Замер сопротивления провода: Страница не найдена — Я

Содержание

Как проходят измерения сопротивления изоляции проводки

Проверка состояния изоляции кабелей является важной составляющей мер безопасности. Для замеров созданы специальные лаборатории, оснащенные необходимым оборудованием. В каких случаях, и как именно происходят замеры сопротивления?

В каких случаях проводятся измерения

Согласно действующим нормативам измерение сопротивления изоляции электропроводки осуществляется в следующих случаях:

  • при проведении технического обслуживания (ТО) любой категории сложности;
  • по окончании пусковых испытаний электротехнических объектов;
  • в случаях обнаружения неисправностей, проявляющихся в процессе текущей эксплуатации в виде токовых утечек;
  • по окончании ремонта электросетей и оборудования.

При техобслуживании замер сопротивления изоляции электропроводки составляет основу используемых при испытаниях методик, согласно которым электрические цепи проверяются на отсутствие утечек. Аналогичным образом проводятся замеры и во всех остальных случаях, отличающихся от техобслуживания только особенностями организации предстоящих испытаний.

В соответствии с действующими стандартами при проведении ТО параметры изоляции электропроводки, в том числе сопротивление, проверяются между всеми её жилами (фазной, нулевой и заземляющей). Особую важность приобретает это требование в случае проверки питающих цепей электродвигателей самых различных классов.

Теми же нормативами (ПТТЭП, в частности) оговаривается и периодичность измерения параметров изоляции в рамках техобслуживания электропроводки.

Измерительные средства

Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления).

Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.

Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.

Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.

Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.

Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп.

И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.

Нормируемые показатели

Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:

  1. для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
  2. для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
  3. для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.

При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.

Так для осветительных установок и сетей, например, сопротивление изоляции измеряется один раз в три года. Аналогичные требования предъявляются и к электропроводке большинства категорий промышленных сетей.

Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно.

Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).

Правила работы с мегомметром

Для проведения специальных испытаний, организуемых с учётом требований к периодичности замеров сопротивления у изоляции электропроводки, применяются мегомметры с пределами замеров до нескольких Мегом.

При работе с этими приборами должны соблюдаться определённые правила, позволяющие избегать опасных ситуаций в обращении с высоковольтным оборудованием.

Последнее означает, что непосредственно перед началом замеров сопротивления следует проверить мегомметр на работоспособность. Для этого необходимо закоротить контрольные выводы прибора, а затем, вращая ручку встроенного в него генератора, убедиться в наличии короткого замыкания по отклонению стрелки прибора.

Вслед за тем следует разомкнуть концы измерительных шин и тем же способом проверить отсутствие отклонения, свидетельствующего об обрыве цепи.

При выполнении контрольных замеров должны быть приняты необходимые меры защиты от высоковольтного напряжения, позволяющие организовать проверку без повышенной опасности для испытателя.

С этой целью перед обследованием промышленных установок с помощью мегомметра со всех цепей, на которых должно замеряться сопротивление изоляции, в первую очередь необходимо снять рабочее напряжение.

И лишь после этого можно приступать к проверке изоляции между фазным, нулевым и заземляющим проводниками электрической цепи. Во всех указанных случаях показания прибора должны превышать 0,5 МОм.

После того, как испытание изоляции завершено, все замеры выполнены – фазный провод исследуемой цепи следует разрядить, прикоснувшись к нему хорошо заземлённым проводом.

Внимательное ознакомление с приведённым материалом позволит пользователю иметь представление о сроках и методах проведения испытаний. При этом всегда следует помнить о том, что подобными замерами занимаются специальные лаборатории, оснащённые высоковольтным оборудованием и располагающие штатом классных специалистов.

Для чего нужно проводить замер сопротивления изоляции

Нужно отметить, что надежность и бесперебойность работы электрооборудования обеспечивается за счет множества параметром, одним из самых важных является качество изоляции. Замер сопротивления изоляции позволяет обеспечить безопасное использование и работу электрооборудования, обеспечивая эффективную эксплуатацию всей системы энергоснабжения. Можно сказать, что периодические замеры сопротивления изоляции предотвращают возникновения аварий и поломок, которые могут привести к остановке рабочего процесса.

Изоляция в силовом кабеле или проводе питающем электронику обеспечивает разделение разных по полярности жил друг от друга. Очень часто в качестве материала для изоляции проводов используются пропитанная специальным составом бумага или резина, гибкий пластик. Выбор материала изоляции часто зависит от места использования кабеля, но никак не влияет на его основные функции. Проверка степени защитных свойств изоляции проводится с помощью специального измерительно прибора, который замеряет сопротивление изоляции в проводах или кабелях.

Под значением слова «сопротивление» нужно понимать способность материала, из которого изготовлена изоляция, сопротивляться электрическому току, протекающему по жилам провода. В процессе диагностировании электрических и электронных схем, измерение показателей сопротивления изоляции является одним из важнейших параметром.

Состояние изоляции проводов оказывает большое влияние на качество электроснабжения в целом. Пропускная способность и долговечность работы кабеля зависит от материала изоляции и его качества, а также от того состояния, в каком она находится.

Перед тем, как ввести в эксплуатацию электрооборудование все кабеля подвергают всевозможным проверкам на сопротивление их изоляции. Такие проверки проходят как на заводе-изготовителе, так и непосредственно на месте монтажа. Тщательная и многократная проверка играет не последнее значение, потому как при транспортировочных работах кабель может подвергаться механическим воздействиям, в результате которых нарушается изоляция. В итоге, такой кабель категорически нельзя использовать.

После того, как будет произведен монтаж кабеля, необходимо измерять сопротивления его изоляции. Если выявятся слабые места и повреждения, то нужно оперативно их ликвидировать, после чего снова провести замер сопротивления.


На правах рекламы

Как выполняется замер сопротивления изоляции электропроводки

Замер сопротивление изоляции мегаомметром

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

Работа с мегаомметром

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

  • На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

На фото изображен универсальный мегаомметр

  • По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:

  • Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.

  • Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
    Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Схема подключения мегаомметра в трехфазной цепи

Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.

Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.

  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

  • Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Несколько слов о мультиметре

Мультиметр

Большинство мультиметров имеют функцию замера сопротивления. Но измеряют они не сопротивление изоляции, а сопротивление электрической цепи.

Поэтому для проведения периодических проверок сопротивления изоляции он не предназначен. Мультиметр позволит вам своими руками отыскать место повреждения провода, найти плохой контакт, проверить целостность заземляющего проводника, а также еще целый ряд необходимых задач. Но замерить сопротивление изоляции он не способен.

Вывод

Надеемся, наша инструкция поможет вам определиться со сроками и методами проведения проверки сопротивления изоляции. Ведь многочисленные видео в сети интернет зачастую дают информацию несоответствующую действительности о возможности использования для этих целей мультиметра.

Недаром в большинстве случаев такими измерениями занимаются специальные высоковольтные лаборатории, которые имеют все необходимое оборудование, специалистов и сертификацию, согласно действующего законодательства.

цена проведения услуги, периодичность, сроки, протокол

Передвижная электролаборатория «ЭнергоСервисГарант» оказывает услуги по измерению сопротивления изоляции в Москве и Московской области. После нашей инспекции вы сможете запустить электрооборудование, не беспокоясь о его безопасности, или заказать соответствующий ремонт, если мы выявим неполадки. Также наши специалисты выдают протокол, который вы сможете предоставить МЧС и Ростехнадзору.

Специализированная электролаборатория «ЭнергоСервисГарант» предоставляет высококвалифицированные услуги по измерению сопротивления изоляции в Москве и области. Выполняем работу оперативно согласно требованиям ГОСТов и мировых стандартов, что гарантирует высокую точность данных. За выполнение заказов принимаются опытные специалисты, инженеры с необходимыми разрешениями. Для заказа услуги необходимо заполнить форму онлайн или позвонить по телефону. Менеджер компании предоставит полноценную информацию о стоимости, а также подберет удобное время для выезда сотрудников.

Замеры сопротивления изоляции стоимость

Цена на замеры сопротивления изоляции электропроводки в Москве зависит от вида и количества работ, проводимых на объекте. На нашем сайте представлен подробный калькулятор стоимости – после ввода необходимых параметров вы узнаете, сколько стоит замер сопротивления.

Наименование работЕдиница измеренияЦена
Замеры сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кв.1 линия:
3 жилы120,00 ₽
5 жил150,00 ₽
Расчитать услугу онлайнКалькулятор

Доступная цена на измерение сопротивления изоляции кабеля в Москве и другие виды работ от нашей компании. Расценки услуг могут изменяться в зависимости от количества проверяемых объектов или устройств. Действуют различные акции, которые позволяют нашим клиентам выгодно заказывать услуги.

Как проходят замеры сопротивления

Измерение сопротивления изоляции кабеля мы проводим по следующей схеме:

  • подготавливаем соответствующую документацию для подписания договора на предоставление услуг;
  • согласовываем объем, сроки и цену работы;
  • проводим замеры;
  • отдаем клиенту техническое заключение.

Все замеры наши специалисты выполняют с помощью мегомметра согласно требованиям ГОСТа 3345-76: перед началом работники отключают проверяемый провод от сети, подключают к мегомметру и подают высокое напряжение. Результаты замеров заносятся в технический акт.

Периодичность проведения замеров сопротивления изоляции

Согласно установленным стандартам проверку необходимо проводить не реже чем 1 раз в три года. Для отдельных категорий помещений установлены следующие сроки проверки:

  • медицинские учреждения – каждый год;
  • автозаправочные станции – ежегодно;
  • помещения общественного питания – два раза в год для помещений с повышенной опасностью и один раз в год – в обычных;
  • продовольственные сети – два раза в год (если помещение повышенного класса опасности), один раз в год – для стандартных помещений;
  • молниеотводы – один раз в год перед сезоном гроз;
  • краны – каждый год;
  • помещения с повышенной опасностью – каждый год.

Зачем проводить замеры сопротивления изоляции

Даже самая прочная изоляция в конечном итоге изнашивается и нуждается в замене. Измерение сопротивления изоляции электропроводки позволяет предупредить короткое замыкание, пожары и удары тока. Кроме стандартной проверки, замер сопротивления изоляции рекомендуется проводить:

  • перед запуском электрооборудования после ремонта;
  • при вводе новых установок, станков и оборудования в эксплуатацию;
  • в случае, если того требуют акты, подаваемые в МЧС или Ростехнадзор;
  • в указанные выше сроки – с целью профилактики.

Своевременная проверка состояния электрооборудования и жил кабеля позволит предупредить возникновение опасных для жизни ситуаций на рабочем месте.

Особенности замеров изоляционного покрытия

Замер сопротивления изоляции необходим для диагностики электрооборудования и безопасного использования электроустановок. Это обеспечивает стабильную и надежную функциональность всей электросети на протяжении долгого времени.

Для замера наша лаборатория использует многофункциональный измеритель METREL MI 3102H, который позволяет провести сразу комплекс измерений (параметров изоляции, наличия цепи, сопротивления заземляющих устройств и так далее).

При проведении измерительных работ проверяют:

  • проводку и кабели с изоляцией;
  • обмотку трансформаторов и электрических двигателей;
  • цепи вторичного или аварийного оповещения и управления;
  • системы с слаботочными точками;
  • электрооборудование в различных установках.

При тщательной проверке могут обнаружиться несоответствия требованиям качества и эксплуатации. Вызвано это может быть следующими причинами:

  • неправильный монтаж электропроводки;
  • разница в показаниях напряжения в электросети;
  • износ приборов, проводов и устройств;
  • некачественное обслуживание изоляции.

Замеры сопротивления изоляции рекомендуется проводить с разным напряжением в зависимости от конкретных проверяемых участков электроцепи:

  • для силового кабеля и проводов – 1000 В;
  • для кабеля с сечением 16 кв. мм и более – 2500 В.

Точный участок, на котором замеряется сопротивление, определяется исходя из наличия/отсутствия оболочки многожильной проводки:

  • при отсутствии металлической брони или экрана измерение проводят между токопроводящей жилой и сопутствующими жилами, соединенными между собой и с заземлением;
  • если же оболочка есть, проверка сопротивления проводится между токопроводящей жилой и сопутствующими жилами, подсоединенными к броне из металла.

После проведения диагностики работники заносят данные в протоколы и технический отчет.

Измерение сопротивления изоляции электропроводки: мегаомметром 1000В

По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.

Измерение сопротивления изоляции

Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе. При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил. При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.

Причины ухудшения изоляции

Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.

Повреждение изоляции из-за перегрева

Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.

Бич электрощитовых – влажность. Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами. Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.

Повреждение изоляции кабеля в процессе монтажа

Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ. Второй пик проблем встречается уже в эксплуатации, через некоторое количество лет после монтажа. Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.

Отличие мегаомметра от мультиметра

Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита. Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине. Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

Устройство мегаомметра

Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.

В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В. Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях. Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.

Для измерения сопротивления изоляции в бытовых осветительных и розеточных сетях используются мегаомметры на напряжение 1000 В.

В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального. Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой. Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний. Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку. Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».

Мегаомметр М4100

Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.

Мегаомметр ЭСО 202/2

Современные приборы стали полупроводниковыми. Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя. Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.

Мегаомметр Fluke

Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника. По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания. Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.

Правила проведения измерений мегаомметром

Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

  1. Прибор должен проходить метрологическую поверку один раз в год.
  2. Пользоваться мегаомметром дозволяется обученному персоналу.
  3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов. Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся. Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

Протокол измерения сопротивления изоляции

Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически. То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень. Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон. Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды. Скорее всего, он вычтет ее из вашего гонорара.

После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

Правила измерения изоляции мегаомметром

Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.

На мегаомметре устанавливают необходимое испытательное напряжение , затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение. Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность. Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.

Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях. Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами. Отключать их для проверки после монтажа – операция сложная.

Измерение сопротивления изоляции кабельной линии

Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой, то и прибор между ними покажет ноль. Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо. А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.

Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.

Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель. Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение. Так тестируется участок, реально находящийся под напряжением в эксплуатации.

И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.

Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.

Оцените качество статьи:

Fire Control – Замер сопротивления изоляции

Электрические системы снабжаются энергией непосредственно за счет проводов и кабелей. Чтобы энергоснабжение работало исправно, а электросистемы были безопасны, необходимо проводить особые измерения. Кабеля до ввода в эксплуатации должны проходить многоэтапную разноплановую проверку. Заводы, специализирующиеся на выпуске кабелей, обязано проверять свою продукцию и измерять сопротивление изоляции с целью выявления некачественных образцов изделий. Кабель, попадая в руки электромонтажников, проходит в обязательном порядке элктроизмерения, предполагающие проведение замера сопротивления изоляции. Организации, выполняющие электромонтажные работы, вызывают на рабочую площадку специалистов электролаборатории, которые на месте проводят комплекс электроизмерительных мероприятий. В данной статье мы ответим на вопрос, зачем нужно проводить столько проверок, а также попытаемся раскрыть основные этапы измерения сопротивления изоляции.

Дело в том, что неисправная изоляция может привести к утечке электрического тока из электрической системы. Кроме того, поврежденная или бракованная изоляция не может обеспечить безопасную работу приборов-энергопотребителей. Во время доставки кабеля на строительную площадку и в ходе проведения электромонтажных работ всегда есть опасность механического повреждения кабеля. Замеры сопротивления изоляции должны проводиться на всех электролиниях и сетях, поскольку только таким способом можно выявить степень изношенности их изолирующих частей.

На качество и свойства изоляции влияют даже погодные явления. Мороз и жара способствуют старению изоляции, поскольку она начинает рассыхаться и трескаться. Во избежание подобных неприятностей, которые способствуют поражению людей током и учащению случаев возгорания, необходимо регулярно осуществлять электроизмерения сопротивления изолирующих слоев проводов и кабелей. В случае обнаружения явных отклонений от нормы, неисправные участки электропроводки обязательно должны быть устранены.

Замеры сопротивления изоляции начинаются с визуального осмотра проводки, кабельных линий, тщательного обследования мест соединения жил с электрооборудованием, проверки соединительных точек в распаечных и распределительных щитах и коробках на предмет выявления расключения токоведущих элементов. Особого внимания заслуживают провода и кабеля, жилы которых подсоединены к аппаратам защиты. Изоляций не должна быть оплавленной, т.к. это свидетельствует о том, что в процессе работы кабель или провод сильно грелся. Нагревание кабеля может стать следствием ненадежного присоединения жил к зажимным механизмам, неисправность автоматов или завышенный номинал аппарата защиты. Специалисты компании «Электроком» проведут измерение сопротивления и выполнят ремонт неисправных частей энергосистем в максимальные сжатые сроки и за умеренную плату.

Зачем нужны электролаборатории?

Довольно часто специалисты электролабораторий, т.е. опытные инженеры и наладчики энергосистем, слышат в свой адрес укоры, что работы, связанные с электроизмерениями бесполезны и бессмысленны, поскольку они влекут дополнительные расходы для заказчиков. Чтобы опровергнуть это в корне неверное мнение, попробуем разобраться, зачем вообще нужны такие измерения.

Во время доставки электрической энергии к потребителям в системе электроснабжения используются разные виды электрооборудования (провода, кабеля, силовые щиты и распаечные коробки, а также автоматические выключатели, рубильники, УЗО, розетки и выключатели). Как и все вещи в этом мире, они могут выходить из строя из-за физического старения или неправильной эксплуатации. «Болеющее» электрооборудование нуждается в диагностике и ремонте, которые могут провести только опытные специалисты-электромонтажники. Именно в таких случаях нужна электролаборатория, поскольку с ее помощью можно провести электроизмерения с целью выявления причин той или иной поломки. Электросистемы эффективно работают только тогда, когда им уделяется достаточное внимание.

Кабель сначала внимательно осматривается, после проводится замер сопротивления изоляции. Автоматические выключатели (автоматы, УЗО, дифавтоматы) стоят на страже именно проводов, защищая их от чрезмерных перегрузок в работе, поэтому они требуют повышенного внимания со стороны электролаборатории. Обязательно должен проводиться замер цепи «фаза-ноль», а также испытание нагрузкой разных видов автоматических выключателей.

Распределительные щиты скрывают от глаз места разветвления проводов и кабелей, которые подведены к электропотребителю, а также места перехода тока от одного провода или кабеля к другим. В распределительных щитах имеются зажимы, которые стыкуют провода и кабеля между собой. Данные места требуют профилактического осмотра. Соединять провода методом обычной их скрутки запрещено. Замер заземления, проводимый компанией «Электроком», позволяет выявить электрооборудование, не оснащенное заземлением. Такая ситуация может возникнуть из-за ослабления контакта сжимов в розетках, светильниках или в самой распаечной коробке.

Выключатели, светильники и иное электрооборудование, включенное в энергетическую систему, требуют внимания со стороны потребителей электроэнергии, поскольку в местах подсоединения провода к данному оборудованию ослабевают винты сжимов, что приводит к перегреву места соединения, а это, в свою очередь, влечет оплавление концов провода и перегрев электрооборудования – розетки, выключатели, светильника или сжима. Такие неисправности могут даже привести к пожару. Именно поэтому так важно использование электролабораторий и проведение замеров сопротивления электроизоляции.

Закажите замер сопротивления изоляции у нас!

Как проверить высоковольтные провода зажигания по основным симптомам

Высоковольтные провода зажигания многие автолюбители привыкли называть свечными проводами. Второе название более понятно описывает их задачу в автомобиле, которая сводится к передаче электрического тока от катушки зажигания к свечам. Из названия можно понять, что данные провода отличаются от всех остальных, установленных в автомобиле. Их особенность в способности выдержать проходящее по ним высокое напряжение и защитить от него другие агрегаты машины. Каждый водитель должен знать, как проверить высоковольтные провода зажигания, поскольку эксплуатация машины при их неисправном состоянии может привести к выходу из строя дорогостоящих устройств и деталей.

Конструкция высоковольтных проводов зажигания и требования к ним

Высоковольтные провода зажигания устроены довольно просто. Они состоят из токопроводящего элемента с металлическим наконечником, двух пластмассовых колпачков и надежной изоляции.

Наиболее важным элементом свечных проводов является именно изоляция, которая выполняет две функции:

  • Не позволяет влаге попасть на токопроводящую жилу;
  • Сокращает до минимума утечку тока в процессе передачи.

Металлические наконечники свечных проводов необходимы для обеспечения электрического соединения выводов провода с контактами свечи и катушки зажигания. Необходимо, чтобы металлические насадки:

  • Были надежно зафиксированы на проводе и прочно соединены с элементами на выводах, тем самым препятствуя рассеиванию передаваемой энергии;
  • Имели повышенную антикоррозийную защиту, что необходимо при продолжительной эксплуатации проводов.

Важным элементом свечных проводов также являются пластмассовые колпачки. Их задача в защите выводов катушки зажигания и свечей от воздействия внешней среды. Как и наконечники из металла, пластмассовые колпачки должны быть максимально плотно соединены с другими деталями в цепи передачи тока.

Исходя из информации выше, можно выявить основной список требований, которые предъявляются к высоковольтным проводам. Они должны:

  • Справляться с возложенными токопроводящими задачами;
  • Сводить до нуля утечку тока в процессе его передачи от катушки зажигания к свечам;
  • Выдерживать агрессивную среду подкапотного пространства;
  • Работать при различных температурах.

Тепло, вибрации, агрессивная среда – от всего этого разработчики свечных проводов стараются их защитить. Изоляция работает, но и она имеет свой срок службы, который однозначно назвать невозможно. Со временем высоковольтные провода станут менее эффективными, и их потребуется заменить.

Симптомы неисправности высоковольтных проводов

При разрыве изоляции или повреждении пластмассовых колпачков начнется утечка тока, что приведет к следующим проблемам:

  • Трудности с пуском двигателя;
  • Неустойчивая работа мотора в режиме холостого хода;
  • Повышенное содержание углеводорода в выбросах;
  • Радиопомехи, которые могут приводить к неисправной работе мультимедиа системы, электронного блока управления и других приборов.

Серьезное нарушение изоляции высоковольтных проводов приведет к тому, что все электронные компоненты автомобиля начнут «барахлить». Датчики станут выдавать неверные показания, ЭБУ будет направлять неправильные команды, а до свечи зажигания ток перестанет доходить в том количестве, которое требуется для образования искры. Это чревато тем, что нарушится синхронная работа цилиндров двигателя, что приведет к его вибрации и перебоям в процессе работы.

Как проверить высоковольтные провода

Обнаружить под капотом высоковольтные провода не составляет труда, как и их диагностика не таит в себе никаких сложностей. Проверить высоковольтные провода можно тремя способами, каждый из которых позволяет определить, наличие пробоя в них.

Визуальная диагностика

Самый простой способ проверки свечных проводов на наличие нарушения изоляции – это их визуальный осмотр. Необходимо внимательно посмотреть, чтобы по площади изоляции не было трещин, надрезов и сильных потертостей.

Еще один способ визуальной проверки свечных проводов – это наблюдение за их работой в темное время суток. Необходимо ночью открыть капот машины, завести двигатель, выключить фары и понаблюдать за высоковольтными проводами. Если в них имеются сильные пробои изоляции, в темноте «сверчки» будут видны невооруженным взглядом.

Проверка проводом

Для проверки свечных проводов может использоваться обыкновенный провод с зачищенными концами с двух сторон. Необходимо в темное время суток при включенном двигателе одну часть провода замкнуть «на массу» (корпус автомобиля), а второй водить по высоковольтным проводам в поисках места, где зачищенный наконечник начнет выдавать искру. Важно проверить не только изоляционный материал вокруг токопроводящей жилы, но и пластмассовые колпачки.

Диагностика мультиметром

Мультиметр в автомобильной диагностике чаще всего используется в качестве вольтметра, но имеется у него и еще одна полезная функция – возможность измерения сопротивления. Чтобы произвести замер необходимо полностью снять высоковольтные провода (или отключить один провод с двух сторон). Далее щупами выставленного в режим омметра прибора следует прикоснуться к двум сторонам провода, в результате чего мультиметр покажет информацию о сопротивлении.

Сопротивление исправных высоковольтных проводов находится на уровне до 10 кОм. При этом варьироваться оно может практически от нуля. Это зависит от типа самих проводов, используемой в них изоляции, длины, наличия микроповреждений и так далее.

Загрузка…

4-проводное измерение сопротивления | Цепи постоянного тока

ДЕТАЛИ И МАТЕРИАЛЫ

  • Аккумулятор 6 В
  • Электромагнит, сделанный из эксперимента в предыдущей главе, или большая катушка с проволокой

В этом эксперименте было бы идеально иметь два измерителя: один вольтметр и один амперметр.

Для экспериментаторов с ограниченным бюджетом это может быть невозможно. Какой бы амперметр ни использовался, он должен быть способен измерять как минимум несколько ампер тока.

6-вольтовая «фонарная» батарея, замкнутая коротким замыканием на длинном куске провода, может создавать токи такой величины, и ваш амперметр должен быть способен измерять их без перегорания предохранителя или других повреждений. Убедитесь, что максимальный ток на измерителе составляет не менее 5 ампер!

ССЫЛКИ

Уроки электрических цепей , том 1, глава 8: «Схемы измерения постоянного тока»

ЦЕЛИ ОБУЧЕНИЯ

  • Для иллюстрации принципа действия измерения сопротивления Кельвина (4-проводное)
  • Чтобы проиллюстрировать, как измерять низкие сопротивления с помощью обычного испытательного оборудования

СХЕМА

ИЛЛЮСТРАЦИЯ

ИНСТРУКЦИИ

Хотя этот эксперимент лучше всего проводить с двумя измерителями, и он действительно показан на схематической диаграмме и иллюстрации, достаточно одного мультиметра.

Большинство омметров работают по принципу приложения небольшого напряжения к неизвестному сопротивлению (R unknown ) и определения сопротивления по величине потребляемого им тока.

За исключением особых случаев, таких как мегомметр , значения как напряжения, так и тока, используемые измерителем, довольно малы.

Это представляет проблему для измерения низких сопротивлений, поскольку образец с низким сопротивлением может иметь гораздо меньшее значение сопротивления, чем сама схема измерителя.

Представьте, что вы пытаетесь измерить диаметр хлопчатобумажной нити меркой или измеряете вес монеты с помощью весов, созданных для взвешивания грузовых автомобилей, и вы поймете, в чем проблема.

Одним из многих источников ошибок при измерении малых сопротивлений обычным омметром является сопротивление собственных измерительных проводов омметра.

Являясь частью измерительной цепи, измерительные провода могут содержать большее сопротивление, чем сопротивление испытуемого образца, что приводит к значительной погрешности измерения из-за их присутствия:

Одно из решений называется методом измерения сопротивления Кельвина, или , 4-проводным, .Он включает использование амперметра и вольтметра, определение сопротивления образца по закону Ома.

А ток проходит через неизвестное сопротивление и измеряется. Падение напряжения на сопротивлении измеряется вольтметром, а сопротивление рассчитывается по закону Ома (R = E / I).

Очень малые сопротивления можно легко измерить, используя большой ток, что позволяет легче измерить падение напряжения, из которого можно сделать вывод о сопротивлении, чем при использовании небольшого тока.

Поскольку в расчет учитывается только падение напряжения на неизвестном сопротивлении, а не падение напряжения на измерительных выводах амперметра или любых других соединительных проводах, по которым проходит основной ток, ошибки, в противном случае вызванные этими паразитными сопротивлениями, полностью устраняются.

Сначала выберите образец с подходящим низким сопротивлением для использования в этом эксперименте. Я предлагаю катушку электромагнита, указанную в предыдущей главе, или катушку с проводом, где можно получить доступ к обоим концам.Подключите к этому образцу 6-вольтовую батарею с последовательно подключенным амперметром.

ВНИМАНИЕ:

Используемый амперметр должен быть способен измерять ток не менее 5 ампер, чтобы он не был поврежден (возможно) сильным током, генерируемым в этом состоянии, близком к короткому замыканию. Если у вас есть второй измеритель, используйте его для измерения напряжения в точках подключения образца, как показано на рисунке, и запишите показания обоих измерителей.

Если у вас есть только один счетчик, используйте его сначала для измерения тока, как можно быстрее записывая его показания, а затем немедленно размыкая (размыкая) цепь.

Переключите измеритель в режим измерения напряжения, подключите его к точкам подключения образца и повторно подключите батарею, быстро заметив индикацию напряжения.

Вы не хотите оставлять батарею подключенной к образцу дольше, чем это необходимо для получения измерений измерителя, так как она начнет быстро разряжаться из-за высокого тока цепи, что снижает точность измерения при изменении конфигурации измерителя и цепь замкнется еще раз для следующего измерения.

Когда используются два измерителя, это не столь важная проблема, потому что показания тока и напряжения могут быть записаны одновременно .

Возьмите результат измерения напряжения и разделите его на результат измерения тока. Частное будет равно сопротивлению образца в Ом.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Кельвин (4-проводной) Измерение сопротивления | Цепи измерения постоянного тока

Предположим, мы хотим измерить сопротивление некоторого компонента, находящегося на значительном расстоянии от нашего омметра.Такой сценарий был бы проблематичным, потому что омметр измеряет все сопротивление в контуре цепи, включая сопротивление проводов (R , провод ), соединяющих омметр с измеряемым компонентом (R , предмет ):

Обычно сопротивление провода очень мало (всего несколько Ом на сотни футов, в основном в зависимости от калибра (размера) провода), но если соединительные провода очень длинные и / или измеряемый компонент имеет сопротивление в любом случае при очень низком сопротивлении погрешность измерения, вызванная сопротивлением провода, будет значительной.

Оригинальный метод измерения сопротивления объекта в такой ситуации включает использование как амперметра, так и вольтметра. Мы знаем из закона Ома, что сопротивление равно напряжению, деленному на ток (R = E / I). Таким образом, мы сможем определить сопротивление исследуемого компонента, если измерим ток, проходящий через него, и падение напряжения на нем:

Ток одинаков во всех точках цепи, потому что это последовательный контур. Поскольку мы измеряем только падение напряжения на испытуемом сопротивлении (а не на сопротивлениях проводов), тем не менее, рассчитанное сопротивление является показателем только сопротивления исследуемого компонента (R , предмет ).

Однако наша цель состояла в том, чтобы измерить сопротивление объекта с расстояния , поэтому наш вольтметр должен быть расположен где-то рядом с амперметром, подключенным через сопротивление объекта другой парой проводов, содержащих сопротивление:

Сначала кажется, что мы потеряли какое-либо преимущество измерения сопротивления таким способом, потому что вольтметр теперь должен измерять напряжение через длинную пару (резистивных) проводов, снова вводя паразитное сопротивление обратно в измерительную схему.Однако при ближайшем рассмотрении видно, что вообще ничего не потеряно, потому что по проводам вольтметра протекает минимальный ток. Таким образом, на этих длинных отрезках провода, соединяющего вольтметр через испытуемое сопротивление, будет падать незначительное напряжение, в результате чего показания вольтметра будут почти такими же, как если бы они были подключены непосредственно через испытуемое сопротивление:

Любое падение напряжения на основных токоведущих проводах не будет измеряться вольтметром и, следовательно, не учитывается при вычислении сопротивления.Точность измерения может быть улучшена еще больше, если ток вольтметра будет сведен к минимуму, либо за счет использования высококачественного (низкий ток полной шкалы) движения и / или потенциометрической (нулевой баланс) системы.

Метод Кельвина

Этот метод измерения, позволяющий избежать ошибок, вызванных сопротивлением проводов, называется методом Кельвина или 4-проводным методом . Специальные соединительные зажимы, называемые зажимами Кельвина , предназначены для облегчения такого соединения через предметное сопротивление:

В обычных зажимах типа «аллигатор» обе половины челюсти электрически общие друг с другом, обычно соединяются в точке шарнира.В зажимах Кельвина половины губок изолированы друг от друга в точке шарнира, контактируя только на концах, где они зажимают провод или клемму объекта измерения. Таким образом, ток через «C» («ток») половинки кулачков не проходит через «P» («потенциал» или напряжение ) половинки кулачков и не создает вызывающего ошибку падения напряжения по всей их длине:

Тот же принцип использования разных точек контакта для измерения проводимости тока и напряжения используется в прецизионных шунтирующих резисторах для измерения больших значений тока.Как обсуждалось ранее, шунтирующие резисторы функционируют как устройства измерения тока, понижая точное значение напряжения на каждый ампер проходящего через них тока, причем падение напряжения измеряется вольтметром. В этом смысле прецизионный шунтирующий резистор «преобразует» текущее значение в пропорциональное значение напряжения. Таким образом, ток можно точно измерить, измерив падение напряжения на шунте:

Измерение тока с помощью шунтирующего резистора и вольтметра особенно хорошо подходит для приложений с особенно большими значениями тока.В таких приложениях сопротивление шунтирующего резистора, вероятно, будет порядка миллиомов или микроомов, так что при полном токе будет падать только небольшое напряжение.

Такое низкое сопротивление сопоставимо с сопротивлением соединения проводов, что означает, что напряжение, измеренное на таком шунте, должно быть выполнено таким образом, чтобы избежать обнаружения падения напряжения на соединениях токоведущих проводов, во избежание возникновения огромных ошибок измерения. Чтобы вольтметр измерял только напряжение, падающее непосредственно на сопротивление шунта, без каких-либо паразитных напряжений, возникающих из-за сопротивления проводов или соединения, шунты обычно оснащены четырьмя соединительными клеммами :

Прецизионный стандартный резистор

В метрологических ( метрология = «наука об измерениях» ), где точность имеет первостепенное значение, высокоточные «стандартные» резисторы также оснащены четырьмя выводами: двумя для передачи измеряемого тока и двумя для передачи тока резистора падение напряжения на вольтметре.Таким образом, вольтметр измеряет только напряжение, падающее на самом прецизионном сопротивлении, без каких-либо паразитных напряжений, падающих на токоведущие провода или сопротивления соединения провод-клемма.

На следующей фотографии показан прецизионный стандартный резистор номиналом 1 Ом, погруженный в масляную ванну с регулируемой температурой, вместе с несколькими другими стандартными резисторами. Обратите внимание на две большие внешние клеммы для тока и две маленькие клеммы для напряжения:

Вот еще один, более старый (до Второй мировой войны) стандартный резистор немецкого производства.Этот блок имеет сопротивление 0,001 Ом, и снова четыре точки подключения клемм можно увидеть как черные ручки (металлические площадки под каждой ручкой для прямого соединения металл-металл с проводами), две большие ручки для фиксации токопроводящего провода и две ручки меньшего размера для крепления проводов вольтметра («потенциал»):

Выражаем признательность корпорации Fluke Corporation в Эверетте, штат Вашингтон, за предоставленную мне возможность сфотографировать эти дорогие и несколько редкие стандартные резисторы в их лаборатории первичных эталонов.

Следует отметить, что измерение сопротивления с использованием как амперметра, так и вольтметра подвержено сложной погрешности. Из-за того, что точность обоих инструментов влияет на конечный результат, общая точность измерения может быть хуже, чем у любого другого инструмента, рассматриваемого отдельно. Например, если точность амперметра составляет +/- 1%, а вольтметр также имеет точность +/- 1%, любое измерение, зависящее от показаний обоих приборов, может быть неточным на целых +/- 2%.

Более высокую точность можно получить, заменив амперметр на стандартный резистор, используемый в качестве токоизмерительного шунта. Между стандартным резистором и вольтметром, используемым для измерения падения напряжения, по-прежнему будет сложная ошибка, но она будет меньше, чем в случае комбинации вольтметр + амперметр, потому что типичная точность стандартного резистора намного превышает типичную точность амперметра. Используя зажимы Кельвина для соединения с сопротивлением объекта, схема выглядит примерно так:

Все токоведущие провода в приведенной выше схеме выделены жирным шрифтом, чтобы легко отличить их от проводов, соединяющих вольтметр через оба сопротивления (R соответствует и R стандарт ).В идеале, потенциометрический вольтметр используется для обеспечения минимально возможного тока через «потенциальные» провода.

Измерение Кельвина может быть практическим инструментом для обнаружения плохих контактов или неожиданного сопротивления в электрической цепи. Подключите источник питания постоянного тока к цепи и отрегулируйте источник питания так, чтобы он подавал в цепь постоянный ток, как показано на схеме выше (конечно, в пределах возможностей схемы). С помощью цифрового мультиметра, настроенного для измерения постоянного напряжения, измерьте падение напряжения в различных точках цепи.

Если вам известен размер провода, вы можете оценить падение напряжения, которое вы должны увидеть, и сравнить его с измеренным падением напряжения. Это может быть быстрым и эффективным методом обнаружения плохих соединений в проводке, подверженной воздействию элементов, например, в цепях освещения прицепа. Он также может работать с проводами переменного тока без питания (убедитесь, что питание переменного тока невозможно включить).

Например, вы можете измерить падение напряжения на выключателе света и определить, подозрительны ли соединения проводов с выключателем или его контакты.Для максимальной эффективности использования этого метода вам также следует измерять схемы того же типа после того, как они были изготовлены заново, чтобы иметь представление о «правильных» значениях. Если вы примените эту технику на новых схемах и занесете результаты в журнал, у вас будет ценная информация для устранения неисправностей в будущем.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

4-проводное тестирование по Кельвину

Что такое 2-проводное и 4-проводное?

Если вы использовали омметр для измерения сопротивления, вы, вероятно, слышали такие термины, как «2-проводное измерение» и «4-проводное измерение Кельвина».»В этом документе объясняется, как омметры измеряют сопротивление, как работают двухпроводные измерения сопротивления, как работают четырехпроводные измерения сопротивления, а также особые рекомендации для каждого типа измерения. Чтобы узнать больше, посмотрите это видео (вверху) и / или прочтите ниже.

  • Повышенное прецизионное тестирование сопротивления
    Позволяет измерять сопротивление вплоть до миллиомов.
  • «Маскирует» Сопротивление крепления
    Очень полезно при сложных или длинных креплениях с высоким сопротивлением.
  • Тестирование сопротивления сильному току
    Использует ток 1 А для более точных измерений.

Как работают омметры?

Чтобы использовать омметр для измерения сопротивления провода, прикоснитесь к одному метру вывода к каждому концу провода, и вы получите измерение сопротивления (рисунок 1). Как измеритель измеряет сопротивление? Какое сопротивление он на самом деле измеряет? Чтобы понять, как работают омметры, начнем с закона Ома; Сопротивление = напряжение / ток.Это уравнение гласит: «Пропустите ток через провод, измерьте падение напряжения вдоль провода, и вы сможете рассчитать сопротивление провода».


Рисунок 1. 2-проводное измерение сопротивления

Омметр пропускает ток через провод, измеряет возникающее напряжение, вычисляет сопротивление и отображает результат. Для всего этого ваш омметр должен иметь источник тока и вольтметр (см. Рисунок 2). Важно то, где источник тока и вольтметр соединяются вместе.


Рисунок 2. Счетчики содержат источник тока (I) и вольтметр (Vm).

2-проводные измерения

Когда вы выполняете 2-проводное измерение сопротивления, ваш измеритель использует только два провода для подключения к тестируемому устройству (DUT). На Рисунке 1 показана стандартная 2-проводная испытательная установка. Эта установка имеет то преимущество, что для подключения к ИУ используется всего два провода, но какое фактическое сопротивление она измеряет? Чтобы измерить только сопротивление ИУ, вам нужно измерить только напряжение на ИУ.Рисунок 3 показывает, что вольтметр действительно измеряет напряжение на тестовых проводах DUT и .


Рис. 3. При двухпроводном измерении фактически измеряется сопротивление ИУ плюс сопротивление проводов измерителя.

Двухпроводные измерения фактически измеряют сопротивление тестируемого устройства плюс сопротивление измерительного провода. Что делать, если вы действительно хотите измерить только сопротивление ИУ?

4-проводные измерения

Некоторые омметры имеют четыре соединения: два подключаются к источнику тока (иногда называемые «силовыми» выводами), а два — от вольтметра (обычно называемые «сенсорными» выводами).С помощью такого омметра вы можете выполнить 4-проводное измерение, как показано на рисунке 4. С помощью четырех подключений вы, , выбираете, где подключить вольтметр, чтобы вы могли точно контролировать, какое сопротивление вы хотите измерить (см. Рисунок 5). Если вы подключите измеритель напрямую к тестируемому устройству, вы будете измерять только сопротивление тестируемого устройства.


Рисунок 4. 4-проводное измерение. Обратите внимание, что у счетчика четыре соединения.


Рисунок 5. 4-проводное измерение позволяет контролировать, где подключается вольтметр.

Недостатком 4-проводного тестирования является то, что для его проведения требуется четыре соединения, но это дает вам точное измерение сопротивления тестируемого устройства без сопротивления измерительных проводов.

Измерения сопротивления в кабельном тестере

В основном ваш кабельный тестер состоит из быстродействующего омметра с источником тока и вольтметром. Обычно вы выполняете двухпроводные измерения — вы используете две контрольные точки для каждого измерения. Более продвинутые тестеры позволяют также выполнять 4-проводные измерения — используя четыре контрольных точки для каждого измерения.Чтобы выполнить 4-проводное измерение на вашем тестере, вам, как правило, необходимо создать настраиваемую 4-проводную измерительную оснастку, которая объединяет силовые и измерительные линии рядом с вашим тестируемым устройством, устраняя сопротивление фиксации.

Возможно, вам не понадобится 4-проводное соединение с тестером Cirris.

Многим тестерам целостности цепи требуется 4-проводное тестирование для точного измерения сопротивления ниже 1 Ом. Тестеры Cirris Easy-Wire ™ CR, Signature CH +, 1100H + / R +, 1000H + / R + и Touch2 используют внутренние четырехпроводные соединения для уменьшения сопротивления крепления (проводов) тестера.Все тестеры Cirris, измеряющие сопротивление, имеют эту функцию. Кроме того, адаптеры, которые подключаются непосредственно к тестерам серии Signature, устраняют большую часть фиксирующего сопротивления, которое часто возникает при использовании адаптивных кабелей. Если вам нужно, чтобы точность измерения сопротивления составляла всего 0,1 Ом, вам не нужно использовать 4-проводную схему на вашем тестере Cirris.

Почему бы просто не вычесть сопротивление крепления?

Сопротивление крепления иногда называют «значением тары», которое может быть удалено, чтобы соответствовать требованиям к максимальному сопротивлению в ИУ.Хотя значение тары можно использовать для корректировки ваших измерений, это не так просто, как кажется на первый взгляд. Во-первых, точность тестера снижается из-за отношения крепления к сопротивлению ИУ. Это означает, что измерение DUT 0,1 Ом с креплением 2 Ом и погрешностью тестера 2% имеет (2 + 0,1) Ом x 2% = 0,042 Ом вариации или 42% погрешность измерения (скорректированная ошибка измерения = погрешность измерения тестером x (крепление сопротивление + фактическое сопротивление ИУ) / фактическое сопротивление ИУ). В этом примере порог для хорошего кабеля необходимо установить на 0.1 x (100% — 42%) = 0,058 Ом.

Существует более серьезная опасность, если вы «тарируете» сопротивление приспособления. Попробуйте измерить сопротивление куска провода с помощью VOM. Вы обнаружите, что сопротивление меняется в зависимости от того, насколько крепко вы держите измерительные провода на концах проводов. Это изменение сопротивления возникает из-за точки соприкосновения ИУ и крепления. Это изменение сопротивления от измерения к измерению может значительно увеличить полученное сопротивление и будет ухудшаться по мере износа ответных разъемов.Эффект этого изменения может заключаться в том, что пороги сопротивления будут установлены слишком высокими, и дефектные кабели будут пропущены.

Что дает вам 4-проводное тестирование?
  1. Устраняет сопротивление интерфейсных кабелей. Если сопротивление фиксации составляет значительную часть от общего сопротивления, то использование 4-проводной схемы значительно повысит точность.
  2. Позволяет измерять более низкие значения сопротивления, чем при 2-проводном тестировании. В тестерах Cirris hipot мы используем более высокий ток (до 1 А) при выполнении 4-проводных тестов Кельвина.Это позволяет нам более точно измерять более низкие сопротивления, вплоть до 1 мОм (0,001 Ом). Наши низковольтные тестеры с 4-проводным подключением (CR, 1100R +) могут измерять сопротивление до 5 мОм, но все же могут разрешать до 1 мОм. (Вы теряете разрешение в мОм, если сопротивление ИУ> 10 Ом)
  3. Если вы выполняете 4-проводные подключения к ИУ, а не только к разъему, который соединяется с ИУ, вы можете устранить все источники фиксирующего сопротивления. Однако это дополнительное усилие может оказаться невозможным.
Сколько вам будет стоить четырехпроводное тестирование?
  1. Сложность крепления, больше проводки, больше работы по строительству и обслуживанию испытательного оборудования.
  2. В тестере требуется в два раза больше контрольных точек.
  3. Повышенная сложность настройки теста, который выполняет эти конкретные измерения.
  4. Более низкая скорость тестирования.
Что вам нужно знать, прежде чем вы сможете построить 4-проводное испытательное приспособление
  • Вы соедините 2 провода от тестера вместе для каждой контрольной точки устройства, которое будет проверено с помощью 4-проводного измерения.
  • Вы должны объединить правильные «силовые» и «сенсорные» линии от тестера.Не только любые 2 точки могут быть соединены в пару для создания 4-проводного крепления. Не строите неправильно! Ознакомьтесь с инструкциями по 4-проводной схеме для вашего тестера. Есть простые правила, которые подскажут, какие точки нужно объединить.
  • Если вы хотите, чтобы для наивысшего уровня разрешения сопротивления применялись более высокие уровни тока, то поддерживайте низкое сопротивление фиксации. Сопротивление крепления плюс сопротивление ИУ должно быть ниже 2 Ом.

Какой тестер Cirris мне следует использовать?

0.001
+/- 2%
Тестер Макс. Ток R Точность Особые примечания
Ch3 2 AMP Точка 1 соединяется с точкой 2, 3 с 4 и т. Д. По 16 точек на коннектор VME.
Touch 1 и 1100H + 1 Amp +/- 0,001
+/- 2%
Сопряжение точек можно программировать в пределах ограничений.
1100R + 6 ма +/- 0,005
+/- 2%
Объединение точек в пары можно программировать в пределах ограничений.
1000H + 1 усилитель +/- 0.003
+/- 4%
Все точки должны быть 4-проводными в DUT. Необходимо использовать адаптер Signature AV4W-64.
CH + 1 Amp +/- 0,001
+/- 3%
Точка 1 в паре с точкой 2, 3 с 4 … для 16 точек на разъем VME.
CR 6 ма +/- 0,005
+/- 2%
Точка 1 в паре с точкой 33 Точка 2 с 34 … для каждого контакта в 64-контактном разъеме.

Часто задаваемые вопросы: Руководство по измерению сопротивления

При измерении сопротивления точность — это все.Это руководство — это то, что мы знаем о достижении максимально возможного качества измерений.


Индекс

  1. Введение в измерение сопротивления
  2. Приложения
  3. Сопротивление
  4. Принципы измерения сопротивления
  5. Методы 4-х контактных соединений
  6. Возможные ошибки измерения
  7. Выбор подходящего инструмента
  8. Примеры применения
  9. Полезные формулы и диаграммы
  10. Узнать больше

1.Введение

Измерение очень больших или очень малых величин всегда затруднено, и измерение сопротивления не является исключением. При значениях выше 1 ГОм и ниже 1 Ом возникают проблемы с измерением.

Cropico — мировой лидер в области измерения низкого сопротивления; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом справочнике дается обзор методов измерения низкого сопротивления, объясняются распространенные причины ошибок и способы их предотвращения.Мы также включили полезные таблицы с характеристиками проводов и кабелей, температурными коэффициентами и различными формулами, чтобы вы могли сделать наилучший выбор при выборе измерительного прибора и техники измерения. Мы надеемся, что вы найдете это руководство ценным дополнением к вашему набору инструментов.


2. Приложения

Производители компонентов
Резисторы, катушки индуктивности и дроссели — все должны подтвердить, что их продукция соответствует указанному допуску по сопротивлению, окончанию производственной линии и испытаниям контроля качества.

Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже установленных пределов. Это может быть достигнуто в конце тестирования производственной линии, обеспечивая контроль качества.

Производители кабелей
Необходимо измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает, что токонесущая способность кабеля снижается; слишком низкое сопротивление означает, что производитель слишком великодушен к диаметру кабеля, используя больше меди, чем ему нужно, что может быть очень дорогостоящим.

Установка и обслуживание силовых кабелей, распределительных устройств и устройств РПН
Для этого требуется, чтобы кабельные муфты и переключающие контакты имели минимально возможное сопротивление, что позволяет избежать чрезмерного нагрева стыка или контакта, плохого кабельного стыка или контакта переключателя. вскоре выходят из строя из-за этого нагревающего эффекта. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.

Производители электродвигателей и генераторов
Требуется определить максимальную температуру, достигаемую при полной нагрузке.Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, то есть при температуре окружающей среды, затем установка работает с полной нагрузкой в ​​течение определенного периода времени, а сопротивление измеряется повторно. По изменению значения сопротивления можно определить внутреннюю температуру двигателя / генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться, что нет коротких или разомкнутых витков цепи и что каждая катушка сбалансирована.

Автомобильная промышленность
Требование к измерению сопротивления сварочных кабелей для роботов, чтобы гарантировать, что качество сварки не ухудшается, т.

Производители предохранителей
Для контроля качества, измерения сопротивления соединений на самолетах и ​​военных транспортных средствах необходимо обеспечить, чтобы все оборудование, установленное на самолетах, было электрически подключено к раме, включая оборудование камбуза.Те же требования предъявляются к танкам и другой военной технике. Производители и пользователи больших электрических токов — все должны измерять распределение сопротивления соединений, сборных шин и соединителей с электродами для гальваники.

Железнодорожные коммуникации
Включая трамваи и подземные железные дороги (Метро) — для измерения соединений силовых кабелей, включая сопротивление стыков рельсовых путей, поскольку рельсы часто используются для передачи информации.


3.Сопротивление

Закон Ома V = I x R (Вольт = ток x сопротивление). Ом (Ом) — это единица электрического сопротивления, равная сопротивлению проводника, в котором ток в один ампер создается потенциалом в один вольт на его выводах. Закон Ома, названный в честь его первооткрывателя, немецкого физика Георга Ома, является одним из важнейших основных законов электричества. Он определяет соотношение между тремя фундаментальными электрическими величинами: током, напряжением и сопротивлением. Когда напряжение подается на цепь, содержащую только резистивные элементы, ток течет в соответствии с законом Ома, который показан ниже.


4. Принципы измерения сопротивления

Амперметр Метод вольтметра
Этот метод восходит к основам. Если мы используем аккумулятор в качестве источника напряжения, вольтметр для измерения напряжения и амперметр для измерения тока в цепи, мы можем рассчитать сопротивление с разумной точностью. Хотя этот метод может обеспечить хорошие результаты измерения, он не является практическим решением повседневных задач измерения.

Двойной мост Кельвина
Мост Кельвина является разновидностью моста Уитстона, который позволяет измерять низкие сопротивления.Диапазон измерения обычно составляет от 1 мОм до 1 кОм с наименьшим разрешением 1 мкОм. Ограничения моста Кельвина: —

  1. требует ручной балансировки
  2. чувствительный нуль-детектор или гальванометр требуется для определения состояния баланса
  3. измерительный ток должен быть достаточно высоким для достижения достаточной чувствительности

Двойной мост Кельвина обычно заменяют цифровыми омметрами.

Цифровой мультиметр — двухпроводное соединение
Простой цифровой мультиметр можно использовать для более высоких значений сопротивления.Они используют двухпроводной метод измерения и подходят только для измерения значений выше 100 Ом и там, где не требуется высокая точность.

При измерении сопротивления компонента (Rx) через компонент проходит испытательный ток, и измерительный прибор измеряет напряжение на его выводах. Затем измеритель рассчитывает и отображает результирующее сопротивление и называется двухпроводным измерением. Следует отметить, что измеритель измеряет напряжение на своих выводах, а не на компоненте.В результате падение напряжения на соединительных выводах также включается в расчет сопротивления. Измерительные провода хорошего качества будут иметь сопротивление примерно 0,02 Ом на метр. В дополнение к сопротивлению выводов, сопротивление соединения выводов также будет учитываться при измерении, и оно может быть таким же высоким или даже выше, чем сопротивление самих выводов.

При измерении больших значений сопротивления эту дополнительную ошибку сопротивления проводов можно игнорировать, но, как вы можете видеть из приведенной ниже таблицы, ошибка становится значительно выше, когда измеренное значение уменьшается, и совершенно неприемлемо для значений ниже 10 Ом.

ТАБЛИЦА 1

Примеры возможных ошибок измерения

Прием Сопротивление измерительного провода R1 + R2 Сопротивление подключения R3 + R4 Rx, измеренный на клеммах цифрового мультиметра = Rx + R1 + R2 + R3 + R4 Ошибка Ошибка%
1000 Ом 0,04 Ом 0.04 Ом 1000,08 Ом 0,08 Ом 0,008
100 Ом 0,04 Ом 0,04 Ом 100,08 Ом 0,08 Ом 0,08
10 Ом 0,04 Ом 0,04 Ом 10,08 Ом 0,08 Ом 0,8
1 Ом 0,04 Ом 0.04 Ом 1,08 Ом 0,08 Ом 8
100 мОм 0,04 Ом 0,04 Ом 180 мОм 0,08 Ом 80
10 мОм 0,04 Ом 0,04 Ом 90 мОм 0,08 Ом 800
1 мОм 0,04 Ом 0,04 Ом 81 мОм 0.08 Ом 8000
100 мкОм 0,04 Ом 0,04 Ом 80,1 мкОм 0,08 Ом 8000

Для измерения истинного постоянного тока резистивные омметры обычно используют 4-проводное измерение. Постоянный ток проходит через приемник и внутренний эталон омметра. Затем измеряется напряжение на Rx и внутреннем стандарте, и отношение двух показаний используется для расчета сопротивления.При использовании этого метода ток должен быть стабильным только в течение нескольких миллисекунд, необходимых для того, чтобы омметр сделал оба показания, но для этого требуются две измерительные цепи. Измеряемое напряжение очень мало, и обычно требуется чувствительность измерения мкВ.

В качестве альтернативы используется источник постоянного тока для пропускания тока через Rx. Затем измеряется падение напряжения на Rx и рассчитывается сопротивление. Для этого метода требуется только одна измерительная цепь, но генератор тока должен быть стабильным при всех условиях измерения.

Четырехпроводное соединение
Четырехпроводный метод измерения (Кельвина) предпочтителен для значений сопротивления ниже 100 Ом, и все миллиомметры и микрометры Seaward используют этот метод. Эти измерения производятся с использованием 4 отдельных проводов. 2 провода несут ток, известный как источник или токоподводы, и пропускают ток через Rx. Два других провода, известные как измерительные или потенциальные выводы, используются для измерения падения напряжения на Rx. Хотя в сенсорных выводах будет течь небольшой ток, им можно пренебречь.Таким образом, падение напряжения на измерительных клеммах омметра практически такое же, как падение напряжения на Rx. Этот метод измерения даст точные и последовательные результаты при измерении сопротивления ниже 100 Ом.

С точки зрения измерения это лучший тип подключения с 4 отдельными проводами; 2 тока (C и C1) и 2 потенциала (P и P1). Токовые провода всегда должны быть размещены за пределами потенциала, хотя точное размещение не имеет решающего значения.Потенциальные провода должны быть подключены точно в тех точках, между которыми вы хотите измерить. Измеренное значение будет между потенциальными точками. Хотя это дает наилучшие результаты измерений, это часто непрактично. Мы живем в несовершенном мире, и иногда приходится идти на небольшие компромиссы. Cropico может предложить ряд практических измерительных решений.


5. Способы 4-х клеммных соединений

Зажимы Кельвина
Зажимы Кельвина аналогичны зажимам типа «крокодил» («Аллигатор»), но каждая челюсть изолирована от другой.Токоподвод подключается к одной челюсти, а потенциальный — к другой. Зажимы Кельвина предлагают очень практичное решение для подключения четырех клемм к проводам, шинам, пластинам и т. Д.

Duplex Handspikes
Handspikes — еще одно очень практичное решение для соединения, особенно для листового материала, сборных шин и там, где доступ может быть проблемой. Шип состоит из двух подпружиненных шипов, заключенных в рукоятку. Один всплеск — это текущая связь, а другой — потенциальная или чувственная связь.

Соединение с несколькими выводами
Иногда единственным практическим решением для подключения к Rx является использование выводов в стек. Токоподвод вставляется сзади потенциального вывода. Этот метод дает небольшие ошибки, потому что точка измерения будет там, где потенциальный вывод соединяется с токоподводом. Для измерения труднодоступных образцов это может быть лучшим компромиссным решением.

Кабельные зажимы

При измерении кабелей в процессе производства и в целях контроля качества необходимо поддерживать постоянные условия измерения.Длина образца кабеля обычно составляет 1 метр, и для обеспечения точного измерения длины в 1 метр следует использовать кабельный зажим. Cropico предлагает широкий выбор кабельных зажимов, которые подходят для большинства размеров кабелей. Измеряемый кабель помещается в зажим, а концы кабеля зажимаются в токовых клеммах. Точки потенциальных соединений обычно имеют форму ножевых контактов, которые находятся на расстоянии ровно 1 метр друг от друга.

Приспособления и приспособления
При измерении других компонентов, таких как резисторы, предохранители, переключающие контакты, заклепки и т. Д.Невозможно переоценить важность использования испытательного приспособления для фиксации компонента. Это гарантирует, что условия измерения, то есть положение измерительных проводов, одинаковы для каждого компонента, что приведет к последовательным, надежным и значимым измерениям. Приспособления часто должны быть специально разработаны, чтобы соответствовать области применения.


6. Возможные ошибки измерения

Существует несколько возможных источников погрешности измерения, связанных с измерениями низкого сопротивления.Наиболее распространенные из них описаны ниже.

Грязные соединения
Как и при любых измерениях, важно убедиться, что подключаемое устройство чистое и не содержит окислов и грязи. Соединения с высоким сопротивлением вызовут ошибки при считывании и могут помешать измерениям. Также следует отметить, что некоторые покрытия и оксиды на материалах являются хорошими изоляторами. Анодирование имеет очень высокое сопротивление и является классическим примером. Обязательно счистите покрытие в точках соединения.Кропикоомметры включают предупреждение об ошибке провода, которое укажет, слишком ли высокое сопротивление соединений.

Слишком высокое сопротивление проводов
Хотя теоретически четырехконтактный метод измерения не зависит от длины проводов, необходимо следить за тем, чтобы провода не имели слишком большого сопротивления. Потенциальные выводы не являются критическими и обычно могут составлять до 1 кОм, не влияя на точность измерения, но выводы тока имеют решающее значение. Если токоподводы имеют слишком высокое сопротивление, падение напряжения на них приведет к недостаточному напряжению на тестируемом устройстве (тестируемое устройство) для получения разумных показаний.Кропикоомметры проверяют это соответствие напряжения на ИУ и предотвращают выполнение измерения, если оно падает слишком низко. Также имеется предупреждающий дисплей; предотвращение считывания, гарантируя, что не будут выполнены ложные измерения. Если вам нужно использовать длинные измерительные провода, увеличьте диаметр кабелей, чтобы уменьшить их сопротивление.

Шум измерения
Как и при любом типе измерения низкого напряжения, шум может быть проблемой. Шум создается внутри измерительных проводов, когда они находятся под воздействием изменяющегося магнитного поля или когда провода движутся в этом поле.Чтобы свести к минимуму этот эффект, провода следует делать максимально короткими, неподвижными и идеально защищенными. Cropico понимает, что существует множество практических ограничений для достижения этого идеала, и поэтому разработала схемы в своих омметрах, чтобы минимизировать и устранить эти эффекты. Термическая ЭДС Термоэдс в ИУ, вероятно, является самой большой причиной ошибок при измерениях низкого сопротивления. Сначала мы должны понять, что мы подразумеваем под термоэдс и как она генерируется. Термоэдс — это небольшие напряжения, которые генерируются, когда два разнородных металла соединяются вместе, образуя так называемый спай термопары.Термопара будет генерировать ЭДС в зависимости от материалов, используемых в соединении, и разницы температур между горячим и эталонным или холодным спаем.

Этот эффект термопары приведет к ошибкам в измерениях, если не будут приняты меры для компенсации и устранения этих термоэдс. Микроомметры и миллиомметры Cropico устраняют этот эффект, предлагая автоматический режим усреднения для измерения, который иногда называют методом переключения постоянного тока или среднего.Измерение выполняется с током, протекающим в прямом направлении, затем второе измерение выполняется с током в обратном направлении. Отображаемое значение является средним из этих двух измерений. Любая термоэдс в измерительной системе будет добавлена ​​к первому измерению и вычтена из второго; отображаемое результирующее среднее значение исключает или отменяет термоэдс из измерения. Этот метод дает наилучшие результаты для резистивных нагрузок, но не подходит для индуктивных образцов, таких как обмотки двигателя или трансформатора.В этих случаях омметр, вероятно, переключит направление тока до того, как индуктивность будет полностью насыщена, и правильное измеренное значение не будет достигнуто.

Измерение сопротивления соединения двух сборных шин

Неправильный тестовый ток
Всегда следует учитывать влияние измерительного тока на ИУ. Устройства с небольшой массой или изготовленные из материалов с высоким температурным коэффициентом, таких как тонкие жилы медной проволоки, необходимо измерять с минимальным доступным током, чтобы избежать нагрева.В этих случаях может потребоваться одиночный импульс тока, чтобы вызвать минимальный нагрев. Если ИУ подвержено влиянию термоэдс, тогда подходит метод коммутации тока, описанный ранее. Омметры серии Cropico DO5000 имеют выбираемые токи от 10% до 100% с шагом 1%, а также режим одиночного импульса и, следовательно, могут быть настроены для большинства приложений.

Влияние температуры
Важно знать, что сопротивление большинства материалов будет зависеть от их температуры.В зависимости от требуемой точности измерения может оказаться необходимым контролировать среду, в которой проводятся измерения, таким образом поддерживая постоянную температуру окружающей среды. Это будет иметь место при измерении эталонов сопротивления, которые измеряются в контролируемой лаборатории при 20 ° C или 23 ° C. Для измерений, когда невозможно контролировать температуру окружающей среды, можно использовать функцию ATC (автоматическая температурная компенсация). Датчик температуры, подключенный к омметру, измеряет температуру окружающей среды, и показание сопротивления корректируется до эталонной температуры 20 ° C.Два наиболее распространенных измеряемых материала — это медь и алюминий, и их температурные коэффициенты показаны напротив.

Температурный коэффициент меди (близкая к комнатной температуре) составляет +0,393% на ° C. Это означает, что при повышении температуры на 1 ° C сопротивление увеличится на 0,393%. Алюминий +0,4100% на ° C.


7. Выбор подходящего инструмента

ТАБЛИЦА 2

Типовая таблица технических характеристик прибора

Диапазон Разрешение Измерение тока Точность при 20 ° C ± 5 ° C, 1 год Температурный коэффициент / o C
60 Ом 10 мОм 1 мА ± (0.15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
6 Ом 1 мОм 10 мА ± (0,15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
600 мОм 100 мкОм 100 мА ± (0,15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
60 мОм 10 мкОм ± (0.15% показания + 0,05% полной шкалы) 40 ppm Rdg + 30 ppm FS
6 мОм 1 мкОм 10A ± (0,2% показания + 0,01% полной шкалы) 40 ppm Rdg + 30 ppm FS
600 мкОм 0,1 мкОм 10A ± (0,2% показания + 0,01% полной шкалы) 40 ppm Rdg + 250 ppm FS

Диапазон:
Максимально возможное значение при этой настройке

Разрешение:
Наименьшее число (цифра), отображаемое для этого диапазона

Измеряемый ток:
Номинальный ток, используемый этим диапазоном

Точность:
Погрешность измерения в диапазоне температур окружающей среды от 15 до 25 ° C

Температурный коэффициент:
Дополнительная возможная погрешность при температуре ниже 15 ° C и выше 25 ° C

При выборе лучшего инструмента для вашего применения следует учитывать следующее: —

Точность можно лучше описать как неопределенность измерения, которая представляет собой близость согласия между результатом измеренного значения и истинным значением.Обычно он выражается в двух частях, то есть в процентах от показаний плюс процент от полной шкалы. Заявление о точности должно включать применимый температурный диапазон, а также время, в течение которого точность будет оставаться в указанных пределах. Предупреждение: некоторые производители дают очень высокую точность, но это действительно только в течение короткого периода 30 или 90 дней. Все омметры Cropico указывают точность на полный год.

Разрешение — это наименьшее приращение, которое будет отображать измерительный прибор.Следует отметить, что для достижения высокой точности измерения необходимо достаточно высокое разрешение, но высокое разрешение само по себе не означает, что измерение имеет высокую точность.

Пример: Для измерения 1 Ом с точностью 0,01% (± 0,0001) требуется, чтобы измерение отображалось с минимальным разрешением 100 мкОм (1.0001 Ом).

Измеренное значение также может отображаться с очень высоким разрешением, но с низкой точностью, т.е. 1 Ом измеряется с точностью до 1%, но разрешение 100 мкОм будет отображаться как 1.0001 Ом. Единственными значимыми цифрами будут 1.0100, последние две цифры показывают только колебания измеренных значений. Эти колебания могут вводить в заблуждение и подчеркивать любую нестабильность ИУ. Следует выбрать подходящее разрешение, чтобы обеспечить комфортное чтение с дисплея.

Измерение Длина шкалы
Цифровые измерительные приборы отображают измеренное значение с помощью дисплеев с максимальным счетом, часто 1999 (иногда обозначается цифрой 3 Ом). Это означает, что максимальное отображаемое значение — 1999 год, а наименьшее разрешение — 1 цифра в 1999 году.При измерении 1 Ом на дисплее отобразится 1.000, разрешение 0,001 мОм. Если мы хотим измерить 2 Ом, нам нужно будет выбрать более высокий диапазон 19,99 Ом полной шкалы, и значение будет отображаться как 2,00 Ом, разрешение 0,01 Ом. Таким образом, вы можете видеть, что желательно иметь большую длину шкалы, чем традиционная шкала 1999 года. Кропикоомметры предлагают длину шкалы до 6000 отсчетов, что дает отображаемое значение 2,000 с разрешением 0,001 Ом.

Выбор диапазона
Выбор диапазона может быть ручным или автоматическим.Хотя автоматический выбор диапазона может быть очень полезным, когда значение Rx неизвестно, измерение занимает больше времени, поскольку прибору необходимо найти правильный диапазон. Для измерений на нескольких одинаковых образцах лучше выбирать диапазон вручную. В дополнение к этому, различные диапазоны инструментов будут измерять с разными токами, которые могут не подходить для тестируемого устройства. При измерении индуктивных образцов, таких как двигатели или трансформаторы, измеренное значение увеличивается по мере насыщения индуктивности до достижения конечного значения.В этих приложениях не следует использовать автоматический выбор диапазона, поскольку при изменении диапазонов измерительный ток прерывается, и его величина также может быть изменена, а окончательное устойчивое показание вряд ли будет достигнуто.

Длина шкалы 1,999 19,99 2.000 20,00 3.000 30,00 4.000 40,000
Показание дисплея
Измеренные значения 1.000 1.000 1.000 1.000 1.000
2.000 Диапазон до 2,00 2.000 2.000 2.000
3.000 Диапазон до 3.00 Диапазон до 3,00 3.000 3.000
4.000 Диапазон до 4,00 Диапазон до 4,00 Диапазон до 4,00 4.000

Температурный коэффициент
Температурный коэффициент измерительного прибора важен, поскольку он может существенно повлиять на точность измерения.Измерительные приборы обычно калибруются при температуре окружающей среды 20 или 23 °. Температурный коэффициент показывает, как на точность измерения влияют колебания температуры окружающей среды.

Величина и режим тока
Выбор прибора с соответствующим измерительным током для конкретного применения очень важен. Например, если нужно измерить тонкую проволоку, то сильный измерительный ток нагреет проволоку и изменит ее значение сопротивления. Медный провод имеет температурный коэффициент 4% на ° C при температуре окружающей среды, поэтому для провода с сопротивлением 1 Ом повышение температуры на 10 ° C увеличит его значение до 10 x 0.004 = 0,04 Ом. Однако в некоторых приложениях используются более высокие токи.

Режим измерения тока также может иметь значение. Опять же, при измерении тонких проводов короткий измерительный импульс тока, а не постоянный ток, минимизирует эффект нагрева. Переключаемый режим измерения постоянного тока также может быть подходящим для устранения ошибок термоэдс, но для измерения обмоток двигателя или трансформаторов импульс тока или переключаемый постоянный ток не подходят. Постоянный ток необходим для насыщения индуктивности и получения правильного измеренного значения.Автоматическая компенсация температуры При измерении материалов с высоким температурным коэффициентом, таких как медь, значение сопротивления будет увеличиваться с увеличением температуры. Измерения, проведенные при температуре окружающей среды 20 ° C, будут на 0,4% ниже, чем измерения при 30 ° C. Это может ввести в заблуждение при попытке сравнить значения в целях контроля качества. Чтобы избежать этого, некоторые омметры снабжены автоматической температурной компенсацией (ATC). Температура окружающей среды измеряется датчиком температуры, а отображаемое значение сопротивления корректируется с учетом изменений температуры, принимая показания до 20 ° C.

Скорость измерения
Скорость измерения обычно не слишком важна, и большинство омметров будут выполнять измерения примерно со скоростью 1 показание в секунду, но в автоматизированных процессах, таких как выбор компонентов и тестирование производственной линии, высокая скорость измерения, до 50 измерений в секунду , может быть желательно. Конечно, при измерении на этих скоростях омметром необходимо дистанционно управлять с помощью компьютера или интерфейсов ПЛК.

Удаленные подключения
Для удаленного подключения может потребоваться интерфейс IEEE-488, RS232 или PLC.Интерфейс IEEE-488 — это параллельный порт для передачи 8 бит (1 байт) информации за один раз по 8 проводам. Его скорость передачи выше, чем у RS232, но длина соединительного кабеля ограничена до 20 метров.

Интерфейс RS232 — это последовательный порт для передачи данных в последовательном битовом формате. RS232 имеет более низкую скорость передачи, чем IEEE-488, и требует всего 3 линий для передачи данных, приема данных и заземления сигнала.

Интерфейс ПЛК позволяет осуществлять базовое дистанционное управление микрометром с помощью программируемого логического контроллера или аналогичного устройства.

Окружающая среда

Следует учитывать тип окружающей среды, в которой будет использоваться омметр. Нужен ли портативный блок? Должна ли конструкция быть достаточно прочной, чтобы выдерживать условия строительной площадки? В каком диапазоне температуры и влажности он должен работать?

Ознакомьтесь с ассортиментом Милломметров и Микрометров для получения дополнительной информации о нашей продукции.

Загрузите полное руководство в формате PDF, которое содержит все главы:

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ СКАЧАТЬ ПОЛНОЕ РУКОВОДСТВО

домашний эксперимент — Как измерить сопротивление отрезка провода?

Как отмечали другие, большая проблема заключается в том, чтобы сопротивление провода попадало в диапазон, в котором мультиметр может его точно измерить.Для этого достаточно просто сделать провода такими длинными и тонкими, как , чтобы увеличить сопротивление.

Тем не менее, еще одна вещь, которую вы можете сделать, — это повысить точность ваших измерений, например с помощью четырехконтактного считывания, также известного как измерение сопротивления Кельвина. Для этого вам нужно пропустить через провод ток и измерить как ток, так и падение напряжения на нем:


Источник изображения: All About Circuits vol. I, глава 8.9

Такое расположение позволяет исключить любые дополнительные источники сопротивления на пути тока, такие как контакты между выводами источника напряжения и проводом, из измерения сопротивления. Обратите внимание, что, хотя схема, показанная выше, включает в себя отдельные вольтметр и амперметр, вы также можете заменить амперметр на шунтирующий резистор с известным сопротивлением и измерить напряжение на нем, как в схемах, показанных в нижней части страницы, указанной выше. Это позволит вам проводить измерения, используя только один вольтметр.В качестве бонуса шунтирующий резистор также будет служить для ограничения тока в цепи.

Предупреждение: Никогда не подключайте источник напряжения, такой как аккумулятор или простой лабораторный источник питания, непосредственно через провод с низким сопротивлением. Это вызовет короткое замыкание, которое может вызвать перегрев провода или источника питания. Вместо этого всегда включайте резистор подходящего размера последовательно с источником питания, чтобы поддерживать ток на разумном уровне.

Для еще более точного измерения сопротивления вы можете настроить мостовую схему, подобную показанному здесь базовому мосту Уитстона:


Источник изображения: All About Circuits vol.I, глава 8.10

Такие схемы позволяют очень точно измерять сопротивление путем сравнения измеряемого сопротивления с резисторами известных значений. В частности, для измерения низких сопротивлений вы можете посмотреть схему двойного моста Кельвина, описанную ниже на связанной странице.

Четырехпроводное измерение сопротивления

Четырехпроводное измерение сопротивления

При простом измерении сопротивления измерительные провода и контактные сопротивления подключаются последовательно с образцом.

Измерительные провода обычно имеют сопротивление порядка Ом, но контактное сопротивление может находиться в диапазоне МОм или ГОм. В этих случаях часто используется 4-проводное измерение. Эквивалентная схема этого измерения показана ниже.

Через внешние контакты пропускается ток

А. Напряжение на клеммах источника тока \ (I (R_ {C1} + R_S + R_ {C2}) \), включает вклады двух контактных сопротивлений \ (R_ {C1} \) и \ (R_ {C1} \), а также сопротивления образца \ (R_S \).Напряжение на образце равно \ (V_S = IR_S \). Это напряжение вызывает протекание небольшого измерительного тока через вольтметр \ (I _ {\ text {mes}} = IR_S / (R_ {C3} + R_M + R {C4}) \). Здесь \ (R_M \) — внутреннее сопротивление вольтметра. Напряжение, которое показывает вольтметр, равно \ (V_M = \ frac {V_SR_M} {R_ {C3} + R_M + R_ {C4}} \). Хороший вольтметр будет иметь большое внутреннее сопротивление, поэтому \ (V_M \) будет примерно \ (V_S \). Если сопротивление контактов порядка \ (R_M \), возникнут проблемы с измерением.

Есть четыре терминала SMU, которые помечены как Hi, Sense-Hi, Lo и Sense-Lo. При 2-проводном измерении при постоянном токе ток поступает от Hi до Lo, а напряжение измеряется между Hi и Lo. При 2-проводном измерении при постоянном напряжении напряжение подается между Hi и Lo, и измеряется ток, протекающий между Hi и Lo. При 4-проводном измерении ток возникает между Hi и Lo, а напряжение измеряется между Sense-Hi и Sense-Lo. В нашей лаборатории используются четырехпроводные измерения для измерения сопротивления тонких пленок.Четыре подпружиненных пого штифта прижимаются к тонкой пленке с помощью микрометрического винта. Клеммы Hi и Lo подключены к двум внешним контактам pogo, а Sense-Hi и Sense-Lo подключены к двум внутренним контактам pogo.

В приведенном ниже коде Python используется источник Keithley для измерения сопротивления по 2-проводной схеме и для измерения сопротивления по 4-проводной схеме, а затем результаты сравниваются. Каждое из этих измерений повторяется 10 раз и вычисляется среднее значение и стандартное отклонение.

от KeithleyV15 импорт SMU26xx import numpy «» » Пример Четырехконтактное считывание (Vierleitermessung) с одним каналом Измеряются первые 2-проводные измерения с каналом A -> R_I + R_M Затем измеряется 4-проводное измерение с каналом А. Измеряется датчик R_M. ——————————- | | | — | ————— | | R_I | | | — | | | — | | | | | R_M ——- SMU_A ——- SMU_A | — | | А | напряжение | A_S | Смысл | ——- источник ——- провода | | | | —————————— А… Источник напряжения канала А SMU A_S … SMU Канал A считывающие провода для измерения R_M используются только в 4-проводном режиме R_M … Резистор, который вы хотите измерить R_I … Резистор, который мешает прямому измерению R_M в 2-проводном режиме В этом примере R_I моделирует возможные сопротивления проводов и контактов, которые мешают прямому измерение Р_М. Используя четырехконтактное считывание (Vierleitermessung) с 4-проводным режимом, провод и контакт сопротивления игнорируются, и измеряется только R_M.Эта установка используется для измерения электрического сопротивления в резистор, который измеряется, имеет сопротивление в диапазоне сопротивлений выводов и контактов или когда очень необходимо точное измерение. При 2-проводном измерении будет измерена последовательная цепь R_M + R_I (+ сопротивление проводов и контактов). 4-проводное измерение будет измерять R_M «» » # Подключиться к Sourcemeter sm = SMU26xx («TCPIP0 :: 129.27.158.41 :: inst0 :: INSTR») # Выберите канал, который подключен smu = см.get_channel (см. CHANNEL_A) #smu = sm.get_channel (sm.CHANNEL_B) «» «Определите ток для обоих измерений. Предел тока для всех измерений составляет 10 * ток.» «» «» «Ток должен быть настолько низким, чтобы измеряемое напряжение было меньше 20 В !!!!» «» ток = 1e-5 R2wire = [] R2wire_cvoltage = [] R4wire = [] для i в диапазоне (0,10): «» «Настройте канал A для 2-проводного измерения» «» # сбросить на настройки по умолчанию smu.перезагрузить() # установить режим считывания на локальный (2-проводный) — это не обязательно, если вы предварительно сбросили канал smu.set_sense_2wire () # установить режим работы и что будет отображаться на дисплее smu.set_mode_current_source () smu.display_resistance () # определить начальные параметры для канала A smu.set_voltage_range (20) smu.set_voltage_limit (20) smu.set_voltage (0) smu.set_current_range (текущий * 10) smu.set_current_limit (текущий * 10) smu.set_current (0) «» «Выполните 2-проводное измерение» «» # включить выходы smu.enable_output () # установить текущий smu.set_current (текущий) # измерить ток и напряжение current2wire = smu.measure_current () Voltage2wire = smu.measure_voltage () # отключить выходы smu.disable_output () # ————————————————- ———————————— «» «Настройте канал A для 2-проводного измерения с постоянным напряжением» «» # сбросить на настройки по умолчанию smu.перезагрузить() # установить режим считывания на локальный (2-проводный) — это не обязательно, если вы предварительно сбросили канал # smu.set_sense_2wire () # установить режим работы и что будет отображаться на дисплее smu.set_mode_voltage_source () smu.display_resistance () # определить начальные параметры для канала A smu.set_voltage_range (20) smu.set_voltage_limit (20) smu.set_voltage (0) smu.set_current_range (текущий * 10) smu.set_current_limit (текущий * 10) smu.set_current (0) «» «Выполните 2-проводное измерение, подав постоянное напряжение» «» # включить выходы smu.enable_output () # установить напряжение smu.set_voltage (20) # измерить ток и напряжение current2wire_cvoltage = smu.measure_current () Voltage2wire_cvoltage = smu.measure_voltage () # отключить выходы smu.disable_output () # ————————————————- ———————————- «» «Настройте канал A для 4-проводного измерения» «» # сбросить на настройки по умолчанию smu.перезагрузить() # установить режим работы и что будет отображаться на дисплее smu.set_mode_current_source () smu.display_resistance () # установить режим считывания на удаленный (4-проводный) smu.set_sense_4wire () # определить начальные параметры для канала A smu.set_voltage_range (20) smu.set_voltage_limit (20) smu.set_voltage (0) smu.set_current_range (текущий * 10) smu.set_current_limit (текущий * 10) smu.set_current (0) «» «Выполните 4-проводное измерение» «» # включить выходы smu.enable_output () # установить текущий # smu.set_current (текущий * (i% 2)) smu.set_current (текущий) # измерить ток и напряжение current4wire = smu.measure_current () Voltage4wire = smu.measure_voltage () # отключить выходы smu.disable_output () «» «Вычислить и отобразить измерение» «» R2wire.добавить (напряжение2провод / ток2провод) R2wire_cvoltage.append (Voltage2wire_cvoltage / current2wire_cvoltage) R4wire.append (Voltage4wire / current4wire) print («Цикл:» + str (i)) print («Voltage 2-Wire =» + str (Voltage2wire) + «. Current 2-Wire =» + str (current2wire)) » print («Voltage 2-Wire Const. Voltage =» + str (Voltage2wire_cvoltage) + «. Current 2-Wire =» + str (current2wire_cvoltage)) print («Voltage 4-Wire =« + str (Voltage4wire) + ». Current 4-Wire =« + str (current4wire)) » print («Сопротивление, измеренное в 2-проводном режиме, равно» + str (R2wire [i] / 1e6) + «МОм») print («Сопротивление, измеренное в 2-проводном режиме с постоянным напряжением, равно» + str (R2wire_cvoltage [i] / 1e6) + «МОм») print («Сопротивление, измеренное в 4-проводном режиме, равно» + str (R4wire [i] / 1e6) + «МОм») print («\ n \ n \ nResistance 2-wire mode =» + str (numpy.среднее (R2wire) / 1e6) + «+/-» + str (numpy.std (R2wire) / 1e6) + «MOhm») print («2-проводной режим сопротивления с постоянным напряжением =» + str (numpy.mean (R2wire_cvoltage) / 1e6) + «+/-» + str (numpy.std (R2wire_cvoltage) / 1e6) + «MOhm») print («4-проводной режим сопротивления =» + str (numpy.mean (R4wire) / 1e6) + «+/-» + str (numpy.std (R4wire) / 1e6) + «MOhm») «» «Отключить от SMU» «» # сбросить SMU smu.reset () # отключаемся от SMU sm.disconnect ()
four-terminal_sensing_SenseMode.ру

Измерения в четырех точках на тонкой пленке

Когда токовый контакт помещается на тонкую проводящую пленку с однородным удельным сопротивлением ρ и в этот контакт подается ток I , ток распространяется радиально, и плотность тока вокруг контакта составляет

$$ \ vec {j} = \ frac {I} {2 \ pi tr} \ hat {r}. $$

Здесь t — толщина пленки. Если два токовых контакта размещены на тонкой пленке и ток I 12 вводится в поверхность в позиции r 1 , когда он извлекается из позиции r 2 , то токи просто складываются и создается следующий дипольный узор.2 \ вправо). $$

Выражение для удельного сопротивления:

$$ \ rho = \ frac {4 \ pi t V_ {43}} {I_ {12} (l_ {31} -l_ {32} -l_ {41} + l_ {42})}. $$

Иногда толщина проводящей пленки точно неизвестна. В этом случае дано сопротивление листа R квадрат . Сопротивление листа — это сопротивление квадрата пленки.

$$ R _ {\ text {square}} = \ frac {\ rho l} {wt} = \ frac {\ rho} {t} = \ frac {4 \ pi V_ {43}} {I_ {12} (l_ {31} -l_ {32} -l_ {41} + l_ {42})}.$$

Размер квадрата не имеет значения, потому что l = w , и эти факторы сокращаются в выражении для R квадрат .

Если толщина t неизвестна, оставьте текстовое поле t пустым, и будет рассчитано только сопротивление листа.

Формула сопротивления листа принимает простую форму, если четыре контакта расположены на прямой линии и на равном расстоянии друг от друга.Если ток проходит между внутренними контактами и напряжение измеряется между внешними счетчиками (или ток проходит между внешними контактами, а напряжение измеряется между внутренними контактами), сопротивление листа составляет

$$ R _ {\ text {square}} = \ frac {\ pi V} {\ ln (2) I} \, \, \ Omega /\square. 2} \ hat {r}.{-1}. $$

Формула для удельного сопротивления принимает простую форму, если четыре контакта расположены на прямой линии и расположены на одинаковом расстоянии \ (a \) друг от друга. Если между внешними контактами подается ток, а напряжение измеряется между внутренними счетчиками, удельное сопротивление составляет

. $$ \ rho = \ frac {2 \ pi aV} {I} \, \, \ Omega \ text {m}. $$

Эта формула верна, если четыре контакта находятся далеко от краев пленки и толщина пленки \ (t \) намного больше, чем расстояние между контактами \ (t>> a \).{-1} \, \, \ Omega \ text {m}. $$


4-проводное измерение сопротивления — Cimbian UK

Описание

4-проводное измерение для повышения точности даже при использовании длинных переходных кабелей.

Эффект наблюдателя в основном говорит о том, что простое действие по измерению чего-либо изменит измеряемую «вещь», и электроника, безусловно, так и есть. Здесь может помочь 4-проводное измерение.

Чтобы измерить целостность кабеля, нам нужно пропустить через него измерительный ток, и закон Ома говорит нам, что это создаст разницу напряжений между любым концом кабеля, которая зависит от протекающего тока и сопротивления кабеля.Затем мы можем измерить и рассчитать сопротивление кабеля, используя: R = V / I.

В большинстве приложений это не проблема; однако, если соединительные провода (тестовые адаптеры) к тестовой точке кабеля (разъемы) относительно длинные по сравнению с тестируемым кабелем, разницы напряжений на тестовых адаптерах будет достаточно, чтобы повлиять на наши результаты.

Итак, как этого избежать?
  1. Используйте короткие тестовые переходные провода
  2. Используйте провода испытательного адаптера с низким сопротивлением
  3. Минимизируйте количество последовательных подключений в тестовых адаптерах
  4. Использовать 4-проводное измерение (измерение Кельвина)

1, 2 и 3 (см. Выше) должны быть частью любой стандартной практики создания тестовых адаптеров.Срезание углов при сборке любых адаптеров — рецепт ненадежных измерений; однако № 4 (см. выше) требует другого мышления и тестового прибора, способного выполнять 4-проводные измерения, такого как CableEye HVX.

Система, в которой не используется 4-проводное измерение, не может автоматически исключить сопротивление проводки тестового адаптера, поэтому оно либо будет включено в общее измерение, либо будет математически вычтено сопротивление тестовых адаптеров перед отображением результата.

4-проводная измерительная система, или система измерения Кельвина, использует набор проводов, подключенных параллельно к проводам тестового адаптера для конкретной цели электрического устранения сопротивления проводки тестового адаптера.Это может быть достигнуто несколькими способами, но, в основном, это обеспечивает подключение к контрольным точкам с высоким импедансом, что позволяет использовать смещение напряжения. В случае CableEye HVX этот высокий импеданс позволяет системе измерять фактическое напряжение на любом конце проверяемого кабеля без чрезмерного влияния на приложенное испытательное напряжение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *