Выпрямитель на диодах: Выпрямители. Схемы выпрямления электрического тока

Содержание

Выпрямители. Схемы выпрямления электрического тока

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А».

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

Uср = 2*Umax / π = 0,636 Umax

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – Uобр ;

— максимальный ток диода – Imax ;

— прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.


Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

 

Схемы выпрямителей

Добавлено 4 марта 2017 в 15:10

Сохранить или поделиться

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителя

Однополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется. Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер

В положении переключателя «Тускло» лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения.

Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку. Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем

со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка «видит» первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему «видит» половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем.

Двухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более «гладкое» (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является «чистое» постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества «импульсов» постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph2W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph2W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph3W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph3W6P.

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)

Подведем итоги

  • Выпрямление – это преобразование переменного напряжения в постоянное.
  • Однополупериодный выпрямитель – это схема, которая позволяет только одной половине синусоиды переменного напряжения достичь нагрузки, давая на ней в результате неизменяющуюся полярность. Полученное постоянное напряжение, приложенное к нагрузке, значительно «пульсирует».
  • Двухполупериодный выпрямитель – это схема, которая преобразует обе половины периода синусоиды переменного напряжения в непрерывную последовательность импульсов одной полярности. Полученное постоянное напряжение, приложенное к нагрузке, «пульсирует» не так сильно.
  • Многофазное переменное напряжении при выпрямлении дает более «гладкую» форму постоянного напряжения (меньшее напряжение пульсаций) по сравнению с выпрямленным однофазным напряжением.

Оригинал статьи:

Теги

ВыпрямительДиодИсточник питанияОбучениеЭлектроника

Сохранить или поделиться

Элементарный выпрямитель на одном диоде

   Благодаря свойству диода однонаправленной проводимости, всего одной детали достаточно, чтобы собрать схему выпрямителя. Такая схема предельно проста, а характеристики её не ахти какие, но тем не менее, она вполне работоспособна и пригодна для некоторого применения, например, для подзарядки батареи свинцово-кислотных аккумуляторов и т.п.

   Речь пойдёт об однополупериодном однофазном выпрямителе на одном диоде. Сразу представим его схему — рисунок 1.

 

Рисунок 1. Однофазный однополупериодный выпрямитель.

Состав схемы.

   Ключевым элементом схемы является диод VD1. Схема проста до безобразия: диод просто включен последовательно с цепью нагрузки, роль которой выполняет лампа HL1. Трансформатор T1 здесь не имеет принципиального значения, он играет роль источника переменного напряжения.

Принцип работы.

   Через трансформатор T1 производится преобразование переменного напряжения питающей сети до необходимой величины, а так же осуществляется гальваническая развязка, что обычно необходимо для электробезопасности. Гальваническая развязка позволяет в большей степени исключить поражение электрическим током пользователя (оператора) устройства.

   К одному из выводов вторичной обмотки трансформатора подключается диод VD1. Свободные выводы диода и трансформатора можно использовать в качестве выходных контактов. Таким образом к ним подключена нагрузка в виде лампы HL1.

   При переменном напряжении вторичной обмотки, в положительный полупериод, рисунок 1 а), когда к диоду и нагрузке приложено напряжение U2, диод открывается и через него и лампу HL1 течёт ток нагрузки iн. На лампу действует напряжение одной полярности. В отрицательный полупериод, рисунок 1 б), к диоду и лампе приложено напряжение –U2, которое для диода является обратным, запирающим. Диод в этот полупериод запирается, через него может течь ток, не превышающий ток утечки диода iу. При этом нагрузка переживает безтоковую паузу, т. е. происходит отсечка отрицательного полупериода.

   И так, благодаря рассмотренной схеме, при питании от сети переменного тока, на нагрузке всегда возникает напряжение только одной полярности. В этом и заключается суть выпрямления.

Достоинства схемы.

   К достоинству данной схемы можно отнести только её безобразную простоту. В остальном она не всегда пригодна для широкого применения из-за своих значительных недостатков.

Недостатки схемы.

— Значительные пульсации на выходе устройства. При подключении лампы накаливания, даже учитывая значительную инерционность её нагрева, её свечение заметно мерцает.

— Низкая эффективность. Вследствие отсечки отрицательного полупериода, КПД этой схемы не может быть больше 50%.

— При значительных нагрузках с использованием в схеме трансформатора Т1, трансформатор подвергается несимметричному размагничиванию, может появиться неприятный звук.

Применение схемы.

   Несмотря на все свои недостатки, эта схема нашла своё применение в качестве десульфатирующего зарядного устройства для свинцово-кислотных аккумуляторных батарей.  

Выпрямители тока часть 2. Виды однофазных и трехфазных схем

Продолжаем рассматривать выпрямители тока, их различные схемы сборки. Всевозможные схемы обеспечивают применение таких устройств в разных отраслях промышленности и в быту.

Производство и передача электроэнергии чаще всего выполняется на переменном токе, так как трансформация напряжения является наиболее простым способом. Но, довольно весомая часть выработанной электрической энергии применяется в виде постоянного тока, даже для транспортировки на значительные расстояния. Эта доля составляет около 30% от всей произведенной электроэнергии.

Выпрямители тока
Двухтактная схема

В устройствах низкого напряжения используют однофазный двухтактный выпрямитель с нулевым отводом обмотки. Это дает возможность снизить потери и количество диодов в два раза. Однако при этом коэффициент использования трансформатора намного ниже, размеры прибора больше, в отличие от однофазного устройства.

Обязательным компонентом такого прибора является трансформатор, у которого имеется две низковольтные обмотки. По сути дела, подключение к средней точке делает выпрямитель двухфазным, так как образуются две ЭДС, которые равны между собой по значению, а направлены в разные стороны. В результате схема подключения заключается в том, что равные напряжения на выходе обмотки сдвинуты от средней точки по фазе на 180 градусов.

К анодам диодных вентилей присоединены вторичные обмотки, на которых напряжение находятся в противофазе, вследствие чего ток по диодам протекает по очереди в определенных полупериодах напряжения.

Отличием прибора со средней точкой от простого исполнения является протекание выпрямленного тока в обоих полупериодах. Но каждая половина обмотки нагружена током в одном полупериоде. Подмагничивание сердечника отсутствует, так как магнитные силы направлены во встречном направлении.

Мостовая схема

Характерна повышенным коэффициентом применения трансформатора. Вследствие этого, ее использование целесообразно в устройствах высокой мощности с напряжением на выходе в сотни вольт. Пульсации в такой схеме аналогичны предыдущей схеме.

Действие мостовой схемы практически не имеет отличий от предыдущей схемы, кроме того, что используются два вентиля вместо одного. Они соединены по последовательной схеме. Для полупериода применяется полностью вся обмотка. Это увеличивает эффективность применения трансформатора.

Преимуществом схемы моста является пониженное обратное напряжение, малые размеры, высокий коэффициент использования трансформатора. К недостатку можно отнести значительное падение напряжения на вентилях.

Напряжение на выходе при активной нагрузке представлено в виде однополярных полуволн. Это возникает из-за поочередного открывания диодов.

По аналогии кривых udдля приборов со средней точкой и мостовых схем, работают такие же формулы напряжений:

Вследствие этого пульсации остаются такими же. Ток Id разделяется на равные части между вентилями. Обратное напряжение на два непроводящих диода подается в одно время на диапазоне проводимости других диодов, его наибольшая величина вычисляется амплитудой напряжения u2:

Нагрузочный ток проходит в обоих полупериодах как во вторичной обмотке. Действующий ток вторичной обмотки вычисляется:

Это объясняется тем, что ток синусоидальный. Поэтому трансформатор выполнен с одной вторичной обмоткой.

Если учесть, что трансформатор оснащен одной вторичной обмоткой, то габаритная мощность двух обмоток одинакова, а суммарная габаритная мощность Sгаб совпадает с мощностью первичной обмотки, которая рассматривалась выше, и равна 1,23 Рd.

Выпрямительный диодный мост в различных источниках изображают по-разному. Чаще всего это делают упрощенно.

Диодный мост

Такую условность применяют для упрощения внешнего вида схемы. Диодная сборка состоит из четырех диодов с равными характеристиками. Они расположены в одном корпусе, что является технологичным решением. Такая сборка занимает незначительное место на монтажной плате.

В последнее время популярны селеновые и кенотронные выпрямители тока, которые применяются для радиоаппаратуры. В выпрямительных мостах все больше используют полупроводниковые диоды на основе германия.

Трехфазные выпрямители тока

Приборы, способные выпрямлять 3-фазное напряжение переменного тока, имеют трансформатор с первичной обмоткой, состоящей из 3-х отдельных обмоток, соединенных по схеме треугольника или звезды. Схема выпрямляющего устройства для трехфазной сети используется чаще всего для подключения нагрузки большой и средней мощности.

По методу подключения диодов к выходной обмотке схемы разделяют на мостовые с изолированной нулевой точкой, и нулевые со средней точкой обмотки.

Применяя специальные схемы подключения вторичной обмотки и выпрямителя, в общем, получают выпрямленное напряжение с количеством импульсов, кратным трем, за один период. При повышении количества импульсов в напряжении на выходе прибора, можно значительно уменьшить габариты фильтрующих элементов. 3-фазные выпрямители тока создают равномерную нагрузку на линию питания, и имеют повышенный процент использования трансформатора.

Трехфазная нулевая схема

В такую схему включен трансформатор. Выводы обмоток по схеме подключены к анодам трех диодов. Потребляющая нагрузка соединена с общей точкой катодов диодов.

На диаграмме показано действие идеального 3-фазного выпрямителя, имеющего среднюю точку на выходной обмотке, подключенную к нагрузке. В такой идеальной схеме, где не учитывается индуктивность обмоток, а вентили считаются идеальными, при переходе тока между вентилями, их коммутация осуществляется мгновенно, и в любое время ток проходит по одному диоду, имеющему самый большой потенциал.

В трехфазном устройстве выпрямления, нагрузочный ток со средней точки обмотки образуется фазным напряжением этой обмотки. За один период напряжения по каждой вторичной обмотке один раз проходит ток одной полярности. При этом диапазон проводимости одного вентиля равен 120 градусам.

Открытый диод подает напряжение соответствующей фазы к потребляющей нагрузке. В итоге на нагрузку действует импульсное однополярное напряжение, которое является участком напряжений фаз вторичных обмоток, и имеющее тройные импульсы за один период.

Достоинства
  • Малое количество вентилей.
  • Незначительное падение напряжения на диодах, вследствие чего возможно применение этой схемы для выравнивания низких напряжений при высоких мощностях более 0,5 киловатт.
  • Высокая частота импульсов выходного напряжения, так как имеется три частоты на трех фазах сети. Иногда это дает возможность применять такую схему без фильтрации.
Недостатки
  • Повышенное обратное напряжение на вентилях.
  • Малый коэффициент использования трансформатора из-за эффекта подмагничивания.

Однако такие недостатки нулевой схемы не ограничивают использовать выпрямители тока в определенных областях, и нашли определенную популярность.

Трехфазная мостовая схема

Позволяет наилучшим образом использовать трансформатор по его мощности, имеет малое обратное напряжение на вентилях и повышенную частоту импульсов выходного напряжения. Мостовая 3-фазная схема стала популярной в широком интервале мощностей и напряжений.

Выпрямители тока по мостовой трехфазной схеме имеется мост выпрямления, состоящий из шести диодов, соединенных двумя группами последовательно. Одна из групп – катодная, так как диоды соединены катодами, а вторая анодная. Питание на нагрузку подается от точек соединения анодов и катодов диодов. Обмотки допускается соединять треугольником или звездой.

Каждая группа вентилей устройства работает по принципу, подобному схеме прибора со средней точкой, на выходе среднее напряжение повышается в 2 раза.

Если рассматривать отличия двух последних схем, то в схеме со средней точкой нагрузочный ток создается фазным напряжением, в отличие от мостовой схемы, в которой ток нагрузки создается при воздействии линейного напряжения. Здесь нагрузочный ток проходит по двум диодам: одному с максимальным потенциалом анода по отношению к нулевой точке, другому – с минимальным потенциалом катода. Другими словами, в состоянии проводимости будут такие два вентиля моста, которые имеют максимальное линейное напряжение в сторону проводимости.

За один период напряжения осуществляется шесть коммутаций диодов, поэтому схема функционирует в шесть тактов. Такую схему называют шестиимпульсной. В результате выходное напряжение выпрямителя содержит шестикратные импульсы, однако угол проводимости отдельного диода равен углу 120 градусов.

График тока вторичной обмотки зависит от токов двух диодов, подключенных к этой фазе. Один из диодов состоит в анодной группе, а другой – в катодной. Выходной ток переменный, с промежутком между пульсациями 60 градусов, при закрытых двух диодах этой фазы. Подмагничивания сердечника в этой схеме нет.

Похожие темы:

Электронные схемы — двухполупериодные выпрямители

Цепь выпрямителя, которая выпрямляет как положительные, так и отрицательные полупериоды, может называться двухполупериодным выпрямителем, поскольку выпрямляет полный цикл. Конструкция двухполупериодного выпрямителя может быть двух типов. Они есть

  • Двухполупериодный выпрямитель с центральным отводом
  • Мостовой двухполупериодный выпрямитель

Оба из них имеют свои преимущества и недостатки. Давайте теперь рассмотрим как их построение, так и работу с их формами волны, чтобы узнать, какая из них лучше и почему.

Полноволновой выпрямитель с центральным отводом

Цепь выпрямителя, чья вторичная обмотка трансформатора подключена для получения требуемого выходного напряжения, с использованием двух диодов для альтернативного выпрямления полного цикла, называется двухполупериодной цепью выпрямителя с центральным отводом . В отличие от других случаев трансформатор здесь отводится по центру.

Особенности центрирующего трансформатора —

  • Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.

  • Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.

  • Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.

  • Для получения различных уровней напряжений можно вытянуть несколько обмоток.

Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.

Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.

Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.

Для получения различных уровней напряжений можно вытянуть несколько обмоток.

Трансформатор с центральным отводом и двумя выпрямительными диодами используется в конструкции двухполупериодного выпрямителя с центральным отводом . Принципиальная электрическая схема двухполупериодного выпрямителя с центральным отводом показана ниже.

Работа CT-FWR

Работу двухполупериодного выпрямителя с центральным отводом можно понять по приведенному выше рисунку. Когда прикладывается положительный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится положительной по отношению к точке N. Это делает диод D1 смещенным в прямом направлении. Следовательно, ток i1 протекает через нагрузочный резистор от A до B. Теперь у нас есть положительные полупериоды на выходе

Когда прикладывается отрицательный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится отрицательной по отношению к точке N. Это делает диод D2 смещенным в прямом направлении. Следовательно, ток i2 протекает через нагрузочный резистор от А до В. Теперь у нас есть положительные полупериоды на выходе, даже во время отрицательных полупериодов на входе.

Формы волны CT FWR

Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.

Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.

Пиковое обратное напряжение

Поскольку максимальное напряжение на половине вторичной обмотки составляет Vm, все вторичное напряжение появляется на непроводящем диоде. Следовательно, пиковое обратное напряжение в два раза превышает максимальное напряжение на полу-вторичной обмотке, т.е.

PIV=2Vm

Недостатки

Есть несколько недостатков для выпрямителя с центральным ответвлением, таких как —

  • Расположение центра постукивания сложно
  • Выходное напряжение постоянного тока мало
  • PIV диодов должен быть высоким

Следующим типом двухполупериодной выпрямительной цепи является мостовая двухполупериодная выпрямительная схема .

Мостовой двухполупериодный выпрямитель

Это такая двухполупериодная схема выпрямителя, в которой используются четыре диода, соединенных в виде моста, чтобы не только создавать выходной сигнал в течение полного цикла ввода, но и устранять недостатки двухполупериодной выпрямительной схемы с центральным отводом.

В этой цепи нет необходимости в центральном постукивании трансформатора. Четыре диода, называемые D1, D2, D3 и D4, используются при построении сети мостового типа, так что два из диодов проводят один полупериод, а два — другой полупериод входного питания. Схема мостового двухполупериодного выпрямителя показана на следующем рисунке.

Работа мостового двухполупериодного выпрямителя

Двухполупериодный выпрямитель с четырьмя диодами, соединенными в мостовой схеме, используется для получения лучшего отклика на двухволновом выходе. Когда задан положительный полупериод входного питания, точка P становится положительной по отношению к точке Q. Это делает диод D1 и D3 смещенным в прямом направлении, а D2 и D4 — в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.

На следующем рисунке это показано вместе с обычным током в цепи.

Следовательно, диоды D1 и D3 проводят в течение положительного полупериода входного питания, чтобы создать выходной сигнал вдоль резистора нагрузки. Поскольку два диода работают для получения выходной мощности, напряжение будет вдвое превышать выходное напряжение двухполупериодного выпрямителя с центральным выводом.

Когда задан отрицательный полупериод входного питания, точка P становится отрицательной по отношению к точке Q. Это делает диод D1 и D3 смещенным в обратном направлении, тогда как D2 и D4 смещены в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.

На следующем рисунке это показано вместе с обычным током в цепи.

Следовательно, диоды D2 и D4 проводят во время отрицательного полупериода входного питания, создавая выход вдоль нагрузочного резистора. Здесь также два диода работают, чтобы произвести выходное напряжение. Ток течет в том же направлении, что и во время положительного полупериода входа.

Форма волны моста FWR

Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.

Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.

Пиковое обратное напряжение

Всякий раз, когда два из диодов параллельны вторичной обмотке трансформатора, максимальное напряжение вторичной обмотки на трансформаторе появляется в непроводящих диодах, что делает PIV цепи выпрямителя. Следовательно, пиковое обратное напряжение является максимальным напряжением на вторичной обмотке, т.е.

PIV=Vm

преимущества

Мостовой двухполупериодный выпрямитель имеет много преимуществ, таких как —

  • Нет необходимости постукивать по центру.
  • Выходное напряжение постоянного тока в два раза выше, чем у FWR центральных отводов.
  • PIV диодов в два раза меньше, чем у FWR центрального датчика.
  • Конструкция схемы проще с лучшим выходом.

Давайте теперь проанализируем характеристики двухполупериодного выпрямителя.

Анализ двухполупериодного выпрямителя

Чтобы проанализировать схему двухполупериодного выпрямителя, предположим, что входное напряжение Vi равно

Vi=Vm sin omegat

Ток i1 через нагрузочный резистор RL определяется как

i1=Im sin omegat quadдля quad0 leq omegat leq pi

i1= quad0 quad quad quadдля quad pi leq omegat leq2 pi

куда

im= гидроразрываVmRF+RL

Rf — сопротивление диода в состоянии ВКЛ.

Аналогично, ток i2, протекающий через диод D2 и нагрузочный резистор RL, определяется как

i2= quad0 quad quad quadдля quad0 leq omegat leq pi

i2=Im sin omegat quadдля quad pi leq omegat leq2 pi

Общий ток, протекающий через RL, является суммой двух токов i1 и i2, т. е.

I=i1+i2

DC или средний ток

Среднее значение выходного тока, которое показывает амперметр постоянного тока, определяется как

Idc= frac12 pi int2 pi0i1d left( omegat right)+ frac12 pi int2 pi0i2d left( omegat right)

= frac12 pi int pi0Im sin omegatd left( omegat right)+0+0+

 frac12 pi int2 pi0Im sin omegatd left( omegat right)

= fracIm pi+ fracIm pi= frac2Im pi=0.636Im

Это вдвое превышает значение полуволнового выпрямителя.

Выходное напряжение постоянного тока

Выходное напряжение постоянного тока на нагрузке определяется как

Vdc=Idc timesRL= frac2ImRL pi=0.636ImRL

Таким образом, выходное напряжение постоянного тока в два раза выше, чем у полуволнового выпрямителя.

RMS Current

Среднеквадратичное значение тока определяется как

Irms= left[ frac1 pi int pi0t2d left( omegat right) right] гидроразрыва12

Поскольку ток имеет две одинаковые формы в двух половинах

= left[ fracI2m pi int pi0 sin2 omegatd left( omegat right) right] frac12

= гидроразрываim SQRT2

Эффективность выпрямителя

Эффективность выпрямителя определяется как

 ета= гидроразрываР−постоянногоР−ас

Сейчас,

Pdc= left(Vdc right)2/RL= left(2Vm/ pi right)2

А также,

Pac= left(Vrms right)2/RL= left(Vm/ sqrt2 right)2

Следовательно,

 eta= fracPdcPac= frac left(2Vm/ pi right)2 left(Vm/ sqrt2 right)2= гидроразрыва8 р2

=0,812=81,2%

Эффективность выпрямителя можно рассчитать следующим образом:

Выходная мощность постоянного тока,

Pdc=I2dcRL= frac4I2m pi2 timesRL

Входная мощность переменного тока,

$$ P_ {ac} = I_ {rms} ^ {2} \ left (R_f + R_L \ right) = \ frac {I_ {m} ^ {2}} {2} \ left (R_f + R_L \ right) $ $

Следовательно,

 eta= frac4I2mRL/ pi2I2m left(Rf+RL right)/2= frac8 pi2 fracRL left(Rf+RL right)

= \ frac {0. 812} {\ left \ {1+ \ left (R_f / R_L \ right) \ right \}}

Следовательно, процентная эффективность

= frac0.8121+ left(Rf+RL right)

=81.2% quadifRf=0

Таким образом, двухполупериодный выпрямитель имеет эффективность, в два раза превышающую эффективность полуволнового выпрямителя.

Пульсационный фактор

Форм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя задается

F= гидроразрываIэффIпостоянноготока= гидроразрываim/ SQRT22Im/ р=1,11

Коэффициент пульсации  gamma определяется как (с использованием теории цепей переменного тока)

 gamma= left[ left( fracIrmsIdc right)−1 right] frac12= left(F2−1 справа) frac12

= left[ left(1.11 right)2−1 right] frac12=0,48

Это значительное улучшение по сравнению с коэффициентом пульсации полуволнового выпрямителя, равным 1,21.

регулирование

Выходное напряжение постоянного тока определяется как

Vdc= frac2ImRL pi= frac2VmRL pi left(Rf+RL right)

= frac2Vm pi left[1− fracRfRf+RL right]= frac2Vm pi−IdcRf

Коэффициент использования трансформатора

TUF полуволнового выпрямителя составляет 0,287

В выпрямителе с центральным отводом имеются две вторичные обмотки, и, следовательно, TUF двухполупериодного выпрямителя с центральным выводом

 left(TUF right)avg= fracPdcVAрейтингofaтрансформатор

= frac left(TUF right)p+ left(TUF right)s+ left(TUF right)s3

= гидроразрыва0,812+0,287+0,2873=0,693

Полуволна против полноволнового выпрямителя

Изучив все значения различных параметров двухполупериодного выпрямителя, давайте просто попробуем сравнить и сопоставить особенности полуволновых и двухполупериодных выпрямителей.

Применение диодов для выпрямления переменного тока

Выпрямитель преобразует переменный ток в постоянный, выпрямительные схемы являются самыми простыми и наиболее распространенными диодными схемами. Простейшая выпрямительная схема показана на рис.4.4, а.

Рис.4.4. Однополупериодный выпрямитель и его временные диаграммы 

Для синусоидального входного напряжения, значительно превышающего прямое напряжение диода, выходное напряжение будет иметь вид, показанный на рис.4.4, б. Представленная схема называется однополупериодным выпрямителем, так как она пропускает на выход только одну полуволну входного сигнала.

На рис.4.5, а представлена схема двухполупериодного выпрямителя, а на рис.4.5, б показан ее выходной сигнал. Из временных диаграмм видно, что входной сигнал используется при выпрямлении полностью. На графике выходного напряжения наблюдаются интервалы с нулевым значением напряжения, они обусловлены прямым напряжением диодов. В рассматриваемой схеме два диода всегда подключены последовательно к входу, это необходимо учитываться при использовании низковольтных источников питания.

Переменная составляющая является «вредной» частью выпрямленного напряжения. Для ее уменьшения на нагрузочном резисторе, т.е. для сглаживания пульсаций выпрямленного напряжения применяют специальные сглаживающие фильтры. В сглаживающем фильтре, изображенном на рис.4.6, применяются конденсаторы большой емкости, через которые ответвляется переменная составляющая тока, чтобы возможно меньшая ее часть проходила в нагрузку.

Рис.4.5. Двухполупериодный выпрямитель и его временные диаграммы

 

 

 

Рис.4.6. Однополупериодный выпрямитель с фильтром

Простейший способ выпрямления переменного напряжения состоит в том, что производят заряд конденсатора через диод по схеме, показной на рис.4.6. Если такая схема работает в режиме холостого хода, то конденсатор в течение положительной полуволны заряжается практически до амплитудного значения переменного напряжения. При отрицательной полуволне диод заперт.

При подключении нагрузки в течение всего времени, когда диод заперт, происходит разряд конденсатора через сопротивление нагрузки. Когда напряжение на вторичной обмотке трансформатора становится больше выходного напряжения, диод открывается и конденсатор вновь начинает заряжаться. Величина напряжения, до которого зарядится конденсатор, зависит от внутреннего сопротивления трансформатора и от сопротивления диода. На рис.4.7 представлена временная диаграмма выходного напряжения и тока диода в установившемся режиме.

Недостатком такой схемы является большая величина пульсаций. Соотношение между временем разряда и временем заряда конденсатора может быть значительно улучшено, если осуществлять заряд конденсатора во время как положительной, так и отрицательной полуволн переменного напряжения. Это достигается при использовании мостовой схемы выпрямителя, показанной на рис.4.8, а.

В течение всего времени заряда конденсатора диоды соединяют отрицательный вывод обмотки трансформатора с общей шиной питания, а положительной – с выходом схемы независимо от полярности напряжения на обмотке. Следует обратить внимание, что для данной схемы частота пульсаций будет в два раза выше частоты входного напряжения.

 

Рис.4.7. Временная диаграмма напряжения и тока для однополупериодного выпрямителя

 

 

 

 

Рис.4.8. Мостовой выпрямитель с фильтром (а) и его временные диаграммы (б)

Размах пульсаций выпрямителя с фильтром определяется выражением:

ΔU = IН / 2Cf(однополупериодное выпрямление),     (4.1)

ΔU = IН / 2Cf(двухполупериодное выпрямление),     (4.2)

где IН – ток нагрузки, C – емкость конденсатора фильтра, f – частота входного сигнала. Если ток нагрузки равен нулю, то конденсатор будет просто оставаться заряженным до амплитудного значения входного переменного напряжения.

Конденсатор подбирают так, чтобы выполнялось условие RНС >>1/f , (где f – частота пульсаций, в нашем случае – 100 Гц), тогда будет обеспечено ослабление пульсаций. Амплитуда пульсаций прямо пропорциональна току нагрузки и обратно пропорциональна емкости конденсатора и частоте входного сигнала.

Если требуется уменьшить пульсации, а сопротивление нагрузки мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций выполнить одним конденсатором практически нельзя. Приходится включать дополнительный сглаживающий фильтр (рис.4.9), состоящий из дросселя с большим индуктивным сопротивлением и еще одного конденсатора (или еще более сложный фильтр).

Необходимо отметить, что весьма опасно короткое замыкание нагрузки, которое, в частности, получается при пробое конденсатора сглаживающего фильтра. Тогда все напряжение источника будет приложено к диоду и ток станет недопустимо большим. Происходит тепловое разрушение диода.

На базе двухполупериодных выпрямителей можно построить схемы с умножением напряжения. Схема, показанная на рис.4.10, называется удвоителем напряжения.

Рис.4.9. Сглаживающий фильтр LC-типа

 

 

Рис.4.10. Удвоитель напряжения

 

Нижняя обмотка трансформатора включена к точке соединения двух конденсаторов. Верхняя обмотка в первый полупериод заряжает верхний конденсатор, во второй полупериод – нижний таким образом, что каждый из них заряжается до амплитудного значения напряжения. На выход подается сумма этих напряжений. Эта схема является двухполупериодным выпрямителем, так как она работает в каждом полупериоде входного сигнала – частота пульсаций в два раза превышает частоту колебаний питающей сети 50 Гц.

Разновидности этой схемы позволяют увеличивать напряжение в 3, 4 и более раз. В частности, аналогичные схемы используются в телевизионных умножителях напряжения, позволяющих получить анодное напряжение для кинескопов, величина которого превышает 20 кВ.

Если сигналы несинусоидальны, то для их выпрямления используются более сложные схемы. Например, если сигнал имеет прямоугольную форму, то говорить о его выпрямлении не принято, хотя процесс выпрямления применим и к нему. Например, требуется получить последовательность импульсов, совпадающих с моментами нарастания прямоугольного сигнала. Для этого сначала дифференцируют прямоугольный сигнал, а затем выпрямляют его с помощью диода (рис.4.11).

Следует иметь в виду, что прямое напряжение диода составляет приблизительно 0,6 В. На выходе этой схемы сигнал будет получен лишь с том случае, когда двойная амплитуда прямоугольного входного сигнала будет не меньше 0,6 В.

Еще одна область применения диодов основана на способности пропускать большее из двух напряжений, не оказывая влияния на меньшее. Схемы, в которых используется это свойство, объединены в семейство логических схем. Рассмотрим схему резервной батареи питания – она используется в устройствах, которые должны работать непрерывно даже при отключениях питания (например, электронные часы). Схема, показанная на рис.4.12, включает как раз такую батарею.

Рис.4.11. Выпрямление прямоугольных сигналов

В отсутствие сбоев питания батарея не работает, при возникновении сбоя питания на схему начинает поступать от батареи, при этом перерыва в подаче питания не происходит.

 

Рис.4.12. Схема резервного питания.

 

Правильный выпрямитель — AudioKiller’s site

Блок питания – важнейшая часть усилителя. Усилитель работает так: он передает энергию из источника питания в нагрузку. Если источник питания работает плохо, то никакой усилитель не поможет получить в нагрузке то, что нужно. Для питания усилителей широко используется двуполярный источник, выдающий относительно «земли» два одинаковых напряжения разной полярности. Чтобы получить такой источник питания, нужен трансформатор с двумя вторичными обмотками (или с одной, имеющей вывод от середины), соответствующий выпрямитель и фильтр из двух конденсаторов.

Можно конденсаторов и больше, но два – это минимум. Но вот как быть с выпрямителем? На самом деле возможны две схемы выпрямителей. Одна содержит два диодных моста, вторая – только один (рис. 1).

Рис.1. Два варианта схем двуполярных выпрямителей.

Существует мнение, активно поддерживаемое на аудиофильских интернет-форумах, что левая схема, которая содержит два моста, гораздо лучше схемы с одним мостом. Но вот почему? Те объяснения, которые приводятся, весьма скудны, невнятны и противоречивы. После длительных расспросов мне все же удалось выяснить причину. Она такова (в моем пересказе): в каждом усилителе живет Дух Аудио, и диодный мост – своего рода жертва, дань этому духу. Если моста два, то дань Духу Аудио в два раза больше. За это Дух отблагодарит вас, улучшив звучание. Если вам показалось, что я издеваюсь – таки да, но совсем немного. Просто все объяснения почему-то именно к этому и сводились. Попытки же научного объяснения были настолько жалкими, что я их так и не смог понять. Если кто-то может объяснить с точки зрения науки и техники, почему два моста лучше одного – я с удовольствием послушаю. И подискутирую. А пока я представлю вам свое вИдение этой проблемы. Научное и техническое.

Звучание устройства определяется тем, как работает это устройство и все его составляющие компоненты. Причем не только в общем и целом, но и в деталях. Поэтому если мы добъемся от источника питания наилучшей работы и в целом, и в мелочах, то значит сделаем все для обеспечения хорошего звука усилителя. И все улучшения звука (конечно, если это вам не показалось, что стало звучать лучше, самовнушение – очень коварная штука) происходят от улучшения технических характеристик (то есть работы) узлов аппаратуры, а не по непонятному правилу типа “так надо для хорошего звука”.

Итак, в чем разница между схемами.

1. Два моста больше по габаритам, имеют двойной нагрев (это я докажу ниже), и вдвое дороже. То есть, по этому признаку два моста хуже одного.

2. Для одного моста можно использовать любой трансформатор – как с раздельными обмотками, так и с выводом от средней точки. А для двух мостов только трансформатор с двумя отдельными обмотками. То есть, для выпрямителя с двумя мостами подойдет не всякий трансформатор. Схема менее универсальна, запишем ей минус.

3. В схеме с двумя мостами каждая обмотка трансформатора работает на свой выпрямитель, который в свою очередь работает на свое плечо питания усилителя. Т.е. одно плечо усилителя питается от одной вторичной обмотки трансформатора, другое – от другой. В схеме с одним мостом каждое плечо усилителя питается от каждой из вторичных обмоток трансформатора по очереди. Это мы увидим наглядно. Тогда и решим, что лучше. А пока пусть это побудет загадкой.

4. Рассмотрим, как протекают токи через выпрямители. На рис. 2 показано протекание тока через выпрямитель с двумя мостами. На рис. 3 – протекание тока через выпрямитель с одним мостом.

Рис. 2 Протекание тока через выпрямитель с двумя мостами. Рис. 3. Протекание тока через выпрямитель с одним мостом.

Обратите внимание, что в выпрямителе с двумя мостами, ток каждого плеча всегда протекает последовательно через два диода. А в выпрямителе с одним мостом – только через один диод. Следовательно, падение напряжения на диодах выпрямителя в схеме с двумя мостами в два раза выше. И до усилителя доходит напряжения немного меньше. Вы можете сказать: «Подумаешь, какая мелочь!» Не так, чтобы и мелочь – именно из этого напряжения получается напряжение на выходе усилителя. Раз напряжение питания уменьшилось, то и на нагрузке максимально возможное напряжение тоже уменьшится. Значит, уменьшится и максимальная выходная мощность. Насколько? А давайте рассмотрим насколько.

Для большей наглядности рассмотрим пример. Допустим, трансформатор выдает в каждой из обмоток под нагрузкой 30 вольт. Прямое падение напряжения на диоде 1,2 вольта. Почему такое большое? Потому, что падение напряжения на np-переходе при большом токе складывается с падением напряжения на внутреннем сопротивлении диода. Такое прямое напряжение падает практически на любом кремниевом диоде при прямом токе 3 ампера и больше. Это соответствует току усилителя, равному 1 ампер – ведь ток через усилитель непрерывен, а ток через диод протекает короткими импульсами большой амплитуды. Допустим, минимальное остаточное напряжение на выходных транзисторах составляет 4 вольта. Сопротивление нагрузки 4 ома.

Считаем для амплитудных значений напряжения.

Два моста.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Множитель 2 в знаменателе последней формулы учитывает, что мы пользуемся амплитудными значениями напряжения, а не действующими.

Один мост.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Разница в целых 7 Вт, или в 10%. И как раз этих семи ватт максимальной выходной мощности вам может не хватить, и начнется клиппинг!

Покупая и ставя в схему два моста, вы должны будете заплатить дороже за то, чтобы получить выходную мощность на 7 Вт ниже!

5. Говорят, что схема с двумя мостами менее подвержена подмагничиванию трансформатора постоянным током при воспроизведении усилителем сигнала частотой 25 Гц. Это не так. Подмагничивание происходит при потреблении от вторичной обмотки вообще тока с частотой 25 Гц. Т.е. две вторичные обмотки в этом случае работают как одна, независимо от схемы выпрямителя. Главное, что они транслируют свой ток в первичную обмотку, в которй все и происходит.

Так что у нас целых четыре причины, почему выпрямитель с одним мостом лучше, чем с двумя. И ни одной, показывающей преимущества выпрямителя с двумя мостами.

Ах да! Я же не доказал, что два моста греются вдвое больше, чем один. Посмотрите на рисунки 2 и 3. Ток усилителя проходит через два диода в каждом из мостов. А токи обоих плеч усилителя в среднем одинаковы (за довольно длительное время, определяющее нагрев – секунды и десятки секунд). В одном случае ток проходит через один мост, а в другом точно такой же ток проходит через два моста. Нагрев вызывается током. Два моста – в два раза больший нагрев, каждый мост греется одинаково, что в схеме с одним мостом, что в схеме с двумя. Поэтому два моста дают вдвое больше тепла, чем один.

Теперь вернемся к загадке в пункте 3. Есть ли разница в том, если каждое плечо усилителя от своей собственной обмотки трансформатора, или если каждая из вторичных обмоток работает на оба плеча усилителя поочередно. Тут такое дело… Вторичные обмотки трансформатора не всегда одинаковы. Даже если их числа витков равны. У броневого и тороидального трансформатора обмотки наматываются одна поверх другой. У той, что сверху средний диаметр витка больше, чем у той, что снизу. Отсюда разные сопротивления и разные потери напряжения при протекании тока. И разные поля рассеяния (значит, их напряжения на холостом ходу могут отличаться). Вот у меня на столе лежит высококачественный тороидальный трансформатор 2х28 вольт 75 ВА. Сопротивления его вторичных обмоток 0,7 Ом и 0,75 Ом. На самом деле это мелочи, и реальная разность напряжений на обмотках очень небольшая. Но она бывает. В этом моем трансформаторе 28,6 вольт и 28,65 вольт под нагрузкой. Если напряжения вторичных обмоток не различаются – то все отлично. А если различие все же есть? А оно вполне возможно. Тогда напряжения питания, поступающие на каждое из плеч усилителя, будут выглядеть так, как на рисунке 4.

Рис. 4. Напряжения на выходе выпрямителя при разных значениях напряжений вторичных обмоток трансформатора.

Если выпрямительных моста два, то каждое плечо выпрямителя (и усилителя) питается от своей обмотки. Своим напряжением. И в одном плече напряжение получается больше, в другом меньше. Максимальная выходная мощность будет определяться наименьшим напряжением! Допустим, напряжение положительного плеча в нашем примере меньше, чем отрицательного на 0,2 вольт. Итак, напряжение, создаваемое одной из обмоток не 30 вольт, а 29,8 вольт. Считаем.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Потеряли целый ватт. Мелочь, конечно. Но ведь жалко! А если разница напряжений будет больше? Мало ли какой трансформатор вам удалось приобрести! А в самодельном трансформаторе все может быть еще хуже.

Для одного моста картина совершенно другая. Там на каждое плечо нагрузки работает каждая из обмоток поочередно. Максимальное напряжение в каждом плече получается равно наибольшему из напряжений обмоток. Это же здорово – получить все по максимуму! Явное преимущество перед схемой с двумя мостами. Расплатой за это будет наличие в выпрямленном напряжении пульсаций с частотой 50 Гц, тогда как двухмостовой выпрямитель дает пульсации только с частотой 100 Гц. Пульсации с частотой 50 Гц фильтруются хуже. Есть ли в этом недостаток? Нет! У нас целых две причины не бояться этих более низкочастотных пульсаций:

1. Амплитуда этих пульсаций очень мала и равна разности напряжений вторичных обмоток. В нашем примере это 0,2 вольта.

2. В фильтрах современных усилителей используются конденсаторы большой емкости, которые эффективно все сглаживают. 50-ти герцовые пульсации сглаживаются в 2 раза хуже, чем «стандартные» частотой 100 Гц. Но амплитуда стогерцовых пульсаций составляет десятки вольт (она равна напряжению питания). И все равно эффективно подавляется. А тут доли вольта.

Итак, по всем параметрам выпрямитель с одним мостом превосходит двухмостовую схему. И если не верить в Духа Аудио, то использовать надо именно его. Давайте я для большей наглядности сведу в таблицу результаты нашего примера.

Схема С одним мостом С двумя мостами С двумя мостами
Вариант: для всех случаев одинаковые напряжения вторичных обмоток разные напряжения вторичных обмоток
Максимальная выходная мощность, Вт 76,8 69,6 68,4

И сколько надо дополнительно потратить денег и места, чтобы вместо выходной мощности 76 Вт получить мощность 68 Вт?

Но это еще не все. Вот теперь давайте вспомним, что на свете существуют диоды Шоттки. О том, что их повышенное быстродействие при выпрямлении синусоиды частотой 50 Гц никак не проявляется, я уже писал. Но у них есть другое очень замечательное свойство: гораздо меньшее прямое падение напряжения. Я замерил его для диодов нескольких типов, оно оказалось практически одинаковым и равным 0,7 вольт. То есть по сравнению с диодами с np-переходом мы выигрываем целых полвольта. Много ли это? Я повторю все расчеты для нашего примера, используя в качестве диодов диоды Шоттки, и снова сведу все в таблицу.

Тип выпрямительных диодов «Обычные» диоды «Обычные» диоды «Обычные» диоды Диоды Шоттки Диоды Шоттки Диоды Шоттки
Схема С одним мостом С двумя мостами С двумя мостами С одним мостом С двумя мостами С двумя мостами
Вариант: для всех случаев одинаковые напряжения вторичных обмоток разные напряжения вторичных обмоток для всех случаев одинаковые напряжения вторичных обмоток разные напряжения вторичных обмоток
Максимальная выходная мощность, Вт76,869,668,48075,674,4

Итак, при замене «обычных» диодов диодами Шоттки мы получили несколько дополнительных ватт к максимальной выходной мощности. Кто знает, может как раз этих ватт нам и не хватало для полного счастья? И нужно ли это счастье убивать собственными руками, ставя два моста туда, где отлично хватает и одного? Два моста даже с диодами Шоттки уступают одному мосту с “обычными” диодами.

И обратите внимание, что разница между самой большой максимальной выходной мощностью и самой маленькой, составляет 11,6 Вт. Представляете! Мы можем потерять целых 11 ватт, просто сделав выпрямитель по другой схеме. Вот вам и разница в схемах и в выпрямителях.

На самом деле, если быть честным, у двухмостовой схемы все же есть преимущество перед одномостовой. У двухмостовой схемы максимальное обратное напряжение на диоде в два раза меньше. Максимальное обратное напряжение на диоде для двухмостовой схемы должно превышать напряжение (действующее значение) на одной вторичной обмотке не менее чем в 1,5 раза. Гораздо лучше, если в 2 раза и более. А для одномостовой схемы максимальное обратное напряжение на диоде должно превышать напряжение на одной вторичной обмотке (если их две раздельные, или на половине, если это одна обмотка с отводом от середины) как минимум в 3 раза, а лучше в 4 и более раза. Поэтому если использовать диодный мост с максимальным обратным напряжением 200 вольт, то одномостовая схема даст максимум ± 60 вольт, а двухмостовая ± 120 вольт питания. Если мост выдерживает 1000 вольт обратного напряжения (а такие мосты легкодоступны и дешевы), то двухмостовая схема выдаст максимальное напряжения питания ± 600 вольт, а одномостовая всего лишь ± 300 вольт.  Вам достаточно? Поэтому я это свойство за достоинство и не считаю: ставьте мосты, рассчитанные на напряжение 1000 вольт и ни о чем не беспокойтесь. Хуже ситуация с диодами Шоттки – они гораздо более низковольтные. Я не встречал диодов Шоттки с максимальным обратным напряжением превышающим 150 вольт. Тогда в двухмостовой схеме мы получим напряжение питания максимум ±100 вольт, а в одномостовой – ±50 вольт. Обычно напряжения питания ±50 вольт хватает для большинства усилителей. Но вот если вам действительно нужно больше, то тут надо выбирать, чем пожертвовать. И опять же, смотрим в таблицу: один мост на обычных диодах немного эффективнее двух мостов на диодах Шоттки. Так что выбор за вами.

11.09.2016

Total Page Visits: 2447 — Today Page Visits: 7

Выпрямитель

— Что такое выпрямитель

В а большое количество электронных схем, нам требуется постоянное напряжение для операция. Мы можем легко преобразовать переменное напряжение или переменный ток в постоянное напряжение или постоянный ток с помощью устройства под названием P-N переходной диод.

Один из наиболее важных применений диода с P-N переходом является исправление переменного Ток (AC) в прямой Ток (постоянный ток).P-N-переходный диод позволяет электрическому ток только в состоянии прямого смещения и блокирует электрические ток в условиях обратного смещения. Проще говоря, диод пропускает электрический ток в одном направлении. Это уникальное свойство диода позволяет ему действовать как выпрямитель.

Выпрямитель определение

А выпрямитель — это электрическое устройство, которое преобразует переменный Ток (AC) в постоянный ток (DC) с помощью одного или нескольких P-N переходные диоды.

Что такое выпрямитель?

Когда напряжение подается на диод P-N перехода таким образом что положительный полюс батареи подключен к Полупроводник p-типа и отрицательная клемма аккумулятора подключен к полупроводнику n-типа, диод называется быть вперед пристрастный.

Когда это прямое напряжение смещения прикладывается к переходу P-N диод, большое количество свободных электроны (основные носители) в n-типе полупроводник испытывает силу отталкивания от отрицательная клемма аккумулятора аналогично большое количество отверстий (большинство носители) в р-типе полупроводник испытывает силу отталкивания от положительный полюс аккумуляторной батареи.

Как в результате свободные электроны в полупроводнике n-типа начинают переходя от n-стороны к p-стороне аналогично отверстия в p-образной полупроводник начинает двигаться со стороны p на сторону n.

ср Знайте, что электрический ток означает поток носителей заряда (свободные электроны и дырки). Следовательно, поток электронов от стороны n к стороне p и поток отверстий от стороны p к стороне n-сторона проводит электрический ток.Большинство перевозчиков производят электрический ток в состоянии прямого смещения. Итак электрический ток, производимый в состоянии прямого смещения, также известный как большинство текущих.

Когда напряжение подается на диод P-N перехода таким образом что положительный полюс батареи подключен к Полупроводник n-типа и отрицательная клемма аккумулятора подключен к полупроводнику p-типа, диод называется быть обратным пристрастный.

Когда это обратное напряжение смещения прикладывается к переходу P-N диод, большое количество свободных электронов (основных носителей заряда) в опыт работы с полупроводниками n-типа сила притяжения от положительной клеммы аккумулятора аналогично большое количество дырок (основных носителей) в Полупроводник p-типа испытывает притяжение со стороны отрицательная клемма аккумуляторной батареи.

Как в результате свободные электроны (основные носители) в n-типе полупроводник удаляется от P-N перехода и притягивается к положительной клемме аккумулятора аналогично отверстиям (основные носители) в полупроводнике p-типа удаляется от соединения P-N и притягивается к отрицательной клемме батареи.

Следовательно, электрический ток не проходит через P-N соединение.Однако миноритарные перевозчики (бесплатно электронов) в полупроводнике p-типа испытывают отталкивающее усилие с отрицательной клеммы аккумулятора аналогично неосновные носители (дырки) в полупроводнике n-типа испытать отталкивающую силу от положительного вывода аккумулятор.

Как В результате неосновные носители свободных электронов в p-типе полупроводник и дырки неосновных носителей в n-типе полупроводник начинает течь через переход.Таким образом, электрический ток создается в диоде обратного смещения из-за миноритарные перевозчики. Однако электрический ток производил по неосновным перевозчикам очень мало. Так что меньшинство ток несущей в состоянии обратного смещения не учитывается.

Таким образом, диод P-N перехода пропускает электрический ток в прямом смещении состояние и блокирует электрический ток в обратном смещении условие.Проще говоря, диод с P-N переходом позволяет электрический ток только в одном направлении. Это уникальное свойство диода позволяет ему действовать как выпрямитель.

Напряжение прямого и обратного смещения, приложенное к диоду, составляет ничего, кроме постоянного напряжения. Напряжение постоянного тока производит ток который всегда течет в одном направлении (либо вперед или в обратном направлении).

Но напряжение переменного тока производит ток, который всегда меняет свое направление много раз в секунду (вперед-назад и назад вперед).

ср наблюдали, как диод ведет себя при постоянном напряжении (вперед напряжение смещения и обратное напряжение смещения). Сейчас же давайте посмотрим на диод P-N перехода, когда напряжение переменного тока применяется к нему.

Переменное напряжение или переменный ток часто представляется синусоидальной форма волны, тогда как постоянный ток представлен прямой горизонтальная линия.

В синусоидальной формы волны, верхний полупериод представляет положительный полупериод, а нижний полупериод представляет собой отрицательный полупериод.

положительный полупериод переменного напряжения аналогичен прямое смещение постоянного напряжения и отрицательный полупериод переменного тока напряжение аналогично обратному напряжению смещения постоянного тока.

чередование ток начинается с нуля и увеличивается до максимального прямого тока или пиковый положительный ток. Положительный пик синусоидальной Форма волны представляет собой максимальный или пиковый прямой ток. После достигнув пикового прямого тока, он начинает уменьшаться и достигает нуля.

После короткий период, переменный ток начинает увеличиваться в в обратном или отрицательном направлении и увеличивается до пика в обратном направлении ток или пиковый отрицательный ток.Отрицательный пик синусоидальная форма волны представляет собой максимальное или пиковое обратное Текущий. После достижения пикового обратного тока запускается уменьшается и достигает нуля. Точно так же чередующиеся ток непрерывно меняет свое направление за короткий период.

Когда Переменное напряжение или переменный ток подается на переход P-N. диод, во время положительного полупериода диод направлен вперед смещен и пропускает через него электрический ток.Однако когда переменный ток меняет свое направление на отрицательный полупериод, диод имеет обратное смещение и не допускает электрического ток через него. В простыми словами, во время положительного полупериода диод позволяет тока и во время отрицательного полупериода диод блокируется Текущий. Таким образом, электрический ток протекает только через диод. в течение положительного полупериода переменного тока.

Это ток, протекающий через диод, есть не что иное, как постоянный ток Текущий. Таким образом, диод P-N-перехода действует как выпрямитель, преобразование переменного тока в постоянный.

Однако постоянный ток, производимый основным выпрямителем (полуволна выпрямитель) не является чистым постоянным током. Это пульсирующий постоянный ток Текущий.

пульсирующий постоянный ток — это тип постоянного тока, значение которого изменяется за короткий период.

пульсирующий Постоянный ток начинается с нуля и увеличивается до максимального вперед ток (пиковый уровень) и уменьшается до нуля. Тем не менее пульсирующий постоянный ток не меняет своего направления периодически нравится переменный ток.

пульсирующий Постоянный ток всегда течет в одном направлении, как чистый постоянный ток. Текущий. Однако значение пульсирующего постоянного тока или пульсирующее напряжение постоянного тока незначительно изменяется за определенный период.В электрический ток, производимый батареями, источниками питания и солнечные панели — это чистый постоянный ток.

Автор используя комбинацию компонентов, таких как конденсаторы, индукторы и резисторы в цепи, мы можем добиться сглаживание пульсирующего постоянного тока до чистого постоянного тока.

Типы выпрямителей


выпрямители в основном делятся на два типа:

  • Полуволна выпрямитель
  • Полная волна выпрямитель

Половина волновой выпрямитель

Как название предполагает, половина волновой выпрямитель — это тип выпрямителя, который преобразует половина входного сигнала переменного тока (положительный полупериод) в пульсирующий выходной сигнал постоянного тока и оставшаяся половина сигнала (отрицательный полупериод) заблокирован или утерян.В полуволне В схеме выпрямителя мы используем только один диод.

Полный волновой выпрямитель

полная волна выпрямитель — это тип выпрямителя, который полностью преобразует Входной сигнал переменного тока (положительный полупериод и отрицательный полупериод) на пульсирующий выходной сигнал постоянного тока. В отличие от полуволнового выпрямителя, входной сигнал не теряется в двухполупериодном выпрямителе.В КПД двухполупериодного выпрямителя высок по сравнению с однополупериодный выпрямитель.

Выпрямитель практичный пример

В в наших домах почти вся электроника работает от переменного тока Текущий. Однако некоторые электронные устройства, такие как ноутбуки или ноутбуки преобразуют этот переменный ток в постоянный прежде, чем они потребляют энергию.

Адаптер переменного тока ноутбука, подключенный к источнику переменного тока, преобразует высокое напряжение переменного тока или высокий ток переменного тока в низкое напряжение постоянного тока или низкий постоянный ток. Этот слабый постоянный ток подается на ноутбук. аккумулятор, и это то, что мы назвали зарядкой ноутбука. Тем не мение, ноутбук не включится, если вы не включите его вручную нажатием кнопки включения. При нажатии на ноутбук «power на кнопку «, аккумулятор ноутбука начинает подачу постоянного тока.

ср забыли важный шаг; как преобразуются адаптеры переменного тока высокое напряжение переменного тока или высокий ток переменного тока в низкое напряжение постоянного тока или низкое Постоянный ток.

Адаптеры переменного тока состоят из всех основных компонентов, необходимых для Преобразование переменного тока в постоянный.

Эти составные части представляют собой трансформатор, конденсатор и несколько диодов.Из этих компонентов, основным ключевым компонентом является диод, который преобразует переменный ток в постоянный ток.

трансформатор в адаптере переменного тока снижает высокое напряжение переменного тока до низкого Напряжение.

выпрямитель (состоящий из диодов) преобразует это низкое переменное напряжение или Переменный ток в низкое постоянное напряжение или постоянный ток.Тем не менее преобразованный ток не является чистым постоянным током. Это пульсирующий постоянный ток Текущий.

конденсатор фильтрует этот пульсирующий постоянный ток до чистого постоянного Текущий.

Как проверить диодный выпрямитель

Обновлено 26 ноября 2018 г.

Крис Дезиел

Диод — это полупроводниковое устройство, которое позволяет току проходить только в одном направлении.Его часто называют выпрямителем, потому что он «выпрямляет» переменный ток, изменяя его на пульсирующий постоянный ток. Диоды распространены в схемах бытовых приборов, таких как микроволновые печи. СВЧ-диод работает вместе с конденсатором, чтобы удвоить напряжение трансформатора, который подает питание на магнетрон, который является компонентом, генерирующим микроволновое излучение.

На принципиальных схемах символ диода представляет собой треугольник, наложенный на линию, а вершина треугольника указывает направление тока.Если диод исправен, то в обратном направлении течет очень небольшой ток — в идеале совсем его нет. Конец диода, на который указывает треугольник, является отрицательной клеммой или катодом, а противоположный конец — положительной клеммой или анодом. Важно обратить внимание на полярность диода, потому что он не будет работать, если установить его в цепи обратной стороной.

Когда ток, протекающий через диод, превышает номинал диода, он может замкнуться, и диод больше не будет блокировать ток, протекающий в обратном направлении.Цепь внутри диода также может разомкнуться из-за возраста или износа, и когда это произойдет, диод не будет пропускать ток ни в одном направлении. В обоих случаях диод неисправен и его необходимо заменить. Можно проверить мультиметром.

TL; DR (слишком долго; не читал)

Вы можете использовать один из двух методов для проверки диода. Если у вас есть измеритель с функцией проверки диодов, вы можете его использовать. В противном случае вы можете настроить измеритель на измерение сопротивления.

Тестирование выпрямителя с функцией диода

Если ваш мультиметр имеет функцию диода, одна из настроек шкалы будет иметь маркировку, похожую на символ диода.Когда вы выбираете эту настройку, между выводами измерителя существует напряжение, и когда вы касаетесь ими клемм диода, измеритель регистрирует падение напряжения. В прямом направлении падение напряжения обычно составляет от 0,5 до 0,8 вольт. В обратном направлении ток не течет, поэтому счетчик записывает либо 0, либо OL, что означает разомкнутый контур.

Для проведения теста вы должны сначала убедиться, что цепь отключена и все конденсаторы в цепи разряжены.Пока вы это делаете, вам не нужно вынимать диод из схемы. Начните с прикосновения отрицательного вывода измерителя, обычно черного, к катоду диода, а положительного вывода (красного) к аноду. Обратите внимание на показания измерителя, которые должны находиться в пределах от 0,5 до 0,8 вольт. Если он близок к 0, диод неисправен. Теперь поменяйте местами провода. Диод хорош, если вы получаете показание 0 или OL. Если вы получаете примерно такое же значение напряжения, диод закорочен и не работает.

Проведение теста диода с помощью омметра

При проведении теста сопротивления вы должны удалить диод из цепи.Прежде чем это сделать, отключите питание и разрядите все конденсаторы в цепи. Это особенно важно при тестировании микроволнового диода, потому что высоковольтный конденсатор в микроволновой печи может вызвать серьезное поражение.

Настройте мультиметр на измерение сопротивления (Ом) и прикоснитесь черным (отрицательным) проводом к катоду, а красным проводом (положительным) к аноду. В этой конфигурации диод смещен в прямом направлении, и вы должны получить показание сопротивления от 1 кОм до 10 МОм. Теперь подключите провода к противоположным клеммам.Диод теперь смещен в обратном направлении, и показание должно быть бесконечным или OL. Если показания одинаковы в обоих направлениях, диод неисправен.

Кремниевые выпрямительные диоды

  • Изучив этот раздел, вы должны уметь:
  • • Опишите типовые применения выпрямителя.
  • • Обратите внимание на маркировку полярности выпрямителя.
  • • Опишите типовые параметры выпрямителя.
  • • Примыкание п.д.
  • • Средний прямой ток.
  • • Повторяющийся пиковый прямой ток.
  • • Обратный ток утечки.
  • • Повторяющееся пиковое обратное напряжение.
  • • Время обратного восстановления.
  • • Опишите влияние температуры на выпрямители.
  • • Температурный разгон.

Рисунок 2.1.1. Кремниевые выпрямительные диоды

Кремниевые выпрямительные диоды

Выпрямительные диоды, подобные показанным на рис.2.1.1 обычно используются в таких приложениях, как источники питания, использующие как высокое напряжение, так и большой ток, где они выпрямляют входящее сетевое (линейное) напряжение и должны пропускать весь ток, необходимый для любой цепи, которую они питают, который может составлять несколько ампер. или десятки ампер.

Как показано на рис. 2.1.2, для прохождения таких токов требуется большая площадь перехода, чтобы прямое сопротивление диода оставалось как можно более низким. Даже в этом случае диод может сильно нагреться.Черный полимерный корпус или даже болт на радиаторе помогают рассеивать тепло.

Сопротивление диода в обратном направлении (когда диод выключен) должно быть высоким, а изоляция, обеспечиваемая обедняющим слоем между слоями P и N, чрезвычайно хороша, чтобы избежать возможности обратного пробоя, когда изоляция обедненного слоя выходит из строя, и диод необратимо выходит из строя из-за высокого обратного напряжения на переходе.

Рисунок 2.1.2. Кремниевый выпрямитель


Конструкция

Маркировка полярности диодов

На полимерном кожухе диодов катод обычно обозначается линией вокруг одного конца кожуха диода.Однако существуют альтернативные указания: на некоторых выпрямительных диодах, залитых смолой, закругленный конец на корпусе указывает катод, как показано на рис. 2.1.2. На выпрямительных диодах с металлическими стержнями полярность диода может быть обозначена символом диода, напечатанным на корпусе. Конец шпильки диода часто является катодом, но на него нельзя полагаться, как показано на рис. 2.1.1, это может быть анод! На диодах мостового выпрямителя символы + и — (плюс и минус) на корпусе выпрямителя указывают полярность выхода постоянного тока, а не анода или катода устройства, входные клеммы переменного тока обозначены маленькими синусоидальными символами.Один угол корпуса на некоторых линейных мостовых выпрямителях также часто скошен, но это не следует воспринимать как надежный указатель полярности, поскольку доступны выпрямители, которые используют эту индикацию как выходную клемму + или -.

Кремниевые выпрямительные диоды бывают самых разных форм с сильно различающимися параметрами. Они различаются по токонесущей способности от миллиампер до десятков ампер, некоторые из них имеют обратное напряжение пробоя в тысячи вольт.

Параметры выпрямителя

Что означают параметры.

Слой истощения (стык) р.д.

Слой истощения или стык p.d. представляет собой разность потенциалов (напряжение), которая естественным образом создается на обедненном слое за счет комбинации дырок и электронов во время изготовления диода. Этот п.д. необходимо преодолеть, прежде чем диод с прямым смещением станет проводящим. Для кремниевого перехода p.d составляет около 0,6 В.

Обратный ток утечки (I

R ).

Когда PN-переход смещен в обратном направлении, будет течь очень небольшой ток утечки (I R ), в основном из-за тепловой активности в полупроводниковом материале, встряхивая свободные свободные электроны.Именно эти свободные электроны образуют небольшой ток утечки. В кремниевых устройствах это всего несколько наноампер (нА).

Максимальный повторяющийся прямой ток (I

FRM ).

Это максимальный ток, который может пропустить диод с прямым смещением без повреждения устройства при выпрямлении повторяющейся синусоидальной волны. I FRM обычно указывается с диодом, выпрямляющим синусоидальную волну, имеющую максимальный рабочий цикл 0,5 на низкой частоте (например, от 25 до 60 Гц), чтобы представить условия, возникающие, когда диод выпрямляет сетевое (линейное) напряжение.

Средний прямой ток (I

FAV ).

Это средний выпрямленный прямой ток или выходной ток (I FAV ) диода, обычно это прямой ток при выпрямлении синусоидальной волны 50 Гц или 60 Гц, усредненный между периодами, когда (полуволновой) выпрямительный диод проводимость, и период волны при обратном смещении диода. Обратите внимание, что это среднее значение будет значительно меньше повторяющегося значения, указанного для I FRM .Этот (и другие параметры) также во многом зависят от температуры перехода диода. Взаимосвязь между различными параметрами и температурой перехода обычно указывается в виде сносок в технических паспортах производителей.

Повторяющееся пиковое обратное напряжение (В

RRM )

Максимальное пиковое напряжение, которое может повторно подаваться на диод при обратном смещении (анод — катод +) без повреждения устройства. Это важный параметр, обычно относящийся к работе от сети (линии).Например. диод, используемый в качестве однополупериодного выпрямителя для выпрямления сетевого напряжения 230 В переменного тока, будет проводить в течение положительного полупериода сигнала сети и отключаться во время отрицательного полупериода. В схеме источника питания катод выпрямительного диода обычно подключается к большому электролитическому накопительному конденсатору, который будет поддерживать катодное напряжение выпрямителя на уровне, близком к пиковым напряжениям формы волны сети. Помните, что волна 230 В переменного тока относится к среднеквадратичному значению волны, поэтому пиковое значение будет примерно 230 В x 1.414 = примерно + 325В. Во время отрицательного полупериода сигнала сети анод диода упадет до максимального отрицательного значения около -325 В. Следовательно, будут повторяющиеся периоды (50 или 60 раз в секунду, когда обратное напряжение на диоде будет 325 В x 2 = 650 В. Следовательно, для этой задачи необходимо использовать выпрямительный диод с параметром V RRM на минимум 650 В, и для обеспечения надежности должен быть запас прочности для такого важного компонента, поэтому было бы разумнее выбрать диод с V RRM 800 или 1000 В.

Максимальное рабочее пиковое обратное напряжение (В

RWM )

Это максимально допустимое обратное напряжение. Обратное напряжение на диоде в любое время, независимо от того, является ли обратное напряжение изолированным переходным всплеском или повторяющимся обратным напряжением.

Рис. 2.1.3 Подавление выбросов

Максимальное обратное напряжение постоянного тока (В

R )

Этот параметр устанавливает допустимый предел для обратного напряжения и обычно имеет то же значение, что и V RRM и V RWM .Теоретически эти максимальные параметры могут быть разными, но поскольку любое напряжение (мгновенное, повторяющееся или постоянное), которое не более чем примерно на 5% превышает любой из этих параметров, может потенциально разрушить диод, всегда рекомендуется соблюдать осторожность при установке. диоды и предусмотреть разумный запас на случай неожиданных скачков напряжения. Одной из распространенных мер безопасности для защиты выпрямителей источника питания от внешних всплесков является подключение небольшого емкостного конденсатора высокого напряжения, обычно дискового керамического типа, к каждому из четырех диодов в мостовом выпрямителе, как показано на рис.2.1.3.

Время обратного восстановления (t

rr )

Рис. 2.1.4 Обратный ход


Время восстановления (t rr )

Время, необходимое для того, чтобы ток упал до заданного низкого уровня обратного тока при переключении с заданного прямого тока (диод включен) на заданный обратный ток (диод выключен, обычно <10% от значения 'on ' Текущий). Типичное значение t rr раз для выпрямительных диодов, хотя и не такое быстрое, как у малосигнальных диодов, и в некоторой степени зависит от задействованных напряжений и токов, можно найти в десятках наносекунд (нс) e.грамм. 30 нс для выпрямителя BYV28 3.5A I AF 50 В и <60 нс для двойного выпрямителя BYV44 30A I AF 500 В.

Когда выпрямительный диод используется в высокоскоростной операции переключения, например в импульсном источнике питания, в идеале обратный ток должен мгновенно упасть до нуля. Однако, когда диод является проводящим (до выключения), по обе стороны от перехода будет большая концентрация неосновных носителей; это будут дырки, которые только что перешли на слой N-типа, и электроны, которые только что перешли на слой P-типа, и до того, как они были нейтрализованы путем присоединения к основным носителям.Если теперь внезапно подается обратное напряжение (V R ), как показано на рис. 2.1.4, диод должен быть выключен, но вместо того, чтобы ток через диод мгновенно падал до нуля, обратный ток (I R ) создается, поскольку эти неосновные носители притягиваются обратно через переход (дырки обратно в слой P, а электроны обратно в слой N). Этот обратный ток будет продолжать течь до тех пор, пока все эти носители заряда не вернутся на свою естественную сторону перехода.

Максимальная температура

На каждый из этих параметров могут влиять другие факторы, такие как температура окружающей среды, в которой работает диод, или температура перехода самого устройства.Любой полупроводник выделяет тепло, особенно те, которые используются в источниках питания. Поэтому важно, чтобы при проектировании таких цепей учитывались температурные эффекты. Одной из самых серьезных проблем является предотвращение теплового разгона, когда диод (или любой другой полупроводник) увеличивает свою температуру, что приводит к увеличению тока через устройство, что приводит к дальнейшему повышению температуры и так далее, пока устройство не будет разрушено. . Чтобы предотвратить эту проблему, каждый из параметров диода ссылается на температуру, например, обратный ток утечки кремниевого PN-диода обычно указывается при температуре окружающей среды 25 ° C, но, вероятно, примерно удвоится на каждые 10 ° C выше этого значения.Также повышение температуры вызовет уменьшение потенциала прямого перехода примерно на 2–3 мВ на каждый 1 ° C повышения температуры. Еще большее влияние температура оказывает на выпрямители Шоттки.

Начало страницы

Shahram Marivani — ПОЛНОВолновые выпрямители и ИСТОЧНИКИ ПИТАНИЯ

ПОЛНОВОЛНОВЫЕ ВЫПРЯМИТЕЛИ И БЛОКИ ПИТАНИЯ

Цель:

Целью этого эксперимента является изучение рабочих характеристик и характеристик двухполупериодных выпрямителей и источников питания постоянного тока, использующих стабилитрон в качестве устройства стабилизации напряжения.Будут изучены и измерены характеристики двухполупериодного выпрямителя, а также стабилитрона.

Введение:

Одно из важных применений диодов с P-N переходом — преобразование переменного тока (AC) в постоянный (DC). Можно использовать полуволновые выпрямители, но они очень неэффективны при преобразовании мощности переменного тока в мощность постоянного тока. Кроме того, они имеют высокое содержание гармоник, которые трудно отфильтровать и сгладить пульсации выпрямленного переменного тока.С другой стороны, двухполупериодный выпрямитель повышает эффективность преобразования мощности переменного тока в мощность постоянного тока. Это также уменьшит содержание гармоник в выпрямленном сигнале и снизит требования к сглаживающему фильтру, необходимому для уменьшения пульсаций выпрямленного сигнала. Типичная форма сигнала двухполупериодного выпрямителя показана на рисунке 1.


Рисунок 1 — Формы выходных сигналов двухполупериодного выпрямителя; темная линия — это фильтрованный вывод, а более тонкая линия — нефильтрованный вывод.Стабилитрон

— это специальные диоды, предназначенные для поддержания фиксированного напряжения на нагрузке. Они предназначены для «пробоя» надежным и неразрушающим способом, когда они смещены в обратном направлении напряжением, превышающим напряжение пробоя. Типичная характеристика постоянного тока стабилитрона показана на рисунке 2. Перегиб в области обратного смещения на рисунке 2 — это «напряжение пробоя» стабилитрона. Однако это напряжение также известно как напряжение Зенера.


Рисунок 2 — Вольт-амперная характеристика кремниевого стабилитрона. Стабилитроны

имеют номинальное напряжение пробоя и максимальную мощность.Минимальное доступное напряжение стабилитрона составляет 2,7 В, тогда как номинальная мощность составляет 400 мВт и 1,3 Вт. Схема подключения стабилитрона в качестве базовой цепи стабилизации напряжения показана на рисунке 3.


Рисунок 3 — Подключение стабилитрона в качестве регулятора напряжения

Полный и стабилизированный источник питания может быть получен путем использования выпрямительных диодов для изменения мощности переменного тока на мощность постоянного тока. Выпрямленное напряжение фильтруется, чтобы уменьшить пульсации выпрямленного сигнала. Затем используется стабилитрон для регулировки напряжения до желаемого конечного значения.Простая блок-схема источника питания показана на рисунке 4.

На блок-схеме Рисунка 4 каждый отдельный блок описан более подробно ниже:

  • Трансформатор: понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
  • Диодный выпрямитель: преобразует переменный ток в постоянный, но на выходе постоянного тока присутствует большая составляющая пульсаций.
  • Фильтр: сглаживает постоянный ток от сильных колебаний и уменьшает составляющую пульсации.
  • Регулятор напряжения: устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.
  • Нагрузка: это часть цепи, в которую подается питание постоянного тока для выполнения полезной работы.

Рисунок 4 — Простая блок-схема стабилизированного источника постоянного тока

Лабораторные работы:

  1. Измерение постоянной характеристики стабилитрона:
    1. Установите напряжение постоянного тока источника питания на 0 В.
    2. Подключите схему стабилитрона, как показано на рисунке 5.
    3. Изменяйте напряжение питания постоянного тока небольшими шагами.С помощью цифрового вольтметра измерьте V в , V R и V D , как показано на рисунке 5. Сведите данные измерений в таблицу.
    4. Для каждого шага рассчитайте постоянный ток через диод, который равен (V R /2000).
    5. Поменяйте полярность источника питания постоянного тока на рис. 5. Повторите шаги измерения с 1.a до 1.d.

    Рисунок 5 — Схема подключения для измерения характеристики постоянного тока стабилитрона
  2. Характеристика мостового выпрямителя:
    1. Подключите двухполупериодную схему выпрямителя, как показано на рисунке 6, где R L = 1 кОм.Не подключайте конденсатор к нагрузке.
    2. Monitor V o (см. Рисунок 6) на осциллографе. ЗАПРЕЩАЕТСЯ контролировать V s и V o на осциллографе одновременно. Измерьте пиковое входное и пиковое выходное напряжения. Захватите отображаемую форму волны. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
    3. Подключите 47 мкФ к R L . Наблюдайте за V или на осциллографе и фиксируйте форму сигнала. Повторите измерение с конденсатором 10 мкФ.Сравните две формы выпрямленного сигнала, полученные с разными конденсаторами.
    4. Измените нагрузочный резистор на 10 кОм и 100 кОм и контролируйте выпрямленное напряжение на выходе. Прокомментируйте влияние сопротивления нагрузки на пульсации на выходе.

  3. Рисунок 6 — Нефильтрованный двухполупериодный выпрямитель с мостовым соединением диодов
  4. Характеристика двухполупериодного выпрямителя с центральным отводом:
    1. Выполните необходимые измерения на трансформаторе с центральным ответвлением, чтобы определить, какой вывод является центральным ответвлением.
    2. Подключите двухполупериодную схему выпрямителя, как показано на рисунке 7, где R L = 1 кОм. Не подключайте конденсатор к нагрузке.
    3. Контролируйте на осциллографе одновременно V s и V o (см. Рисунок 7). Измерьте пиковое входное и пиковое выходное напряжения. Захватите отображаемые формы сигналов. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
    4. Подключите 47 мкФ к R L . Наблюдайте за V s и V o на осциллографе и фиксируйте обе формы сигнала.

  5. Рисунок 7 — Схема нефильтрованного двухполупериодного выпрямителя, использованная в эксперименте
  6. Регулируемый источник питания постоянного тока:
    1. Рассмотрим схему источника питания постоянного тока, показанную на рисунке 8. Используя ранее измеренные выпрямленные напряжения постоянного тока и стабилитрон, вычислите минимальное значение R s , необходимое для защиты стабилитрона в условиях, когда нагрузка представляет собой разомкнутую цепь (это это наихудшее состояние). Стабилитрон рассчитан на 400 мВт, а минимальный ток Зенера составляет 5 мА.Обсудите результат с инструктором лаборатории, прежде чем использовать его в эксперименте.

    2. Рисунок 8 — Регулируемый источник питания постоянного тока
    3. Подключите схему, показанную на рисунке 8, и используйте значение R s , вычисленное в 4.a. Наблюдайте за напряжением на нагрузке с помощью осциллографа. Измерьте напряжение на R L и напряжение на R s . Рассчитайте ток, проходящий через стабилитрон.
    4. Отсоедините R от L и измерьте напряжение и ток на стабилитроне.

Результаты и обсуждения:

В дополнение к вопросам, указанным в лабораторной процедуре, выполните следующие действия и ответьте на них:

  • Постройте график ВАХ стабилитрона.
  • Какое значение прямого сопротивления стабилитрона?
  • Что такое напряжение стабилитрона?

Трехфазный диодный выпрямитель | Plexim

Принцип работы

Трехфазный диодный выпрямитель преобразует трехфазное переменное напряжение на входе в постоянное напряжение на выходе.Чтобы показать принцип работы схемы, индуктивности источника и нагрузки (L s и L d ) не учитываются для простоты. Напряжение постоянного тока делится на шесть сегментов в пределах одного периода основного источника, который соответствует различным комбинациям линейного напряжения источника (V LL ). В каждом сегменте есть минимальное и максимальное напряжение постоянного тока:

  • Минимальное напряжение постоянного тока: Если одно линейное напряжение равно нулю, то напряжение постоянного тока составляет минимум V DC = V LL · sin (60 °).
  • Максимальное напряжение постоянного тока: напряжение постоянного тока увеличивается до максимального значения V DC = V LL , где два линейных напряжения равны.

Между минимальным и максимальным напряжениями постоянного тока находится среднее напряжение постоянного тока, которое определяется по формуле: V DC, av = V LL · 3 / pi. Пульсации постоянного напряжения возникают в 6 раз выше частоты сети. Для шести интервалов знаки фазных токов (I a , I b , I c ) даются по формуле:

Фазовый интервал Знак фазных токов
0 ° <φ <60 ° (0, -1, 1)
60 ° <φ <120 ° (1, -1, 0)
120 ° <φ <180 ° (1, 0, -1)
180 ° <φ <240 ° (0, 1, -1)
240 ° <φ <300 ° (-0, 1, 0)
300 ° <φ <360 ° (-1, 0, 1)

Влияние индукторов

Как и в случае однофазного диодного выпрямителя, включение нагрузки (L d ) и индуктивности источника (L s ) приводит к интервалу коммутации тока между двумя парами диодов.Чем больше индуктивность источника, тем больше времени требуется для коммутации тока. Например, после фазового интервала 1 (0 ° <φ <60 °) ток коммутируется с пары диодов D 5 / D 6 на D 1 / D 6 . В течение этого интервала V ca остается равным нулю, поскольку D 1 и D 5 оба являются проводящими, что приводит к уменьшению постоянного напряжения. Падение постоянного напряжения пропорционально индуктивности источника, то есть ΔV out ~ L с.

Эксперименты

  • Измените индуктивность источника с 0 мкГн на 50 мкГн и наблюдайте увеличение интервала коммутации тока, а также падение напряжения нагрузки.
  • Убедитесь, что большая индуктивность нагрузки снижает пульсации постоянного напряжения.

Диодный выпрямитель с индуктивной нагрузкой

Принцип работы

Однофазный диодный выпрямитель преобразует напряжение переменного тока на входе в напряжение постоянного тока на выходе. Поток мощности в цепи однонаправленный, т.е.е., только от входа переменного тока к выходу постоянного тока. Это полный мостовой выпрямитель, поскольку он имеет две пары диодов. Работа схемы зависит от состояния источника напряжения (L s , R s и L d для простоты не учитываются):

  • Положительный полупериод: Диоды D 1 и D 2 проводят, а диоды D 3 и D 4 блокируют. Положительное напряжение сетки индуцирует положительное напряжение на сопротивлении нагрузки.
  • Отрицательный полупериод: Теперь диоды D 3 и D 4 проводят, а диоды D 1 и D 2 блокируются. Поскольку через диоды D 3 и D 4 протекает положительный ток, напряжение на резисторе снова положительное.

Комбинация четырех диодов обеспечивает двухполупериодное выпрямление входного переменного напряжения со средним постоянным напряжением:


Влияние индукторов

Во время положительного полупериода сетевого напряжения пара диодов D 1 / D 2 проводит.Когда напряжение постоянного тока пересекает ноль, обе пары диодов D 1 / D 2 и D 3 / D 4 проводят ток, поскольку катушки индуктивности L s и L d пытаются поддерживать ток. Время, в течение которого обе пары диодов проводят ток, называется интервалом коммутации тока . Все четыре диода имеют нулевое прямое напряжение, поэтому во время коммутации тока между двумя парами диодов постоянное напряжение остается нулевым.

Последовательная комбинация L d и R d действует как фильтр нижних частот первого порядка, который уменьшает пульсации напряжения на выходе.

Эксперименты

  • Измените индуктивность источника со 100 мкГн на 500 мкГн и наблюдайте за увеличением интервала коммутации тока.
  • Измените индуктивность нагрузки с 20 мГн на 100 мГн и наблюдайте за уменьшением пульсаций выходного напряжения.

Диоды — learn.sparkfun.com

Добавлено в избранное Любимый 61

Применение диодов

Для такого простого компонента диоды имеют множество применений.Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.

Выпрямители

Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC). Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.

Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Итак, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!

Однополупериодный выпрямитель может быть сделан только из одного диода. Если сигнал переменного тока, такой как, например, синусоида, посылается через диод, любая отрицательная составляющая сигнала отсекается.

Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему полуволнового выпрямителя (в центре).

Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выступов в сигнале переменного тока в положительные.

Схема мостового выпрямителя (в центре) и форма выходного сигнала, которую она создает (синий / правый).

Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока в розетке в 3.Сигналы постоянного тока 3В, 5В, 12В и т. Д. Если вы разорвали стенную бородавку, вы, скорее всего, увидели бы там несколько диодов, исправляющих ее.

Вы можете заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?

Защита от обратного тока

Когда-нибудь вставлял батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива. Диод, включенный последовательно с положительной стороной источника питания, называется диодом обратной защиты.Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.

Это применение диода полезно, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.

Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения. Это делает диоды Шоттки отличным выбором для диодов обратной защиты.

Логические ворота

Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.

Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1. Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.

Логический элемент И построен аналогичным образом. Аноды обоих диодов соединены вместе, и именно там находится выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на одном из входов низкий уровень, ток от источника питания 5 В проходит через диод.

Для обоих логических вентилей можно добавить больше входов, добавив только один диод.

Обратные диоды и подавление скачков напряжения

Диоды

очень часто используются для ограничения потенциального повреждения от неожиданных больших скачков напряжения.Диоды с подавлением переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большими номинальными мощностями (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.

Обратные диоды выполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, например двигателем. Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск.Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.

Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.



← Предыдущая страница
Типы диодов .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *