Вольфрамовая лампочка – устройство, строение и принцип действия

Вольфрамовая лампа — накаливание — Большая Энциклопедия Нефти и Газа, статья, страница 1

Вольфрамовая лампа — накаливание

Cтраница 1

Вольфрамовые лампы накаливания характеризуются непрерывным спектром и дают относительно слабое излучение с длиной волны около 330 ммк. Преимуществом этих ламп является высокая стабильность. Применение их ограничивается, однако, зависимостью степени излучения от изменения окружающей температуры и недолговечностью в основном из-за скопления поглощающих свет осадков внутри стеклянной колбы лампы.  [1]

Вольфрамовые лампы накаливания, калиброванные по излучению абсолютно черного тела, являются хорошими вторичными световыми эталонами. Однако можно пользоваться и некалиброванными лампами, если фотометрические спектральные измерения необходимо провести не в абсолютных, а в относительных единицах. В этом случае относительное распределение энергии по спектру вольфрамовой лампы рассчитывается по формуле Вина или Планка, если измерена цветовая температура нити накала. Последнее легко выполняется с помощью микропирометра, который снабжен проградуированной по абсолютно черному телу эталонной лампой.  [2]

Вольфрамовые лампы накаливания характеризуются непрерывным спектром и дают относительно слабое излучение с длиной волны около 330 ммк. Преимуществом этих ламп является высокая стабильность. Применение их ограничивается, однако, зависимостью степени излучения от изменения окружающей температуры и недолговечностью в основном из-за скопления поглощающих свет осадков внутри стеклянной колбы лампы.  [3]

Установку вольфрамовой лампы накаливания

проверяют визуально, как и ртутной, по зеленой линии 546 1 нм. При фотометрической проверке установки лампы нужно учитывать, что интенсивность излучения лампы и чувствительность фотоэлементов различны при разных длинах волн. Максимум интенсивности излучения приходится на область 520 — 550 нм; в этой области можно работать с минимальной щелью. После компенсации темнового тока при закрытом фотоэлементе устанавливают по шкале длину волны 546 1 нм, соответствующую максимальной интенсивности излучения лампы накаливания. Открывают шторку фотоэлемента, приводят стрелку миллиамперметра к нулю, уменьшая щель. Если стрелка миллиамперметра приводится к нулю при раскрытой щели не более чем на 0 02 — 0 03 мм, то установку лампы считают вполне удовлетворительной.  [4]

Наиболее распространена вольфрамовая лампа накаливания, которая часто бывает снабжена матовым стеклом и защитным экраном для уменьшения яркости. Вторым по распространенности типом светового источника является люминесцентная лампа. Ее легко различить по вытянутой форме. Лампы, имеющие закругленную и U-образную форму, компактны и часто применяются в горных работах, так как в шахтах обычно мало свободного пространства. Вольфрамовые лампы накаливания и люминесцентные лампы используются для освещения таких подземных помещений, как околоствольные дворы, конвейеры, пути передвижения, столовые, станции загрузки, топливные отсеки, ремонтные депо, хранилища, инструментальные склады и дробильные установки.  [5]

На цоколе вольфрамовой лампы накаливания написано: 220 В, 150 Вт. Найти сопротивление нити при температуре 20 С, если температура накала нити равна 2500 С.  [6]

Срок службы современных вольфрамовые ламп накаливания составляет — 1000 ч, срок службы газоразрядных ламп — d 500 ч ( ртутных) и 2500 ч для натриевых.  [8]

Определить температуру нити

вольфрамовой лампы накаливания в рабсг чем состоянии, если известно, что ток, проходящий через лампу в момент ее включения ( 20 С), в 12 5 раза превышает рабочий ток.  [9]

Определить температуру нити вольфрамовой лампы накаливания в рабо — чем состоянии, если известно, что ток, проходящий через лампу в момент ее включения ft20 C), в 12 5 раза превышает рабочий ток.  [10]

Найти температуру нити вольфрамовой лампы накаливания в рабочем состоянии, если ток, проходящий через лампу в момент ее включения ( / i20 Q, в 12 5 раза превышает рабочий ток.  [11]

Найти температуру нити вольфрамовой лампы накаливания в рабочем состоянии, если известно, что сопротивление нити в момент включения при температуре 20 С в 12 6 раза меньше, чем в рабочем состоянии.  [12]

Если из излучения вольфрамовой лампы накаливания необходимо выделить узкую поло-су сплошного спектра, то одинарный фильтр может оказаться недостаточным для обеспечения заданных границ. Тогда, чтобы получить нужную полосу пропускания, можно соединить два или более фильтров. Основным правилом при выборе фильтров является условие, согласно которому максимальная прозрачность фильтра должна соответствовать середине полосы излучения, которую необходимо пропустить, или очень близко подходить к ней.  [14]

Аргон используют в вольфрамовых лампах накаливания, чтобы снизить скорость испарения вольфрама из нити и, кроме того, обеспечить концентрирование паров вольфрама к небольшому участку внутренней поверхности лампы. Часто приходится видеть, как черные пятна на радиолампах возникают на одном небольшом участке стекла. В этом применении используется неактивность аргона и его ничтожная теплопроводность. В газоразрядных трубках, наполненных аргоном, возникает голубое свечение. Это широко используется для создания световых реклам. Аргон используется для создания инертной атмосферы. В больших количествах его расходуют при приготовлении специальных сплавов ( например, сплавов магния) или при работе с чрезвычайно неустойчивыми и реакшюи-носпособными веществами. Существует особый вид дуговой сварки, когда с целью защиты шва от воздуха ее проводят в атмосфере аргона.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

РТУТНО ВОЛЬФРАМОВАЯ ЛАМПА

    Ртутно-вольфрамовая лампа имеет заполненную газом и покрытую изнутри люминофором стеклянную колбу, в которую помещена кварцевая ртутная горелка. Последовательно с ней соединена вольфрамовая нитью накала, которая одновременно является накальным источником света и устройством, ограничивающим электрический ток. Данный тип ламп отличается высоким световым потоком и хорошей цветопередачей. Ртутные лампы применяются для освещения открытых пространств, в промышленности, в уличном освещении. Главное преимущество РВЛ ламп — эксплуатация без ПРА и более высокая световая отдача по сравнению с лампами общего назначения.

   Ртутно-вольфрамовые лампы – это низкая стоимость самой лампы, использование без ПРА и ИЗУ, возможность замены ртутно-вольфрамовой лампы обычной лампой накаливания и наоборот. Заменив обычную лампу накаливания РВЛ, мы получаем экономию электроэнергии в два раза, а срок службы увеличивается в двое.

   Следует отметить, что газоразрядные, в том числе и ртутно-вольфрамовые лампы светят в полную силу не сразу, а по истечении времени выхода на рабочий режим — до 5 минут в зависимости от типа. Зато такие газоразрядные лампы характеризуются длительным сроком службы в широком диапазоне температур окружающей среды. Колба лампы может быть покрыта люминофором, а вольфрамовая спираль является источником света в красной области спектра и одновременно выполняет функцию балластного давления для ртутной горелки. Благодаря этому устройству улучшается передача цвета и отпадает необходимость использования дополнительного дросселя.

   На рынке ртутно-вольфрамовые лампы представлены чаще всего такими моделями:

OSRAM HWL 160W 225V E27

OSRAM HWL 250W 225V E40

OSRAM HWL 500W 225V E40

   Цена ртутно-вольфрамовой лампы начинается от 4уе.

   Обсудить статью РТУТНО ВОЛЬФРАМОВАЯ ЛАМПА




radioskot.ru

Строение лампы накаливания и применяемые в ней материалы

Дата публикации: .
Категория: Лампы.

Устройство и назначение основных частей ламп накаливания

Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4. Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7. Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

МеталлыT, °СКарбиды и их смесиT, °СНитридыT, °СБоридыT, °С
Вольфрам
Рений
Тантал
Осмий
Молибден
Ниобий
Иридий
Цирконий
Платина
3410
3180
3014
3050
2620
2470
2410
1825
1769
4TaC +
+ HiC
4TaC +
+ ZrC
HfC
TaC
ZrC
NbC
TiC
WC
W2C
MoC
VnC
ScC
SiC
3927

3927

3887
3877
3527
3427
3127
2867
2857
2687
2557
2377
2267

TaC +
+ TaN
HfN
TiC +
+ TiN
TaN
ZrN
TiN
BN
3373

3307
3227

3087
2977
2927
2727

HfB
ZrB
WB
3067
2987
2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10-10 и 9,95×10-8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, КСкорость испарения, кг/(м²×с)Удельное электрическое сопротивление, 10-6 Ом×смЯркость кд/м²Световая отдача, лм/ВтЦветовая температура, К
1000
1400
1800
2200
2600
3000
3400
5,32 × 10-35
2,51 × 10-23
8,81 × 10-17
1,24 × 10-12
8,41 × 10-10
9,95 × 10-8
3,47 × 10-6
24,93
37,19
50,05
63,48
77,49
92,04
107,02
0,0012
1,04
51,2
640
3640
13260
36000
0,0007
0,09
1,19
5,52
14,34
27,25
43,20
1005
1418
1823
2238
2660
3092
3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al2O3. Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10-7 К-1. Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10-7 К-1. Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10-7 К-1. Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10-7 К-1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название «платинит». Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

ГазМолекулярная массаПотенциал ионизации, ВТеплопроводность, 10-2 Вт/(м×К)
Водород
Аргон
Криптон
Ксенон
28,01
39,94
83,70
131,30
15,80
15,69
13,94
12,08
2,38
1,62
0,80
0,50

Источник: Афанасьева Е. И., Скобелев В. М., «Источники света и пускорегулирующая аппаратура: Учебник для техникумов», 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.

artillum.ru

Назначение лампы накаливания. Из чего состоит вольфрамовая лампочка? Формула зависимости напряжения и мощности лампочки

Лампа накаливания — источник света, который излучает световой поток в результате накала проводника из тугоплавкого металла. В качестве нити накала используется тугоплавкий металл — вольфрам, а также его сплавы. Нить накала помещена в стеклянный сосуд, наполненный инертным газом (криптоном, азотом, аргоном). Инертный газ служит защитой нити накаливания, которая без его присутствия в колбе мгновенно превратилась бы в оксид. Для ламп накаливания малой мощности (25 ватт) применяют вакуумные сосуды, которые не заполняются инертным газом. Следовательно, стеклянная колба препятствует негативному воздействию атмосферного воздуха на вольфрамовую нить.

Принцип действия лампы накаливания основан на явлении нагрева проводника при прохождении через него электрического тока. Вольфрамовая нить накала при подключении к источнику тока раскаляется до высокой температуры, в результате чего излучает свет. Световой поток, излучаемый нитью накала, близок к естественному, дневному свету, поэтому не вызывает дискомфорта при длительном использовании.

Достоинства и недостатки ламп накаливания

Из достоинств ламп накаливания можно выделить следующее:

  • относительно невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.

Один из недостатков ламп накаливания — большая яркость самой лампы, что негативно воздействует на зрение при взгляде на лампу. Но этот недостаток можно быстро устранить — достаточно применить рассеиватель.

Существенный недостаток — небольшой срок службы лампы — до 1000 часов. Исходя из опыта использования ламп, можно отметить, что в большинстве случаев лампа накаливания выходит из строя, не прослужив и нескольких сотен часов. Бывают и исключения — лампы работают несколько десятков лет! К сожалению это лишь единичные случаи. Относительно срока службы, как , так и светодиодные лампы выигрывают.

Если учесть тот факт, что характеристики питающей сети не соответствуют номинальным — срок службы ламп существенно снижается независимо от их типа. Делать выводы о целесообразности использования того или иного типа ламп можно только на основании личного опыта.

Основным недостатком ламп накаливания является низкий коэффициент полезного действия. Только лишь десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток; большинство электрической энергии преобразуется в тепловую энергию.

В лампах накаливания не может быть ни воздух, ни азот ни какие-либо другие газы, кроме инертных (аргон, криптон, ксенон). Дело в том, что температура спирали более 2000 градусов Цельсия. При таких температурах вольфрам будет реагировать с ЛЮБЫМИ газами, кроме инертных. Но заполнять лампочки гелием или неоном слишком дорого, поэтому применяют в основном наиболее дешевый аргон. Криптон и ксенон дороже, но какое они дают преимущество, я не знаю, тем не менее их тоже используют. При попадании воды на включенную (а значит горячую) лампочку стекло элементарно трескается, но никакого «взрыва» лампочки не происходит.

Насчет галогенных ламп Вы совершенно не правы. Да, к галогенам относятся фтор, хлор, бром, йод, астат. Насчет унунсептия Вы несколько поспешили. Да конечно, если его удастся получить, то он несомненно будет относиться к галогенам. Но он пока еще не получен, поэтому и не имеет собственного названия, только по порядковому номеру (количеству протонов в ядре).

0 0

Лампочка — это небольшой, но очень полезный предмет. Видео создания прилагается.

По определению лампа накаливания — это электрический источник света, где тело накала, в роли которого обычно выступает тугоплавкий проводник, находится внутри колбы, вакуумированной или наполненной инертным газом, и нагревается до большой температуры с помощью электрического тока, который пропускается через него. В результате этого излучается видимый свет. Для нити накала используют сплав на основе вольфрама.

Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм

Принцип работы лампы накаливания

Ну тут все очень просто. Электрический ток проходит через тело накаливания и нагревает его. Нить накала излучает электромагнитное тепловое излучение, что соответствует закону Планка. В его функции имеется максимум, зависящий от температуры. Если температура повышается, то максимум сдвигается в сторону меньших длин волн. Чтобы…

0 0

Лампочка накаливания

Разнообразие источников света довольно велико, но наибольшее распространение и применение обрела лампа накаливания. Возникает вопрос: «Почему именно она получила такую огромную популярность и встречается на каждом шагу?» Однако, мы видим и другие лампы, а раз есть альтернативы ей, значит и недостатки найдутся.

Для того чтобы оценить все преимущества и недостатки, необходимо рассмотреть строение источника света.

Лампочка накаливания состоит из:

Разнообразность форм колб в большинстве случаев объясняется эстетическим видом, а иногда возможностью удобной установки. Функцией колбы является защита тела накала от атмосферных осадков.

Изначально, когда электрические источники света только начали изготовлять, то в стеклянной колбе лампы создавался вакуум. Сейчас же такую технологию применяют только для малой мощности (до 25 Вт), а световые источники большей мощности наполняют инертным газом (аргон, азот, криптон)….

0 0

Нить накаливания в лампах нагревается до высоких температур, которые близки к температуре плавления вольфрама (3422°C). Вольфрам, а также уголь, который применялся в первых лампах, при комнатной температуре не отличаются химической активностью, однако раскаленная вольфрамовая спираль (равно, как и угольная нить) сгорают на воздухе за несколько секунд. В этом можно легко убедиться, попробовав включить лампу накаливания со снятой колбой .

Чтобы вольфрамовая нить (спираль) не сгорела, ее нужно изолировать от действия воздуха. Первые лампы были вакуумными, т.е. из их колб был откачан воздух. Химики отлично знают, что стеклянные сосуды, которые работают под вакуумом, могут причинить немало неприятностей. Малейшее повреждение стекла или механическое напряжение внутри стекла — и такой сосуд может взорваться.

Современные лампы заполняют аргоном или смесью криптона и ксенона. Это выгодно не только с точки зрения безопасности, но и для продления срока службы лампы. Основная…

0 0

Когда появилась первая лампа накаливания?

В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью). В 1838 году бельгиец Жобар изобретает угольную лампу накаливания. В 1854 году немец Генрих Гёбель разработал первую «современную» лампу — обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

Первая американская коммерческая лампа с вольфрамовой спиралью.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку…

0 0

Не советую, вытащить самстоятельно не удастся.

Помните байку о том, как таксист отвозил в больницу мужика, который на спор засунул электролампочку в рот, а высунуть обратно не смог? Заинтригованный таксист решил проверить эту историю на себе, мол, «как же так, если входит, значит и выходить должна». И… тоже отправился к врачу. В чем же дело?..
ПРОВЕРКА. Для проведения эксперимента купили стандартную лампочку в 60 Вт. Проверить анекдот «про лампочку» на себе вызвался «слободской» корреспондент Дмитрий Бузин: ему не верилось, что лампочку невозможно достать изо рта. Но… Дмитрий все-таки не смог ее достать! По словам медиков, это невозможно сделать из-за спазма мышц челюстей. Открыть рот на максимальную ширину можно только в том случае, если сначала рот закрыт. Если же рот уже открыт (к примеру, на две трети, когда лампочка во рту), мышцы слишком напряжены, чтобы рот можно было открыть еще больше. Вытащить лампочку могут только врачи — либо при помощи специального…

0 0

Современная светотехника невозможна без инертных газов. В большинстве типов и конструкций разнообразных источников света обнаруживается их присутствие. В некоторых лампах благородные газы создают инертную защитную среду. В других под воздействием электрических разрядов продуцируют красивое цветное свечение.

При пропускании электрических разрядов в слоях различных благородных газов во

www.kalinark.ru

Из чего сделана лампа накаливания | Крабовые ручки

Из каких материалов, веществ, химических элементов сделаны различные элементы «вакуумной» лампы накаливания? Вот из таких:

Из чего это сделано

  1. Колба лампы сделана из силикатного стекла (не закалённого, не термостойкого, не кварцевого — из самого обычного). Стеклянная конструкция внутри лампы (состоит из штабика, тарелочки и штенгеля) сделана из такого же стекла. Силикатное стекло — сплав  кварцевого песка SiO2, соды Na2CO3 и карбоната кальция CaCO3, что в итоге даёт соединение состава Na2O·CaO·6SiO2. Колба наполнена инетртным газом (чаще всего 86% аргона Ar и 14% азота N2) или, если лампа маломощная, имеет внутри просто откаченный, разряженный воздух.
  2. Нить накаливания сделана из вольфрама W. Не совсем чистого. С присадками (менее 1% в сумме) оксида кремния SiO2, калия K, натрия Na, иногда оксида алюминия Al2O3.
  3. Держатели нити накаливания сделаны из чистого молибдена Mo. Молибден сохраняет упругость при температуре близкой к температуре его плавления (2623°C = 2896 K, что как бы кстати немного выше 2700 K — температуры раскалённой вольфрамовой нити).
  4. Электроды сделаны из никелированного железа (Fe, Ni). Железная проволока, покрытая никелем. Проверено. А вовсе не из чистого никеля, как написано везде в интернете.
  5. Вводы (куски проволоки внутри стекла) сделаны из платинита. Платинит — сплав, состоящий из никеля Ni (42..46%), углерода C (0.15%), железа Fe (54..58%). Из платинита изготавливают биметаллические проволоки и ленты (снаружи — медь, в количестве 1/4 по массе от массы сердечника). Их также называют платинитом. Именно эта медь видится красной проволокой внутри стекла ламп. Платинит имеет такой же тепловой коэффициент линейного расширения, как у стекла, поэтому в этом месте при нагревании лампы ничего не трескается и проволока не выпадает из стекла.
  6. Выводы сделаны из меди Cu, технической, неизвестной чистоты.
  7. Один из выводов припаян к цоколю либо оловянно-свинцовым припоем  ПОС-40 (40% олова Sn, 60% свинца Pb), либо точечной контактной сваркой.
  8. Цоколь сделан из оцинкованного железа. Цоколь приклеен к колбе мастикой следующего состава: смесь мраморного порошка, фенолформальдегидного лака, карбамида и уротропина. Сначала при нагревании эта смесь размягчается и прилипает к стеклу колбы и железу цоколя, затем, при дальнейшем нагревании до 240°C, затвердевает.
  9. Изолятор между двумя контактами цоколя сделан из смальты — окрашенное (в данном случае чёрным пигментом-наполнителем) в массе стекло.
  10. Контактная пластина (скорее полусфера, пупырышек) сделана либо из латуни, к которой второй вывод припаян оловянно-свинцовым припоем, либо из оцинкованного железа.
Полезные ссылки:
  1. Устройство лампы накаливания — сатья на сайте artillum.ru.
  2. Солнечный свет из Калашниково — репортаж с завода-производителя ламп накаливания.
  3. Incandescent Lamps — про устройство таких лампочек, на английском языке.
  4. Из чего сделана галогенная лампа — аналогичная текущей статья про галогенки.

Из чего сделана лампа накаливания

5 (100%) 3 vote[s]

almois.ru

Вольфрамовая лампа — Справочник химика 21

    Фотоэлектроколориметр ФЭК-М имеет стеклянную оптику, прозрачную только для лучей видимого участка спектра. В качестве источника излучений служит лампа накаливания (вольфрамовая лампа), дающая излучение в видимой части спектра. Селеновые фотоэлементы чувствительны только к, излучениям видимого участка спектра. Следовательно, данный прибор пригоден для измерений в интервале 400— 700 нм. Кроме того, для работы в этом интервале прибор снабжен тремя светофильтрами с полушириной пропускания 80—100 нм (см. рис. 68) и поэтому его используют только при определении концентрации. Он непригоден для изучения спектров поглощения. [c.247]
    Спектрофотометры СФ-4, СФ-4А, СФ-16 и СФ-26 имеют кварцевую оптику, что позволяет проводить измерения помимо видимой и ближней ИК-областей также в УФ-области спектра. В качестве источников излучений в них могут быть использованы три лампы со сплошным излучением водородная лампа для работы в УФ-области (200— 350 нм), вольфрамовая лампа для работы в видимой и ИК-областях и дейтериевая лампа, которая имеется только в спектрофотометрах СФ-16 и СФ-26 и позволяет проводить измерения в области 185— 200 нм, но для этого требуется полная эвакуация прибора или вытеснение воздуха азотом на всем оптическом пути. Ртутно-гелиевая лампа, имеющаяся в комплекте каждого из этих приборов, используется для проверки градуировки шкалы длин волн, так как она дает линейчатый спектр излучения. [c.79]

    Спектрофотометр СФ-5 имеет стеклянную оптику и поэтому работает только в видимой и ближней ИК-областях спектра. В качестве источника излучений в нем используется только вольфрамовая лампа, а в качестве детекторов — те же фотоэлементы. [c.79]

    При работе в видимой и ближней ИК-областях спектра источником излучений служит обычная вольфрамовая лампа накаливания, дающая сплошной спектр. [c.234]

    Спектрофотометры СФ-4, СФ-4А, СФ-16 имеют кварцевую оптику, что позволяет производить измерения, помимо видимой и ближней ИК-области, также в УФ-области спектра. В качестве источников сплошных излучений в них используются водородная лампа в УФ-области (200—350 нм) и вольфрамовая лампа в видимой и ближней ИК-областях (320—1100 нм). Кроме того, в спектрофотометре СФ-16 имеется дейтериевая лампа для работы в области 185—200 нм, что требует полной эвакуации или вытеснение воздуха азотом на всем оптическом пути. Для измерений в широком спектральном интервале используют в качестве детекторов два фотоэлемента сурьмяно-цезиевый в области 186—650 и кислородно-цезиевый—в области 600—1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим, указана в аттестате прибора. [c.257]

    Спектрофотометр СФ-5 имеет стеклянную оптику и поэтому работает только в видимой и ближней ИК-областях спектра. В качестве источника излучений в нем используется только вольфрамовая лампа, а в качестве детекторов—те же фотоэлементы. Ртутная лампа, имеющаяся в комплекте каждого из этих приборов, дает линейчатый спектр и используется для проверки градуировки шкалы длин волн. Для уменьшения рассеянного излучения иа пути луча, выходящего из монохроматора, устанавливают светофильтры из стекла УФС-2 — при работе в области 320—380 нм, из стекла ОС-14 — при работе в области 590—700 нм. Таким образом, эти светофильтры не играют роли монохроматоров, как это осуществляется в фотоэлектроколориметрах. [c.257]

    Если переходят от УФ к видимой области сиектра, то соблюдают следующий порядок операций переключения с дейтериевой на вольфрамовую лампу  [c.272]

    Область 4000—8000 А—видимая область. В качестве материала оптики используется стекло (кварц также прозрачен в этой области, но имеет меньшую дисперсию). В качестве источника излучения применяется вольфрамовая лампа, приемником излучения служит фотоэлемент. Обычно измерение спектров поглощения органических соединений в пределах 1850—10 000 А (в средней ультрафиолетовой и видимой областях) проводится на одном приборе, снабженном кварцевой оптикой, сменными источниками и приемниками излучения. [c.10]

    Для работы в ближнем ИК-диапазоне используют обычные вольфрамовые лампы накаливания. [c.170]

    Прибор состоит из вольфрамовой лампы 1, излучающей два пучка света, которые направляются на систему линз 3, 4 для точной фокусировки. При этом образуются два луча. Первый сфокусированный луч направляется на чувствительную пленку 9, второй, эталонный, луч — на эталонный фотоэлемент 5. Проба газа или воздуха, содер- [c.313]

    МОЛИБДЕН ИЗ ОТХОДОВ ПРОЦЕССА ПРОИЗВОДСТВА ВОЛЬФРАМОВЫХ ЛАМП НАКАЛИВАНИЯ [c.270]

    Источник света Вольфрамовая лампа Пульсирующий LED Вольфра- мовая лампа Вольфра- мовая лампа Отражающий диод 940 нм [c.320]

    Известные источники света, вольфрамовые лампы 2200, лампа Нериста от 3200 [c.143]

    Для измерений пригоден любой спектрофотометр, снабженный вольфрамовой лампой и фототрубкой, чувствительной к красному свет>, с кюветами размером 5 см и позволяющий измерять поглощение при указанной длине волны. Прн измерении спектрофотометр устанавливают на длину волны максимального поглощения, приводят показание к нулю, помещая в обе кюветы дистиллированную воду, и измеряют поглощение исследуемого раствора по дистиллированной воде. Такое же измерение проводят для холостого опыта, вычитают результат из результата, полученного для исследуемого образца, и по заранее построенной калибровочной кр.ивой в соответствии с найденной разностью поглощения находят количество фосфора в мкг. [c.217]

    Если используют источники непрерывного излучения, такие, как вольфрамовые лампы, то даже при выделении излучения определенной частоты с помощью эффективно действующего монохроматора возникают заметные ошибки определения, связанные с немонохроматичностью падающего излучения. Поэтому для каждого элемента необходим специальный источник излучения, что является недостатком метода. Но с другой стороны, это же обусловливает меньшее влияние посторонних элементов, чем в методах эмиссионного анализа. [c.379]

    В реакции Бартона [156], как и в реакции Коши, используют свободную кислоту, на которую действуют тетраацетатом свинца и иодом в инертном растворителе при облучении вольфрамовой лампой. Этот метод наиболее пригоден для первичных и вторичных карбоновых кислот и дает выходы, как правило, 63—100%. Аналогичные результаты могут быть получены при реакции с трет-бу-тилгипоиодитом (вероятно, являющимся действующим реагентом при использовании тетраацетата свинца с иодом), но выходы в этом случае несколько ниже, за исключением некоторых дикарбоновых кислот. Механизм реакции Бартона, по-видимому, аналогичен механизму реакции Хунсдикера. [c.396]

    НИТЬЮ накала. Для бромирования 300

www.chem21.info

Вольфрамовая лампа — Большая Энциклопедия Нефти и Газа, статья, страница 1

Вольфрамовая лампа

Cтраница 1


Вольфрамовая лампа о стабилизированной мощностью удовлетворяет этим требованиям. Во-вторых, монохроматор должен разрешать достаточно узкий интервал длин волн ( 10 нм или меньше) при минимальном количестве рассеянного света вне этого интервала. Наилучшим является двойной монохроматор, однако во многих случаях хорошо сконструированный одинарный монохроматор вполне удовлетворителен. Наконец, детектор должен быть стабильным и давать на выходе сигнал, линейный относительно падающего на него света.  [2]

Вольфрамовая лампа фактически не является абсолютно черным телом. Однако форма спектра испускания в видимой области может быть аппроксимирована спектром испускания абсолютно черного тела при определенной температуре. Температуры, измеренные таким способом, называются цветовыми температурами.  [3]

Вольфрамовые лампы целесообразно применять в длинноволновой — видимой области, а галогенные можно использовать по всей видимой области.  [4]

Вольфрамовые лампы, снабженные монохроматорами и фильтрами, а также диоды и лазеры могут использоваться в качестве источников монохроматического излучения. Однако еще находят применение некоторые приборы более старой конструкции, снабженные вольфрамовыми лампами, но без монохроматоров или фильтров и, хотя воспроизводимость такого прибора может быть меньшей, чем у прибора с монохроматическим излучением, их можно применять для повседневного контроля и контроля мутности водопроводов и очистных сооружений. Однако, если применяются разные приборы, результаты сравнивать нельзя.  [5]

Вольфрамовые лампы, снабженные монохроматорами и фильтрами, а также диоды и лазеры могут использоваться в качестве источников монохроматического излучения. Однако еще находят применение некоторые приборы более старой конструкции, снабженные вольфрамовыми лампами, но без монохроматоров или фильтров и, хотя воспроизводимость такого прибора может быть меньшей, чем у прибора с монохроматическим излучением, их можно применять для повседневного контроля и контроля мутности воды водопроводов и очистных сооружений. Однако, если применяются разные приборы, результаты сравнивать нельзя.  [6]

Вакуумные вольфрамовые лампы с винтовой ( спиральной) нитью в большинстве случаев изготовляются на малую силу света. Они отличаются от вольфрамовых ламп с петлеобразной нитью тем, что нити у этих ламп свиваются в спираль, что обусловливает другое распределение света ( фиг. Вследствие большой концентрации нити возможно уменьшение размеров стеклянной колбы.  [7]

Вольфрамовые лампы низкого напряжения ( 6 — 24 В) имеют более компактную спираль, а поэтому и большую светимость, чем лампы напряжения 220 В. Для эксплуатации таких ламп необходим достаточно мощный трансформатор. Согласно закону Стефана — Больцмана, излучение лампы зависит от четвертой степени температуры ( см. гл. Часто необходима стабилизация напряжения. Электронные стабилизаторы более эффективны, но дороги.  [8]

Пустотные вольфрамовые лампы специального назначения выполняются в очень большом количестве типов.  [9]

Обычной вольфрамовой лампы достаточно для проведения реакции.  [10]

За исключением вольфрамовых ламп, которые дают истинно непрерывный спектр, и ртутных ламп низкого давления, которые дают линейчатый спектр, все упоминаемые ниже источники имеют смешанный спектр, содержащий как сплошное, так и линейчатое излучение. Количественное выражение относительных интенсивностей линий и континуума представляет собой особую проблему, так как световой поток от монохроматической линии выражается в Эйнштейнах на секунду, а поток от континуума — в Эйнштейнах на секунду и на единичную ширину полосы. Эта проблема уже упоминалась выше, далее она будет обсуждена более подробно, чтобы читатель мог получить максимальную информацию на основе спектрального распределения источников света.  [11]

Окраска света вакуумных вольфрамовых ламп значительно более, чем ламп с угольной нитью, вследствие более высокой температуры, которая при световой отдаче 9 8 Я / от / W — 2180 С.  [12]

Описано облучение вольфрамовой лампой накаливания7 для сульфохлорирования в алкильной группе алкилзамещенных ароматических углеводородов. О минимально необходимой интенсивности облучения данных не имеется. Безусловное значение имеет материал стенок реактора.  [13]

Источником света служила вольфрамовая лампа, ширина выделяемого интервала сплошного спектра составляла 10 А.  [14]

Используемые в фотохимии вольфрамовые лампы — это лампы накаливания большой мощности, которые, например, применяются как проекционные. Они являются истинными тепловыми источниками, поэтому дают низкие выходы света.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *