Защитное зануление: Упс. Вы не туда попали!

Содержание

Что такое защитное зануление — схема и принцип работы

Зануление представляет собой специальное подключение открытых металлических частей электрооборудования (электроустановок) к нейтрали. Это относится к металлическим не токоведущим частям оборудования, которые в нормальном (рабочем) режиме не находятся (и не должны находиться) под напряжением. Нейтраль, с которой происходит соединение, должна быть глухо заземлена.

В трёхфазных электрических сетях – это нейтраль генератора или силового трансформатора, в однофазной сети – это глухозаземлённый вывод источника питания.

Нулевым защитным проводником (не путать с нулевым рабочим проводником) является такой проводник, который соединяет металлические занулённые части электрооборудования с глухозаземлённой нейтралью, идущей от генератора или питающего силового трансформатора.

Цель защитного зануления – обеспечить электрическую безопасность в случае короткого замыкания на металлический корпус электрооборудования или электроустановки.

Принцип зануления

Защитное зануление работает следующим образом. Если при поданном электрическом питании происходит попадание фазы (случайное попадание или пробой изоляции фазного проводника) на металлический корпус с занулением, то возникает короткое замыкание, резко увеличивается значение электрического тока и срабатывает аппарат защиты (автоматический выключатель) или перегорает плавкая вставка защитного предохранителя, тем самым обесточивая электрооборудование или электроустановку.

Сопротивление защитного нулевого проводника должно быть очень низким. Это необходимо для того, чтобы обеспечить уровень тока короткого замыкания, достаточный для действия защиты. Т.е. значение тока к.з. должно быть достаточным для того, чтобы сработал защитный аппарат.

Если электрооборудование просто заземлить, то, например, в случае пробоя фазы на корпус ток короткого замыкания может быть недостаточным для того, чтобы сработал автоматический выключатель или перегорела плавкая вставка предохранителя.

Ввиду того, что нейтраль заземлена на генераторе или трансформаторе, благодаря защитному занулению обеспечивается достаточно малое напряжение прикосновения на корпусе. Т.е. защитное зануление можно считать своего рода разновидностью заземления.

Видео — Зануление и заземление — в чем разница?

Схемы защитного зануления

Существует несколько схем, по которым выполняется защитное зануление.

Система TN-C

Достаточно простая система, по которой выполняется защитное зануление. В ней нулевой проводник N и защитный проводник PE по всей длине объединены в один общий проводник PEN. Для реализации защитного зануления по системе TN-C необходимо соблюдать очень высокие требования к системе уравнивания потенциалов, а также к размеру поперечного сечения совмещённого PEN-проводника.

Зануление по системе TN-C применяется в трёхфазных электрических сетях, а в однофазных сетях такое зануление категорически запрещено.

Система TN-C-S

Данная система представляет собой соединённые N и PE проводники в части сети, начиная от электрического источника питания. По данной системе допускается зануление электрооборудования в однофазных сетях.

Область применения защитного зануления

Защитное зануление применяется в однофазных и трёхфазных сетях переменного тока до 1кВ. Сеть должна быть с глухозаземлённой нейтралью.

Проверка эффективности защитного зануления

Суть защитного зануления заключается в том, чтобы в случае короткого замыкания фазы на корпус электрооборудования произошло автоматическое отключение повреждённого участка цепи. Для того чтобы проверить на сколько эффективно выполнено защитное зануление, необходимо измерить сопротивление петли фаза-ноль в самой удалённой от источника питания точке. Это позволит определить, сработает ли аппарат защиты в случае однофазного к.з. на корпус.

Сопротивление петли фаза-ноль измеряется при помощи специальных измерительных приборов. Приборы для измерения петли фаза-ноль имеют два щупа. При измерении один щуп подключается к действующей фазе, а второй – к занулённой части электрооборудования.

В результате замера выясняется значение сопротивления петли фаза-ноль. Зная величину измеренного сопротивления и значение питающего напряжения, по формуле закона Ома для участка цепи можно рассчитать ток однофазного короткого замыкания, расчётное значение которого должно быть больше (или равно) тока срабатывания защитного устройства.

Допустим, для защиты цепи от токовых перегрузок и от коротких замыканий установлен автоматический выключатель, ток мгновенного срабатывания которого равен 100А. Измеренное значение сопротивления петли фаза-ноль равно 2 Ом, фазное напряжение в сети равно стандартному  значению 220В.

Рассчитываем значение тока однофазного короткого замыкания. По закону Ома I = U/R = 220В/2Ом = 110А.

Т.к. расчётный ток к.з. больше чем ток мгновенного срабатывания (отсечки) автоматического выключателя, то защитное зануление будет эффективным. Если бы расчетный ток к.з. получился меньше тока мгновенного срабатывания автомата, то для эффективности защитного зануления пришлось бы или менять автоматический выключатель на устройство с меньшим током срабатывания, или искать решение по уменьшению сопротивления петли фаза-ноль.

Очень часто в расчётах ток срабатывания автоматического выключателя умножается на так называемый коэффициент надёжности Кн или коэффициент запаса. Дело в том, что отсечка автомата не всегда соответствует указанному значению, т.е. может быть некоторая погрешность, для этого и вводится в расчёты указанный коэффициент. Для старых автоматов Кн может равняться, например, 1,25 или 1,4. Для новых современных автоматов он может быть равен 1,1. Это связано с тем, что новые аппараты защиты работают более точно.

Что такое зануление?

 

1. Описание

Сегодня нашу жизнь трудно представить без ежедневной эксплуатации всевозможных электрических приборов. Однако, практическое использование тока небезопасно без защитных систем. Возможны случаи, когда защитные устройства (пробки, автоматы и др.) могут не сработать, в результате чего происходит повреждение внутренней изоляции и возникает повышенное напряжение на металлическом корпусе оборудования. Для защиты человека от возможного поражения электрическим током в процессе эксплуатации электроприборов и бытовой техники, разработаны всевозможные защитные мероприятия, к числу которых относится и зануление. Данная статья написана с целью объяснить читателю, в чём заключается особенность зануления, как способа защиты электросетей, в каких случаях применятся и чем отличается от защитного заземления.

Зануление используют для обеспечения электробезопасности систем с PEN, PE или N проводниками. К ним относят сети с глухозаземленной нейтралью: TN-C, TN-S и TN-C-S. Основное различие в организации зануления для указанных систем состоит в схеме соединения нулевых защитных и рабочих проводников.

Система зануления TN-C

Система зануления TN-C на сегодняшний день относится к устаревшей, так как преобладает в зданиях старого жилого фонда. Для нее характерно наличие совмещенного по всей длине нулевого защитного и нулевого рабочего проводника PEN. Используется для электроснабжения в трехфазных сетях. Запрещена для групповых и распределительных однофазных сетей. Данная система достаточно проста в организации, однако не обеспечивает достаточного уровня электробезопасности, что делает невозможным ее применение при строительстве новых зданий.

Система зануления TN-C-S

Представляет собой улучшенный вариант системы зануления TN-C для обеспечения электробезопасности в однофазных сетях. В точке разветвления трёхфазной линии на однофазные совмещенный PEN-проводник разделяют на PE- и N-проводники, подводя их к однофазным потребителям. Данная система зануления, при относительно небольшом удорожании, отличается более высоким уровнем безопасности.

Система зануления TN-S

Считается наиболее совершенной и безопасной схемой зануления. Принцип действия основан на разделении по всей длине нулевого защитного и нулевого рабочего проводников. К нулевому защитному проводнику PE присоединяют все металлические элементы электроустановки. Во избежание повторного заземления устраивают трансформаторную подстанцию, имеющую основное заземление.

Электробезопасность при занулении

Используя схему защитного зануления важно учитывать, что ток при коротком замыкании должен достигать значения, достаточного для срабатывания электромагнитного расцепителя автоматического выключателя или плавления вставки предохранителя. В противном случае ток замыкания свободно будет протекать по электрической цепи, что приведет к увеличению падения напряжения на каждом элементе электрической цепи и на всех зануленных элементах электроустановки до величины, при которой вероятность поражения током от корпуса прибора многократно возрастет. Получается, что надежность системы зануления определяется по большей части надежностью используемого нулевого защитного проводника, к которому соответственно предъявляют повышенные требования см. пункты 1.7.121 – 1.7.126 ПУЭ-7. Тщательно проложенный нулевой провод должен отличаться окраской в виде желтых полос по зеленому фону. Кроме того, необходимо постоянно осуществлять контроль за исправностью его состояния. К нулевому проводу запрещается монтировать средства защиты электроустановок, которые при срабатывании могут привести к его повреждению. Соединения нулевых проводов между собой и с металлическими элементами электроустановки, доступными для прикосновения пользователям, должны гарантировать надежный контакт и иметь возможность для осмотра см. пункт 1.7.39, 1.7.40 ПУЭ-7. Значение сопротивления в болтовом соединении с частями электроустановки не должно превышать 0,1 Ом. Контроль за сопротивлением петли “фаза-нуль» осуществляют на этапе приемо-сдаточных работ, при капитальном ремонте и реконструкции сети, а так же в установленные в нормативно-технической документации сроки. Измерения в отключенной электроустановке проводят с помощью вольтметра-амперметра. Кроме того, постоянному контролю подлежит значение сопротивления заземления нейтрали и повторных заземлителей, зависимость времени действия автоматических устройств защиты от тока короткого замыкания.

Для уменьшения удара током, в случае обрыва нулевого провода, рекомендуют выполнять повторные заземления сопротивлением не более 30 Ом через каждые 200 м линии и опор, для чего преимущественно используют естественные заземлители.

2. Нормирование зануления

Технические требования к организации систем защитного зануления определены следующими документами:

  • Правила устройства электроустановок (ПУЭ), глава 1.7,
  • ГОСТ Р 50571.5.54-2013 (пункт 543),
  • ГОСТ 12.1.030-81 (пункт 7).

Механизм зануления основан на автоматическом отключении поврежденного участка сети, время которого не должно превышать значений согласно пункту 1.7.79 ПУЭ-7.

Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение Uo, В Время отключения, с
127 0,8
220 0,4
380 0,2
более 380 0,1

 

Нулевой рабочий и защитный проводники должны обладать сопротивлением, достаточным для срабатывания защиты. Активные и индуктивные сопротивления проводников образуют полное сопротивление петли «фаза-ноль». Активные сопротивления проводников зависят от их длины, удельного сопротивления материала и сечения. Индуктивные сопротивления различают для проводников из меди и стали. В стальном проводе они находятся в обратной зависимости от плотности тока и отношения периметра к площади сечения проводника. Индуктивные сопротивления стальных проводников выше, чем медных. В пункте 1.7.126 ПУЭ-7 установлены наименьшие площади поперечного сечения защитных проводников для случаев, когда они изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Наименьшие сечения защитных проводников

Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
S ≤ 16 S
16 < S ≤ 35 16
S > 35 S/2

 

Двухпроводная линия, состоящая из рабочего и защитного проводников, образует один большой виток, сопротивление взаимоиндукции которого (рекомендуемое значение для расчётов — 0,6 Ом/км) зависит от длины линии, диаметра проводов и расстояния между ними. Сопротивление заземления нейтрали источника питания не должно превышать 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока см. пункт 1.7.101 ПУЭ-7. Увеличение тока короткого замыкания достигают путем понижения сопротивления трансформатора и петли, для чего используют схему треугольник-звезда. Обмотки мощных трансформаторов и так имеют не большое сопротивление. Меньшее сопротивление линий зануления достигают выполняя их короткими и простыми, увеличивая сечение проводников, заменяя стальные проводники на изготовленные из цветных металлов с малым индуктивным сопротивлением. Наибольшее сопротивление нулевого защитного провода не должно превышать удвоенного сопротивления фазного провода. Сокращая расстояние между ними, снижают внешнее индуктивное сопротивление. Уменьшение сопротивления повторных заземлителей и приближение их к узлам нагрузки, способствует понижению силы тока на зануленных частях оборудования. Соединение с нулевым проводником всех заземленных металлические конструкций здания повышает потенциал поверхности пола, на котором стоит человек, и тем самым значительно снижает напряжение его прикосновения до величины, примерно равной от 0,1 до 0,01 Uз.

3. Применение зануления

Зануление выполняют на промышленных объектах, часто с расположенным в здании источником питания (генератором или трансформатором), для обеспечения безопасности эксплуатации электроустановок различного назначения и повышения помехоустойчивости при их работе. Согласно требованиям пункта 1.7.101 ПЭУ-7 зануление электроустановок следует выполнять: — при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех электроустановках; — при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока — только в помещениях с повышенной опасностью, особо опасных и в наружных установках. Все электрооборудование промышленных объектов выводят на общий контур заземления и соединяют между собой металлической заземляющей шиной. Полный перечень частей, подлежащих занулению, представлен в главе 1.7 Правил устройства электроустановок (ПУЭ-7). Там же приведен список электрооборудования, преднамеренное зануление которого не требуется. Для электрозащиты объектов жилого фонда зануления практически не применяют. В новостройках заземление организованно централизованно. Современные электроприборы имеют вилку с тремя контактами. Один из контактов подключен к корпусу. Заземление для отдельно взятой квартиры состоит в присоединении к заземлителям корпусов и частей бытовых приборов. Потребность в занулении в таком случае отпадает. Дома старого жилого фонда, как правило, подключенные по системе TNC, могут и вовсе не иметь заземления. Модернизацией электросетей подобных домов должна заниматься специализированная электротехническая компания. Однако, зачастую сами жильцы таких домов прибегают к обустройству запрещенного в данном случае зануления, что является совсем не безопасным способом электрозащиты для жилого сектора. Требования к организации системы защитного зануления, как уже говорилось, определены в нормативных документах. Однако в процессе реализации данного способа защиты электросетей, нередко допускаются ошибки, препятствующие его прямому назначению. Ошибочно мнение о том, что лучше выполнять заземление на отдельный от нулевого проводника контур, ввиду отсутствия сопротивление длинного PEN-проводника от электроприбора до заземлителя подстанции. Однако на деле, сопротивление заземления оказывается гораздо большим, чем у длинного провода. При попадании фазы на заземлённый указанным способом корпус установки, ток замыкания может быть недостаточным для срабатывания автоматических средств защиты электросети. В данном случае напряжение на корпусе достигает опасной для пользователя величины. Даже при применении автоматического выключателя небольшого номинала, не удается обеспечить требуемое ПУЭ время автоматического отключения повреждённой линии от сети.

4. Отличие зануления от заземления

По своему назначению заземление и зануление во многом похожи – обеспечивают защиту пользователя электроустановки от поражения электрическим током. Однако способы и принцип организации такой защиты различны. Обеспечение электробезопасности сетей с использованием системы зануления подробно рассмотрено в предыдущих разделах статьи. Действие защитного заземления основано на принудительном соединении электроустановок с землей с целью снижения напряжения прикосновения до безопасной величины. Избыточный ток, поступающий на корпус электроустановки, отводится напрямую в землю (по заземляющей части). В качестве заземлителя устанавливают заземляющий контур треугольной конфигурации, сопротивление которого должно быть меньше, чем на остальных участках цепи. Отличие зануления от заземления состоит в следующем:

  • в способе обеспечения защиты электрических сетей: заземление -снижает напряжение прикосновения, зануление — отключает поврежденную электроустановку от сети, что практически исключает удар током и, с этой точки зрения, является более эффективным средством защиты для использования на промышленных предприятиях. Однако, если говорить о надежности защиты в процессе эксплуатации, то зануление уступает заземлению по причине большей вероятности повреждения целостности нулевого провода и возможного изменения сопротивления петли «фаза-нуль».
  • системами применения: заземление используют исключительно для защиты сетей с изолированной нейтралью (системы TT и IT), зануление — в сетях с глухо заземленной нейтралью TN-C, TN-S и TN-C-S, где присутствует PEN, PE или N проводники.
  • по типу обустройства: с точки зрения простоты и доступности обустройства, зануление представляет собой более сложный и трудоемкий способ защиты, требующий технических знаний и навыков для правильного определения способа и средней точки зануления. В случае защитного заземления соединяют отдельные детали токоприемника с землей, для чего достаточно применение инструкций к электроприборам.

5. Заключение

Роль зануления при работе с электроустановками на промышленных предприятиях трудно переоценить. Отключая поврежденную установку от сети в случае пробоя изоляции, зануление выступает надежным способом защиты человека от возможного поражения электрическим током. Для эффективного обеспечения электробезопасности, необходимо строгое соответствие конструкции элементов системы зануления рассмотренным нормативам, а так же тщательный и постоянный контроль за их состоянием. Использование зануления или заземления зависит от необходимого способа обеспечения защиты различных систем электрических сетей.


Смотрите также:


Смотрите также:

область применения и принцип работы

Любое электрооборудование, которое находится в работе (под напряжением) может иметь проводящие металлические части. А уверены ли Вы в том, что по этим частям не пройдет электрический ток, в случае, если изоляция повредится и произойдет короткое замыкание на корпус двигателя. Но бояться не надо, ведь для безопасности в таких случаях и изобрели защитное зануление (ЗЗ).

Защитное зануление – это преднамеренное соединение проводящих частей электроустановки, не находящихся под напряжением в нормальном режиме, с глухозаземленной нейтралью трансформатора или с заземленной точкой источника питания в случае с сетями постоянного тока.

Зануление в разных системах заземления

Рассмотрим зануление в системе TN, систем TT и IT коснемся в другом материале.

Система TN, где T означает, что нейтраль источника питания заземлена, а N – что открытые проводящие части присоединены к нейтрали источника через нулевые проводники.

Существует два нулевых проводника – это PE и N. PE – нулевой защитный проводник (желто-зеленый провод), N – нулевой рабочий проводник (черный провод).

PE – это и есть шина, провод зануления.

У системы TN есть три подсистемы – ТN-С, TN-S, TN-S-C.

Где C означает, что PE+N=PEN, то есть функции нулевого защитного и нулевого рабочего совмещены в одном проводе под названием PEN.

S означает, что PE // N, то есть нулевой защитный и нулевой рабочий на протяжении линии идут по разным проводам. Это самая дорогая и надежная система. Применяется в Великобритании.

S-C – на протяжении линии в одной части функции нулевого защитного и нулевого рабочего совмещены в одном проводе PEN, в другой части они разделены.

Зануление применяется в электрических сетях с глухозаземленной нейтралью постоянного и переменного тока напряжением до 1000В.

Принцип действия защитного зануления

Рассмотрим схематически принцип действия зануления на примере четырехпроводной сети с подключенной однофазной нагрузкой.

Ситуация следующая, фаза, в нашем случае L1 замкнулась в случае пробоя изоляции на корпус. Ток пошел по корпусу через провод зануления. Образовался контур, состоящий из фазы источника питания (трансформатора), цепи фазного и нулевого проводов. Этот контур еще называют петля «фаза-ноль».

Сопротивление петли «фаза-ноль» достаточно мало, вследствие чего, ток возрастает до аварийной величины, что в свою очередь вызывает срабатывание устройства защиты (автомата). После срабатывания автомата, поврежденная линия отключается. Время срабатывания защиты для отключения линии при КЗ на корпус в сетях до 1кВ составляет:

Номинальное фазное напряжение, В Время отключения, с
120 0,8
230 0,4
400 0,2
Более 400 0,1

Защитное зануление электроустановок, назначение, принцип действия, схема заземления

Автор Фома Бахтин На чтение 3 мин. Просмотров 7.3k. Опубликовано Обновлено

 

Зануление – это специально предусмотренное электрическое подключение открытых токопроводящих частей потребителей электроэнергии:

  • к нейтральной точке генератора (трансформатора) в сетях трехфазного тока,
  • к глухозаземленныму выводу сети однофазного напряжения,
  • к заземленной точке источника постоянного тока.

Такое подключение выполняется в целях обеспечения электробезопасности человека.

Для обеспечения подключения незащищенных от прикосновения токопроводящих частей электропотребителей к нейтральной точке источника электроэнергии предусмотрено применение нулевого защитного проводника.

Нулевой защитный проводник (обозначается PE – проводник для системы TN – S) – токопроводящая цепь, соединяющая открытые токопроводящие поверхности и глухозаземленную нейтральную точку на источнике питания в трехфазных сетях или заземленный вывод однофазной сети, или заземленную среднюю точку источника постоянного тока.

Следует различать понятия нулевого защитного проводника и нулевого рабочего или PEN – проводника. Рабочий нулевой проводник (обозначается, как N – проводник для системы TN – S) – это провод в электропотребителях напряжением до 1 кВ, применяемый для обеспечения электропитания, который соединен с глухозаземленным нейтральным выводом на генераторе или трансформаторе в сетях трехфазного тока, либо с глухозаземленной точкой на источнике однофазного тока, либо с глухозаземленным выводом на источнике в сети постоянного тока.

На практике допускается применение совмещенного (обозначается, как PEN – проводник для системы TN– C) нулевого защитного и нулевого рабочего проводника. Его роль выполняет цепь в электропотребителях напряжением до 1 кВ, совмещающая нулевой защитный и нулевой рабочий проводник. Использование зануления требуется для осуществления защиты человека от воздействия электрического тока при его прикосновении к токоведущим поверхностям за счет быстрого снижения напряжения на корпусе электропотребителя относительно земли, сопровождаемого быстрым отключением электроустановки от питающей сети

Зануление электроустановок

Обязательное защитное зануление необходимо выполнять на:

  • электроустановках напряжением питания до 1 кВ (трехфазные сети переменного тока, имеющие заземленную нейтраль). Чаще всего это сети переменного тока напряжением 380/220, реже – 660/380 В;
  • электроустановках напряжением питания до 1 кВ (однофазные сети переменного тока, имеющие заземленный вывод). Напряжение, как правило – 220 вольт;
  • электроустановках постоянного тока с напряжением до 1 кВ в сетях, имеющих заземленную среднюю точку источника.

Физически зануление осуществляется специальным проводом, имеющим надежный электрический контакт с открытыми токоведущими поверхностями электропотребителей.

Принцип действия защитного зануления

В случае замыкания фазного провода на корпус электропотребителя, имеющий зануление, возникает электрическая цепь тока с коротким замыканием (происходит замыкание фазного и нулевого защитного проводников). Появление тока короткого замыкания приводит к срабатыванию токовой защиты. Как следствие, происходит отключение такой электроустановки от электропитающей сети. Попутно, до наступления срабатывания автоматической токовой защиты обеспечивается снижение напряжения на поврежденном корпусе относительно земли. Это связано с наличием защитного действия повторного заземления на нулевом защитном проводнике и перераспределения напряжений в сети вследствие протекания тока в короткозамкнутой цепи.

Принципиальная схема зануления

Рассмотрим схему заземления:

Мы искренне надеемся, что наша статья помогла вам понять определение заземления, его назначение и принцип действия.

Зануление и заземление. В чем разница между ними?


Рабочее и защитное заземление


Зануление и заземление


понятие и особенности механизма работы системы

Открытие тока стало ознаменованием новой эры развития человечества. Представить комфортное существование современного человека без энергоносителей невозможно. Но новый вид энергии является надёжным слугой только в случаях полного неусыпного контроля. Во избежание негативных последствий применяют следующие меры обеспечения безопасности: защитное зануление, заземление и автоматические системы обесточивания сетей.

Понятие и особенности

Под занулением понимают подключение металлического корпуса и прочих деталей бытовой техники и промышленного оборудования, которые не должны находиться в рабочем состоянии под линией сетевого напряжения, к нулевому или нейтральному проводу системы подачи энергии. В одной из точек провод должен иметь глухое заземление.

Важным является отличие нейтрального защитного провода от нулевого провода основной питающей сети. Проводники совершенно различны. Сеть с трехфазовой подачей представляет собой нулевой провод, проходящий от устройств, генерирующих электроэнергию, или силовой трансформаторной подстанции. Однофазная имеет только прочно заземлённый провод.

Главное целевое назначение механизма — организация защиты людей от поражения электрическим током при возникновении короткого замыкания фазы сети на токопроводящие части установленного оборудования.

Принцип действия механизма

Наглядно объяснить действие зануления поможет представление следующей ситуации. Фаза основной питающей сети попадает на корпус электрического оборудования, что может произойти из-за пробоя изоляции или любого другого форс-мажорного обстоятельства. Если при этом токопроводящая часть устройства имеет организованное защитное зануление, произойдёт короткое замыкание.

В этом случае величина тока за долю секунды достигнет своего максимального значения и сработает система автоматической защиты. В ряде случаев может выгореть предохранитель. Само оборудование или бытовая техника будут обесточены. Это защитит человека от серьёзных поражений электричеством и станет препятствием к возникновению любых других негативных последствий.

Обязательное условие работы механизма — очень низкое значение сопротивления току у нейтрального проводника. Именно в этой ситуации ток замыкания поднимется до максимального, что станет причиной срабатывания защитной сетевой системы. Так как нейтраль обеспечен полным заземлением на трансформаторе или генераторе, зануление организует при прикосновении низкое напряжение на корпусе используемого прибора.

Схемы и системы защитного зануления

Выделяется несколько вариантов защиты оборудования при помощи механизма зануления металлических корпусов. Базовое рассмотрение предполагает изучение подключений к однофазной и трехфазной сети подачи энергии.

  1. Трехфазная сеть. Характеризуется простой схемой подключения, выполнить которую под силу каждому, кто знаком с элементарными основами электротехники. В этом случае защитная линия P E и нулевой провод N объединяются в единую шину — PEN. Подобная методика зануления носит название TN — C системы. Для реализации метода требуется тщательно соблюдать требования, предъявляемые к уравниванию электрических потенциалов и к площадям сечения объединённых проводников PEN. Правилами устройства электроустановок категорически запрещено использование системы для сети с подачей энергии по однофазной схеме.
  2. Однофазная сеть. Система TN — C — S существует для реализации зануления в 1-фазной сети. Согласно методу, линия PE и проводник N объединяются только в условиях ограничения участка подачи энергии, который начинается вблизи основного источника питания. Существующая система великолепно подходит однофазным сетям, но её использование при занулении электрического оборудования, функционирующего в трехфазной сети электрификации, недопустимо.

После того как будут выполнены работы по защите оборудования, требуется провести расчёт и проверку системы зануления. Работа предполагает использование специальных приборов и техники, поэтому доверить её следует только квалифицированному специалисту. После произведения замеров следует определить среднее сопротивление петли нейтраль-фаза. Его значение должно быть минимальным.

Следующим шагом, согласно физическому закону Ома, вычисляют ток короткого замыкания в момент попадания фазы сети на металлические корпуса приборов.

Оптимальное значение параметра должно превышать порог срабатывания автоматической системы обесточивания. В обратной ситуации потребуется их смена на технику с меньшими значениями порога срабатывания. Возможно выполнение мероприятий по понижению сопротивления петли нетраль-фаза.

Особенности зануления в квартире

Рядовой потребитель должен иметь представление о том, что следует и чего не следует делать в жилом помещении. Основными моментами являются:

  • Ограничить использование изделий, заземлённых через трубы. Как правило, это умывальники, металлические смесители и ванны.
  • При защитном занулении подобных изделий можно получить серьёзную травму из-за электрического тока в момент включения базовой бытовой техники.
  • Выровнять потенциалы используемых металлических предметов в ванной, туалете или на кухне поможет техника заземления.
  • В зоне ввода в квартиру, как правило, существует аппарат для коммутации как нуля, так и фазы, в виде пакетника или двухполюсного аппарата. Но следует быть осторожным. Коммутирование нулевого проводника, используемого как защитный, запрещено.
  • Занулять требуется каждый бытовой прибор. Проблема неактуальна для жителей новых домов. Она решена подведением нейтрали к розеткам. Помимо этого, качественные бытовые приборы оснащены вилкой с заземляющими контактами.
  • Для старых домов, где проводка выполнена по системе двух проводов, можно провести зануление при помощи отдельного провода от электрического щитка в квартире.
  • Важным является максимальное соблюдение техники безопасности. Любая работа должна проводиться на полностью обесточенном оборудовании.

В электрической сети движение электронов проходит по пути минимального сопротивления. Без принятия защитных мер ток может нанести серьёзный вред человеку, возможен даже летальный исход.

Электрическая энергия в критических ситуациях может воспламенять горючие вещества, что является прямым источником пожара. Но принятие мер по обеспечению безопасности (в частности, защитное зануление) поможет избежать негативных последствий.

Защитное зануление. Работа и устройство. Применение и особенности

Во всем мире используется защита, основанная на соединении нетоковедущих проводящих частей оборудования с землей и заземленной нейтралью источника. В России эта система называется защитное зануление. Защитное действие этой системы основано на принципе достижения нулевого напряжения на корпусе прибора, за счет многократного заземления и соединения нетоковедущих частей с нейтралью источника.

Несмотря на ряд недостатков, зануление продолжает служить основным электрозащитным средством во всем мире. Открытые части установки соединяют отдельным нулевым защитным проводником.

Зануление – соединение металлических частей электрооборудования с нулевым защитным проводом. Зануление служит мерой защиты от случайного попадания под напряжение.

Защитное зануление рассчитано на случай короткого замыкания. Распределение нагрузки на предприятии осуществляется равномерно, нулевой провод исполняет функции защиты. Ноль соединяется с корпусом электродвигателя. Когда происходит короткое замыкание, то возникает напряжение на корпусе электродвигателя.

При этом происходит срабатывание автоматического выключателя. При применении заземляющей шины промышленные электроустановки соединяются.

Принцип действия

Замыкание случается при касании подключенного к напряжению фазного провода на корпус прибора, который соединен с нулем. Возникает большая сила тока, срабатывают аппараты защиты, отключающие питание неисправного прибора.

Время срабатывания защиты и отключения неисправной линии по правилам не должно быть более 0,4 секунды. Для зануления можно применить третью неиспользуемую жилу в кабеле для 1-фазной сети питания.

Фаза и ноль должны быть с небольшой величиной сопротивления. Только тогда аппарат защиты отключит напряжение в установленное время. Чтобы было хорошее зануление необходимо обеспечить качественные контакты соединений.

Защитное зануление дает возможность создать быстрое выключение от сети неисправного питания. Вероятность удара током человека практически исчезает. Зануление считается одним из видов заземления.

Порядок зануления

Зануление для защиты в доме начинается с нейтрали, соединенной с заземленной нейтралью трансформатора.

Нейтраль с 3-фазной линией приходит в здание дома в шкаф ввода. Далее, она разветвляется по щиткам на разных этажах. От нее используется рабочий ноль, образующий 1-фазное напряжение. Ноль имеет название рабочего, так как он применяется для работы.

Зануление для защиты создается отдельным нулем в щитке. Ноль соединен с заземленной нейтралью. Нужно знать, что в схеме соединения ноля с нейтралью не должно быть аппаратов коммутации (рубильников, автоматов).

Как известно в цепях трехфазного переменного напряжения обмотка трансформатора может соединяться в треугольник и в звезду. Рассмотрим звезду. Звезда имеет нулевую точку, или нейтраль. Это та точка, в которой сумма всех трех напряжений сети будет равна нулю.

При такой схеме трансформатора могут быть две возможные схемы. Схема с изолированной нейтралью показана на нашем рисунке. Такая схема обычно используется при работе трехфазных систем, а также однофазных систем, но используется именно изолированная нейтраль.

Также есть еще глухозаземленная нейтраль.

Нейтраль трансформатора соединяется с землей. Эта схема может быть использована не только для работы в трехфазной или однофазной системе, но также для защитного зануления.

Схема состоит из переменного источника напряжения 220 В, его датчика напряжения, нагрузки, сопротивления, которое в нормальном состоянии отключено. Но когда возникает пробой изоляции при выполнении неправильного монтажа, на корпусе появляется напряжение. Измерим напряжение на нагрузке относительно земли. Рассмотрим схему на базе однофазного источника напряжения.

Мы заземляем нулевую точку. Делаем имитацию пробоя изоляции на корпус. На корпусе установилось напряжение, которое будет равно напряжению источника. При таком состоянии если прикоснуться к корпусу, то человека ударит током. Как избежать этой ситуации? Все очень просто. Используют схему защитного зануления, а именно, корпус соединяют с глухозаземленной нейтралью трансформатора. Напряжение на корпусе становится равным нулю.

Почему опасно защитное зануление в квартире

Его используют для защиты людей и животных от поражения электрическим током, а также для срабатывания защитной аппаратуры в случае возникновения утечки тока на землю. Возникает вопрос: если мы используем глухозаземленную нейтраль, то можно соединить точку защитного заземления с нейтралью?

Этого делать нельзя. По правилам это запрещено. Если при выполнении монтажных работ будут перепутаны местами фаза и ноль, а мы поставим перемычку для соединения заземления с нейтралью, получим следующую неприятную ситуацию. При подключении устройства к сети, корпус оказывается под напряжением относительно земли. Как гласит ПУЭ использование нулевого рабочего проводника в качестве защитного зануления категорически запрещено.

Для защитного зануления отводится специальная шина, которая будет соединена с заземляющим устройством или с глухозаземленной нейтралью. Все заземляющие провода подключаются к этой шине параллельно. Поэтому, не нужно ставить перемычки. А перед тем, как реализовывать защитное заземление или зануление нужно ознакомиться с правилами.

Некоторые специалисты делают заземление приборов перемычкой клеммы ноля в розетке на контакт защиты.
Такой способ запрещен.

На входе в квартиру устанавливают аппарат, служащий для подключения питания сети. Это может быть пакетный выключатель или автомат. Опасность самодельного заземления с помощью перемычки в том, что корпус устройства, подключенного к этой розетке, в случае повреждения изоляции нуля станет доступным напряжению фазы. А если оборвется провод нуля, то работа прибора прекратится. Возникнет ложная видимость провода, как обесточенного. Это опасно для жизни.

Такая розетка сделает много неприятностей, если в нее запитать стиральную машину. Если отгорит ноль, то стиральная машина может убить человека в случае прикосновения к ней.

Если человек принимает душ из электрического водонагревателя, а в это время нулевой провод в розетке отсоединится, то человека ударит током. Такое зануление очень опасно выполнять в квартире.

Применение зануления
Применяется в электроустановках до 1 кВ в:
  • Сетях постоянного тока со средней точкой заземления.
  • 1-фазных сетях с заземленным выводом.
  • 3-фазных сетях с заземленным нулем.

Защитное зануление служит для защиты от удара током. Если внутри электроприбора повредилась изоляция и корпус прибора оказался под током, то отреагирует защита и отключит сеть питания.

Образование тока КЗ возникает, если произошло замыкание нулевого и фазного провода на зануленный корпус. Для скорейшего отключения устройства применяют автоматы, предохранители, магнитные пускатели с защитой от перегрева, контакторы с реле.

Похожие темы:

Защитное зануление

Занулением является преднамеренное электрическое соединение всех металлических частей корпуса электроустановки, которые при неблагоприятных обстоятельствах могут оказаться под напряжением, с глухозаземленной нейтральной точкой в трехфазных сетях и с глухозаземленным вводом источника питания в однофазных сетях. При выполненном занулении открытых металлических частей электрооборудования замыкание фазы на корпус электроустановки сразу превращается в короткое замыкание, что влечет за собой срабатывание автоматов защиты. Следовательно, основной задачей зануления является своевременное отключение аварийного участка электроустановки.

При занулении корпуса электроустановки происходит понижение напряжения металлических частей оказавшихся под напряжением от действия электростатического или электромагнитного влияния других потребителей и т.п. что понижает вероятность поражения человека током.Если установить на линии УЗО оно сработает из-за появления тока утечки в цепи защитного зануления.

Следовательно, при занулении электроустановки происходит отключение всей электроустановки в случае короткого замыкания на корпус и понижение напряжения занулённых металлических частей оказавшихся под напряжением.

Проводник, которым производится соединение открытых токопроводящих частей оборудования с глухозаземленной нейтралью, является нулевым защитным проводником и его нельзя путать с нулевым рабочим проводником.

Различаются несколько систем зануления ТN-C, ТN-C-S и ТN-S.

Система зануления ТN-C.

В данной системе нулевой N и нулевой защитный РЕ совмещены по всей длине и обозначен буквами PEN.

Данная система зануления применяется, например, для асинхронных электродвигателей, а применение ее в однофазных сетях запрещено.

Система зануления ТN-C-S.

Данная система предназначена для применения в однофазных электроустановках и состоит из PEN проводника соединенного одной стороной с нейтралью питающего трансформатора, а на другой стороне, например в электрощите (где трехфазная линия разделяется на однофазные потребители) происходит разделение на N и PE проводники, идущие к однофазным потребителям.

Система зануления ТN-S.

Более совершенная и безопасная система, в которой нулевой и защитный проводники разделены по всей длине. Данная система исключает ее выход из строя в случае аварии или ошибки при монтаже электропроводки.

Материалы, близкие по теме:

Основы индивидуального защитного заземления

Методы индивидуального защитного заземления (PPGB) обеспечивают защиту от поражения электрическим током рабочих, работающих на обесточенном оборудовании. Если все сделано правильно, PPGB на сегодняшний день является наиболее эффективным средством защиты рабочих от поражения электрическим током. Однако, если все сделано неправильно, это может вызвать вспышки дуги невообразимой силы.

PPGB особенно важен для электриков, работающих с высоковольтным (HV) напряжением, поскольку оборудование может быть под напряжением вдали от рабочего места из-за ошибок переключения или индукции.Фактически, высоковольтные цепи могут наводить напряжение и ток на проводящие поверхности даже на расстоянии нескольких ярдов от проводников под напряжением.

Основной целью PPGB является быстрое срабатывание устройств защиты от сверхтоков (OCPD) при одновременном ограничении напряжения, действующему на рабочих, до безопасных уровней. Когда цепь была должным образом заземлена для защиты рабочих — и она случайно оказалась под напряжением, — напряжение в системе падает почти до нуля. Однако заземляющие кабели не могут выдерживать такой большой ток более доли секунды.Следовательно, жизни рабочих зависят от OCPD, которые защищают цепь (чтобы обесточить ее) до того, как заземляющие кабели расплавятся, и уровни напряжения вернутся к опасным уровням.

Оборудование PPGB

Этот тип оборудования фактически представляет собой систему соединений, в которой имеется ряд точек, в которых различные компоненты заземляющих кабелей должны подключаться к заземляемой системе и друг к другу. Жизненно важно понимать, что система заземления хороша ровно настолько, насколько надежно самое слабое соединение.Другими словами, наличие высококачественных заземляющих кабелей, но меньшего размера заземляющих головок сделает систему неэффективной для защиты рабочих. При выборе оборудования PPGB следует помнить ряд ключевых концепций, в том числе:

Заземляющие головки — Заземляющие головки — это единственное соединение между системой заземления и электрической цепью, в которой должны проводиться работы. Как и заземляющие кабели, заземляющие головки должны быть рассчитаны на то, чтобы выдерживать имеющийся ток короткого замыкания в течение всего периода замыкания.Данные в таблице Table определяют номинальные характеристики устойчивости заземляющих устройств одного производителя.

Заземляющие электроды — Заземляющие электроды являются другим концом системы заземления, поскольку электрод обеспечивает физический контакт с землей. Есть много разных способов подключения к земле. В распределительном устройстве питания в металлическом корпусе (MEPS) соединение с землей обычно осуществляется через шину заземления, которая представляет собой металлическую шину, которая, в свою очередь, подключена к другому заземляющему электроду.Необходимо позаботиться о том, чтобы заземляющая шина была надежно подключена к земле через эффективный заземляющий электрод.

Измерители напряжения — Перед установкой защитного заземления необходимо выполнить трехточечный тест любой цепи, подлежащей заземлению. Для этой задачи можно использовать несколько различных типов детекторов напряжения. Независимо от типа используемого тестера, главное помнить, что счетчик должен быть правильно рассчитан на напряжение системы, в которой он будет использоваться.

Заземляющие маты — Заземляющие маты используются в PPGB, чтобы подавать рабочим такой же потенциал (т. Е. Напряжение), что и оборудование, на котором они работают. Заземляющий коврик представляет собой брезент с вплетенными в него алюминиевыми нитями в виде перекрестной штриховки. Алюминий присоединяется к «узлу» на краю мата, что позволяет выполнить соединение, которое затем подключается к заземляющим проводам системы, в которой должны выполняться работы. Алюминий устанавливается только с одной стороны мата, поэтому очевидно, что эта сторона должна быть обращена вверх, чтобы рабочий стоял на алюминиевой решетке.

Заземляющие кабели — Заземляющие кабели обеспечивают путь с низким сопротивлением для прохождения тока короткого замыкания по правильно заземленной цепи. Жилы должны быть из многопроволочной меди и быть не менее 2 AWG. При выборе заземляющих кабелей в первую очередь следует учитывать их номинальную стойкость к току короткого замыкания и их длину. В таблице перечислены номинальные характеристики заземляющих кабелей типичных размеров.

Важный момент, который следует отметить в таблице, заключается в том, что номинальные характеристики устойчивости являются функцией продолжительности неисправности.Обратите внимание, что самая длинная указанная продолжительность составляет ½ секунды. Как обсуждалось ранее, энергия, выделяемая при электрическом повреждении, настолько велика, что электрическая система может выдержать ее только в течение доли секунды. Следовательно, следует по возможности избегать всего, что делается с OCPD, что может привести к задержке устранения неисправности. Например, некоторые рабочие устанавливают плавкие предохранители немного большего размера при устранении неисправностей в цепи, когда они подозревают, что причиной прерывания обслуживания была перегрузка.Однако, увеличив номинал предохранителя, они фактически увеличили величину тока, который будет протекать в случае повторного повреждения цепи — и продолжительность неисправности также увеличится. Комбинация увеличенных потоков тока с увеличенной продолжительностью может значительно превысить номинальные характеристики заземляющих кабелей, которые будут плавиться, в результате чего рабочие подвергаются опасности поражения электрическим током в цепи.

Последнее, о чем следует помнить при выборе заземляющих кабелей, — старайтесь, чтобы их длина была как можно короче.Когда в какой-либо цепи проходят сильноточные потоки, возникают сильные магнитные поля, которые заставляют кабели сильно вздрагивать в ответ на притягивающие или отталкивающие магнитные поля между фазовыми проводниками. Это колебательное движение может привести к тому, что заземляющие кабели будут перемещаться вперед и назад несколько раз за 1 секунду, что может привести к серьезным физическим травмам для любого, кто находится поблизости от кабелей.

Порядок установки и снятия

Основные этапы установки и снятия оборудования PPGB следующие:

  1. Обесточьте электрооборудование, отключив все возможных источников электричества от оборудования.

  2. Для высоковольтных систем необходимо обеспечить «визуальный разрыв» в цепи, чтобы рабочий мог визуализировать воздушный зазор в переключателях, используемых для изоляции цепи. Это может быть достигнуто либо путем размыкания переключателя со сплошными лезвиями, который можно визуализировать, «выкатывания» автоматического выключателя, отключив его от контакта с электрической шиной, либо любым другим способом, который надежно разделяет электрические контакты в устройстве изоляции энергии.

  3. Следуйте обычным процедурам блокировки / маркировки (LOTO) в соответствии с 29 CFR 1910.147 и 29 CFR 1910.269 (D&N).

  4. Требуется выполнить трехточечный тест с помощью чувствительных устройств измерения напряжения для проверки состояния нулевой энергии. Трехточечный тест состоит из тестирования тестера напряжения на известном источнике питания, чтобы убедиться, что он работает правильно (Тест № 1). Затем протестируйте цепь, на которой должны выполняться работы (Тест № 2). Наконец, протестируйте тестер напряжения на том же источнике питания, который использовался в тесте № 1, чтобы убедиться, что тестер все еще работает правильно (тест №3). Примеры чувствительных устройств для проверки напряжения включают в себя «бесконтактные» тестеры, такие как светящиеся палочки (похожие на световые ручки), тик-трассеры (они издают звук) или высоковольтные вольтметры с прямым считыванием.

  5. Одним из наиболее важных шагов в процессе заземления является правильная очистка проводов перед подключением к ним. Эта задача выполняется с помощью проволочной щетки, соединенной с изолированной палкой. Проволочные щетки бывают разных стилей, чтобы соответствовать разным типам оборудования, которое необходимо заземлить.Главное помнить, что вы должны удалить все окисления как с фазных проводов, так и с заземляющих электродов, прежде чем присоединять к ним заземляющие кабели.

  6. Как и при большинстве электромонтажных работ, заземляющие кабели необходимо устанавливать и снимать в определенном порядке. Всегда сначала подключайте заземленный конец заземляющего кабеля. Далее производим подключения к фазным проводам. По окончании работы снимите перемычки заземления в обратном порядке. Осторожно : Были случаи со смертельным исходом, когда рабочие пытались переместить или удалить заземляющие соединения, в то время как перемычки все еще были подключены к фазным проводам.

Кроме того, кабели следует прокладывать только в соответствующих точках электрической системы, чтобы обеспечить их надлежащую работу в случае подачи питания на оборудование. Многие несчастные случаи, связанные с вспышкой дуги, происходили, когда рабочие неправильно применяли заземляющие кабели и системы находились под напряжением.

Методы заземления также различаются в зависимости от типа систем, на которых выполняются работы. Например, процедура установки заземления на подстанции с открытыми воздушными проводниками сильно отличается от установки заземления в линейке MEPS на промышленном объекте.

Методы MEPS

Для установок MEPS необходимо использовать заземляющий мат, чтобы создать плоскость уравнивания потенциалов. Заземляющий мат специально сконструирован так, чтобы быть проводящим, а не изолятором, например, резиновым ковриком.Хотя заземляющий коврик защищает стоящего на нем работника, он представляет потенциальную опасность для любого, кто наступит на коврик или выйдет с него. Если система, к которой подключен заземляющий мат, окажется под напряжением, вероятно, будет существовать разность потенциалов (напряжений) между ковриком и землей в непосредственной близости от мата. Хотя вероятность того, что в систему будет подано напряжение, когда рабочий будет одной ногой на коврике, а другой — на земле, весьма мала, это заслуживает упоминания здесь, потому что это законная опасность.Достаточно сказать, что следует проявлять осторожность, чтобы не работать с заземленным оборудованием, если только рабочий не стоит полностью на заземляющем коврике.

Положение тела рабочего также важно, поэтому следует позаботиться о том, чтобы занять положение, в котором дверь ограждения защищает рабочего от дугового разряда (в случае его возникновения при установке площадки). Например, если дверь открывается влево, рабочий должен сначала установить заземление на крайний левый провод, затем заземлить центральный провод и, наконец, самый правый провод.Очевидно, процесс обратный, если дверь шкафа открывается вправо. На фотографии Фото выше показан рабочий, принимающий безопасное положение тела при установке защитного заземления на оборудование MEPS. На этом этапе необходимо понять несколько важных практических моментов.

  1. К системе небезопасно прикасаться, пока все трехфазные проводники не будут надежно соединены и заземлены.

  2. Заземляющие кабели должны быть проложены на полу так, чтобы рабочий мог поднимать их петлей, не касаясь проводов (по возможности).

  3. Соединение с нейтралью или заземляющим проводом никогда не должно удаляться до тех пор, пока заземляющие перемычки не будут удалены со всех трех фазных проводов / узлов.

Дополнительные рекомендации

Вот еще несколько рекомендаций, которые помогут повысить шансы безопасного выполнения PPGB в большинстве учреждений.

Убедитесь, что заземления устанавливают только квалифицированные электротехники. — Обычно электротехники должны пройти специальную подготовку под квалифицированным наблюдением, прежде чем им будет разрешено устанавливать заземление.Рабочие должны продемонстрировать профессиональное владение как техническими знаниями, так и надлежащими методами заземления, прежде чем им будет разрешено выступать в качестве ведущего человека на этом типе работы.

Проконсультируйтесь с исследованиями по анализу опасности вспышки дуги перед заземлением оборудования. — Исследования по анализу опасности вспышки дуги и на этикетках оборудования указаны значения SCC и уровни падающей энергии (тепла) в предполагаемом рабочем месте. Эта информация позволяет рабочему правильно выбрать размер заземляющих кабелей для выполняемой работы и носить огнестойкую одежду надлежащего уровня.

Используйте письменные контрольные списки для переключения / заземления высокого напряжения — Использование пошагового контрольного листа поможет обеспечить соблюдение правильной последовательности переключения и вести журнал установленных заземляющих кабелей, что в значительной степени препятствует рабочим случайное повторное включение ранее заземленных цепей.

Отключение реле повторного включения в цепях, которые необходимо заземлить. — В любой цепи, которая включает реле повторного включения, это реле должно быть отключено до того, как произойдет какое-либо переключение или заземление на соответствующем оборудовании.Реле повторного включения могут быть физически отключены на самом переключателе (в основном в воздушных установках или на подстанции), или реле может находиться внутри релейного дома подстанции вместе с другими реле.

При необходимости превышайте минимальные стандарты безопасности — Иногда целесообразно надевать резиновые перчатки высокого напряжения или принимать дополнительные меры безопасности даже после установки защитных покрытий.

Принять методологию «подумай дважды, действуй один раз» Опасности, связанные с заземлением показывает, как пропуск одного шага (т.е. невозможность снять показания напряжения) при заземлении может привести к летальному исходу. Совершенно очевидно, что высоковольтные работы сурово наказываются тем, кто не соблюдает полностью безопасные рабочие процедуры.

Используйте «систему напарника» при заземлении оборудования. — Возможно, целесообразно назначить бригаду из двух квалифицированных электриков для выполнения PPGB. Вторая пара глаз может уловить пропущенный шаг в процессе. Кроме того, второй человек может выступить в роли спасателя, если произойдет что-то непредвиденное.Второй человек также должен занять положение за пределами защиты от дугового разряда, чтобы не получить травму в случае вспышки дуги.

Использование методов PPGB для высоковольтных работ на сегодняшний день является наиболее эффективным средством защиты электромонтажников от поражения электрическим током. При правильной установке электромонтажники могут быть уверены, что они будут защищены, даже если схемы, на которых они работают, по какой-либо причине будут находиться под напряжением. Однако реальная опасность возникновения дугового разряда также связана с PPGB, поэтому только высококвалифицированные электротехники должны иметь право устанавливать временные заземления.

Колак — президент Praxis Corp., фирмы, специализирующейся на электротехнике и обучении по электробезопасности, расположенной в Грэнбери, штат Техас. С ним можно связаться по телефону [email protected]


Боковая панель: Опасности, связанные с временным заземлением

Наиболее серьезная опасность, связанная с временным заземлением, — это возможность возникновения дугового разряда при попытке установить заземляющие кабели. Обычно это происходит в сочетании с ошибкой человека, потому что при соблюдении надлежащих процедур проверки цепей вероятность того, что цепь будет под напряжением во время установки заземления, мала.Однако многие рабочие по ошибке установили заземление в цепях под напряжением, как показано в следующем примере из реальной аварии.

Электрику высокого напряжения (ВН) было поручено выполнить техническое обслуживание цепи 7200 В / 12 470 В на промышленном предприятии, которая питалась от распределительного устройства в металлическом корпусе с шестью отдельными переключателями (конфигурация показана на фото A и B ). Электрик должен был выключить и заземлить выключатель №2 для выполнения текущих работ.Он правильно определил переключатель № 2, открыл его и вытащил. Затем он установил свой личный замок и бирку и закрыл переднюю дверь переключателем. Его следующей задачей было обойти заднюю часть распределительного устройства, чтобы установить заземление, потому что проводники, подключенные к высоковольтным переключателям, были расположены на задней стороне распределительного устройства.

Его роковая ошибка заключалась в том, что, когда он обошел правую часть линейки распределительного устройства и насчитал два отсека, он на самом деле считал с неправильного конца линейки распределительных устройств (щелкните здесь, чтобы увидеть рисунок ).Он открыл редуктор и, не выполнив требуемого трехточечного испытания напряжения, попытался установить перемычки заземления на проводники переключателя №5 под напряжением. Возникшая дуга была настолько сильной, что выделяющееся тепло фактически расплавило его каску. Его ожоги усугубились тем, что распределительное устройство высокого напряжения питалось от устройства повторного включения, которое предназначено для автоматического перезапуска (т. Е. «Повторного включения»). Фактически реклоузер сработал всего три раза. Таким образом, рабочий фактически пострадал от трех дуговых разрядов, поскольку цепь неоднократно возобновляла подачу питания.

Место происшествия было ужасающим. Вспышка, связанная с неисправностью, была настолько сильной, что очертания тела электрика были выжжены в стене примерно в шести футах позади того места, где он стоял. Он получил ожоги большей части тела третьей и четвертой степени и через три недели скончался в больнице.

Аварии подобного рода на удивление обычны. Это иллюстрирует одну из довольно уникальных проблем, связанных с работой высокого напряжения, а именно то, что выключатели высокого напряжения иногда имеют исполнительный механизм, расположенный на некотором расстоянии от места, где устанавливаются временные заземления.Это увеличивает вероятность неправильной идентификации цепи. Эта конфигурация обычно используется на подстанциях или в местах, где переключателями можно управлять с помощью систем диспетчерского управления и сбора данных (SCADA).

Другая распространенная авария, связанная с временным заземлением, заключается в том, что рабочие иногда забывают отсоединить заземляющие кабели, которые они установили лично. Хотя это может показаться невероятно небрежной ошибкой, это происходит гораздо чаще, чем вы могли ожидать.

Применение средств индивидуальной защиты — охрана труда и безопасность

Применение средств индивидуальной защиты

Перед установкой средств индивидуальной защиты всегда проверяйте цепи на отсутствие напряжения. То, что вы знаете, что он обесточен, не означает, что это действительно так.

  • Джеймс Р. Уайт
  • 1 июня 2013 г.

Основания индивидуальной защиты в отрасли имеют несколько наименований: «временные защитные площадки», «заземляющие комплексы», «наземные кластеры» или просто грунтовые площадки.«Средства индивидуальной защиты используются всякий раз, когда рабочие выполняют работы в электроэнергетических системах, которые по какой-либо причине могут быть повторно задействованы, например, повторным включением выключателей или автоматических выключателей, статическим напряжением, индуцированным напряжением на внешних подстанциях или линиях, а также емкостными разрядами. В то время как большинство технических специалистов подумайте об использовании средств индивидуальной защиты при работе с системами высокого напряжения, они также необходимы при работе с системами низкого напряжения, особенно когда в цепь могут быть подключены конденсаторы (системы ИБП и частотно-регулируемые приводы) или когда цепь может быть повреждена. с учетом одной из проблем, упомянутых ранее.Использование индивидуального защитного заземления регулируется OSHA 1910.269 (n), «Заземление для защиты сотрудников» и NFPA 70E, раздел 120.3, «Временное защитное заземление». Оба источника содержат очень похожие требования.

NFPA 70E Раздел 120.3 (A) Размещение заявляет, «Временные защитные площадки (средства индивидуальной защиты) должны быть размещены таким образом, чтобы они не подвергали сотрудников опасным перепадам потенциалов.Земля не может быть размещена слишком близко к месту работы и должна быть размещена или закреплена так, чтобы она не могла контактировать с людьми ». Земля должна быть расположена достаточно близко, чтобы защитить рабочих, но не настолько близко, чтобы они могли ударить их, если земля станет возобновляется подача энергии, особенно из-за токов аварийного уровня. Ток, протекающий через заземляющий кабель, может создать магнитное поле, достаточно сильное, чтобы заставить кабель ломаться, как хлыст, что может привести к поломке костей или сбиванию рабочих с строений.

Линейщики должны быть осторожны с тем, где размещены средства индивидуальной защиты, потому что они должны создавать эквипотенциальную зону и работать в пределах этой зоны.А.Б. Chance является одним из источников информации о средствах индивидуальной защиты, и у него есть несколько хороших буклетов и видео, в которых подробно рассказывается об эффективном размещении территорий. На рис. 1 показан правильно спроектированный и правильно установленный комплект заземления на распределительном трансформаторе, установленном на площадках. Сравните это с рисунком 2, который очень похож на акт самоубийства.


Эта статья впервые появилась в июньском выпуске журнала «Охрана труда и безопасность» за 2013 год.

Обучение инструкторов 101: Практическое заземление для индивидуальной защиты — предотвращение инцидентов

За последние 10 лет я консультировал по десяткам индукционных инцидентов, восемь из которых закончились смертельным исходом. В каждом было что-то общее. Практически каждый читатель программы «Предотвращение инцидентов» согласится с тем, что одна из тем, которой уделяется наибольшее внимание в электроэнергетике — в письменной форме, в обучении и в беседе, — это индивидуальное защитное заземление (PPG).Не проходит и недели, чтобы я не писал по электронной почте и не разговаривал с кем-нибудь о PPG и, в частности, о работе с индукцией.

В iP мы обсуждаем и делимся информацией, а также новостями об инцидентах, связанных с индукцией, и да, они действительно происходят с угрожающей скоростью. Я не могу указать на какие-либо эмпирические доказательства, но я и мои коллеги думаем, что мы, как отрасль, являемся причиной путаницы в вопросах PPG. Мы медленно эволюционировали от заземления для стабилизации электрических систем и защиты оборудования к заземлению для защиты рабочих.Некоторым даже язык стандарта OSHA кажется расплывчатым, противоречивым или слишком техническим. Стандарты ANSI устанавливают надежные процедуры для защитных мер, но они не являются учебными ресурсами для рабочих. Теперь, когда нагрузка на инфраструктуру и напряжение в системе продолжают расти, возникают соответствующие опасности, которые даже не обсуждались всего лишь поколение назад. Эти опасности приводят к инцидентам и, что еще хуже, инцидентам, которые можно предотвратить, которые ставят под угрозу жизнь рабочих, работающих на линиях электропередач.

Шесть принципов
Мы с коллегами консультировались с компаниями, у которых есть учебные курсы и руководства по процедурам заземления на 300 страниц, которые не предотвращают несчастных случаев в результате индукции.Общей чертой среди погибших было то, что задействованные экипажи просто не видели опасности, обычно потому, что они не понимали задействованных простых принципов, которые могли их предотвратить. Я считаю, что если квалифицированные работники поймут следующие шесть принципов о текущем потоке, включая информацию о заземленных системах, они смогут принять соответствующие решения о том, как защитить себя в сотнях сценариев, с которыми они могут столкнуться в своей карьере.

Принцип 1
В заземленных системах ток течет так же, как и в незаземленных цепях.

Принцип 2
Ток в параллельных системах проходит по каждому доступному пути, обратно пропорциональному сопротивлению пути. Это означает, что соединенные системы будут иметь ток на каждом пути, а пути с низким сопротивлением будут иметь больше тока, чем пути с высоким сопротивлением.

Принцип 3
Если вы не можете дать количественную оценку, вы должны предположить, что это смертельно опасно, и соответственно защитить себя. Это означает, что вы не можете делать предположений относительно уровня индукции.Если вы не можете рассчитать или измерить его, вы должны предположить, что он будет там, и принять необходимые меры предосторожности, такие как соединение для создания областей с равным потенциалом.

Принцип 4
Для нарушения электрического сопротивления кожи требуется около 50 вольт. Напряжение, необходимое для нарушения электрического сопротивления вашего тела, увеличивается, когда вы надеваете неэлектрические барьеры, такие как обувь или перчатки. При использовании резиновых перчаток необходимое напряжение существенно возрастает.

Принцип 5
Этот принцип касается силы тока, необходимой, чтобы причинить вам вред. Эмпирические данные Чарльза Далзиэля из его экспериментов в 1950-х и 1960-х годах показали нам, что 155-фунтовая линейная машина может выдержать 91 миллиампер в течение 3 секунд до фибрилляции желудочков (см. Www.hubbellpowersystems.com/literature/encyclopedia-grounding/pdfs/07-0801- 02.pdf). По этой причине широко принято и используется здесь, что 50 миллиампер тока — это порог воздействия, который повышается до уровня опасности для рабочих.Здесь следует отметить, что OSHA в примечании к 29 CFR 1926.964 (b) (4) использует ток 1 мА (порог восприятия), предполагая, что воспринимаемый шок (т. Е. Ток выше 1 мА) может вызвать непроизвольная реакция, приводящая к неэлектрической травме.

Принцип 6
Этот принцип нацелен на разницу между заземлением срабатывания и эквипотенциальным заземлением. Заземление, установленное для отключения обесточенной системы во время непреднамеренного включения, не защитит рабочего, потенциал которого не равен потенциалу пути системы.Заземления, установленные для отключения цепи, или заземления для отключения также могут использоваться для защиты рабочего. Однако, если они не расположены или не установлены для создания зоны уравнивания потенциалов, они не защитят работника от травм в результате непреднамеренного включения питания или индукции.

Эти шесть принципов не кодифицированы и не записаны ни в одном учебном пособии. Это вещи, которые я усвоил за годы, как важные для распознавания и снижения риска инцидентов и травм, связанных с индукцией.Но наиболее частая проблема связана с первыми двумя принципами. В PPG больше не всегда лучше. Проблема с заземлением заключается в том, что существует множество соединений, которые мы добавляем либо намеренно, либо посредством соединения.

A Test Case
Давайте рассмотрим пример, основанный на неправильном понимании бригадой строительства трансмиссии сопротивлений в цепи, который, кстати, очень похож на три из восьми смертельных инцидентов, о которых я упоминал в начале этой статьи.В данном конкретном случае бригады закрепляли три пучка 1590 на новой конструкции 500 кВ на стальных монополях. Бригада правильно знала, что корзина должна быть прикреплена к связке, прежде чем связать связку для подъема. Они использовали цепную лебедку и стальную стропу, прикрепленную к стреле башни, чтобы поднять узел. Связка соединялась с подъемником нейлоновыми стропами. Их корзина для людей, установленная на кране, была заземлена в основании башни. Ошибка экипажа заключалась в том, что, прикрепив корзину к жгуту, провод был подключен к тому же потенциалу, что и подъемник и мачта через соединение с корзиной и краном.Это предположение было неверным, но нередким. Как только команда изучила принципы PPG, они поняли, какую ловушку строят для себя.

Применение принципов 1 и 2
Ток течет в заземленной цепи точно так же, как и в незаземленной, и ток течет по каждому доступному пути, обратно пропорциональному сопротивлению пути. Источником в примере, который я только что описал, была индукция от линии 500 кВ, параллельной строению бригады. На жгуте был неизвестный уровень тока, но напряжение не было обнаружено.Это произошло из-за заземленных блоков связки, которые остались на новой конструкции, и площадки, расположенной на каждом конце двухмильной секции, которую команда отсекала. Когда корзина прикреплена к проводу, индукционный ток течет от проводника через стрелу в башню и землю через заземление башни. Вверху на проводе имеется электрический зазор между непроводящими нейлоновыми стропами, используемыми для закрепления проводника к стальному подъемнику, соединенному с вышкой. Если человек, соприкасающийся с узлом, схватится за подъемник, он закроет эту брешь.Башня имеет очень низкое сопротивление по сравнению с корзиной и краном. У башни будет больше тока, протекающего через это меньшее сопротивление, чем у крана. Другими словами, два пути к земле — один через кран, другой через башню — не имеют равного потенциала. Мужчина в этом промежутке подвергается риску. Единственный способ создать на обоих путях равный или почти равный потенциал — это прикрепить проводник к опоре.

Применение принципа 3
Если вы не можете определить его количественно, вы должны предположить, что это смертельно опасно, и соответственно защитить себя.Многие линейные мастера, возможно, работали по сценарию, аналогичному вышеупомянутому примеру, и сказали бы, что делали это сотни раз и никогда ничего не чувствовали. И это может быть правдой, особенно если они работали в кожаных перчатках. В их случае возможно, что напряжение на открытом промежутке между тросом и лебедкой составляло всего 25 вольт, но предположим, что оно составляет 1800 вольт. Что, если бы в то утро было 25 вольт, потому что на соседней линии было только 80 ампер, а затем они переключили его на 10 А.м. и через долю секунды на нем было 300 ампер? Вы не можете количественно оценить риск и убедиться, что его нет, поэтому вы должны предположить, что он смертельный, и преодолеть разрыв.

Применение Принципов 4 и 5
Для нарушения электрического сопротивления кожи требуется около 50 вольт, а сила тока более 50 миллиампер опасна для рабочих. Это правда, что когда корзина была прикреплена к башне, по ней протекал ток в точке заземления. Мы уже знаем об сопротивлениях и протекании тока.Заземление опоры имеет очень низкое сопротивление, а заземление крана подключено к клеммной шпильке для заземления опоры. Большая часть тока на кране уходит в землю. Напряжение опоры в этой точке можно измерить между заземлением клеммы и удаленной землей. Удаленная земля — ​​это некоторая точка на земле, удаленная от проводника заземляющего электрода от башни к заземляющим стержням. Это напряжение возникает на сопротивлении земли. Есть еще одно сопротивление, на котором теперь можно измерить напряжение.Это промежуток между проводом и башней. В этом промежутке легко может быть 20 вольт или 1500 вольт или более в зависимости от тока, протекающего в этом заземленном пучке. И если блок пучка на этой конструкции заземлен, возникает еще один зазор, который появляется, как только проводники поднимаются из блока пучка. Между прочим, я знаю два случая, когда индукционный ток был настолько высоким, что веревочные стропы — а в другом случае — нейлоновые стропы — загорелись.

Применение принципа 6
Хотя это случается, мы редко слышим о том, чтобы кто-то замыкался на заземленной линии.В строительстве более вероятным сценарием является потеря провисания при растяжении или такелажа, в результате чего ваши новые проводники упадут в линию под напряжением. Если это произойдет, ваши заземленные путешественники будут делать свою работу при условии, что линейный мастер, установивший их, почистил зажимы и соединения. Приземленных путешественников часто упускают из виду. Несколько наборов заземленных путешественников обеспечивают несколько путей к земле, помогая управлять током короткого замыкания и уменьшая нарастание тока на рабочем месте. Но единственные основания, которые будут защищать сотрудников, — это те, которые оборудованы мостом или прыгают вокруг них, предотвращая повышение напряжения на их телах, где они находятся между потенциалами, такими как путешественники и вышка, буксиры и земля или проводники и катушки.

Работодатели изо всех сил пытаются выявлять риски и обучать процедурам. В этой статье нет места для рассмотрения всех возможных сценариев заземления, и вы можете найти некоторые дополнительные базовые принципы, которые здесь не обсуждаются. Присылайте нам свои комментарии и идеи по обучению. Мы надеемся, что понимание и принципы предоставят вашим линейным мастерам больше инструментов для выявления и снижения индукционных рисков.

Об авторе: Проработав 25 лет линейным мастером и мастером по распределению передач, Джим Вон последние 17 лет посвятил безопасности и обучению.Известный автор, тренер и преподаватель, он является директором по безопасности Atkinson Power. С ним можно связаться по этому адресу электронной почты, защищенному от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Примечание редактора: «Обучите инструктора 101» — это обычная функция, предназначенная для помощи инструкторам, решая сложные технические вопросы в нетехническом формате. Если у вас есть комментарии к этой статье или идея темы для будущего выпуска, свяжитесь с Кейт Уэйд по адресу: Этот адрес электронной почты защищен от спам-ботов.У вас должен быть включен JavaScript для просмотра.

Применение и удаление защитного заземления

Средства индивидуальной защиты для защиты электротехников в случае случайного включения оборудования.

Индивидуальное защитное заземление для электрического обслуживания включает в себя кабель, подключенный к обесточенным линиям и оборудованию путем перемычки и соединения с соответствующими зажимами, чтобы ограничить разность напряжений между доступными точками на рабочем месте до безопасных значений, если линии или оборудование случайно повторно под напряжением .

Должны быть размещены средства индивидуальной защиты для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Фото: USBR.

Защитные заземления рассчитаны на пропускание максимально доступного тока короткого замыкания на рабочем месте. Также называется перемычкой заземления, это преднамеренно низкоомный путь к земле.

Любой сотрудник, работающий с обесточенным высоковольтным оборудованием, несет ответственность за понимание требований и процедур защитного заземления.Только обученные и квалифицированные рабочие должны применять и удалять временные средства индивидуальной защиты.

Примечание: Необходимо разместить временное защитное заземление для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Площадки безопасности не должны быть слишком длинными, потому что они могут начать резкое движение в случае неисправности и нанести кому-либо травму. Ссылка NFPA 70B Раздел 7.7.4.2.4


Шаг 1: Обесточьте линию в соответствии с процедурами.

Используйте задокументированную процедуру LOTO, чтобы убедиться, что цепь или оборудование обесточены и изолированы от всех источников опасной энергии. Желательно разместить временные защитные площадки для создания эквипотенциальной зоны в рабочей зоне на месте проведения работ.


Шаг 2: Проверить цепь на наличие напряжения.

Зажимы на концах проводов должны устанавливаться и отсоединяться с помощью горячих палочек соответствующего номинала и длины.При нанесении грунта всегда используйте защитные средства индивидуальной защиты от поражения электрическим током и дуговым разрядом соответствующего уровня.

Не думайте, что цепь была обесточена только потому, что она была выключена. Другие источники энергии, такие как индукция от близлежащих цепей, могут привести к смертельным ударам и другим травмам.

Требуется выполнить трехточечный тест с помощью чувствительных устройств измерения напряжения для проверки состояния нулевой энергии. Примеры чувствительных устройств для проверки напряжения включают в себя «бесконтактные» тестеры, такие как светящиеся палочки (похожие на световые ручки), тик-трассеры (они издают звук) или высоковольтные вольтметры с прямым считыванием.

Трехточечный тест состоит из проверки тестера напряжения на известном источнике питания для проверки его правильной работы (Тест № 1) .

Затем проверьте цепь, на которой должны выполняться работы (Тест № 2) .

Наконец, проверьте тестер напряжения на том же источнике питания, который использовался в тесте № 1, чтобы убедиться, что тестер все еще работает правильно (Тест № 3) .

ВАЖНАЯ ИНФОРМАЦИЯ: При нанесении грунта всегда используйте средства индивидуальной защиты, защищающие от поражения электрическим током и дугового разряда.

Рекомендовано: Обзор средств индивидуальной защиты от поражения электрическим током и дугового разряда


Шаг 3: Очистите все соединения.

Следует исключить дополнительное сопротивление, вызванное коррозией и грязью, чтобы поддерживать чрезвычайно низкое сопротивление заземления, в противном случае одноточечное заземление будет неэффективным.


Шаг 4: Сначала установите зажимы заземления и снимите их в последнюю очередь.

Это гарантирует, что во время установки не будет времени, в течение которого оператор мог бы стать трактом заземления с наименьшим сопротивлением.Механические соединения должны быть достаточно прочными, чтобы выдерживать силы, создаваемые электромагнитной индукцией.


Шаг 5: Зажимы на концах проводника должны устанавливаться и отсоединяться горячими палками соответствующего номинала и длины.

Если физически невозможно использовать инструменты горячей линии для нанесения грунта, для защиты рабочих требуются дополнительные средства индивидуальной защиты от ударов и дуги.


Список литературы

Индивидуальное защитное заземление для электробезопасности

В промышленных условиях можно легко упустить из виду индивидуальное защитное заземление.Это также часто неправильно понимают.

Фактически, в большинстве случаев временные кабели защитного заземления даже не рассматриваются как СИЗ, но это именно то, что они собой представляют! Обратите внимание, что заголовок относится к личному защитному заземлению, ну, вы человек, и именно по этой причине вам необходимо понимать следующие несколько понятий.

Почему необходимо заземление для средств индивидуальной защиты?


Если вы пытаетесь создать электрически безопасные условия работы, вам необходимо применить средства индивидуальной защиты к каждой фазе системы, как можно ближе к месту выполнения работы, но для чего?

Что ж, с системами, рассчитанными на 750 В и выше, на самом деле есть ряд причин, по которым вы захотите это сделать, каждая из которых может привести к смертельному электрошоку или вспышке дуги.

1. Цепи, случайно попавшие под напряжение

Первая и наиболее очевидная причина в том, что цепь могла быть случайно повторно активирована. Возможно, есть удаленные операторы, которые замыкают цепь после того, как вы уже завершили испытания напряжения. Или, возможно, автобус, на котором вы работаете, подключен к дизельному генератору.

2. Вероятность смертельного удара током

Во-вторых, на промышленном объекте вполне возможны наведенные напряжения и токи.При наличии большого количества кабелей, проложенных рядом друг с другом, а также наличия другого высоковольтного оборудования в непосредственной близости, существует вероятность получения смертельного удара даже после отключения оборудования от системы.

3. Изоляция оборудования может выйти из строя

Со временем оборудование начинает выходить из строя, и ток начинает течь там, где этого не должно быть.

Как работает индивидуальное защитное заземление?

Основная концепция заключается в том, что после того, как вы обесточили цепь, отключили разъединитель, проверили визуально, установили замки и метки и проверили отсутствие напряжения, вам все равно необходимо применить средства индивидуальной защиты, прежде чем вы сможете действительно сказать (по причинам, указанным выше ) цепь обесточена.

Очень важна последовательность нанесения грунтов!

Всегда начинайте с заземленного конца, затем подключайте фазные проводники, начиная с фазы, ближайшей к вашему телу, и двигаясь дальше. Когда вы собираетесь отсоединять заземляющие кабели, убедитесь, что вы делаете это в порядке, обратном тому, что я только что описал.

Итак, теперь, когда я вкратце описал, как получить право на землю по…

— Как они работают?
— Что делать, если кто-то случайно включил питание?
— Что будет?

Ну … это может показаться безумным, но вы просто установили эти заземляющие кабели, чтобы гарантировать, что при повторном включении системы вы получите максимально возможный ток короткого замыкания, протекающий через систему!

Что? Самый актуальный из возможных?

Да.На это есть несколько причин.

Если вы правильно установили заземление для индивидуальной защиты и оно правильно подобрано для системы, то оно создаст «путь наименьшего сопротивления» для тока короткого замыкания. Это хорошо. Во-первых, вы не станете путем наименьшего сопротивления!

Во-вторых, он поддерживает напряжение на безопасном уровне до тех пор, пока вышестоящие защитные устройства не отключат систему. Кабели заземления очень прочные, но они могут выдерживать очень большие токи в течение ограниченного времени.Чем быстрее прерывается ток, тем больше вероятность, что сами заземляющие кабели не представляют опасности … помните, что вы, вероятно, стоите очень близко, когда это происходит.

Есть другие соображения?

Как и любые другие средства индивидуальной защиты, средства индивидуальной защиты требуют периодических проверок и сертификации, подтверждающей, что они могут выполнять свою работу. Если комплект заземляющих кабелей подвергся короткому замыканию, их необходимо протестировать и повторно сертифицировать, прежде чем вы снова сможете на них положиться.

И не забывайте, что кабели заземления должны иметь размер, соответствующий системе, с которой вы работаете. Например, максимальный уровень тока короткого замыкания будет сильно отличаться между оборудованием на 13,8 кВ и 600 В, и для этих двух систем потребуются разные спецификации для ваших средств индивидуальной защиты.

Следующий блог ➤

Наверх ➤

Уход и обслуживание средств индивидуальной защиты для заземления

Последние обновления OSHA 1910.269 ​​(n) и 1926.962 подчеркнули ответственность работодателя за обеспечение того, чтобы их оборудование и методы индивидуального защитного заземления соответствовали требованиям для защиты сотрудников от опасных перепадов электрического потенциала. Один важный аспект, который часто упускается из виду, — это уход и обслуживание заземляющего оборудования.

Комплекты индивидуального защитного заземления часто бросают в грязь и бросают в кузов грузовика. Незначительные повреждения, окисление и другие загрязнения на контактных поверхностях или в соединениях могут значительно повлиять на эффективность заземляющего оборудования в случае возникновения тока короткого замыкания.По этой причине очень важно ухаживать за оборудованием и обслуживать его.

Первым этапом надлежащего ухода и обслуживания средств индивидуальной защиты для заземления является осмотр и очистка перед каждым использованием. Это включает осмотр на предмет: повреждения любых компонентов, отсутствующих компонентов, ослабленных соединений, а также окисления или других загрязнений. Кабель должен быть осмотрен на предмет повреждений оболочки, таких как трещины / порезы / истирания, плавление или другое ухудшение характеристик, перегибы или другие деформации, окисления, загрязнения или обрыв жил кабеля.Если заземляющее оборудование испытало ток короткого замыкания, оно должно быть окончательно выведено из эксплуатации. Средства индивидуального защитного заземления с поврежденными или отсутствующими компонентами также следует вывести из эксплуатации для ремонта или замены. Ослабленные соединения следует затягивать до рекомендованных производителем значений крутящего момента.

Контактные поверхности зажимов должны быть очищены проволочной щеткой перед установкой на линию, а также контактные поверхности проводника, шины и т. Д.где будут установлены хомуты. Видимое окисление или загрязнение в других точках соединения, например, там, где наконечник соединяется с зажимом, следует очищать, и может потребоваться периодическая разборка для тщательной очистки проволочной щеткой. Чтобы свести к минимуму риск повреждения заземляющего оборудования, следует соблюдать осторожность при обращении и хранении. Защитные пакеты могут помочь сохранить наземные наборы чистыми и сухими, когда они не используются.

Еще одна важная часть правильного ухода и обслуживания — это периодические электрические испытания.ASTM F2249 и другие отраслевые стандарты не определяют интервал тестирования; однако обычно рекомендуется не реже одного раза в год. Работодатель должен учитывать частоту использования, условия работы, состояние оборудования, уход за оборудованием и т. Д., Чтобы определить, следует ли проводить более частые проверки.

ASTM F2249 предоставляет подробную информацию о методах испытаний и значениях сопротивления прохождению / отказу для комплектов индивидуального защитного заземления. Тестер заземления CHANCE® — это один из вариантов тестирования, который дает несколько преимуществ, включая использование 5-вольтового источника постоянного тока и диагностических пробников, используемых для определения проблемного компонента / соединения.5 вольт прорезают тонкий слой окисления с высоким сопротивлением. Окисление может вызвать ложноотрицательные результаты при испытании с более низким напряжением. Источник постоянного тока имеет явное преимущество перед источником переменного тока, поскольку индуктивность не является проблемой. В отличие от источника переменного тока, кабель не нужно прокладывать по какой-либо схеме, его можно свернуть в бухту и он может контактировать с металлическими поверхностями или бетоном, содержащим арматуру.

При надлежащем уходе и техническом обслуживании средства индивидуальной защиты и заземления могут обеспечивать защиту на многие годы.Конечно, при увеличении нагрузки в цепи может потребоваться более ранняя модернизация заземляющего оборудования. Рекомендуется периодический просмотр уровней тока короткого замыкания.

Важность индивидуального защитного заземления

Линейщики, работающие на ЛЭП и опорах, выполняют опасную работу. Они часто работают высоко над землей и обеспечивают обслуживание цепей и линий электропередач с опасными электрическими токами.Линейным мастерам важно защищать себя на работе, используя подходящее оборудование и средства индивидуальной защиты.

Что такое защитное заземление?

Защитное заземление — это то, что линейные и другие коммунальные работники используют для защиты от возможного поражения электрическим током при работе с линиями электропередач и цепями. Линейщики строят защитные заземления, используя кабели и зажимы, которые эффективно заземляют любой электрический ток, который может проходить по линиям электропередач и работающей цепи.Это сделано для защиты линейных монтеров в случае, если линии электропередач не обесточены или не будут снова запитаны из-за одного из нескольких возможных факторов.

Как заземление электросети защищает линейных операторов

Когда линейные монтеры работают на коммунальном оборудовании, через оборудование всегда проходит электрический ток. Защитное заземление не убивает ток, а вместо этого обеспечивает путь для заземления тока.

Оборудование защитного заземления не устанавливается до тех пор, пока цепь не будет проверена на отсутствие напряжения.В случае повторного включения силовых линий или цепи защитное заземление позволит максимальному току короткого замыкания в системе.

Выбор подходящего средства индивидуальной защиты для заземления

Средства индивидуального защитного заземления должны быть установлены правильно, и очень важно использовать правильное оборудование для ситуации. Плохое соединение может привести к неисправности защитного заземления, что подвергнет опасности линейных.

Выбирая кабели заземления высокого напряжения для использования в качестве защитного заземления, вы должны учитывать номинальную стойкость кабеля и длину.Рейтинг устойчивости показывает, какой ток могут выдерживать кабели и как долго.

Проверка и очистка защитного заземления

Перед установкой оборудования защитного заземления необходимо убедиться, что оно находится в безупречном рабочем состоянии для эффективной защиты линейных игроков. Это оборудование необходимо тщательно осмотреть перед установкой и очистить, чтобы оно работало должным образом.

Инспекция охранных территорий

Обязательно проверьте кабели и зажимы на наличие следующих проблем.Если вы обнаружите, что оборудование повреждено одним из следующих способов, вам следует немедленно прекратить его использование.

  • Проверьте, не являются ли участки кабеля плоскими, обрезанными или изогнутыми.
  • Поищите в точках подключения оборванные жилы кабеля.
  • Обратите внимание на вздутие оболочки кабеля или мягкие пятна, которые могут указывать на коррозию.
  • Поищите на зажимах трещины, трещины и другие повреждения.
  • Проверить зажимные губки на износ.
  • Проверить на износ резьбы стяжных болтов хомута.
  • Обратите внимание на неплотные соединения между зажимами и кабелями и наконечниками.
  • Убедитесь, что резьбовой зажимной механизм работает плавно.

Очистка защитных оснований

Фазовые проводники и электроды не должны иметь окисления перед присоединением к заземляющим кабелям. Убедитесь, что вы очистили эти детали жесткой проволочной щеткой, чтобы удалить окисление.

Тестирование защитного заземления

Последнее, что вам нужно сделать перед началом работы, — это проверить заземление.Тестирование важно, чтобы убедиться, что средства индивидуальной защиты защитят линейных. После того, как вы установили защитное заземление, лучше всего будет нанять профессионала, который проверит защитное заземление за вас.

Divergent Alliance предоставляет комплексные услуги наземных испытаний средств индивидуальной защиты. Мы проверим кабели, наконечники и зажимы, чтобы убедиться, что они правильно подключены. Мы также будем искать признаки повреждений оборудования и при необходимости можем почистить соединительные детали.

Убедившись, что защитное заземление установлено правильно и оборудование находится в хорошем состоянии, мы проверим его, чтобы убедиться, что оно работает эффективно. Наши испытания проводятся в соответствии со стандартными спецификациями ASTM F2249 и ASTM F855 для получения точных результатов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *