Эскиз (чертеж) кронштейна

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

Шпилька с гайками и втулкой

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Окончательная сборка генератора

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

Сборочный чертеж генератора

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).

На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Ротор и статор

Процесс сборки:

  1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место.
  2. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
  3. Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
  4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
  5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
  6. Установите хаб (ступицу) и прикрутите его.

Этапы сборки генератора

Генератор готов!

Генератор будущего ветрогенератора в сборе

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так, ка на рисунке выше.

Установка и крепление клемм

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Установка клемм

Колпачковые гайки и шайбы служат для крепления соединительной платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

Мостовой выпрямитель

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Рекомендации по выбору места установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора – достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.

Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов

Комментарии:

Что такое газ БраунаХронология водородных топливных элементов

sintezgaz.org.ua

Вертикальный ветрогенератор: типы, описания, фотографии.

Среди вертикальных ветрогенераторов можно выделить следующие группы роторов: ортогональный, Савониуса, Дарье, Геликойдный, многолопастной с направляющим аппаратом. Основным достоинством вертикальных ветрогенераторов является отсутствие необходимости ориентировать их на ветер. Одним из недостатков, ограничивающих диапазон их применения и их единичную мощность, является их более низкая эффективность работы, по сравнению с горизонтально-осевыми ветрогенераторами, при одинаковых ометаемых площадях и более высокая материалоемкость, при одинаковой мощности.

Ортогональные ветрогенераторы
Ортогональные вертикальные ветрогенераторы имеют вертикальную ось вращения и несколько параллельных ей лопастей, удаленных от нее на определенное расстояние. Достоинствами ортогональных ветрогенераторов являются: отсутствие необходимости использовать в их конструкции направляющие механизмы, так как работа этих установок не зависит от направления ветра; за счет вертикально расположенного главного вала, приводное оборудование может быть расположено на уровне земли, что значительно упрощает его эксплуатацию. Недостатками этих установок являются: более низкие сроки службы опорных узлов, за счет более высоких динамических нагрузок на них со стороны ротора ВЭУ, т.к. при вращении ротора, подъемная сила от каждой лопасти меняет свое направление на 360°, что создает дополнительные динамические нагрузки; лопастная система ортогональных установок является более массивной по сравнению с эквивалентными по мощности горизонтально-осевыми установками; эффективность работы лопастной системы ортогональных установок является более низкой по сравнению с горизонтально-осевыми, т.к. в процессе одного оборота ротора, углы атаки потока ветра на лопасть меняются в широких диапазонах, в то время, как в горизонтальных ветрогенераторах их можно выставлять близкими к оптимальным.

Ветрогенераторы с ротором Савониуса
В качестве лопастей в роторе Савониуса используются два или несколько полуцилиндров. Для ротора Савониуса характерны высокие пусковые крутящие моменты, работа при относительно низких скоростях и относительно высокая технологичность его производства. Недостатками ротора Савониуса являются: более низкая эффективность работы лопастной системы, по сравнению с горизонтально-осевыми ВЭУ; относительно высокая материалоемкость. В настоящее время ветрогенераторы с ротор

alternativenergy.ru

Вертикально-осевые ветрогенераторы. За и против

Это и последующие фото от компании Агроиндустрия.

Мы привыкли удивляться всему новому и порой не замечаем или проходим мимо объектов и техники, которые нас интересуют. Стремление к использованию альтернативных источников энергии вполне понятно, — энергонезависимость и улучшение экологии среды нашего обитания. Многое написано и рассказано об оборудовании, преобразующее энергию ветра, но есть ветроустановки, которые знакомы не многим, однако они работают и довольно эффективно.

Это вертикально-осевые ветрогенераторы малой мощности до 30 кВт.

Мой коллега Григорий, давно занимается конструированием и изготовлением самодельных ветряков. Причем его творчество основано на теоретическом анализе физических процессов и практики наиболее эффективных работающих ветротурбин. Он увлечен ветряками с вертикально-осевым расположением ротора и считает, что простота конструкции и надежность их, заметно выгодней, чем у горизонтально-осевых машин.

Григорий считает, что сегодня актуальна разработка и производство маломощных ветрогенераторов, которые можно устанавливать вместо спутниковых антенн на крышах многоэтажек. Это нужно в основном для популяризации ветроэнергетики, и как источники дежурного или аварийного светодиодного освещения.

Недавно он поделился со мной информацией об одной интересной разработке, которая выполнена по схеме ротора Дарье с прямыми лопастями и которая находится в эксплуатации с 2001 года. Это ветроустановка ВЭУ 0020, номинальной мощностью 20 кВт. Предлагаю читателю познакомиться с этой уникальным ветряком.

Несколько слов о роторе Дарье. Это изобретение французского авиаконструктора Жоржа Дарье (GeorgeDarrieus) (1888-1979), запатентованое в 1931 году в США. Ротор с вертикальной осью вращения работает по принципу использования подъемной силы. Ротор Дарье состоит из нескольких (чаще от двух до четырех) лопастей, согнутых по некой кривой, или прямые лопости, которые закрепляются на вертикальной оси.

Современные конструкции ротора Дарье самозапускаются при скорости ветра 3-5 м/с. Максимальный коэффициент использования ветрового потока (КИВ) получается меньше, чем в установках с горизонтальной осью.

Ветроэнергетическая установка ВЭУ 0020 разработана днепропетровским конструкторским бюро в 2000 году. В этом же году она была представлена в Киеве на промышленной выставке. Однако, по понятным и непонятным причинам, замечательная идея и разработка пока не получила широкого распространения в Украине.

У этого типа ветряков генераторное оборудование может стоять на земле или в земле. То что мы видим в европейских странах и кажется изящным, на самом деле размером с микроавтобус или автобус наверху. Иногда, чтобы доставить конструкции пропеллеров и башню ветрогенераторов больших размеров, приходится останавливать все движение в городе или в населенном пункте.

Технические параметры и характеристики ВЭУ 0020
Установленная мощность ветроустановки – 20 кВт.
Рабочий диапазон ветров – 5-20 м/с.
Диаметр окружности вращающихся лопастей – 7, 2 м.
Длина лопастей – 5 м.
Высота опорной башни – 14 м.
Среднегодовая выработка электроэнергии – 40 000 кВт. ч.

При наличии ветра электроэнергия поступает потребителю или для заряда аккумуляторных батарей.

Данная установке в комплекте (выпрямительно-зарядное устройство, батарея аккумуляторов, инвертор, станция управления) работает как электростанция в автоматическом режиме без обслуживающего персонала.

Учитывая, что генерация электроэнергии данного ветроагрегата не зависит от направления ветра и оборудование, размещенное на фундаменте, дает заметное преимущество перед традиционными горизонтально-пропеллерными ветрогенераторами.

Ветряк начитает работать при скорости ветра 4 м/с, в диапазоне от 6 м/с до 12 м/с обеспечивает номинальную отдачу электрической энергии, при 12 м/с, агрегат выдает мощность – 20 кВт, при 20 м/с и более, ветроустановка останавливается.

Данное оборудование прошло полный цикл испытаний, сертифицирована в Украине и в России.

Как отмечают авторы разработки, это показывает анализ 4-х летней эксплуатации, преимуществом таких установок, является возможность размещения генератора и мультипликатора на фундаменте установки, что исключает передачу углового крутящего момента. Это заметно упрощает монтаж оборудования и улучшает условия эксплуатации (отсутствуют толчки и вибрации).

В России в 1998 г, пос. Славянка, Приморский край, один агрегат ВЭУ 0020 (20 кВт) и в 2001 г пос. Левинские ТАО, пять агрегатов ВЭУ 0020 (100 кВт) в составе электрической станции (в комплекте с дизельгенератором 100 кВт) были введены в эксплуатацию. В Украине с 2004 г, Алмазная Луганская обл., порт Усть-Дунайский Одесская обл. по одному агрегату работают такие же установки. Они зарекомендовали себя как надежные и бесперебойные источники автономного энергоснабжения.

В состав перечисленных ветроэлектростанций входит стандартный набор оборудования: вертикально-осевая автономная ветроэнергетическая установка мощностью 20 кВт; батарея аккумуляторов, накопитель энергии во время безветренной паузы; оборудование для преобразования переменного тока генератора (45 -90 Гц) в постоянный, для зарядки аккумуляторов и дальнейшей передачи на инвертор для получения переменного тока (220-380 В), с последующей генерацией в электросеть.

По мнению специалистов, несмотря на имеющиеся недостатки (низкий КИВ, плохой самозапуск, повышенный шум) вертикально-осевые ветрогенераторы найдут своего потребителя и могут оказать достойную конкуренцию на рынке ветротурбин малой мощности.

Понравилась статья, поделись с друзьями. Вопросы и предложения просьба излагать в комментариях.

savenergy.info

какие ветряки нового поколения самые эффективные

Из-за дороговизны электроэнергии стало актуально использовать альтернативные её источники, одними из которых являются вертикальные ветрогенераторы. При необходимости соорудить такое оборудование можно самостоятельно.

Содержание

Открытьполное содержание

[ Скрыть]

Устройство ветрового генератора

В конструкцию ветряка нового поколения для выработки ветроэнергии входят:

  1. Колесо, оборудованное лопастями. Этот узел представляет собой основной ротор, который необходим для восприятия силы воздушного потока. Его предназначение заключается в преобразовании кинетической энергии ветра в механическую. Для этого образуется крутящий момент на валу.
  2. Редукторный узел. Используется для синхронизации вращательного движения и образует скорость вращения вала генераторного узла. Монтируется внутри конструкции.
  3. Генераторный узел, представляет собой устройство, предназначенное для выработки электротока в результате преобразования крутящего момента в магнитное поле. Данный агрегат способствует созданию в электроцепи разности напряжений.
  4. АКБ. Предназначение аккумулятора заключается в накоплении энергии и выдаче постоянного тока, величина которого составляет 12 вольт.
  5. Инверторный узел. Являет собой механизм, использующийся для преобразования постоянного значения тока в переменное. Рабочий параметр составляет 220 вольт.

Схема подключения ветряка Vertical к бытовой сети дома

Принцип работы ветровых генераторов

В самодельных или фирменных ветряных устройствах с вертикальной или горизонтальной осью вращения лопасти начинают двигаться в результате воздействия силы ветра. Основные элементы оборудования заставляют вращаться роторный узел посредством специального приводного агрегата. Наличие статорной обмотки способствует преобразованию механической энергии в электрический ток. Осевые винты обладают аэродинамическими особенностями, в результате чего обеспечивают быстрое прокручивание турбины агрегата.

Затем в роторных генераторах происходит преобразование силы вращения в электричество, собирающееся в аккумуляторе. По факту чем сильнее будет воздушный поток, тем быстрее прокручиваются лопасти агрегата, что способствует образованию энергии. Так как работа генераторного оборудования основывается на максимальном применении альтернативного источника, одна часть лопастей обладает более закругленной формой. А вторая — ровная. При прохождении потока воздуха по округлой части происходит образование вакуумного участка, это способствует засасыванию лопасти и уводит ее в сторону.

Это приводит к образованию энергии, воздействие которой приводит к раскручиванию лопастей при небольшом ветре.

При прокручивании происходит вращение оси винтов, которые подключены к роторному механизму. На этом устройстве располагаются двенадцать магнитных элементов, которые прокручиваются внутри. Это приводит к образованию переменного электрического тока с частотой, как в бытовых розетках. Полученную энергию можно не только вырабатывать, но и передавать на расстояния, однако ее нельзя аккумулировать.

Чтобы ее собирать, потребуется преобразование в постоянный ток, именно эту цель выполняет электроцепь, расположенная внутри турбины. Для получения большого объема электроэнергии осуществляется изготовление промышленного оборудования, ветровые парки обычно включают в себя десятки таких установок.

Принцип работы ветрогенератора дает возможность использовать агрегат в вариантах:

  • для автономного функционирования;
  • с солнечными батареями;
  • параллельно с резервным аккумулятором;
  • вместе с бензиновым либо дизельным генераторным устройством.

При движении воздушного потока скоростью около 45 км/час выработка энергии турбиной составляет примерно 400 Вт. Этого хватит для освещения загородного дачного участка. При необходимости можно реализовать накопление электроэнергии в батарее.

Для зарядки аккумулятора используется специальное оборудование. При снижении величины подзаряда скорость вращения лопастей станет падать. Если аккумулятор полностью разрядится, элементы генераторного оборудования будут опять прокручиваться. Этот принцип дает возможность поддерживать зарядку устройства на конкретном уровне. При более высокой скорости потока воздуха турбина агрегата сможет производить больший объем энергии.

Пользователь Darkhan Dogalakov на примере модели SEAH 400-W рассказал о принципе действия ветрового оборудования.

Какие ветрогенераторы самые эффективные (классификация агрегатов)

Чтобы сделать самоделку и правильно рассчитать эффективность самого мощного устройства для генерации тока, надо разобраться в типах оборудования. Они подробно приведены в таблице.

Классификация по оси вращения:

Горизонтальные Вертикальные
Такой вид оборудования получил наибольшую популярность, в нем ось вращения турбины располагается параллельно земле. Подобные ветрогенераторы часто называют ветряными мельницами, в них обороты лопастей осуществляются против потока ветра. Конструкция оборудования включает в себя систему для автоматического прокручивания головной части. Она требуется для поиска ветрового потока. Также необходимо устройство для поворота лопастей, чтобы для выработки электроэнергии использовать даже небольшую силу.

Применение такого оборудования более целесообразно на промышленных предприятиях, чем в быту. На практике они чаще используются для создания систем ветроэлектростанций.

Устройства такого типа на практике менее эффективны. Вращение лопастей турбины осуществляется параллельно поверхности земли независимо от силы ветра и его вектора. Направление потока также не играют роли, при любом воздействии вращательные элементы прокручиваются против него. В результате этого ветровой генератор теряет часть мощности, что приводит к снижению энергоэффективности оборудования в целом. Но в плане установки и обслуживания агрегаты, в которых лопасти расположены вертикально, более подходят для домашнего использования.

Это связано с тем, что редукторный узел и генератор монтируются на земле. К минусам такого оборудования следует отнести дорогостоящую установку и серьезные эксплуатационные затраты. Для монтажа генератора потребуется достаточно места. Поэтому использование вертикальных устройств более целесообразно в небольших частных хозяйствах.

Классификация по количеству лопастей:

Двухлопастные Трехлопастные Многолопастные
Данный тип агрегатов характеризуется наличием двух элементов вращения. Этот вариант практически неэффективен сегодня, но достаточно распространен за счет своей надежности. Этот вид оборудования является самым распространенным. Трехлопастные агрегаты используются не только в сельских хозяйствах и промышленности, но и в частных домовладениях. Этот тип оборудования получил распространение благодаря надежности и эффективности. Последние могут иметь от 50 и более элементов вращения. Чтобы обеспечить выработку нужного объема электроэнергии, надо не само прокручивание лопастей, а вывод на необходимое число оборотов. Наличие каждой дополнительного элемента вращения обеспечивает увеличение параметра общего сопротивления ветрового колеса. В результате этого выход оборудования на необходимое количество оборотов будет проблематичным.

Карусельные устройства, оборудованные множеством лопастей, начинают вращение при небольшой силе ветра. Но их применение более актуально, если играет роль непосредственно сам факт прокручивания, к примеру, когда требуется перекачка воды. Чтобы эффективно обеспечить выработку большого количества энергии, многолопастные агрегаты не используются. Для их функционирования требуется установка редукторного устройства. Это не только усложняет всю конструкцию оборудования в целом, но и делает ее менее надежной по сравнению с двух- и трехлопастными.

Классификация по материалам элементов вращения:

С жесткими лопастями Парусные агрегаты
Стоимость таких агрегатов более высокая за счет дороговизны производства деталей вращения. Но по сравнению с парусным оборудованием, генераторы с жесткими лопастями более надежны и характеризуются высоким ресурсом эксплуатации. Поскольку в воздухе содержится пыль и песок, на элементы вращения воздействует высокая нагрузка. При работе оборудования в стабильных условиях, ему требуется ежегодная замена антикоррозийной пленки, которая наносится на концы лопастей. Без этого элемент вращения со временем начинает терять свои рабочие свойства. Такой тип лопастей более прост в плане производства и менее затратный, по сравнению с металлом либо стеклопластиком. Но экономия при изготовлении может привести к серьезным расходам в будущем. При диаметре ветрового колеса в три метра скорость движения конца лопасти может составить до 500 км/ч, когда обороты оборудования составляют около 600 в минуту. Это — серьезная нагрузка даже для жестких деталей. Практика показывает, что элементы вращения на парусном оборудовании приходится менять часто, особенно если сила ветра высокая.

По шагу винта:

Фиксированный Изменяемый
Простейший по устройству ветровой агрегат. Фиксированный шаг винта позволяет стабильно получать определенный объем энергии независимо от силы ветра. В этом тип оборудования уступает следующему виду. Такое оборудование позволяет увеличить диапазон эффективных рабочих скоростей устройства. Но использование дополнительных механизмов внутри конструкции делает ее сложной, речь идет о лопастях. Масса ветрового колеса будет более высокой, а надежность установки в целом — снизится. Поэтому оборудование нужно усилить, что в итоге способствует увеличению цены на агрегат и его дальнейшее обслуживание.

Канал «Fodiator Ch» подробно рассказал о разновидностях ветряных генераторных установок.

Классификация по типу ротора

В соответствии с разновидностью роторного механизма все агрегаты можно разделить на несколько видов:

  • ортогональные устройства Дарье;
  • агрегаты с роторным узлом Савониуса;
  • устройства с вертикально-осевой конструкцией агрегата;
  • оборудование с геликоидным типом роторного механизма.
Устройства Дарнье

Оборудование такого класса может оснащаться двумя либо тремя элементами вращения. Лопасти будут изогнуты в виде овала.

Основные достоинства такого типа:

  • оборудование самостоятельно ориентируется на направление потока воздуха;
  • простота кинетической схемы устройства;
  • основной вал приводного механизма находится близко к земле, что способствует более упрощенному обслуживанию.

Недостатки агрегатов:

  • из-за конструктивных особенностей отсутствует возможность самостоятельной раскрутки оборудования;
  • слишком большая нагрузка на опорные узлы, что связано с динамическим воздействием от потока ветра;
  • агрегаты с ротором Дарнье работают громко;
  • заданного профиля элемента вращения необходимо придерживаться по длине.
Генераторы с ротором Савониуса

Такое оборудование являет собой устройство, где лопасти механизма изготовлены в виде цилиндрических устройств.

Основные преимущества:

  • устройство может начать работу при небольшой силе потока ветра, составляющей от трех метров в секунду;
  • высокий ресурс эксплуатации и надежность агрегата;
  • оперативный набор хороших показателей крутящего момента;
  • дешевизна в плане производства и обслуживания.

К основным минусам относится низкая эффективность агрегата в преобразовании ветрового потока. Мощность оборудования составляет не более 4-6 кВт. Из-за этого роторные механизмы Савониуса обычно используются в комбинированных агрегатах. К примеру, для разгона генераторного устройства, разработанного по схеме Дарнье.

Пользователь Andrey Vasilyev показал, как работает спиральный тип оборудования, построенный на роторе Савониуса.

Агрегаты с вертикально-осевым ротором

Основная особенность такого типа оборудования заключается в том, что лопасти располагаются вертикально и характеризуются профилем авиационного крыла. Его ось параллельна валу. Визуально такой генератор похож на агрегат Дарнье, но он более прост в плане производства. При функционировании быстрее набирает рабочую скорость, а во время работы практически не издает звуковых волн. Генераторы с вертикально-осевым ротором оптимально использовать для дачных участков, поскольку они характеризуются высокой надежностью и длительным ресурсом службы.

С геликоидным механизмом

Данный тип оборудования является более усовершенствованной версией вышеописанного вида. Его лопасти сделаны в форме геликоидной кривой. Это позволяет обеспечить более равномерное вращение лопастей и понизить величину нагрузки на опорную составляющую агрегата.

Благодаря изгибу основных элементов во время работы генератор быстрее набирает скорость. В плане эффективности такое оборудование можно сравнить с классическими горизонтальными ветрогенераторами. Но во время функционирования такие устройства издают больше шума. В результате того, что конфигурация лопастей в целом сложная, агрегаты с таким типом роторных механизмов более дороги в плане изготовления.

Канал «AERO Prop» продемонстрировал процесс работы установки с геликоидным устройством.

Преимущества ветровых генераторов

Достоинства, характерные для такого оборудования:

  1. Небольшие начальные значения скорости ветрового потока для того, чтобы привести в движение роторный механизм установки. В некоторых современных моделях оборудования данный показатель составляет от 0,3 метров в секунду. Но по факту вертикальные ветрогенераторы начнут эффективно производить энергию при скорости около 3-5 м/сек. Показатель номинальной мощности оборудования будет в случае, когда скоростные значения составят 10-18 метров в секунду.
  2. Работа ветрового генератора не зависит от направления движения ветра. Благодаря особенностям конструкции установка может улавливать воздух независимо от угла.
  3. Вертикальные генераторные установки, как правило, характеризуются пониженным звуковым фоном. На практике этот параметр составляет не более 20 децибел. Также в работе устройств не проявляются частоты, близкие к нижнему порогу — инфразвук, негативно влияющий на здоровье. Поэтому установка оборудования возможна в непосредственной близости с жилыми домами.
  4. Во время функционирования ветрогенераторы практически не вырабатывают электромагнитное излучение. Работа конструкции не создает разрушительных вибраций.
  5. Оборудование неопасно для птиц, поскольку ими оно воспринимается как одно препятствие. Это весомое преимущество по сравнению с горизонтальными ветрогенераторами. Лопасти таких устройств птицы не ассоциируют с препятствиями, в результате сталкиваются с ними.
  6. Благодаря конструктивным особенностям вертикальное оборудование не нуждается в использовании дополнительных механизмов для осуществления запуска. Роторный узел начинает вращаться, как только ветровой поток достигнет минимального значения для старта установки.
  7. Работа ветрогенератора возможна в любых климатических условиях. Такое оборудование позволяет противостоять даже сильному ветру, вплоть до урагана.
  8. Простота использования и обслуживания агрегатов. Ветрогенераторы характеризуются упрощенной системой управления и минимальными расходами при эксплуатации, которые требуются для поддержания рабочего состояния. Благодаря этому оборудование все чаще используется в частных домах.

Пользователь Одесский инженер подробно рассказал о достоинствах и недостатках, характерных для генераторных установок.

Недостатки вертикальных ветрогенераторов

Минусы агрегатов:

  1. Низкий параметр эффективного преобразования потока воздуха. Если сравнивать с горизонтальным оборудованием, то он меньше в 2-2,5 раза.
  2. Вертикальные устройства характеризуются высокой материалоемкостью. Это связано с большим объемом лопастей.
  3. Некоторые модели агрегатов имеют громоздкую конструкцию, которая обычно увеличивается при росте полезной мощности. В итоге этот недостаток негативно отражается на планировке площади для установки оборудования.
  4. Чтобы собрать вертикальный агрегат, потребуется большее число материалов, по сравнению с горизонтальными устройствами. В результате этого их стоимость будет выше.
  5. Вибрации, которые издает установка, хоть и небольшие, но все же присутствуют. В результате этого, а также резких изменений режимов прокручивания, образуется высокая нагрузка на подшипниковые устройства. Поэтому подвижные элементы оборудования часто ломаются.

Канал «Тепло-вода» подробно рассказал обо всех недостатках, характерных для такого типа устройств.

Инструкция по изготовлению вертикального ветрогенератора своими руками

Чтобы использовать такое устройство, его необязательно покупать. Можно изготовить оборудование самостоятельно.

Что понадобится?

Для сборки агрегата потребуются:

  • роторный механизм, это подвижная часть оборудования;
  • лопасти — будут улавливать воздушный поток;
  • осевая мачта, предназначенная для фиксирования роторного механизма, а также элементов вращения, может быть выполнена в виде шеста либо пирамиды;
  • статорное устройство — используется для расположения катушки, оснащенной проволокой;
  • АКБ — батарея необходима для накопления полученной энергии;
  • инверторный узел, использующийся для преобразования постоянного тока в переменный;
  • контроллер — блок управления системой, предназначен для остановки генераторного узла в момент, когда мощность оборудования будет превышать норму.

Лопасти могут быть выполнены из легкой листовой пластмассы, обладающей упругостью. Рекомендуется использовать именно этот материал, поскольку другие более подвержены деформированию и повреждениям. Только листовой пластик эффективно справляется с высокой динамической нагрузкой. Небольшие лопасти можно соорудить из ПВХ средней плотности, но для широких элементов понадобится более прочный материал.

Подробнее о подготовке комплектующих, а также о создании ветрового генераторного устройства из бытового вентилятора рассказал пользователь Alexander Polulyakh.

Пошаговый алгоритм действий

Процедура изготовления оборудования выглядит так:

  1. На первом этапе выполняется производство элементов вращения. Для этого из высокопрочной трубы ПВХ надо вырезать четыре одинаковых детали. Затем два полукруглых элемента выкраиваются из жесткого материала и фиксируются на каждой стороне трубы. Высота лопасти составит около 70 см. Тогда радиус вращения деталей будет в районе 69 см.
  2. Чтобы соорудить роторную систему, потребуется шесть неодимовых магнитов, а также ферритовые диски, каждый имеет диаметр 23 см. Для фиксации элементов необходим суперклей. С его помощью производится закрепление магнитов на первом диске. При выполнении этой задачи важно чередовать полярность, а в ходе установки между элементами должен соблюдаться угол в 60 градусов. Диаметр расположения составит 16,5 см.
  3. Аналогичным образом выполняется сборка второго диска. Все магнитные элементы надо зафиксировать с помощью клея, а лучше — залить их.
  4. Чтобы изготовить статорный механизм, потребуется девять катушек, на каждую из которых наматывается по 60 витков медного проводника. Диаметр его сечения должен составить 1 мм. Важно правильно выполнить спайку проводников. Начало первой катушки фиксируется на конце четвертой, а она — с контактом седьмой.
  5. Сборка следующей фазы роторного механизма осуществляется аналогичным образом. Только действия начинаются со второй катушки.
  6. Затем из фанерного листа надо сделать форму для статорного устройства. На дно укладывается полотно стекловолокна, а сверху производится монтаж фаз, на которые припаяны катушки. Полученную конструкцию надо залить клеем и оставить просохнуть на два дня. Это позволит эффективно схватиться всем элементам и занять необходимые места. После выполнения этой задачи производится подключение отдельных составляющих компонентов в единую систему.
  7. Для сборки в верхнем роторном механизме надо сделать четыре отверстия, куда будут устанавливаться шпильки. Затем на кронштейн ставится нижнее устройство, при монтаже магниты направляются вверх.
  8. Потом производится установка статорного механизма. Перед этим надо сделать в устройстве отверстия, через которые узел будет фиксироваться на кронштейне.
  9. Шпильки упираются в алюминиевую пластину, после чего производится монтаж второго роторного механизма. Этот узел устанавливается магнитными элементами вниз.
  10. Затем, используя гаечный ключ, надо по очереди вращать каждую шпильку. Это позволит обеспечить равномерное опускание верхнего роторного механизма на нижнее. После того как узел займет необходимое место, шпильки надо демонтировать. Алюминиевые пластины извлекаются, они больше не нужны.
  11. По завершении работ вся конструкция закрепляется посредством гаек. Элементы фиксации надо затянуть максимально прочно, но не жестко, иначе можно сорвать резьбу.
  12. В качестве мачты рекомендуется использовать прочную стальную трубу, ее длина должна составить около пяти метров. К ней производится фиксация готового генераторного устройства. После этого выполняется подсоединение каркаса с пластмассовыми лопастями к агрегату. Затем собранная конструкция монтируется на площадку, подготовленную для установки оборудования. Рекомендуется заранее сделать трехточечный армированный фундамент на поверхности, а для лучшей фиксации надо обеспечить растяжку.
  13. Если говорить о подключении электросети к ветровому генераторному устройству, то соединение проводников производится в конкретной последовательности. Блок управления должен принимать ресурс от агрегата и выполнять преобразование переменной величины тока в постоянную, которая требуется для зарядки аккумулятора. АКБ будет сохранять заряд. Инверторный механизм предназначен для преобразования постоянной величины тока в переменную, которая будет использовать для питания бытового оборудования.

Фотогалерея

Установка роторных элементов и магнитов, а также шпилек на алюминиевую пластину
Схемы фиксации лопаток роторного механизма

Как сделать расчет ветрогенератора самостоятельно

Для вычисления параметра мощности оборудования, которое будет использоваться на определенной местности, применяются формулы. В первую очередь производится расчет объема энергии, позволяющую выработать ветрогенератором на протяжении года.

Вычисление общей мощности оборудования

Для осуществления задачи выполняются такие действия:

  1. Сначала производятся вычисления. В соответствии с полученными результатами подбирается длина элементов вращения, а также высота башни.
  2. Выполняется анализ средней скорости воздушного потока, характерного для определенной местности. Для этого потребуется специальное оборудование. С его помощью необходимо следить за силой потока воздуха на протяжении нескольких месяцев. При отсутствии прибора можно запросить результаты у представителей местной метеостанции.

Расчет мощности ветрогенератора выполняется по формуле Р=krV 3S/2.

Обозначения символов:

  • r — параметр плотности воздушного потока, при обычных условиях это значение равно 1,225 кг/м3;
  • V — средняя величина скорости ветра, измеряется в метрах в секунду;
  • S — общая площадь воздушного потока, замеряется в метрах;
  • k — параметр эффективности турбины, которая устанавливается в оборудовании;

Используя эти расчеты, можно точно определить величину мощности, необходимой для генераторной установки в конкретной местности. Если покупается фирменное оборудование, то на его упаковке должно указываться, при какой силе воздушного потока работа устройства будет максимально эффективной. В среднем это значение составит в диапазоне от семи до одиннадцати метров в секунду.

Пользователь Одесский инженер подробно рассказал о процедуре сборки генераторного устройства, а также о выполнении расчетов.

Вычисление винтов для ветряной установки

Процедура расчета выполняется по формуле Z=LW/60/V, обозначение символов:

  • Z — величина тихоходности одного винта;
  • L — размер окружности, которую будут описывать элементы вращения;
  • W — скорость прокручивания одного винта;
  • V — скоростной параметр подачи воздушного потока.

С учетом этой формулы производится вычисление количества оборотов. Но для расчета надо учитывать и шаг одного винта оборудования. Он вычисляется по формуле H=2пR* tga.

Описание символов:

  • 2п — константное значение, составляющее 6,28;
  • R — значение радиуса, который будут описывать элементы вращения оборудования;
  • tg a — угол сечения.

Расчет инвертора для ветряного генератора

Перед выполнением этих вычислений надо учесть следующий момент. Если в домашней сети будет использоваться только одна батарея, рассчитанная на 12 вольт, то смысла ставить инвертор нет. Средняя величина мощности дачного участка или частного домовладения составляет около 4 кВт при условии максимальных нагрузок. Для подобной сети число батарей будет не менее десяти, каждая из них рассчитана на 24 вольта. С таким количеством аккумуляторов целесообразно применение инверторного устройства.

Но для данных условий, когда используется десять батарей на 24 вольта, понадобится ветрогенератор, рассчитанный на 3 кВт, не менее. Более слабое оборудование не сможет обеспечить энергией такое число аккумуляторов. Для бытовых приборов подобная мощность может быть слишком высокой.

Расчет мощностного параметра инверторного устройства осуществляется так:

  1. Сначала необходимо суммировать мощностные характеристики всех потребителей энергии.
  2. Затем определяется время потребления.
  3. Вычисляется параметр пиковой нагрузки.

Александр Капустин показал процедуру запуска ветрового генераторного устройства с инвертором.

Где лучше устанавливать?

Для максимальной эффективности оборудование следует ставить на открытой местности, в наиболее высокой точке. Важно, чтобы ветровой генератор располагался не ниже уровня зданий, находящихся рядом. Из-за этого возникнут препятствия для ветрового потока, в результате чего коэффициент полезного действия будет низким. В случае когда участок выходит к водоему или реке, ветровой генератор устанавливается непосредственно на берегу.

Для монтажа системы оптимально подходят возвышенности либо большие пустые местности. Желательно, чтобы на пространстве не было искусственных преград, препятствующих прохождению ветрового потока. Если участок или здание расположено в городской черте, то установку ветрового генератора необходимо выполнить на крыше. Чтобы расположить оборудование в жилом многоквартирном доме, нужно получить письменное согласие соседей, а также разрешение из государственных инстанций. Установка генератора будет производиться также на крыше.

При выборе места важно помнить, что ветрогенератов должен располагаться не ближе, чем в 15 метров от зданий и не дальше, чем в 25. Благодаря этому шум от работы установки не будет беспокоить жильцов.

 Загрузка …

Видео «Как сделать ветряк из автомобильного генератора?»

Пользователь Одесский инженер подробно рассказал о самостоятельном создании ветрового оборудования из генераторного узла, установленного на транспортном средстве.

razvodka.net

Отправить ответ

avatar
  Подписаться  
Уведомление о