Система заземления TN-C: схема подключения, недостатки
Электрические сети напряжением до 1кВ, кроме установок специального назначения, являются сетями с глухозаземлённой нейтралью. Это значит, что вторичные обмотки питающего трансформатора соединены в звезду, а её средняя точка соединяется с контуром заземления. Со средней точкой звезды соединяется также нулевой (нейтральный) провод трёхфазной линии электропередач.
Такие электроустановки, согласно ПУЭ п. 1.7.3, считаются установками с системой заземления TN. В этом разделе Правил Устройства Электроустановок рассказывается о разных типах заземлений, отличающихся методом соединения корпуса электроустановок с нейтралью трансформатора. Один из видов такого соединения — система заземления TN-C.
Особенности системы заземления TN-C
Система TN-C используется в жилых зданиях, электропроводка в которых не реконструировалась со времён Советского Союза. Это питающая линия, выполненная четырёхпроводными воздушными линиями или кабелями — 3 фазных и 1 нулевой.
В такой схеме соединения в одном проводе совмещены два проводника — нулевой «N» и заземление «РЕ». Это провод называется «PEN» и он соединяет нейтраль трансформатора и корпус электроустановки. Это является основным недостатком схемы заземления TN-C.
В Советском Союзе корпуса бытовых электроприборов не заземлялись, поэтому такая система была достаточно безопасной. Сейчас большинство устройств требуют защитного заземления «РЕ» и система заземления TN-C, фактически являющаяся не заземлением, а занулением, перестала соответствовать требованиям безопасности.
Расшифровка TN-C показывает конструкцию этой системы:
- T — terre (земля). Показывает, что это система заземления.
- N — neuter (нейтраль). Указывает, что линия соединяется со средней точкой звезды — нейтралью (занулена).
- C — combined (объединённый). Значит, что нулевой и заземляющий провода являются одним проводом на всём протяжении от трансформатора до электроустановки.
Как выполнена схема заземления tn c
Система заземления TN-C состоит из следующих частей:
- 1) Контур заземления. Это заземление, находящееся на трансформаторной подстанции и соединённое со средней точкой вторичной обмотки трансформатора.
- 2) Нулевой провод. В четырёхпроводной трёхфазной схеме электропитания выполняет роль нулевого и заземляющего проводников и обозначается на схемах PEN проводник.
В жилых домах, имеющих такую систему заземления, на каждом этаже находится электрощиток, в который приходит 4 провода – три фазы А, В, С и нулевой провод «PEN». При этом в каждую из квартир приходит 2 провода — фаза и ноль (PEN).
В бытовых розетках, установленных во времена СССР отсутствовал заземляющий контакт, как и не было электроприборов, конструкция которых предусматривала подключение к заземлению.
Важно! Если в розетке или квартирном щитке соединить заземляющий контакт и нулевой, то получится не заземление, а зануление.
В системе заземления TN-C с проводом PEN соединяются все металлические части электроприборов, находящихся в квартире. В этом случае вместо защитного заземления получится защитное зануление.
Так как провод PEN кроме заземляющего является также нулевым проводом, то он может не соединяться с заземлёнными частями здания. В некоторых случаях к нему выполняется подключение корпуса вводного и этажных электрощитков.
Ввод электропитания в квартиру выполняется двумя проводами, без заземления. И даже при установке евровилок с заземляющими контактами их некуда подключать. В результате все приборы в доме работают без заземления, даже те, которые нуждаются в нём по инструкции завода-изготовителя.
Кроме того, без заземления не работают разрядники системы грозозащиты, предохраняющие электрооборудование от высоковольтных грозовых импульсов. Они должны подключаться к нулевому и фазному проводам, а также к контуру заземления.
Тем не менее, система TN-C является более передовой по сравнению с полным отсутствием защиты и, во время монтажа, соответствовала существовавшим в этот период нормативным документам.
Достоинства и недостатки
Система заземления TN-C
Достоинства этой системы не связаны с высокой безопасностью людей:
- Низкая стоимость. Это связано с отсутствием отдельного проводника «РЕ», который является пятым проводом при трёхфазном электропитании и третьим при однофазном.
- Простота конструкции. В трёхфазной сети всегда есть четвёртый нулевой провод, поэтому для монтажа TN-C достаточно заземлить среднюю точку вторичной обмотки питающего трансформатора.
Недостаток у системы заземления TN-C всего один, но он перевешивает любые достоинства — повышенная опасность поражения электрическим током,
возможная в разных ситуациях, связанных с отсоединением PEN проводника:
- обрыв этого провода между потребителем и питающим трансформатором;
- срабатывание автоматического выключателя, отсоединяющего нейтральный провод при залипшем контакте фазы.
В этих случаях через включённые лампы и другие электроприборы на занулённых металлических частях электроустановок появляется сетевое напряжение.
Поэтому система TN-C в электроустановках не обеспечивает достаточного уровня электробезопасности. Несмотря на это некоторые неграмотные электромонтёры для заземления электроприборов предлагают её установит и соединить нулевой и заземляющий контакты в розетке или квартирном щитке.
Что делать? Как исправить?
При реконструкции построенных и во всех новых зданиях сохранять и устанавливать систему TN-C современными нормативными документами запрещается. Однако есть возможность модернизации этой системы в TN-C-S или TN-S.
Система заземления TN-S является более надёжной, но требует значительных материальных затрат и прокладки пятого провода «РЕ» от потребителя к трансформатору. Правилами устройства электроустановок и другими нормативными документами допускается переделка системы TN-C в TN-C-S.
Для этого в водном щитке проводник PEN заземляется ещё раз, после чего он разделяется на два провода — нейтраль — N и заземление РЕ. После чего четырёхпроводная сеть превращается в пятипроводную и в квартиры заводится по три провода — фаза «L», ноль «N» и заземление «PE», причём заземление подключается в водном щитке на отдельную шину заземления. После электрощитка заземляющий провод подключается к клеммам заземления розеток и других электроприборов.
В отдельно стоящих коттеджах, запитанных от трёхфазной сети, такое разделение выполняется в вводном щитке учета ДО электросчётчика.
В зданиях, которым подведено однофазное напряжение
Важно! Согласно ПУЭ п. 1.7.135 после разделения провода «N» и «PE» соединять в переходных коробках, розетках и других местах ЗАПРЕЩАЕТСЯ.![]() |
Почему система TN-C морально устарела
В значительной части современной техники используются импульсные блоки питания. В этих устройствах есть фильтры от ВЧ помех. Это конденсаторы малой ёмкости, соединяющие схему с металлическим корпусом и заземляющим контактом вилки.
Помехи, приходящие из электросети или возникающие при работе электрооборудования через конденсатор и заземляющий провод «уходят в землю» и не нарушают работу подключённых к блоку питания приборов.
В обычных условиях ток, проходящий через фильтр недостаточен для срабатывания УЗО или поражения человека электричеством, но при пробое этого конденсатора корпус оказывается подключённым к сети 220В. Эта ситуация не является опасной при наличии системы заземления, соответствующей требованиям ПУЭ, но может привести к электротравме, при её отсутствии или использовании системы TN-C.
Так же является опасной ситуация обрыва нулевого провода «N». В этом случае корпус окажется под напряжением через цепь «фаза-электроприбор-ноль-заземление-корпус».
Аналогичная ситуация возникает при возникновении течи в стиральной или посудомоечной машине или перегорании ТЭНа в бойлере.
Главный недостаток системы TN-C это появление опасного потенциала на заземленных корпусах техники при отгорании PEN проводника. То есть в случаи обрыва PEN проводника заземление (зануление) теряет свои защитные свойства. |
Опасные способы заземления
Для того, чтобы обезопасить себя и членов своей семьи от поражения электрическим током, некоторые «специалисты» прокладывают линию заземления самостоятельно. Для этого используются различные варианты:
- Подключение к радиаторам центрального отопления или к водопроводным трубам. Это опасно тем, что при небольшой утечке по трубам начнёт протекать ток, вызывающий быструю коррозию, а при ремонте водопроводчики могут получить электротравму.
- Соединение в розетке нулевого и заземляющего контакта. Это не заземление, а зануление.
В ПУЭ п.1.7.50 зануление отсутствует среди средств, защищающих от поражения электрическим током.
- Присоединение защитного проводника РЕ к корпусу электрощита, находящемуся на этаже. Этот вариант лучше предыдущих, но качество соединения самого PEN провода с корпусом щитка неизвестно. Кроме того, место соединения проводов «PEN», «N» и «РЕ» должно быть заземлено.
Кроме того неизвестно заземлен ли вообще PEN проводник в этажном щите. К примеру, можно представить ситуацию, когда при такой «схеме заземления» произойдет обрыв нулевого провода N и тогда все заземленные корпуса приборов в квартире через этот дополнительный проводник РЕ окажутся под напряжением.
Тем более если разобраться то такое подключение является не заземлением, а занулением.
Кроме различных вариантов самостоятельного подключения к проводу «PEN», возможен монтаж контура заземления из стальных уголков, штырей и труб, закопанных ниже уровня промерзания почвы. К этим уголкам присоединяется провод, заводится в квартиру и подключается к розеткам. В этом случае есть опасность обрыва этого провода или окисливания в месте контакта, находящемся на улице.
Важно! Контур заземления, выпоненный по всем правилам, соединяется при помощи электросварки с металлическими элементами конструкции здания и подлежит регулярной проверке.
Единственной надёжной защитой от поражения электрическим током является установка систем заземления TN-C-S или TN-S. В этом случае при нарушении изоляции между заземлённым корпусом электроприбора и токоведущими частями возникнет замыкание по цепи «токоведущие части-корпус-заземление», ток через автоматический выключатель возрастёт и автомат отключит питание установки.
Желательно дополнительно к системе заземления в электрощите подключить УЗО. Это устройство будет отключать электропитание в том случае, если изоляция нарушена и появился ток утечки, но отсутствует короткое замыкание.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Система заземления TN-C | Заметки электрика
Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».
Начинаю серию статей про системы заземления. И сегодня Вашему вниманию я представляю статью на тему системы заземления TN-C.
Для чего же нужно знать про системы заземления?
Да все очень просто. Когда мы приобретаем квартиру, дачу или дом (коттедж), мы сталкиваемся с многочисленными вопросами в области электричества. В ответ же слышим разносторонние ответы от специалистов. Кто-то советует провести монтаж контура заземления, другие дают совет по занулению электрооборудования, а третьи вообще говорят все оставить как есть.
Как же понять — кто прав, а кто нет? Какого мнения стоит придерживаться?
Впредь чтобы не возникало подобных вопросов, мы с Вами подробно и поочередно познакомимся со всеми системами заземления.
Система заземления TN-C
Самая старая и распространенная система заземления, которая существовала в нашей стране очень долгое время и, к сожалению, продолжает существовать — это система TN-C.
Заземление в такой системе выполнено следующим образом: контур заземления (другими словами заземляющее устройство ЗУ) выполнен на трансформаторной подстанции ТП, питающей наш дом.
Нулевой проводник соединен с контуром заземления и приходит к потребителю одним проводом (PEN) в качестве защитного и рабочего проводника. Нулевой проводник в данной системе так и называется — PEN проводник.
Для наглядности приведу схему этажного щита на 3 квартиры на примере жилого дома.
Электропроводка в таком случае выполняется кабелями с двумя жилами (фаза, PEN) при однофазном питании квартиры или с четырьмя жилами (А,В,С, PEN) при трехфазном питании.
В розетках отсутствуют контакты защитного заземления. Если корпус электрооборудования (электрический прибор, корпус щитка или сборки) соединим с PEN проводником, то такая защита будет называться занулением.
Достоинства системы TN-C
Система TN-C обладает всего одним достоинством — электромонтаж такой системы относительно прост и является дешевым.
Недостатки системы заземления TN-C
А вот про недостатки поговорим подробнее.
В этой системе заземления существует угроза поражения людей электрическим током, что приводит к плачевным ситуациям. Вот пример несчастного случая на производстве, можете ознакомиться с ним.
Если Вам специалист-электрик рекомендует провести электромонтаж с системой заземления TN-C, то сразу же отказывайтесь от такого электрика.
Система заземления TN-C. Что делать? Как исправить?
Уважаемые, потребители электрической энергии. В данной ситуации отчаиваться не стоит, т.к. при реконструкции (модернизации) и вновь монтируемых объектах устанавливать систему TN-C строго запрещено!!!
Энергоснабжающим организациям, обслуживающим электрические сети наших домов, необходимо (рекомендовано) систему TN-C перевести на систему заземления TN-C-S или TN-S, путем модернизации схем электроснабжения. Но в связи с отсутствием финансовых средств, энергоснабжающие организации делают проще. Они на вводе в дом устанавливают повторное заземление нулевого проводника. А далее производят разделение PEN проводника на два отдельных проводника:
- нулевой рабочий проводник N
- защитный проводник PE
Более подробно об этом Вы можете прочитать в статье про разделение PEN проводника.
Если Вы не представляете как самостоятельно определить систему заземления Вашей квартиры или дома, то пригласите специалистов электролаборатории.
P.S. А у Вас какая система заземления используется в Вашей квартире?
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Система заземления TN-C, схема, особенности, видео, достоинства и недостатки
Зачем каждому человеку знать о том, что представляют собой системы заземления? Все предельно просто. Когда осуществляется покупка нового жилья, например, квартиры либо коттеджа, то могут возникнуть различного рода вопросы, связанные с электричеством. Специалисты в этой области способны предоставить самые разнообразные ответы, при этом обыкновенному человеку достаточно сложно понять, кто именно является прав. Чтобы подобные вопросы в будущем никогда не волновали, следует самостоятельно ознакомиться с системами заземления.
Система заземления TN-C
На сегодняшний день систему TN-C можно смело назвать старейшей в своей области. В этой системе заземление выполнено так: контур заземления сосредоточен на трансформаторной подстанции, благодаря которой осуществляется питание непосредственно самого дома. Что касается нулевого проводника, то он соединен с контуром заземления, проходя при этом к потребителю при помощи одного провода (PEN), выступая в роли рабочего и защитного проводника. Название же нулевого проводника нехитрое – PEN проводник.
Электропроводка в системе представлена кабелями из двух жил, если наблюдается однофазное питание жилья. В случае с трехфазным питанием имеется четыре жилы – A, B, C и PEN.
Преимущества системы
У данной системы, к сожалению, всего одно достоинство, которое заключается в весьма простом и дешевом электромонтаже.
Недостатки системы
Имеется вероятность поражения человека электротоком, что нередко приводит к не самым приятным результатам.
Как исправить систему?
В случае реконструкции объектов строго запрещается устанавливать систему заземления TN-C. То же самое касается и вновь монтируемых объектов. В таких ситуациях энергоснабжающие организации обязаны переводить имеющуюся систему, на более современную систему заземления, название которой TN-C-S либо TN-S. Но по причине отсутствия надлежащего финансирования, энергоснабжающие организации несколько упрощают себе работу. На вводе в квартиру производится очередное заземление нулевого проводника. В дальнейшем они осуществляют разделение PEN-проводника на два отдельных проводника:
— PE защитный проводник;
— N нулевой проводник.
Если владелец дома не в состоянии определить систему заземления в собственном доме или коттедже, то крайне рекомендуется обратиться к специалистам электролаборатории. {source}
<iframe width=»760″ height=»455″ src=»https://www. youtube.com/embed/3knqeHEAdlg» frameborder=»0″ allowfullscreen
></iframe
>
{/source}
Чем опасно самостоятельное выполнение заземления в квартире (переделка tn-c в tn-c-s)
Электрические сети напряжением до 1кВ, кроме установок специального назначения, являются сетями с глухозаземлённой нейтралью. Это значит, что вторичные обмотки питающего трансформатора соединены в звезду, а её средняя точка соединяется с контуром заземления. Со средней точкой звезды соединяется также нулевой (нейтральный) провод трёхфазной линии электропередач.
Такие электроустановки, согласно ПУЭ п. 1.7.3, считаются установками с системой заземления TN. В этом разделе Правил Устройства Электроустановок рассказывается о разных типах заземлений, отличающихся методом соединения корпуса электроустановок с нейтралью трансформатора. Один из видов такого соединения — система заземления TN-C.
Особенности системы заземления TN-C
Система TN-C используется в жилых зданиях, электропроводка в которых не реконструировалась со времён Советского Союза. Это питающая линия, выполненная четырёхпроводными воздушными линиями или кабелями — 3 фазных и 1 нулевой.
В такой схеме соединения в одном проводе совмещены два проводника — нулевой «N» и заземление «РЕ». Это провод называется «PEN» и он соединяет нейтраль трансформатора и корпус электроустановки. Это является основным недостатком схемы заземления TN-C.
В Советском Союзе корпуса бытовых электроприборов не заземлялись, поэтому такая система была достаточно безопасной. Сейчас большинство устройств требуют защитного заземления «РЕ» и система заземления TN-C, фактически являющаяся не заземлением, а занулением, перестала соответствовать требованиям безопасности.
Расшифровка TN-C показывает конструкцию этой системы:
- T — terre (земля). Показывает, что это система заземления.
- N — neuter (нейтраль). Указывает, что линия соединяется со средней точкой звезды — нейтралью (занулена).
- C — combined (объединённый). Значит, что нулевой и заземляющий провода являются одним проводом на всём протяжении от трансформатора до электроустановки.
Как выполнена схема заземления tn c
Система заземления TN-C состоит из следующих частей:
- 1) Контур заземления. Это заземление, находящееся на трансформаторной подстанции и соединённое со средней точкой вторичной обмотки трансформатора.
- 2) Нулевой провод. В четырёхпроводной трёхфазной схеме электропитания выполняет роль нулевого и заземляющего проводников и обозначается на схемах PEN проводник.
В жилых домах, имеющих такую систему заземления, на каждом этаже находится электрощиток, в который приходит 4 провода – три фазы А, В, С и нулевой провод «PEN». При этом в каждую из квартир приходит 2 провода — фаза и ноль (PEN).
В бытовых розетках, установленных во времена СССР отсутствовал заземляющий контакт, как и не было электроприборов, конструкция которых предусматривала подключение к заземлению.
Важно! Если в розетке или квартирном щитке соединить заземляющий контакт и нулевой, то получится не заземление, а зануление.
В системе заземления TN-C с проводом PEN соединяются все металлические части электроприборов, находящихся в квартире. В этом случае вместо защитного заземления получится защитное зануление.
Так как провод PEN кроме заземляющего является также нулевым проводом, то он может не соединяться с заземлёнными частями здания. В некоторых случаях к нему выполняется подключение корпуса вводного и этажных электрощитков.
Ввод электропитания в квартиру выполняется двумя проводами, без заземления. И даже при установке евровилок с заземляющими контактами их некуда подключать. В результате все приборы в доме работают без заземления, даже те, которые нуждаются в нём по инструкции завода-изготовителя.
Кроме того, без заземления не работают разрядники системы грозозащиты, предохраняющие электрооборудование от высоковольтных грозовых импульсов. Они должны подключаться к нулевому и фазному проводам, а также к контуру заземления.
Тем не менее, система TN-C является более передовой по сравнению с полным отсутствием защиты и, во время монтажа, соответствовала существовавшим в этот период нормативным документам.
Достоинства и недостатки
Система заземления TN-C, как и любая схема, имеет отличия от других заземляющих устройств и связанные с этим достоинства и недостатки.
Достоинства этой системы не связаны с высокой безопасностью людей:
- Низкая стоимость. Это связано с отсутствием отдельного проводника «РЕ», который является пятым проводом при трёхфазном электропитании и третьим при однофазном.
- Простота конструкции. В трёхфазной сети всегда есть четвёртый нулевой провод, поэтому для монтажа TN-C достаточно заземлить среднюю точку вторичной обмотки питающего трансформатора.
Недостаток у системы заземления TN-C всего один, но он перевешивает любые достоинства — повышенная опасность поражения электрическим током,
возможная в разных ситуациях, связанных с отсоединением PEN проводника:
- обрыв этого провода между потребителем и питающим трансформатором;
- срабатывание автоматического выключателя, отсоединяющего нейтральный провод при залипшем контакте фазы.
В этих случаях через включённые лампы и другие электроприборы на занулённых металлических частях электроустановок появляется сетевое напряжение.
Поэтому система TN-C в электроустановках не обеспечивает достаточного уровня электробезопасности. Несмотря на это некоторые неграмотные электромонтёры для заземления электроприборов предлагают её установит и соединить нулевой и заземляющий контакты в розетке или квартирном щитке.
Что делать? Как исправить?
При реконструкции построенных и во всех новых зданиях сохранять и устанавливать систему TN-C современными нормативными документами запрещается. Однако есть возможность модернизации этой системы в TN-C-S или TN-S.
Система заземления TN-S является более надёжной, но требует значительных материальных затрат и прокладки пятого провода «РЕ» от потребителя к трансформатору. Правилами устройства электроустановок и другими нормативными документами допускается переделка системы TN-C в TN-C-S.
Для этого в водном щитке проводник PEN заземляется ещё раз, после чего он разделяется на два провода — нейтраль — N и заземление РЕ.
После чего четырёхпроводная сеть превращается в пятипроводную и в квартиры заводится по три провода — фаза «L», ноль «N» и заземление «PE», причём заземление подключается в водном щитке на отдельную шину заземления.
После электрощитка заземляющий провод подключается к клеммам заземления розеток и других электроприборов.
В отдельно стоящих коттеджах, запитанных от трёхфазной сети, такое разделение выполняется в вводном щитке учета ДО электросчётчика.
В зданиях, которым подведено однофазное напряжение, согласно ПУЭ п. 1.7.132 разделение проводника «PEN» на «РЕ» и «N» НЕ ПРОИЗВОДИТСЯ!. Это необходимо выполнить в месте подключения однофазной линии к трёхфазной сети.
Важно! Согласно ПУЭ п. 1.7.135 после разделения провода «N» и «PE» соединять в переходных коробках, розетках и других местах ЗАПРЕЩАЕТСЯ.![]() |
Почему система TN-C морально устарела
В значительной части современной техники используются импульсные блоки питания. В этих устройствах есть фильтры от ВЧ помех. Это конденсаторы малой ёмкости, соединяющие схему с металлическим корпусом и заземляющим контактом вилки.
Помехи, приходящие из электросети или возникающие при работе электрооборудования через конденсатор и заземляющий провод «уходят в землю» и не нарушают работу подключённых к блоку питания приборов.
В обычных условиях ток, проходящий через фильтр недостаточен для срабатывания УЗО или поражения человека электричеством, но при пробое этого конденсатора корпус оказывается подключённым к сети 220В. Эта ситуация не является опасной при наличии системы заземления, соответствующей требованиям ПУЭ, но может привести к электротравме, при её отсутствии или использовании системы TN-C.
Так же является опасной ситуация обрыва нулевого провода «N». В этом случае корпус окажется под напряжением через цепь «фаза-электроприбор-ноль-заземление-корпус».
Аналогичная ситуация возникает при возникновении течи в стиральной или посудомоечной машине или перегорании ТЭНа в бойлере.
Главный недостаток системы TN-C это появление опасного потенциала на заземленных корпусах техники при отгорании PEN проводника. То есть в случаи обрыва PEN проводника заземление (зануление) теряет свои защитные свойства. |
Опасные способы заземления
Для того, чтобы обезопасить себя и членов своей семьи от поражения электрическим током, некоторые «специалисты» прокладывают линию заземления самостоятельно. Для этого используются различные варианты:
- Подключение к радиаторам центрального отопления или к водопроводным трубам. Это опасно тем, что при небольшой утечке по трубам начнёт протекать ток, вызывающий быструю коррозию, а при ремонте водопроводчики могут получить электротравму.
- Соединение в розетке нулевого и заземляющего контакта. Это не заземление, а зануление. В ПУЭ п.1.7.
50 зануление отсутствует среди средств, защищающих от поражения электрическим током.
- Присоединение защитного проводника РЕ к корпусу электрощита, находящемуся на этаже. Этот вариант лучше предыдущих, но качество соединения самого PEN провода с корпусом щитка неизвестно. Кроме того, место соединения проводов «PEN», «N» и «РЕ» должно быть заземлено.
Кроме того неизвестно заземлен ли вообще PEN проводник в этажном щите. К примеру, можно представить ситуацию, когда при такой «схеме заземления» произойдет обрыв нулевого провода N и тогда все заземленные корпуса приборов в квартире через этот дополнительный проводник РЕ окажутся под напряжением.
Тем более если разобраться то такое подключение является не заземлением, а занулением.
Кроме различных вариантов самостоятельного подключения к проводу «PEN», возможен монтаж контура заземления из стальных уголков, штырей и труб, закопанных ниже уровня промерзания почвы. К этим уголкам присоединяется провод, заводится в квартиру и подключается к розеткам. В этом случае есть опасность обрыва этого провода или окисливания в месте контакта, находящемся на улице.
Важно! Контур заземления, выпоненный по всем правилам, соединяется при помощи электросварки с металлическими элементами конструкции здания и подлежит регулярной проверке.
Единственной надёжной защитой от поражения электрическим током является установка систем заземления TN-C-S или TN-S. В этом случае при нарушении изоляции между заземлённым корпусом электроприбора и токоведущими частями возникнет замыкание по цепи «токоведущие части-корпус-заземление», ток через автоматический выключатель возрастёт и автомат отключит питание установки.
Желательно дополнительно к системе заземления в электрощите подключить УЗО. Это устройство будет отключать электропитание в том случае, если изоляция нарушена и появился ток утечки, но отсутствует короткое замыкание.
Как разделить PEN проводник на PE и N
Здравствуйте, уважаемые читатели и посетители сайта http://zametkielectrika.ru.
Сегодня я решил Вам рассказать о том, где и как правильно выполнить разделение PEN проводника на PE и N. На эту мысль меня подтолкнули бесконечные споры и дискуссии на тематических форумах.
В данной статье, ссылаясь на пункты действующих нормативных документов (ПУЭ, ПТЭЭП, различные ГОСТы), я постараюсь дать Вам окончательный правильный и исчерпывающий ответ на этот вопрос.
Зачем нужно разделять PEN проводник?
Сначала определимся, для чего нам нужно разделять PEN проводник. Для этого обратимся к последнему 7 изданию ПУЭ, п.7.1.13, где сказано, что:
Это значит, что все электроустановки напряжением 380/220 (В) должны иметь систему заземления ТN-S, ну или в крайнем случае ТN-С-S. А что делать, когда у нас в России еще до сих пор электропроводка в старом жилищном фонде выполнена по устаревшим нормам с системой заземления TN-C.
Таким образом, при любой реконструкции (изменении) или модернизации электроустановки, а также если Вам не безразлична электробезопасность Вашей семьи, необходимо переходить от системы заземления TN-C на более современные ТN-S или ТN-С-S, но при этом необходимо выполнить разделение PEN проводника на нулевой рабочий N и нулевой защитный РЕ, и причем правильно. Вот здесь то и начинаются путаницы и постоянные разногласия.
Для информации: можете почитать выпуски статей о том, как мы проводили капитальный ремонт электропроводки жилого многоквартирного дома и Вы увидите своими глазами текущее состояние электропроводки, и прочих инженерных сетей и коммуникаций большинства жилых домов.
Приведу пример подъездного щитка одного из жилых домов, где мы проводили ремонт электропроводки — ужас:
В данной статье я не буду акцентировать внимание на системах заземления, т.к. про каждую писал отдельно, указывая их достоинства и недостатки. Читайте:
Итак, перейдем к вопросу разделения PEN проводника на нулевой рабочий N и нулевой защитный РЕ.
Как разделить PEN проводник на PE и N?
Чтобы нагляднее представить написанное ниже, я буду приводить примеры из своей практики с реальными фотографиями. В качестве примера рассмотрим питание многоквартирного жилого дома, типа «хрущевки».
ПУЭ, п.1.7.135:
Поясняю: c места разделения PEN проводника на нулевой рабочий N и нулевой защитный РЕ, дальнейшее их соединение (объединение) запрещено.
В месте разделения, в нашем примере это ВРУ-0,4 (кВ), устанавливаются две шины (или зажимы), которые должны быть соединены между собой и промаркированы:
В качестве перемычки может служить любой провод или шинка такого же сечения и материала. Некоторые мои коллеги-электрики устанавливают две перемычки по краям этих шин, что в принципе не противоречит требованиям ПУЭ.
Акцентирую внимание на том, что шины или зажимы должны иметь отдельные точки подключения для соответствующих проводников РЕ и N, а не подключаться в одном месте под один болт или зажим.
Шина N устанавливается на специальных изоляторах, а шина РЕ (ГЗШ) — закреплена прямо на корпус ВРУ-0,4 (кВ).
Читаем ПУЭ, п.1.7.61:
А сейчас нам нужно выполнить повторное заземление шины РЕ (ГЗШ), к которой подключен PEN проводник вводного кабеля.
В приведенном выше пункте сказано, что в качестве повторного заземления можно использовать естественные заземлители. Я же рекомендую Вам выполнить монтаж заземляющего устройства, сокращенно — З.У.
О том, как это можно сделать самостоятельно Вы можете прочитать в моей статье про монтаж заземляющего устройства.
После монтажа заземляющего устройства (З.У.) необходимо проверить его сопротивление. В этом Вам поможет электротехническая лаборатория по месту жительства.
Если сопротивление смонтированного заземляющего устройства удовлетворяет требованиям ПТЭЭП и ПУЭ, то соединяем шину РЕ (ГЗШ) с нашим заземляющим устройством с помощью заземляющего проводника. Ну вот и все, с этой точки электроустановки вводной PEN проводник разделен на нулевой рабочий N и нулевой защитный РЕ проводники.
Схемы разделения PEN проводника
Приведу пример схемы трехфазного ввода с счетчиком непосредственного (прямого) включения в сеть:
Компоновка вышеприведенной схемы может немного отличаться. Например, вместо вводного автомата может быть установлен трехполюсный рубильник, а после счетчика установлены вводные предохранители и УЗО. Аналогично и по автоматам групповых нагрузок — вместо них могут быть установлены предохранители.
Перейдем к наглядному примеру: жилой многоквартирный 4-этажный дом питается от трансформаторной подстанции (ТП), расположенной во дворе, кабелем АВБбШв (4х70).
- В таком случае фазные жилы (А,В,С) вводного кабеля мы подключаем на коммутационный аппарат — трехполюсный рубильник, а совмещенный PEN проводник вводного кабеля — на шину РЕ (ГЗШ). Смотрим схему:
- А вот фотографии этого самого ВРУ:
- Вот еще один наглядный пример — это схема трехфазного ввода с счетчиком, подключенного через трансформатор тока:
- Вводной кабель марки АВБбШв 2(3х70) проложен до ВРУ двумя нитками.
Три жилы кабеля — это фазные проводники (А, В, С) подключены на вводной трехполюсный рубильник. В качестве PEN проводника используется металлическая оболочка вводного кабеля, которая подключается непосредственно на шину РЕ (ГЗШ).
После вводного рубильника установлены вводные предохранители ППН-35 с номиналом 250 (А) и трансформаторы тока с коэффициентом трансформации 200/5. Для защиты от коротких замыканий и перегрузок групповых нагрузок, в нашем примере это магистральная электропроводка (стояки) подъездов, применяются предохранители ППН-33 с номиналом 50 (А).
- Вот пример схемы однофазного ввода для частного дома или коттеджа, получающего питание от двухпроводной воздушной линии СИП с дальнейшем разделением PEN проводника в вводном щитке:
Здесь хочу добавить то, что вводной автомат должен быть установлен в пластиковом боксе для возможности его опломбировки, иначе могут возникнуть проблемы с энергоснабжающей организацией при вводе электроустановки и прибора учета в эксплуатацию. И еще прошу заметить, что нулевые шины N1 и N2 НЕ соединены между собой.
Я все таки больше склоняюсь именно к такой схеме однофазного питания дома с разделением PEN проводника в вводном щитке и всегда рекомендую и советую ее.
- Но многие специалисты, в том числе мои коллеги «по цеху», частенько ссылаются на еще существующий в настоящее время ГОСТ Р 51628-2000, который, кстати, редактировался последний раз аж в марте 2004 года. А там рекомендуется применять вот такую схему для однофазного питания одноквартирных и сельских жилых домов:
- Мое мнение по этому поводу следующее: обе схемы правильные, но лучше все таки ссылаться на более новые выпуски НТД (я имею ввиду ПУЭ) и придерживаться их норм и требований, о которых я рассказывал в начале этой статьи.
Забыл сказать: не забывайте защищать свое «жилище» от перенапряжений, возникающих от грозовых разрядов или коммутаций различного электрооборудования, с помощью УЗИП или ОПН. В следующих статьях я расскажу об этом более подробнее — подписывайтесь на получение новостей на почту.
После рассмотренных вариантов схем хотелось бы напомнить ПУЭ, п.1.7.145:
После того, как Вы произвели модернизацию своего вводного щитка, установили там шины PE (ГЗШ) и N, выполнили монтаж З.У. (контура заземления), то следует обратить внимание на следующий п.7.1.87 и п.7.1.88 7-ого издания ПУЭ, в котором говорится следующее:
Как видно из пункта 7.1.87, систему уравнивания потенциала необходимо выполнять на вводе в здание, т.е. это еще один аргумент в пользу разделения PEN на нулевой рабочий N и нулевой защитный РЕ на вводе в здание, т.е. в ВРУ. Об этом читайте чуть ниже.
Более подробно о системах уравнивания потенциалов я рассказывал здесь: СУП.
Надеюсь, что тему разделения PEN проводника я раскрыл полностью, но я решил в конце статьи ответить на самые распространенные вопросы, которые все таки могут возникнуть в процессе прочтения.
Место разделения PEN проводника на PE и N
Самый распространенный (наверное) вопрос, который постоянно заставляет активно общаться на тематических форумах — это место разделения PEN проводника. Есть два варианта ответа — один правильный, а другой — не совсем.
Начнем с правильного.
1. Вводное распределительное устройство (ВРУ)
Самым правильным местом для разделения PEN проводника на PE и N является вводное распределительное устройство ВРУ-0,4 (кВ) или ВРУ-0,23 (кВ) отдельно стоящего здания. Отдельно стоящее здание в нашем понимании — это жилой многоквартирный дом, коттедж, садовый или дачный деревянный домик и т.п.
Существует одно условие, про которое я не могу не сказать: питание отдельного стоящего здания должно осуществляться кабелем сечение которого должно быть не меньше, чем 10 кв.мм по меди или 16 кв.мм по алюминию. Об этом отчетливо говорится в ПУЭ, п.1.7.131:
Как это понять: если у Ваш коттедж, дом или другое отдельное строение питается кабелем сечение которого меньше, чем указано в п.1.7.131, то его питание должно осуществляться уже по системе TN-C-S, т.е. с отдельными проводниками РЕ и N.
Бывают случаи, когда отдельное строение (например, баня) питается по системе TN-C кабелем меньшим сечением, чем допускает п.1.7.
131 — в таком случае PEN проводник необходимо разделить в другом месте — ближе к источнику питания, например, в распределительном щите, откуда это строение (баня) питается.
Вот еще один весомый аргумент в пользу норм и требований ПУЭ по разделению PEN проводника — это ГОСТ Р 50571.1-2009. В п.312.2.1 отчетливо сказано где и как именно должен разделяться PEN проводник. Цитирую:
Вводом электроустановки для жилого многоквартирного дома или частного дома является вводное распределительное устройство (ВРУ).
А сейчас — не очень правильный вариант…
- 2. Этажный щит
- Очень часто посетители моего сайта, а также различных форумов, настойчиво интересуются вопросом про разделение PEN проводника в этажном (подъездном) щитке.
Отвечаю: см. пункт 1.
Если не убедил, то знайте, что разделение PEN проводника на этажном щитке является грубым нарушением существующего проекта электропроводки жилого дома.
Поэтому у Вас нет никакого права вмешиваться в существующую схему со своим монтажом.
Не дай Бог, если что то случится после вмешательств, то в первую очередь Вы понесете за это полную ответственность: штраф, административную или уголовную ответственность.
Поэтому настоятельно рекомендую разделение PEN проводника на PE и N выполнять только на вводе в здание и точка!!!
Ладно, с этим определились (я надеюсь), но что же делать и как перейти с системы TN-C на систему TN-C-S?
Пути решения для перехода с системы TN-C на систему TN-C-S
Что я могу Вам здесь посоветовать?
1. Ждать возможности включения Вашего жилого многоквартирного дома в список на проведение капитального ремонта, согласно действующей федеральной программы. В таком случае Вам обойдется все бесплатно. Вопрос остается в том, а внесут ли вообще Ваш дом в эту программу. Узнать это можно в офисе Вашей управляющей компании.
2. Оплатить услуги специалистов, которые составят проект, согласуют его во всех инстанциях и выполнят капитальный ремонт электропроводки всего жилого дома, ну или в крайнем случае, переведут Ваш дом на систему TN-C-S, установят новое ВРУ, проложат новые провода магистралей (стояков) и заведут Вам в квартиру полноценную «трехпроводку»: фазу, ноль и «землю».
Данный вариант по финансам получится достаточно затратный, поэтому читаем третий вариант, который тоже имеет право на жизнь.
3. Обратиться всеми жильцами дома (хотя бы большинством) в управляющую компанию (УК) с предложением плодотворного и плотного сотрудничества.
Например, Вы можете выполнить монтаж заземляющего устройства (контура заземления), про это я подробно рассказывал, или посодействовать в помощи при прокладке магистралей (стояков) электропроводки по этажам.
Так сказать действовать «сообща»…Ну а проект на все изменения, естественно, ляжет на плечи УК.
Возможно такой вариант больше подойдет для участников ТСЖ, но тем не менее попробовать можно. В итоге, совместными усилиями Ваш дом возможно переведут на систему TN-C-S, по этажам или шахтам проложат пятипроводную магистраль (стояк), а Вам лишь останется при удобном случае завести к себе в квартиру трехпроводный ввод.
Что делать, когда проводка в квартире выполнена по современным требованиям ПУЭ, а питающая линия еще двухпроводная?
Отвечаю: в таком случае все очень просто. В квартирном щитке все защитные проводники РЕ подключаете на свою шину РЕ, но саму шину РЕ никуда не подключаете и оставляете «в воздухе», до тех пор пока Ваш дом не переведут на систему TN-C-S.
P.S. Ну вот пожалуй, я закончу свой длительный рассказ о разделении PEN проводника. Готов выслушать все Ваши вопросы и комментарии. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Заземление в частном доме своими руками 380 в схема – Как сделать заземление в частном доме своими руками: 220В и 380В
В любом загородном доме или частном строении, расположенном в городской черте, в распоряжении хозяев имеются бытовые приборы и силовое оборудование, при пользовании которыми возможны нештатные ситуации.
Обычно они проявляются в том, что в какой-либо технике повреждается изоляция, после чего фаза напряжения питания попадает на металлический корпус. При случайном прикосновении к нему одного из жильцов он получает сильный удар током, который может привести к непоправимым последствиям.
Чтобы избежать таких ситуаций – в любом современном строении организуется защитное заземление, призванное снизить опасный потенциал, воздействующий на человека при аварийном режиме работы оборудования.
Нужно ли заземление в частном доме
Надежное заземление в частном доме необходимо хотя бы потому, что требования ПУЭ не допускают эксплуатацию имеющихся в нем бытовых приборов без защиты от опасных напряжений.
Обратите внимание: Кроме того, в отличие от городских квартир, в загородном хозяйстве допускается подводка 4-х или 5-ти жильного кабеля с трехфазным питанием 380 Вольт.
Подобный ввод позволяет устанавливать на участке небольшой фрезерный станок, например, а также подключать к линии электроснабжения асинхронные двигатели и другие образцы силового оборудования.
Заземление всех металлических составляющих в частном доме
Если в частном загородном доме предполагается обустроить бассейн или сауну (то есть объекты, связанные с повышенной влажностью) – обязательно потребуется проработка вопроса о системе выравнивания потенциалов.
Ее организация позволит объединить все крупные металлические составляющие данного объекта (включая стальные трубопроводы и металлические двери) в единую цепь.
А та в свою очередь подключается к уже готовому контуру заземления, как это показано на фото справа.
Принцип действия заземления
Чтобы было понятнее, зачем нужно заземление в домах или на даче – потребуется рассмотреть принцип его работы, основанный на том, что электрический ток всегда выбирает для стока кратчайшее расстояние.
Иными словами – электронные носители всегда устремляются в цепи, обладающие минимальным сопротивлением. В аварийной ситуации, когда токопроводящий корпус прибора из-за повреждения изоляции оказывается под напряжением как раз и реализуется этот случай.
Если это уже произошло, единственно, что сможет защитить работающего с ними пользователя – это наличие цепочки для стекания опасного тока.
Добиться его ответвления удается за счет обустройства специального заземляющего контура (ЗК), отдельные элементы которого связаны с корпусом защищаемого электрооборудования.
Благодаря этому представляющий угрозу для человека аварийный ток уменьшается до безопасной величины.
Последнее объясняется тем, что большая его часть стекает в землю по параллельной цепочке, образованной конструкцией ЗК (смотрите фото ниже).
Принцип работы системы заземленияВажно! Величина токовой составляющей, протекающей через человеческое тело, в значительной мере зависит от изолированности его ног от грунта.
При наличии резиновой обуви или толстого защитного коврика она снижается по абсолютной величине, в идеале приближаясь к нулевому значению. С учетом этого профессиональные электрики обычно работают на оборудовании, расположившись на р
fishkielektrika.ru
Как сделать заземление правильно
Электричество это наше все, оно должно быть безопасным. Для этого применяется заземление. Расскажу вам как сделать заземление правильно и при этом сэкономить.
Для чего нужно заземление в частном доме или квартире
Простыми словам заземление необходимо для защиты человека от возможного удара током в квартире или частном доме.
Принцип работы защитного заземления — это отведение электрического тока в землю от металлических электроприборов, при их неисправности.
В новой квартире или при строительстве дома нужно обязательно провести работу по прокладке заземляющего кабеля и его подключению к «контуру земли» или общедомовому или индивидуальному.
Электроприборы потребляют большое количество энергии, их корпуса металлические и отлично проводят ток, поэтому в особенности обратите внимание на заземление: стиральных машин и холодильников, варочных панелей и духовых шкафов, электрических бойлеров и котлов отопления, микроволновых печей.
Корректная работа заземления опирается на факт того, что:
- Происходит снижение до неопасного значения разности потенциалов между заземляемым объектом и другими проводящими ток объектами, имеющими свое заземление.
- В рабочей электрической сети появление утечки тока приведет к быстрому срабатыванию защитного устройства УЗО.
- При утечке тока и контакте заземляемого проводящего объекта с фазным проводом должно происходить отведение этого тока.
Внимание! Контур заземления будет грамотно работать в комплекте с использованием устройств защитного отключения УЗО. Если прибор выйдет из строя, то величина тока на заземленных предметах не превысит опасной величины. Нерабочий участок сети будет мгновенно выключен в течение времени срабатывания УЗО.
Отсюда можно сделать выводы:
- Наиболее опасный вариант для человека, когда корпус электроприбора не заземлен и УЗО отсутствует.
- Если корпус заземлен, УЗО отсутствует, то этот вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать очень высоких величин.
- Если корпус не заземлен, но при этом УЗО установлено, утечка тока может произойти через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети, как только возникнет утечка. Но человек получит лишь кратковременный удар током, не причиняющий вреда здоровью. Но УЗО может быть неисправен, поэтому лучше не рисковать и сделать все по следующему варианту.
- Корпус прибора заземлен и установлено УЗО. Это самый лучший вариант, так как выполнены два защитных решения.
Как сделать заземление правильно в квартире
Чтобы ответить на этот вопрос необходимо понимать какая система защиты установлена именно в вашем доме.
Как правило в старых домах советской постройки применялась Система TN-C, в которой нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник, и они совмещены на всем протяжении системы. Узнать такую систему можно по двухжильному кабелю, который проложен по квартире и по четырехжильному в общем щитке.
Если говорить честно, как правильно сделать заземление именно в квартире в старом фонде, то такая система защищает только от короткого замыкания и возрастает вероятность получения удара током.
Поэтому говорить о защитном заземлении в данном случае необходимо с некой долей риска.
Есть несколько рабочих вариантов, которые снижают риски, но при этом не являются полноценной защитой, и делаются на ваш страх и риск.
Вариант 1 Меняем проводку в квартире на трехжильную L, N, PE, но PE никуда не подключаем. В будущем, когда будет сделано общедомовое заземление, можно будет подключиться.
На группы розеток обязательно устанавливаем УЗО на случай попадания фазы на корпус в пределах квартиры. Абсолютной защиты они не гарантируют.
Но при повреждении бытовой техники УЗО обесточит линию и не позволит току достичь опасной величины.
Вариант 2 Договариваемся с соседями и управляющей компанией и делаем отдельный контур заземления возле подъезда по принципу как в частном доме. Этот вариант самый безопасный и правильный.
Вариант 3 Ноль оставляем как есть, провод PE берем с магистрального PEN провода. Можно с места, куда он подходит к корпусу этажного щитка. Важно, чтобы наши N и PE были подключены в разных точках.
PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата и счетчика. При этом остается большой минус в таком решении. Нуль может отгореть на входе в дом.
Вы можете думать, что домов меньше, чем квартир и вероятность возникновения такой проблемы меньше, но это опасность все же есть. Поэтому такое заземление то же не работает на 100%.
Внимание! Не делайте заземляющий провод с контактной точкой на батарее центрального отопления или водоснабжения. Нельзя делать заземление, соединив в розетке нулевой рабочий и нулевой защитный проводники. Это опасно, так как может отгореть рабочий нуль в щитке. После этого на корпусе ваших электроприборов появиться 220В.
В современных многоквартирных домах используется система TN-S, в ней проводники N и PE разделены на всём протяжении от подстанции до потребителя.
Эта система самая безопасная и предпочтительная, но применяется только в новых электроустановках из-за высокой стоимости.
В большинстве домов сейчас используется система TN-C-S, в которой проводники N и PE после подстанции соединены в один провод PEN, а потом, на вводе в здание, разделены.
В данном случае организовать защитное заземление можно на этапе монтажа электрики используя трехжильные провода, розетки с заземлением и защитную автоматик. При попадании фазы на корпус прибора должен сработать защитный автомат. При касании токоведущих частей должен сработать УЗО.
Для разводки электричества советую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ НГ, для розеточных групп сечением 3 на 2.5 для световых групп 3 на 1.5.
Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки.
Одновременно со сборкой квартирного щитка электрики проверьте подключение заземляющего провода в общем домовом щитке.
Внимание! Сделайте отдельный контур заземления для металлической ванны и раковины, металлических труб стиральной машины. Правильно соединяйте кабель заземления с металлической ванной к специально приваренному к корпусу ванны ушку, но не к регулируемым болтовым креплениям ванны.
Внимание! При наличии в щитке УЗО заземляющий проводник не должен нигде иметь контакта с N проводником, так как будет срабатывать УЗО. Помните, что «земля» не должна разрываться, посредством выключателей
Как сделать заземление правильно в доме
Как правило для подачи в частный дом электричества применяется система ТТ, в такой системе заземляющий провод PE подключается к контуру заземления, и больше никуда.
При такой системе, необходимо делать качественной контур заземления, чтобы в случае замыкания КЗ на землю, ток короткого замыкания был достаточен для срабатывания автомата защиты.
Рассмотрим, как сделать заземление правильно в частном доме.
Контур состоит из заземлителей и металлической обвязки. Заземлители делаются из металлических штырей 2-3 метров длинной, они полностью входят в землю. Эти штыри и распределительный щит в доме соединяются металлической обвязкой.
Для изготовления штырей могут применяться металлические трубы, уголки, пруты. Арматуру использовать нельзя, так как она быстрее ржавеет и теряет заземляющие свойства. Между собой штыри удобно соединять металлической полосой.
Существует принципиально две схемы контура заземления:
- Линейная схема заземляющего контура, заземлители уложены в ряд и соединяются последовательно.
- Схема с замкнутым контуром, например треугольные и квадратные, в этом случае все штыри заземления образуют замкнутый круг. Такая схема более надежна и оптимальна. Если позволяет территория возле дома, то используйте её. Самой оптимально схемой будет треугольник, расстояние между штырями должно быть одинаковым от 1 м до 1,5 м.
Организацию заземления в частном доме можно разделить на три этапа работ, на монтаж контура заземлителей в земле, подключение контура к электрическому щитку и проверку работы заземления.
Внимание! Ответственно подойдите к выбору места для контура заземления, так как в случае утечки тока над ним не должно никого быть. Можно расположить под клумбой или дорожкой. Размещать контур нужно на расстоянии от 1 до 10 метров от дома.
ЭТАП1
- Отмечаем территорию под контур треугольника, в направлении к строению выкапываем траншею глубиной 70 см.
- В углах треугольника в землю вбиваются металлические уголки или трубы на глубину ниже уровня промерзания, около 2,3 метров. Концы штырей забивают так, чтобы после засыпания грунтом над ними было еще около 50 см почвы.
- Затем эти концы соединяются методом сварки металлическими полосами, тем самым образую замкнутый контур в виде равнобедренного треугольника.
- Затем приваривается к контуру металлическая полоса, идущая к дому. На её конце, на стене дома, привариваем болт, к которому будет закрепляться заземляющий провод от шины в электро-щитке.
- Сварочные швы красятся битумной краской или мастикой, для защиты от коррозии.
- Засыпаем грунтом траншею, и красим для защиты от коррозии земляную шину, которая выступает из земли.
Внимание! Есть заблуждение, что для лучшей работы заземления можно посыпать контур перед засыпкой солью, якобы соленая почва лучше проводит ток. Не делайте этого, так как показатели проводимости тока действительно на начальном этапе эксплуатации будет лучше, но в долгосрочной перспективе ваш контур значительно быстрее заржавеет и потеряет свою способность выполнять свои функции.
ЭТАП2
Для подключения земляной шины к щитку лучше использовать медный провод желтого цвета, сечением не меньше 10 кв.мм.
Внимание! Для крепления медного провода к металлической полосе делается отверстие по диаметру болта, провод фиксируется гайкой с шайбой специальными клеммами, но не накручиваться на них. Это место соединения зачищаем до блеска и покрываем консистентной смазкой для защиты металла от окисления и коррозии.
К щиту медный провод крепится на корпус также винтовым соединением. Если дверца щита не заземлена, то заземлите её еще одним проводом.
Совет! Заранее подберите шины заземления в щитке с нужным количеством отверстий для разных линий, так как крепить два провода в одну точку запрещается.
ЭТАП3
Проверьте работоспособность выполненного защитного. Лучше проводить такую проверку раз в 3 года, для вашей безопасности. Проверка проводится омметром. Может показаться, что проверить ваш контур можно при подключении обыкновенной лампочки к фазе и контуру и она будет гореть, но это ошибочно из-за низкого электропотребления.
Сопротивление контура заземления не должно быть более 4 Ом. Советую пригласить электрика и быть уверенным в том что ваш контур заземления работает корректно.
Итоговые рекомендации
Теперь вы знаете, как правильно сделать заземление в квартире или доме. Подведем небольшие итоги:
- Заземление необходимо для защиты человека от возможного удара током в квартире или частном доме.
- Самый безопасный вариант, когда корпус электроприбора заземлен и установлено УЗО.
- В старом жилом фонде лучше ни рисковать и заменить старую проводку на трехжильные кабеля ВВГ НГ и использовать защитную автоматику, при этом пытаться решить вопрос об установке общедомового контура заземления.
- В новом жилом фонде организовать защитное заземление можно на этапе монтажа электрики используя трехжильные провода, розетки с заземлением и защитную автоматику. При попадании фазы на корпус прибора должен сработать защитный автомат. При касании токоведущих частей должен сработать УЗО.
- Сделайте отдельный контур заземления для металлической ванны и раковины, металлических труб, стиральной машины, варочной панели и духового шкафа.
- В частном доме организуйте схему с замкнутым контуром заземления из трех штырей в земле, соединенных между собой и щитком земляной шиной.
- Обязательно проверьте корректность работы заземления.
Схематично схему организации контура заземления в частном доме можно представить так:
cheremo.ru
Заземление в частном доме своими руками: схемы и монтаж
Электрика дома — все про електрику
|
Чем опасно самостоятельное выполнение заземления в квартире?
Защитное заземление — основной способ минимизации воздействия на человека электрического тока в случае появления на металлическом корпусе бытовых электроприборов опасного для жизни человека потенциала. В странах СНГ достаточно распространена проблема отсутствия заземления в квартире по причине питания от устаревших сетей конфигурации TN-C, в которых не предусмотрено заземление домашней электропроводки.
Для решения данной проблемы, некоторые умельцы выполняют заземление электропроводки посредством переделки системы TN-C в TN-C-S. В итоге, неправильно выполненное заземление делает эксплуатацию электропроводки еще более опасной, чем при отсутствии заземления как такового.
Основная ошибка при самостоятельном выполнении заземления заключается в том, что система TN-C представляется просто как система TN-C-S, в которой нет разделения защитного проводника.
Зачастую переделка системы TN-C в TN-C-S сводится просто к разделению в главном распределительном щитке совмещенного проводника PEN. На рабочий нулевой N и защитный PE. При этом не учитывается текущее состояние питающей сети.
Если изначально в данной сети не предусмотрено заземления, то высока вероятность, что причина заключается в несоответствии электрических сетей требованиям ТКП 45-4.04-149-2009, ТКП 339-2011. Во-первых, это техническое состояние электрической сети.
Если оно неудовлетворительное, то соответственно ни о какой механической устойчивости к повреждению PEN-проводника речи не может идти. Во-вторых, отсутствие на линии достаточного количества повторных заземлений нулевого проводника.
Такое подключение, еще больше увеличивает шансы появления на заземляющем проводнике опасного потенциала, который возникнет в результате обрыва нуля на линии. То есть в таком случае самостоятельно выполненное заземление будет источником опасности для жителей, эксплуатирующих заземленные бытовые электроприборы.
Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.
При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей. Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.
Справочно:
В системе TN-C рабочий нулевой проводник N и защитный заземляющий проводник PE совмещены в одном проводе на всем протяжении линии от трансформаторной подстанции до потребителя. Это так называемый PEN проводник.
При этом, данный совмещенный проводник заводится в квартиру или частный дом без разделения на нулевой рабочий и защитный проводники. Нередко встречаются рекомендации относительно защиты домашних электроприборов путем зануления — присоединения заземляющего контакта в розетке к нулевому совмещенному проводнику PEN.
В данном случае при появлении фазного напряжения на корпусе бытового электроприбора произойдет короткое замыкание. И отключится автоматический выключатель в распределительном щитке.
Основной недостаток зануления заключается в том, что в случае обрыва нулевого провода от домашнего распределительного щитка до места зануления на корпусах оборудования появится фазное напряжение. Тоже самое будет и в случае обрыва нулевого провода от трансформаторной подстанции до ввода в дом.
На корпусе зануленного оборудования гарантировано появится фазное напряжение электросети. В связи с этим, зануление в сети TN-C выполнять запрещено. То есть такая система в быту эксплуатируется как двухпроводная – используется только фазный и нулевой рабочий проводник для питания электроприборов.
Система TN-C-S отличается от системы TN-C тем, что совмещенный проводник PEN при заходе в здание разделяется на рабочий нулевой N и защитный PE.
В данной сети, как и в сети TN-C на заземляющем проводнике появится опасный потенциал в случае обрыва совмещенного проводника PEN до точки разделения. Поэтому для предотвращения негативных последствий обрыва нуля в сети конфигурации TN-C-S согласно ТКП 45-4.
04-149-2009, ТКП 339-2011 предъявляются требования относительно механической устойчивости к повреждению проводника PEN. На линии электропередач организуют надежные повторные заземления проводника PEN, а также надежность шины заземления PE непосредственно в доме.
Только при соблюдении данных требований электрическую сеть можно эксплуатировать, как сеть конфигурации TN-C-S. То есть использовать защитный проводник PE для заземления домашней электропроводки.
инструкция по монтажу + фото
В этой статье вашему вниманию предоставлена система заземления TN-C. Многие могут подумать, зачем нужна система заземления. Ответ достаточно прост. После покупки частного дома или квартиры многие люди могут столкнуться с различными вопросами по электромонтажу.
Многие специалисты могут советовать сделать контур заземления или выполнить зануление оборудования. Чтобы у вас больше не возникало никаких вопросов, мы решили предоставить вашему вниманию ряд статей по заземлению. В этой статье вы найдете подробную информацию о том, как выполнить монтаж системы заземления TN-C. Если вы выполняете эту систему заземления, тогда вам необходимо ознакомиться, какой ток опаснее для человека.
Система заземления TN-C
Заземляющая система TN-C считается наиболее старой. Она существует уже длительное время и, к сожалению, ее вы можете встретить в многоквартирных домах и на сегодняшний день. Заземление в этой системе необходимо выполнять следующим образом:
- Контур заземления обязательно должен выполняться на трансформаторной подстанции.
- Нулевой проводник предварительно необходимо соединить с контуром заземления и провести к потребителю одним проводом PEN.
- Проводник PEN должен служить в качестве защитного и рабочего проводника.
Схема системы заземления tn c поможет разобраться с выполнением монтажа. Она изображена на фото ниже.
Как видно на схеме электропроводка в этом случае должна выполняться кабелями, которые имеют две жилы. Если в вашем доме трехфазное питание, тогда электропроводка обязательно должна иметь четыре жилы. Если корпус электрооборудования соединить с PEN проводником, тогда этот вид защиты будет называться занулением.
Система заземления TN-C и ее преимущества
Эта система обладает только одним достоинством. К этому достоинству можно отнести то, что ее электромонтаж считается простым и дешевым.
Недостатки системы
Кроме преимуществ система заземления TN-C также имеет и ряд недостатков. К основному недостатку относится то, что существует большая вероятность поражения током. Если вы вызвали специалиста, и он рекомендует выполнить монтаж этой системы, тогда следует отказаться от его услуг. Благодаря этому вы сможете себя обезопасить.
Как исправить систему заземления TN-C?
Система заземления TN-C не должна монтироваться при реконструкции или сооружении новых объектов. Организации, которые обслуживают сети многоэтажных домов, обязательно должны провести ее реконструкцию. Систему необходимо заменить на более новые TN-C-S или TN-S. В связи с отсутствием средств многие организации просто устанавливают повторное заземление. Затем они просто разделяют PEN проводник:
- Нулевой рабочий N.
- Защитный проводник PE.
Если вы самостоятельно не можете определить, какая система установлена в вашем доме, тогда следует вызвать специалистов.
Читайте также: система уравнивания потенциалов.
Система заземления TN C описание определение схема
Система защитного заземления TN-C из всех существующих на данный момент систем защитного заземления является самой дешевой при монтаже, наиболее распространенной (монтировалась во всех многоквартирных жилых домах советской постройки), но и при этом самой небезопасной в процессе эксплуатации.
Что это такое
Основная особенность системы заземления TN-C заключается в отсутствии отдельного заземляющего проводника (N), который в данной системе объединен в единое целое с нулевым рабочим проводником (PE). То есть в схеме электроснабжения использующей систему TN-C, нулевой проводник присоединяется к контуру заземления трансформаторной подстанции и подходит к электроприемникам потребителей одним проводом, являющимся одновременно нулевым рабочим и защитным проводником (PEN).
Расшифровка системы заземления TN-C по единому стандарту классификации систем заземлений разработанному Международной электротехнической компанией: T (terre) – заземлено, N (neuter) – присоединено к нейтрали источника (занулено), C (combined) – объединённый.
Таким образом, однофазная схема электроснабжения при использовании данной системы заземления является двухпроводной: фаза и ноль, а трехфазная четырехпроводной: три фазы и ноль – отдельный заземляющий проводник отсутствует. (Для сравнения: более совершенная и так же используемая в быту система защитного заземления TN-C-S имеет следующие схемы: однофазная схема – трехпроводная: фаза-ноль-земля, трехфазная схема: три фазы-ноль-земля.)
Самостоятельно же определить наличие данной системы, в жилом доме или квартире очень просто – нужно посмотреть, во-первых какие розетки установлены в помещениях: обыкновенные или «евро» (имеющие третий заземляющий контакт), и во вторых присоединен ли данный заземляющий контакт к третьему проводу электрической сети.
Не допускается использование PEN проводника в качестве заземляющего проводника для электроприборов и электрооборудования.
Достоинства
Основным и практически единственным достоинством данной системы заземления – является исключительная экономичность еще монтажа. (Очевидно, что отказ от третьего заземляющего проводника (PE) дает экономию материалов практически на треть, что является очень выгодным при массовом применении этой системы заземления.)
Поэтому данная система заземления и была широко использована в свое время в Советском союзе при типовых, массовых застройках – и вероятнее всего советские инженеры сделали этот выбор вполне сознательно: значительно важнее было обеспечить как можно большее количество людей электричеством, даже и понизив общий уровень электробезопасности. При этом следует отметить – практически во всех европейских странах, изначально была применена, хотя и более дорогостоящая, но и между тем более надежная, с точки зрения обеспечения безопасности потребителя, система защитного заземления – TN-C-S.
Так же в качестве своеобразного достоинства следует признать и относительную простоту переделки данной системы заземления в более надежную и безопасную систему защитного заземления TN-C-S. (Переделка производится лишь добавлением в сеть всего одного провода, причем, как в однофазных, так и в трехфазных схемах.)
Использование системы заземления TN-C прямо запрещено Правилами устройства электроустановок при реконструкции или новом монтаже схемы электроснабжения.
Недостатки
Главным недостатком данной системы заземления является возможность появления напряжения на корпусах электроустановок при случайном или аварийном обрыве нулевого провода. (Используемого в данной системе в качестве рабочего и нулевого защитного проводника (PEN)).
Так же следует отметить следующие недостатки системы TN-C вытекающие из объединения в единое целое нулевого рабочего (PE) и нулевого защитного (N) проводников:
- Невозможность проведения защиты человека от поражения электрическим током.
- Невозможность использования PEN проводника в качестве заземляющего проводника для электроприборов и электрооборудования так и выводом из строя электрических приборов.
Так же, довольно принципиальным недостатком использования системы TN-C является недопустимость выравнивания потенциалов в ванных комнатах. (Для выравнивания потенциалов необходима реконструкция системы TN-C в систему TN-C-S – добавлением защитного проводника.)
Основным и наиболее эффективным способом защиты при эксплуатации схем основанных на системе заземления TN-C является тщательное соблюдение элементарных правил техники безопасности.
Реализация
На практике система заземления TN-C как в однофазной так и в трехфазной сети реализуется, очень просто – использованием одного провода одновременно в качестве рабочего и защитного проводников.
В розетках сетей использующих систему защитного заземления TN-C либо отсутствуют контакты защитного соединения, либо (при их наличии) отсутствует их присоединение к защитному проводнику.
Полезное видео
Дополнительную информацию по системам заземления вы можете получить в видео ниже:
Заключение
В настоящее время система заземления TN-C в России признана устаревшей, а из-за угрозы поражения электрическим током еще и потенциально опасной для человека. Поэтому согласно требованиям ПУЭ и установка данных систем на реконструируемых и вновь монтируемых объектах электроснабжения строго запрещена.
Взамен данной системы в настоящее время устанавливается более прогрессивная и соответственно более надежная система заземления TN-C-S. (В данной системе соответственно используется трехпроводная (в однофазной) и пятипроводная (в трехфазной сети) схема питания. То есть добавляется дополнительный отдельный заземляющий проводник (PE)).
В современных электроустановках данная система используется только лишь в уличном освещении и основной причиной, так же как и в советское время является высокий уровень экономии используемых материалов.
При этом, можно сказать, что система заземления TN-C за долгие годы массовой эксплуатации доказала свою работоспособность, и в настоящее вполне может использоваться на объектах с пониженным риском поражения электрическим током.
TN-C, TN-C-S, TN-S, TT, IT
По мере того, как растут экономические показатели и совершенствуются различные технические решения, порой приходится отказываться от привычных технологий и разрабатывать что-то более современное, безопасное и надежное. К таким решениям относятся различные системы заземления, широко применяемые в быту и на производстве. В этой статье рассмотрим пять таких систем, которые до сих пор можно встретить на различных объектах. На технические и эксплуатационные вопросы по системам заземления отвечает ТКП 339-2011.
Пожалуй, еще во времена Эдисона и Доливо-Добровольского, подаривших миру коммерчески выгодные решения для постоянного и переменного тока, инженеры, врачи и обычные горожане начали задумываться о безопасности электрических сетей. Поэтому всего лишь спустя четверть века, а именно в 1913 году, миру была предложена первая система заземления. Изначально на принимаемые технические решения для защиты электрооборудования от коротких замыканий и защиты человека от поражения током сильно влияла доступность металла для проводников. С течением времени появились и стали применяться системы заземления, обеспечивающие надежную работу электроприемников и безопасность для человека.
Существует три основных вида систем заземления, некоторые из которых подразделяются на свои подсистемы. Эти системы – TN, TT, IT. Начнем с первой.
Первой рассмотрим TN – систему заземления с глухозаземленной нейтралью источника N, в которой открытые для доступа токопроводящие элементы электрических установок присоединяются к нейтрали с помощью нулевых защитных проводников, обозначаемых PE. Существует три варианта исполнения такой системы:
TN-C, или TN-Combined (комбинированная). При таком исполнении по всей длине линии роль защитного и рабочего нуля играет один проводник, то есть на всем протяжении от подстанции до электроприемников протянут четырехжильный кабель: три фазы и совмещенный проводник PEN. При такой системе открытые токопроводящие части электроустановок (например, корпус двигателя, выключателя или трансформатора) подключаются (зануляются) к нейтрали подстанции или генератора. Именно эта система была первой в истории. Если происходит замыкание фазы на корпус такого оборудования, то КЗ отключается предохранителями или выключателями, питающими данное оборудование. До отключения КЗ корпус будет находиться под напряжением, что означает опасность получить удар током.
Преимущество у данной системы одно – экономия материала. Недостатков масса, перечислим их:
— вынос потенциала на корпуса другого оборудования при КЗ;
— возрастание напряжения в 1,73 раза для однофазных приемников при обрыве нуля;
— при существовании в токе гармоник, кратных трем (обычное дело в современном мире, наполненном цифровой электроникой), ток в нулевом проводнике принимает опасно высокие значения;
— высокая опасность пожара, так как происходящие однофазные КЗ порождают высокие токи;
— непригодность для установки устройств защитного отключения (УЗО) или автоматов дифференциального тока (АВДТ).
Вследствие этого было создано решение, призванное избавить заводы и людей от таких неприятных последствий. Этим решением было создание системы TN-C-S (Combined, Separated – комбинированная и разделенная). Здесь проводник PEN начинается на подстанции, но в некоторой точке (например, до вводного автомата) он разделяется на PE (защитный) и N (рабочий). Такую систему применяют при модернизации электросетей, сконструированных по системе TN-C. Такая система лишена недостатков TN-C, касающихся электробезопасности.
TN-S – в этом случае нулевой и защитный проводники разделены на всей длине линии. Такая система используется при проектировании современных сетей до 1 кВ. Как и в случае предыдущего решения, становится возможным использование УЗО и дифавтоматов. Теперь замыкание фазы на корпус не представляет угрозы здоровью.
Вторым типом систем заземления является система TT. Здесь нейтраль источника также заземлена, но электропроводные корпуса оборудования присоединяются к своему, независимому от источника, заземлению. Такая система создается, когда, например, домик в деревне подключили к модульному заземлению. Из-за меньшего сопротивления заземления, к которому могут подключаться металлические корпуса, токи однофазных КЗ здесь гораздо выше, чем в системах TN, и для обеспечения безопасности людей обязательно требуется установка УЗО. На промышленных предприятиях такая система обычно применения не имеет, хотя из-за отсутствия возможности передачи потенциала по проводнику PE (ввиду его отсутствия) эта система создает наименьшее количество помех и наибольшую безопасность.
Третьей рассмотрим систему IT, где нейтраль источника не заземлена или заземлена, но через большое сопротивление (сотни или тысячи Ом). Токопроводящие части установок, к которым имеется беспрепятственный доступ, присоединены к своему, отдельному заземляющему устройству, а защиту от прикосновения обеспечивает УЗО. Однофазные замыкания на землю вызывают повышение напряжения в 1,73 раза и небольшое возрастание токов, поэтому такую систему используют там, где прерывание питания на отключение КЗ недопустимы. Однако при эксплуатации таких сетей требуется уметь точно и быстро находить место повреждения, так как в рассматриваемых сетях без резистивного заземления при КЗ возможны перенапряжения.
В этой статье неоднократно упоминалась защита от КЗ и утечек, или дифференциальных токов. Как убедиться, что на вашем предприятии в случае короткого замыкания или обрыва провода не пострадает ни оборудование, ни персонал? Все очень просто: обращайтесь в ТМРсила-М за проведением электрофизических измерений!
Сравнение характеристик трех систем заземления для защиты микросетей в режиме подключения к сети
Интеллектуальная сеть и возобновляемые источники энергии
Том 2 № 3 (2011), Идентификатор статьи: 6647,10 страниц DOI: 10.4236 / sgre.2011.23024
Сравнение характеристик трех систем заземления для защиты микросетей в режиме подключения к сети
Рашад Мохаммедин Камель, Аймен Чауачи, Кен Нагасака
Энергетика окружающей среды, Департамент электроники и информационной инженерии, Токийский университет сельского хозяйства и технологий, Токио, Япония.
Электронная почта: [email protected], [email protected], [email protected]
Поступила 31 декабря 2010 г .; отредактировано 22 мая 2011 г .; принята 29 мая 2011 г.
Ключевые слова: Защита микросети, системы заземления, ток короткого замыкания, напряжение прикосновения, микроисточники и инверторы, режим подключения к сети
РЕЗЮМЕ
В этой статье представлены, тестируются и сравниваются три системы заземления (TT , TN и IT) для защиты микросетей (MG) от различных типов неисправностей в подключенном режиме.Основным вкладом в эту работу является включение моделей всех микроисточников, подключенных к MG с помощью силовых электронных инверторов. Поочередные инверторы снабжены ограничителями тока, которые также включены в модели инверторов, чтобы точно имитировать реальную ситуацию в MG во время отказов. Результаты показали, что наиболее подходящей системой заземления для защиты MG в режиме подключения является система заземления TN.Эта система приводит к соответствующему значению тока короткого замыкания, достаточному для активации реле защиты от перегрузки по току. При использовании системы TN напряжения прикосновения к неисправной шине и шинам всех других потребителей меньше безопасного значения, если ограничитель тока включен в трансформатор главной сети, соединяющей MG. Для двух других систем заземления (TT и IT) ток короткого замыкания невелик и почти равен току перегрузки, поэтому реле защиты от перегрузки по току не может различать ток короткого замыкания и ток перегрузки.Все модели микроисточников, систем заземления, инверторов, главной сети и схем управления построены с использованием среды Matlab ® / Simulink ® .
1. Введение
Заземление электросети требует, чтобы ее сетевой завод и электрооборудование потребителя были заземлены, чтобы обеспечить безопасность и снизить вероятность повреждения оборудования.Эффективное заземление предотвращает длительные перенапряжения и сводит к минимуму риск поражения электрическим током. Заземление также обеспечивает заранее определенный путь для токов утечки на землю, которые используются для отключения неисправной установки или цепи с помощью защитных устройств. Микросеть (MG) является уникальным примером распределительной системы и требует тщательной оценки, прежде чем принимать решение о системе заземления.
MG состоит из группы микроисточников, систем накопления энергии (например, маховика) и нагрузок, работающих как единая управляемая система. Уровень напряжения MG составляет 400 Вольт или меньше. Архитектура MG выполнена радиальной с несколькими фидерами. MG часто обеспечивает как электричество, так и тепло в местные районы. MG может работать как в режиме подключения к сети, так и в изолированном режиме, как подробно описано в нашем предыдущем исследовании [1-10].
Микроисточники обычно изготавливаются из множества новых технологий, например микрогазовая турбина, топливный элемент, фотоэлектрическая система и несколько видов ветряных турбин. Система накопления энергии часто представляет собой систему с маховиком. Микроисточники и маховик не подходят для подачи энергии в сеть напрямую [11]. Они должны быть связаны с сетью через каскад инвертора.Таким образом, использование силовых электронных интерфейсов в MG приводит к ряду проблем при проектировании и эксплуатации MG. Одной из основных задач является проектирование защиты MG для соответствия соответствующим национальным кодам распределения и для поддержания безопасности и стабильности MG как в режиме подключения к сети, так и в изолированном режиме.
Однако MG на базе инвертора обычно не может обеспечить требуемых уровней тока короткого замыкания.В крайних случаях вклад тока короткого замыкания от микроисточников может быть только вдвое или меньше тока нагрузки [12,13]. Некоторые устройства измерения перегрузки по току даже не будут реагировать на этот уровень перегрузки по току. Кроме того, защита от повышенного / пониженного напряжения и частоты может не обнаруживать неисправности MG из-за управления напряжением и частотой MG. Эта уникальная природа MG требует свежего взгляда на конструкцию и работу защиты.Это задача данной рукописи.
В данной рукописи представлены и применены три системы заземления для защиты MG в режиме соединения. Два основных вклада в эту рукопись: 1) Рассмотрение моделей всех микроисточников (и их инверторов), установленных в MG, и 2) Включенный ограничитель тока с каждым инвертором внутри MG для точного моделирования реальной ситуации.
Три системы заземления реализованы и протестированы на MG. Приведено сравнение производительности трех систем. Наиболее подходящая система заземления определяется путем сравнения.
Для проведения предлагаемого исследования эта рукопись организована следующим образом: Раздел 2 описывает три разработанные системы заземления.В разделе 3 представлены характеристики неисправностей в каждой системе заземления, а также преимущества и недостатки каждой системы. Сеть MG включала все микроисточники, инверторы и систему заземления, представленную в разделе 4. В разделе 5 представлены результаты, полученные с применением трех систем заземления, и последовательность событий, происходящих с каждой системой заземления. Выводы представлены в разделе 6.
2. Типы систем заземления
Распределительную систему низкого напряжения (НН) можно определить по ее системе заземления. Они обозначаются с помощью пяти букв T (прямое соединение с землей), N (нейтраль), C (комбинированный), S (отдельный) и I (изолированный от земли). Первая буква обозначает способ заземления нейтрали трансформатора (источника питания), а вторая буква обозначает способ заземления металлоконструкций установки (каркаса).Третья и четвертая буквы обозначают функции нейтрального и защитного проводов соответственно. Возможны три конфигурации [14]:
1) TT: нейтраль трансформатора заземлена, корпус заземлен.
2) TN: нейтраль трансформатора заземлена, корпус подключен к нейтрали.
3) IT: незаземленная нейтраль трансформатора, заземленный корпус.
Система TN включает три подсистемы: TN-C, TN-S и TN-C-S, как описано в следующих подразделах.
2.1. Система заземления TT
В этой системе источник питания имеет прямое соединение с землей. Все открытые проводящие части установки также подключены к заземляющему электроду, который электрически не зависит от заземления источника.Структура системы TT показана на рисунке 1 [15].
Рисунок 1. Конфигурация системы заземления TT.
2.2. Система заземления TN
В системе заземления TN источник питания (нейтраль трансформатора) напрямую соединен с землей, а все открытые проводящие части установки соединены с нейтральным проводом.Безопасность персонала гарантируется, а вот безопасность имущества (пожар, повреждение электрооборудования) — в меньшей степени. Три подсистемы в системе заземления TN описаны ниже с их основными характеристиками.
2.2.1. Система заземления TN-C
Как показано на Рисунке 2 (a), система TN-C имеет следующие особенности:
1) Функции нейтрали и защиты объединены в одном проводе по всей системе.(PEN — защитная заземленная нейтраль).
2) Источник питания напрямую подключен к земле, а все открытые проводящие части установки подключены к PEN-проводу.
2.2.2. Система заземления TN-S
Архитектура системы TN-S показана на Рисунке 2 (b) и имеет следующие особенности:
1) Система TN-S имеет отдельные нейтральный и защитный проводники по всей системе.
2) Источник питания напрямую заземлен. Все открытые токопроводящие части установки подключаются к защитному проводу (PE) через главный заземляющий зажим установки.
2.2.3 Система заземления TN-CS
Конфигурация системы заземления TN-CS показана на Рисунке 2 (c) и имеет следующие особенности:
1) Функции нейтрали и защиты объединены в одном проводе в части система TN-CS.Электропитание — TN-C, а расположение в установке — TN-S.
2) Использование TN-S ниже TN-C.
3) Все открытые токопроводящие части установки подключаются к PEN-проводнику через главную клемму заземления и нейтраль, причем эти клеммы соединяются вместе.
2.3. Система заземления IT
В этой системе источник питания подключается к
(a) (b) (c)
Рисунок 2. (a): Конфигурация системы заземления TN-C; (b): конфигурация системы заземления TN-S; (c): система заземления TN-C-S.
Заземление посредством преднамеренно введенного высокого импеданса заземления (заземленная по сопротивлению система IT) или изолировано от земли, как показано на Рисунке 3. Все открытые проводящие части установки соединены с заземляющим электродом.
Каждая открытая проводящая часть должна быть заземлена для удовлетворения следующих условий для каждой цепи [16]:
(1)
где:
R b : Сопротивление заземляющего электрода для открытых проводящих частей.
I d : Ток повреждения, учитывающий токи утечки и полное сопротивление заземления электроустановки.
3. Поведение при отказе и характеристики различных систем заземления
Нарушение изоляции в электрической установке представляет опасность для людей и оборудования.В то же время это может вызвать отключение электроэнергии. Токи и напряжения короткого замыкания различаются от одной системы заземления к другой, как описано в следующих подразделах.
3.1. Поведение при повреждении в системе заземления TN
На рисунке 4 показано поведение при повреждении в системе заземления TN и путь тока повреждения.При наличии повреждения изоляции ток повреждения I d ограничивается только импедансом кабелей контура повреждения. Короткое замыкание pro-
Рис. 4. Поведение при неисправности в системе заземления TN-S.Устройства защиты
(автоматический выключатель или предохранители) обычно обеспечивают защиту от повреждений изоляции с автоматическим отключением в соответствии с заданным максимальным временем отключения (в зависимости от напряжения между фазой и нейтралью U o ). Типичные времена отключения в системе заземления TN приведены в таблице 1 в соответствии с IEC 60364 (U L — ограниченное безопасное напряжение).
3.1.1. Преимущества системы заземления TN
1) Система заземления TN всегда обеспечивает обратный путь при повреждениях в сети низкого напряжения. Заземлители трансформатора и всех потребителей соединены между собой. Это обеспечивает распределенное заземление и снижает риск того, что у клиента нет безопасного заземления.
2) Уменьшите сопротивление заземления PEN-проводника.
3) Система TN имеет преимущество, заключающееся в том, что в случае нарушения изоляции напряжения повреждения (напряжения прикосновения) обычно меньше, чем в системах заземления TT. Это связано с падением напряжения в фазном проводе и меньшим импедансом PEN-проводника по сравнению с заземлением потребителей в системах TT.
4) Отсутствие перенапряжения для изоляции оборудования.
5) Система TN-S обладает лучшими характеристиками электромагнитной совместимости (ЭМС) для 50 Гц и высокочастотных токов, особенно когда применяется кабель низкого напряжения с заземленной оболочкой.
6) Система заземления TN может работать с простой защитой от перегрузки по току.
7) Высокая надежность отключения неисправности более чем на
Таблица 1. Время торможения в системе TN (взято из таблиц 41 и 48A IEC 60364).
текущих устройств (т.е. ток короткого замыкания достаточно велик, чтобы активировать устройства защиты от перегрузки по току).
3.1.2. Недостатки системы заземления TN
1) Неисправности в электрической сети на более высоком уровне напряжения могут переместиться в заземление сети низкого напряжения, вызывая напряжения прикосновения у потребителей низкого напряжения.
2) Неисправность в сети низкого напряжения может вызвать напряжение прикосновения у других потребителей низкого напряжения.
3) Повышение потенциала открытых проводящих частей с нейтральным проводником в случае обрыва нейтрального сетевого проводника, а также для замыканий фазы низковольтной сети на нейтраль и фазы на землю и коротких замыканий среднего и низкого напряжения.
4) Коммунальное предприятие несет ответственность не только за надлежащее заземление, но и за безопасность потребителей во время нарушений в электросети.
5) Установка защиты в случае модификации сети (увеличение сопротивления контура короткого замыкания).
6) Система TN-C менее эффективна в отношении проблем электромагнитной совместимости (ЭМС).
3.2. Поведение при отказе в системе заземления TT
Рисунок 5 поясняет, что в системе заземления TT возникает неисправность. Когда происходит нарушение изоляции, ток короткого замыкания I d в основном ограничивается сопротивлениями заземления (R a и R b ).По крайней мере, одно устройство защитного отключения (УЗО) должно быть установлено на стороне питания установки. Для увеличения доступности электроэнергии использование нескольких УЗО обеспечивает селективность по времени и току при отключении [16].
3.2.1. Преимущества системы заземления TT
1) Наиболее распространенная система заземления.
2) Неисправности в сети низкого и среднего напряжения не переносятся на других потребителей в сети низкого напряжения.
3) Хорошее состояние безопасности, так как повышение потенциала заземленной проводящей части должно быть ограничено на уровне 50 В для неисправности внутри установки и 0 В для неисправности в сети.
4) Простое заземление установки и простое выполнение.
5) Нет влияния расширения сети.
3.2.2. Недостатки системы заземления TT
1) Каждому заказчику необходимо установить и обслуживать собственную систему заземления
Рис. 5. Поведение при неисправности в системе заземления TT.
заземляющий электрод. Безопасность и защита зависят от заказчика, поэтому полная надежность не гарантируется.
2) Высокое перенапряжение может возникнуть между всеми токоведущими частями, а также между токоведущими частями и проводом защитного заземления.
3) Возможное перенапряжение для изоляции оборудования установки.
3.3. Поведение при повреждениях в системе заземления IT
3.3.1. Первое повреждение в системе заземления IT
На рисунке 6 показано возникновение первого повреждения в системе заземления IT. Напряжение короткого замыкания низкое и не опасно. Следовательно, нет необходимости отключать установку в случае единичной неисправности.Однако важно знать, что есть неисправность, и ее необходимо отслеживать и устранять в кратчайшие сроки, прежде чем произойдет вторая неисправность. Для удовлетворения этой потребности информация о неисправностях предоставляется устройством контроля изоляции (IMD), контролирующим все токоведущие проводники, включая нейтраль [16]. Когда нейтраль не распределена (трехфазное трехпроводное распределение), должно выполняться следующее условие [16]:
(2)
где:
Z S = полное сопротивление контура замыкания на землю, включающего фазный провод. и защитный провод.
I f = ток повреждения.
U o = напряжение между фазой питания и нейтралью.
Когда нейтраль распределена (трехфазное четырехпроводное распределение и однофазное распределение), должно выполняться следующее условие [16]:
(6.3)
, где:
= полное сопротивление контура замыкания на землю, состоящего из нейтрального и защитного проводников.
Рис. 6. Ток первого повреждения изоляции в системе заземления IT.
3.3.2. Вторая неисправность в системе заземления IT
На рисунке 7 показано возникновение второй неисправности в системе заземления IT. Максимальное время отключения для системы заземления IT указано в таблице 2 (как в таблицах 41B и 48A IEC 60364) [16].
Система заземления IT, используемая, когда важны безопасность людей и имущества, а также непрерывность обслуживания.
Рисунок 7. Второй ток повреждения изоляции в системе IT (распределенная нейтраль).
Таблица 2. Максимальное время отключения в системе заземления IT (вторая неисправность).
4. Архитектура исследуемой микросети
На рисунке 8 представлена однолинейная диаграмма исследуемого MG. Исследуемый MG подключен к основной сети через трехфазный трансформатор ∆ / 400 кВА, 20 / 0,4 кВ. MG состоит из 7 автобусов. Маховик (накопитель) мощностью 30 кВт / 0,5 кВтч подключен к шине 1.Система ветроэнергетики (10 кВт) подключена к шине 2. Две фотоэлектрические панели мощностью 10 кВт и 3 кВт подключены к шинам 4 и 5 соответственно. Одновальная микротурбина (SSMT) мощностью 25 кВт подключена к шине 6. Автобус 7 снабжен твердооксидным топливным элементом (SOFC) мощностью 20 кВт. Все компоненты MG (микроисточники, инверторы с разными схемами управления, нагрузки и т. Д.)) подробно смоделированы в нашем предыдущем исследовании [1-10].
Разработанная модель носит общий характер и может использоваться для исследования поведения MG при всех типах неисправностей. Короткое замыкание, представленное в этом исследовании, представляет собой однофазное замыкание на землю, которое является наиболее частым повреждением в помещениях потребителей. В имитационной модели учтены микроисточники. Предполагается, что все силовые электронные инверторы, которые используются для взаимодействия с микроисточниками, снабжены ограничителями тока для ограничения тока повреждения примерно до 150% от тока полной нагрузки инвертора.Этот ограничитель тока включен в каждую схему инвертора, чтобы защитить полупроводниковые переключатели инвертора от повреждений и точно представить реальную ситуацию. На рисунке 8 проиллюстрирован исследуемый MG. Параметры линии приведены в таблице 3 [17-21].
Полная модель Matlab ® / Simulink ® , созданная для тестирования трех систем заземления, показана в конце этого документа (рисунок 17).
5. Производительность трех систем заземления в защите MG в режиме соединения
В этом случае MG работает в режиме соединения. Основная сетка представляет собой свободную (опорную) шину для MG. Исследуемое возмущение представляет собой короткое замыкание (однофазное замыкание на землю), возникающее в питающей сети потребителя на шине №2. Ток повреждения, напряжения прикосновения на всех потребителях, напряжение исправных фаз и напряжение нейтрали главного трансформатора показаны ниже. цифры (рисунки 9-16), когда в MG используются три системы заземления (TN-S, TT и IT).
Из результатов, показанных на предыдущих рисунках, можно сделать следующие выводы:
1) На рисунке 9 показан ток короткого замыкания в режиме подключения к сети. При использовании системы заземления TN-S ток короткого замыкания очень высок (максимальное значение почти 1900 А). Это связано с тем, что основная сеть участвует в большей части тока короткого замыкания.В нашем случае с основной сеткой нет ограничителя тока. В реальных ситуациях ограничитель тока обычно включается последовательно с основным.
Рисунок 8. Однолинейная схема исследуемого MG.
Рисунок 9.Ток короткого замыкания с тремя системами заземления в режиме подключения к сети.
Сетьво время периода отказа, чтобы ограничить ток короткого замыкания до определенного уровня, который может быть легко сброшен с помощью устройств защиты от перегрузки по току небольшого номинала. С другой стороны, в системах заземления TT и IT ток короткого замыкания немного увеличивается, чем значение в установившемся режиме.
2) На рисунке 10 показано напряжение прикосновения в месте повреждения. При использовании системы заземления TN-S значение напряжения прикосновения мало по сравнению с двумя другими системами заземления, однако оно больше, чем значение, ограниченное безопасностью (U L = 50 Вольт). Это связано с большим значением тока короткого замыкания. В реальной ситуации это напряжение прикосновения (с системой заземления TN-S) меньше, чем значение, показанное на Рисунке 10, из-за уменьшения тока короткого замыкания путем включения ограничителя тока последовательно с основной сетью.С другой стороны,
Рисунок 10. Напряжение прикосновения на потребителе шины №2 (неисправная шина).
с использованием системы заземления TT, напряжение прикосновения в месте повреждения очень высокое. Чтобы уменьшить это значение с помощью системы заземления TT, потребители должны использовать заземляющий электрод с низким сопротивлением.Для системы заземления IT напряжение прикосновения в месте повреждения равно нулю. На всех оставшихся шинах MG напряжение прикосновения с системой заземления TN-S меньше предельного значения безопасности, как показано на Рисунках 11–14. Напряжения прикосновения на всех шинах MG, кроме неисправной шины, при использовании систем заземления TT и IT почти равны до нуля.
3) На рисунке 15 показаны напряжения исправных фаз (неповрежденных фаз) в месте повреждения.Как показано, наиболее опасной системой является система IT, в которой напряжение между исправными фазами и нейтралью подскакивает до значения, равного фазному напряжению (т. Е. Умноженному на), и устранение последствий неисправности должно быть быстро устранено для защиты оборудования, подключенного к двум исправным фазам. все автобусы MG. В системах заземления TT и TN-S напряжения на исправных фазах имеют небольшое падение.
Рисунок 11.Напряжение прикосновения на потребителе шины №4.
Рисунок 12. Напряжение прикосновения на потребителе шины №5.
Рисунок 13. Напряжение прикосновения на потребителе шины №6.
Рисунок 14. Напряжение прикосновения на потребителе шины №7.
Рисунок 15. Напряжение исправных фаз (на шине №2).
4) На рисунке 16 показано напряжение нейтральной точки основной сети.Как показано, при использовании системы заземления IT это значение перескакивает на значение фазного напряжения (в идеале равное нулю) и вызывает скачок напряжения всех исправных фаз до линейного значения на всех шинах MG. В двух других системах заземления (TN-S и TT) напряжение нейтральной точки имеет небольшое значение из-за несимметричных нагрузок в MG.
5) В заключение, система TN-S является наиболее подходящей системой заземления для защиты MG в режиме подключения к сети, однако ограничитель тока следует использовать последовательно с основной сетью для ограничения тока повреждения, снижения напряжения прикосновения на поврежденной шине и снизить номинальные характеристики устройств максимальной токовой защиты, используемых для устранения неисправностей в MG в режиме подключения к сети.
6. Выводы
В этой статье используются три системы заземления для защиты MG от различных повреждений в режиме подключения к сети. Из результатов видно, что
Рисунок 16. Напряжение в нейтральной точке главного трансформатора.
Рисунок 17. Matlab © / Simulink © Разработанная модель MG с системой стирания.
Наиболее подходящей системой является система заземления TN. Это связано с тем, что тока короткого замыкания с системой заземления TN достаточно для срабатывания реле защиты.С другой стороны, для двух других систем заземления (TT и IT) реле защиты не может различать ток короткого замыкания и ток перегрузки. Кроме того, напряжения прикосновения на неисправной шине меньше, чем напряжение прикосновения при использовании системы заземления TT. В то время как с системой заземления TT напряжение прикосновения к неисправной шине очень высокое и превышает предельное значение безопасности. Чтобы решить эту проблему, все потребители должны использовать заземляющие электроды с низким сопротивлением, чтобы снизить напряжение прикосновения до предельного значения безопасности.При использовании системы заземления IT, напряжения исправных фаз почти удвоятся (220 В стало 380 В) и вызовут напряжение для всего оборудования, которое питается от исправных фаз. В режиме подключения к сети следует использовать ограничитель тока, чтобы уменьшить ток повреждения, который участвует в основной сети, и, следовательно, снизить напряжение прикосновения на неисправной шине.
В заключение следует отметить, что система заземления TN является самой лучшей системой для защиты MG с точки зрения тока короткого замыкания и напряжений прикосновения.Судя по результатам этой статьи, система заземления TN является наиболее рекомендуемой системой для защиты MG в режиме подключения к сети. Кроме того, следует использовать ограничитель тока основной сети для снижения напряжения прикосновения на всех потребителях MG.
ССЫЛКИ
- Камель Р.М. и Б. Керманшахи, «Проектирование и реализация моделей для анализа динамических характеристик распределенных генераторов в микросети. Часть I: микротурбина и твердооксидный топливный элемент», Scientia Iranica, Transactions D, Computer Наука и инженерия и Электротехника, Vol.17, No. 1, июнь 2010 г., стр. 47-58.
- Р. М. Камель, А. Чауачи и К. Нагасака, «Повышение динамического отклика MicroGrid с использованием нового пропорционального интегрального контроллера шага ветровой турбины и нейро-нечеткого фотоэлектрического контроллера слежения за точкой максимальной мощности», Электрические компоненты и системы, Vol. 38, No. 2, Januaruy 2010, pp. 212-239.
- р.М. Камель, А. Чауачи и К. Нагасака, «Сглаживание энергии ветра с использованием контроллера шага с нечеткой логикой и системы конденсаторов энергии для улучшения характеристик микросетей в автономном режиме», Energy, Vol. 35, № 4, март 2010 г., стр. 2119-2129. doi: org / 10.1016 / j.energy.2010.01.030
- RM Kamel, A. Chaouachi и K. Nagasaka, «Повышение динамического отклика в переходных процессах микросети во время snd после огромных и множественных нарушений путем подключения к ближайшим микросетям», Международный журнал устойчивой энергетики, Vol.30, № 4, август 2010 г., стр. 223–245. doi: org / 10.1080 / 1478646X.2010.509499
- Камель Р.М., А. Чауачи и К. Нагасака, «Влияние сбоя микроисточников на динамические характеристики микросети во время и после процесса изолирования», ISESCO Science and Technology Vision, Vol. 6, No. 9, май 2010 г., стр. 2-10.
- Р. М. Камель, А.Чауачи и К. Нагасака, «Улучшение переходного динамического отклика микросети, последующее отключение и отказ микроисточников за счет двух соединенных соседних микросетей», ISESCO Science and Technology Vision, Vol. 5, № 8, ноябрь 2009 г., стр. 46-55.
- Р. М. Камель, А. Чауаши и К. Нагасака, «Новый контроллер шага PI и конденсаторная система для уменьшения колебаний ветровой энергии и поддержания стабильности микросетей после последующего обострения», Международный журнал энергетических и энергетических систем, том.30, No. 2, апрель 2010 г., стр. 131-138.
- Р. М. Камель и Б. Керманшахи, «Оптимальный размер и расположение распределенных генераторов для минимизации потерь мощности в первичной распределительной сети», Scientia Iranica, Transactions D, Компьютерные науки и инженерия и Электротехника, Vol. 16, № 6, декабрь 2009 г., стр. 137–144.
- р.М. Камель, А. Чауачи и К. Нагасака, «Снижение выбросов углерода и снижение потерь мощности помимо улучшения профилей напряжения с использованием микросетей», Low Carbon Economy, Vol. 1, No. 1, октябрь 2010 г., стр. 1-7. doi: org / 10.4236 / lce.2010.11001
- Р. М. Камель, А. Чауаши и К. Нагасака, «Влияние рейтинга ветроэнергетической системы на переходные динамические характеристики микросети в автономном режиме», Низкоуглеродная экономика, Vol.1, № 1, октябрь 2010 г., стр. 28–37. doi: org / 10.4236 / lce.2010.11005
- С. Барсали и др., «Методы управления рассредоточенными генераторами для повышения непрерывности электроснабжения», Зимнее собрание энергетического общества, Нью-Йорк, 27–31 января 2002 г., том . 2. С. 27-37.
- С. Р. Уолл, «Производительность распределенной генерации с инверторным интерфейсом», Конференция и выставка по передаче и распределению IEEE / PES 2001 г., Атланта, 28 октября — 2 ноября 2001 г., Vol.2. С. 945-950.
- Н. Джаяварна и др., «Задача TE2 — Вклад тока повреждения в преобразователи», Проект отчета микросетей для задачи TE2, Европейская комиссия, 2004 г.
- К. Преве, «Защита электрических сетей», ISTE Ltd, Лондон, 2006.
- Б. Лакруа и Р. Кальвас, «Системы заземления в низковольтном оборудовании», Методика Кайера компании Schneider Electric, No.172, март 2002 г.
- Н. Джаяварна, М. Лоренцу и С. Папатанассиу, «Обзор заземления в микросети», Проект «Крупномасштабная интеграция микрогенерации в низковольтные сети» MICROGRIDS, РАБОЧИЙ ПАКЕТ E, № 1 , 23 апреля 2004 г.
- С. Папатанассиу, Н. Хатциаргириу и К. Струнц, «Эталонная сеть микросетей низкого напряжения», Материалы симпозиума СИГРЭ: Энергетические системы с рассредоточенной генерацией, Афины, 13–16 апреля 2005 г.
- W. Xueguang, N. Jayawarna, Y. Zhang, N. Jenkins, JP Lopes, C. Moreira, A. Madureira и J. Pereira da Silva, «Рекомендации по защите микросетей», Результат DE2 для микросетей ЕС проект, июнь 2005 г.
- WGE4 — Рабочая группа по безопасности подстанций, «Руководство IEEE по безопасности при заземлении подстанций переменного тока», Стандарт IEEE 80-2000 (пересмотр стандарта IEEE 80-1986), 2000.
- «Анализ подстанций в городских районах», Safe Engineering Services & Technologies Ltd., Монреаль, версия 8, январь 2000 г.
- К. Марней, Ф.Дж. Робджо и А.С. Сиддики, «Форма MicroGrid», Зимнее собрание IEEE PES, нов. Йорк, январь 2001 г.
Типы систем заземления — Что означает заземление TT, IT и TN?
Стандарты, используемые для определения систем заземления
За прошедшее столетие стандарты электробезопасности превратились в высокоразвитые системы, охватывающие все основные аспекты безопасной установки, включая системы заземления.В электроустановках низкого напряжения (LV) стандарт IEC 60364 используется для мер, которые должны быть реализованы, чтобы гарантировать защиту персонала и имущества.
Стандарт IEC 60364 определил три типа систем заземления, а именно системы TT, IT и TN. Поскольку IEC публикует международные стандарты для всех электрических, электронных и связанных технологий и является ведущей международной организацией в своей области, IEC 60364 является документом высшего уровня, который информирует о стандартах для электроустановок низкого напряжения во всем мире.Следовательно, три типа систем заземления, определенные в IEC 60364, также признаны во многих национальных стандартах. BS 7671: 2008, также известный как 17-е издание IEE Wiring Rules, — это британский стандарт, опубликованный в январе 2008 года, используемый в Великобритании и других странах. Аналогичным образом, Индийский стандарт IS 732: 1989 (R2015) используется в Индии для электрических установок.
Следите за нами в LinkedIn, чтобы получать последние обновления.
TN-C, TN-S, TN-CSСистема TN далее подразделяется на TN-C, TN-S и TN-CS, поэтому мы будем ссылаться на 5 типов систем заземления, распространенных во всем мире.
Номенклатура
Первая буква каждой системы относится к источнику питания от обмотки, соединенной звездой.
Вторая буква относится к потребляющему оборудованию, которое необходимо заземлить.
Из «Руководства по электротехнике: для специалистов в нефтегазовой и нефтехимической промышленности» Алана Л. Шелдрейка
В первой букве : «T означает, что начальная точка источника надежно заземлена. , который обычно находится в непосредственной близости от обмотки.
I обозначают, что начальная точка и обмотка изолированы от земли. Начальная точка обычно связана с индуктивным сопротивлением или сопротивлением. Емкостный импеданс никогда не используется ».
А для второй буквы , “T означает, что потребитель надежно заземлен независимо от метода заземления источника.
N означает, что провод с низким сопротивлением отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.
S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.
C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником. Это означает, что для трехфазного потребителя необходимо проложить четыре провода ».
Проще говоря:
T = прямое соединение с землей, T означает Terra, что означает земля
I = изолированный
N = нейтральный
S = отдельный
C = объединить
Самыми распространенными системами являются TT и TN.Некоторые страны, например Норвегия, используют ИТ-систему. В таблице ниже приведены примеры систем заземления, используемых для общественного распределения (потребители низкого напряжения) в нескольких странах.
Система заземления TT
В этом типе системы заземления подключение к источнику питания напрямую подключается к заземлению и концу нагрузки, либо монтажные металлоконструкции также напрямую подключаются к земле. Следовательно, в случае воздушной линии обратным путем для линии будет масса земли.Нейтральный и заземляющий проводники должны быть разделены во время установки, поскольку распределитель мощности обеспечивает только нейтраль питания или защитный провод для подключения к потребителю.
Система заземления IT
Распределительная система не имеет заземления или имеет только высокоомное соединение. Основная особенность системы заземления IT заключается в том, что в случае короткого замыкания между фазами и землей система может продолжать работать без перебоев.Такая ошибка называется «первой ошибкой». Таким образом, обычная защита от заземления для данной системы не эффективна и этот тип не предназначен для электроснабжения потребителей. Система заземления IT используется для систем распределения электроэнергии, таких как подстанции или генераторы.
Система заземления TN-S
В этой системе заземляющий и нейтральный проводники разделены по всей распределительной системе. Защитный проводник — это металлическое покрытие кабеля, питающего установку.Все открытые токопроводящие части установки подключаются к этому защитному проводу или через главный зажим заземления установки.
Система заземления TN-C
Нейтраль и защитное заземление объединены в один провод по всей системе. Все открытые и токопроводящие части установки подключены к PEN-проводу. Согласно пункту 8 (4) Правил электробезопасности, качества и непрерывности электроснабжения 2002 года, «Потребитель не должен совмещать нейтральную и защитную функции в одном проводе в установке своего потребителя».
TN-C-S Система заземления
Нейтраль и защитное заземление объединены в один провод в части системы. Этот тип заземления также известен как многократное защитное заземление. PEN-проводник системы питания заземляется в двух или более точках, и может потребоваться заземляющий электрод на установке потребителя или рядом с ним. Все открытые проводящие части установки подключаются к PEN-проводнику через главную клемму заземления и нейтраль, и эти клеммы соединяются вместе.
Здесь вы можете ознакомиться с нашим широким ассортиментом оборудования для заземления, заземления и заземления. Вы можете связаться с нами по номеру , если вам нужно предложение или у вас возникнут дополнительные вопросы относительно продуктов, необходимых для заземления, заземления или соединения.
Эта статья является частью нашей серии статей по молниезащите, защите от перенапряжения и заземлению, вы можете узнать больше по следующим ссылкам:
Введение в основы молниезащиты и заземления, а также стандарты (IEC 62305 и UL 467)
Проектирование систем молниезащиты и продукты
Устройства защиты от перенапряжения (SPD)
Зоны молниезащиты и их применение для выбора SPD
Как работает грозозащитный разрядник?
Для получения дополнительной информации свяжитесь с нами по адресу www.axis-india.com/contact-us/
TN-System
Система TN (фр. terre Neutrale, нейтральная земля) — это определенный тип реализации низковольтной сети в электроснабжении. . Наиболее важной особенностью является тип заземления этой системы электроснабжения у источника питания и электрического оборудования внутри здания. Другие сетевые системы — это система TT и система IT.
Общие сведения
В отличие от системы IT, в системе TN, как и в системе TT, точка звезды на стороне низкого напряжения питающей трансформаторной подстанции заземлена.В отличие от системы TT, в системе TN цепь с системой потребителя обнуляется. В системе TN существует соединение между землей системы и землей системы.
В зависимости от конструкции защитного проводника системы TN делятся на системы TN-C, системы TN-CS и системы TN-S.
Замыкания на землю в сетях TN приводят к токам замыкания на землю с достаточно низким сопротивлением, что вызывает срабатывание предохранителя на входе. С другой стороны, в случае замыкания на землю с высоким сопротивлением ток замыкания на землю часто оказывается слишком низким для срабатывания предохранителя.Эти токи заземления, также известные как токи короткого замыкания, особенно опасны, поскольку могут привести к поражению электрическим током или возгоранию системы. Чтобы снизить этот риск, используются автоматические выключатели дифференциального тока для обнаружения замыканий на землю с высоким сопротивлением.
TN-C-System
В системе TN-C (французское terre Neutre combiné, комбинированное нейтральное заземление) используется PEN-проводник, который одновременно является защитным проводом (PE) и нейтральным проводником (N). .
В результате двойной функции PEN-проводника, (низкое) напряжение на землю уже приложено к корпусам заземленных устройств во время нормальной работы, поскольку ток, протекающий через PEN-проводник, основан на законе Ома, вызывая падение напряжения. .В многофазных установках неравномерная нагрузка внешних проводников также приводит к смещению нулевой точки, и в неблагоприятных случаях к устройству может быть приложено почти полное напряжение между внешними проводниками (до 400 В), что в большинстве случаев приводит к электрическое разрушение соответствующих устройств. Если PEN-проводник даже прерывается в установке, то токопроводящие корпуса устройств, подключенных до точки разрыва — из-за соединения внешнего проводника с PEN-проводником в устройстве — полное напряжение внешнего проводника относительно земли, т.е.е. обычно 230 В. Следовательно, система TN-C в домашнем хозяйстве представляет собой значительный потенциальный источник опасности.
Тем не менее, система TN-C долгое время использовалась как «классическая установка нуля» во всей домашней установке — главное преимущество — меньшие затраты на прокладку кабелей (для однофазных цепей достаточно двухпроводных линий). С 1973 года система TN-C разрешена только для проводов с поперечным сечением не менее 10 мм² из меди или 16 мм² из алюминия. Это сделано для того, чтобы снизить риск обрыва PEN-проводника с описанными выше последствиями.Старые установки с меньшим поперечным сечением подлежат удалению (подробности для конкретной страны см. В разделе «Обнуление # дедушка»).
В сети TN-C выключатели дифференциального тока в низковольтных распределительных сетях могут использоваться только при условии профессиональной установки системы. [1] (PEN-проводник может быть заземлен только один раз в точке питания и не дополнительно вне низковольтной распределительной сети) — и только с существенными ограничениями. Однако, в отличие от австрийского Постановления по электротехнике, использование устройств защиты от остаточного тока (УЗО) в системах TN-C категорически запрещено для Германии в DIN VDE 0100-410: 2007-06 под пунктом 411.4.5.
Существует только дополнительная защита при контакте с внешними проводниками от потенциала земли, но не от PEN (например, заземленный корпус). С другой стороны, так называемые розетки RCD обеспечивают неограниченную защиту в сети TN-C.
Постановление Австрии по электротехнике ETV [2] предписывает (впервые с изданием 2002 / A2) в новом § 7a переоснащение старых квартир в случае их повторной сдачи в аренду. Соответственно, порядок в § 7a гласит: при повторной сдаче в аренду квартиры, не имеющей дополнительной защиты, необходимо «установить по крайней мере один выключатель дифференциального тока с номинальным дифференциальным током не более 30 мА, непосредственно перед встроенной защитой. приборы в квартире.»
TN-CS-System
Система TN-CS (аббревиатура от французского terre Netere combiné séparé, отдельная комбинированная нейтральная земля») состоит из системы TN-C, предпочтительно для распределительной сети коммунального предприятия, и система TN-S на объекте заказчика.
PEN-проводник разделен на защитный провод «PE» и нейтральный провод «N», если это возможно в основной системе электроснабжения (в Германии согласно TAB 2007 пункт 6.1 (10)). Этот момент знаменует переход от системы TN-C к системе TN-CS. При переходе к системе TN-CS защитный провод (PE) и нейтральный провод (N) остаются строго разделенными в дальнейшем ходе линии; не разрешается подключать нейтральный провод к любой другой заземленной части системы в дальнейшем ходе линии или повторно подключать защитный провод (Германия: в соответствии с DIN VDE 0100-540: 2007-06 (пункт 543.4. 3)).
Эта система широко используется в строительных материалах в Германии, Австрии и Швейцарии и является стандартной для новых установок (см. Также лекцию: «Внедрение системы TN на RWE») [3] .
В предыдущих стандартах VDE не было явного требования для выделения PEN как можно раньше. Однако PEN-проводники вызывают значительные паразитные токи и поля и крайне неблагоприятны для электромагнитной совместимости. [4] DIN VDE 0100-444 «Защита от электромагнитных помех (EMI) в системах в зданиях» требует «в зданиях, которые имеют значительное количество оборудования информационных технологий или от которого этого можно ожидать в будущем» в разделе 444.3. 12 разделение PEN-проводника на PE и N от входа в здание. [5]
В соответствии с DIN VDE 0100-410 низковольтные системы (включая обычные системы заказчиков) должны соответствовать требованиям защиты от неисправностей. Согласно пункту 411.3 подразумеваются меры «защитное заземление и уравнивание потенциалов», «защитное уравнивание потенциалов через главную шину заземления» и «автоматическое отключение в случае неисправности».
В качестве «дополнительной защиты конечных цепей для внешней зоны и розеток», DIN-VDE 0100-410 [6] требует новых систем с издания июня 2007 г. (с переходным периодом до конца января 2009 г.) для всех цепей розеток, которые используются непрофессионалами, устройство защитного отключения (УЗО) с номинальным остаточным током не более 30 мА (во внутренних помещениях, цепи до 25 А, на открытом воздухе для всех оконечных цепей до до 32 А).Для помещений с душем или ванной в новостройках, DIN VDE 0100-701 (см. Лекцию: DIN VDE 0100-701) [7] требует УЗО, как описано выше, для всех контуров (кроме постоянно подключенных водонагревателей) с 1984 года.
TN-S-System
В системе TN-S (аббревиатура от французского terre Netere séparé, отдельное заземление нейтрали) отдельные нейтральные проводники и защитные проводники проложены от трансформатора к расходным материалам.
Система TN-S безопаснее, чем система TN-C или TN-CS.Проблемы, которые могут возникнуть из-за обрыва PEN-проводника, здесь не возникают, защита гарантируется намного лучше. Однако он используется не очень часто и в основном используется в более крупных коммерческих системах, которые обычно питаются средним напряжением и оснащены собственными трансформаторами (тогда это соответствует системе TN-CS). Старые городские и загородные дома в Великобритании также часто поставляются по системе TN-S.
Переход от системы TN-C к системе TN-S обозначен синей линией.
Заземление в системах TN
В случае возможного замыкания на землю во внешнем проводе другие проводники, такие как проводники PEN и PE, могут принимать напряжение относительно земли, превышающее допустимое контактное напряжение 50 В. Для предотвращения этого Избыточное напряжение, общее сопротивление заземления в низковольтной сети снижается за счет использования нескольких заземляющих электродов, то есть рабочих заземляющих электродов ( R B ) на сетевом трансформаторе и заводских заземляющих электродов ( R A ) в потребительские системы.
Нормы
- DIN VDE 0100-100: 2009-06 Монтаж низковольтных систем — Часть 1: Общие принципы, положения для общих характеристик, термины
- DIN VDE 0100-410: 2007-06 Монтаж низковольтных систем — Часть 4-41: Защитные меры — Защита от поражения электрическим током
- DIN VDE 0100-540: 2012-06 Монтаж низковольтных систем — Часть 5 -54: Выбор и установка электрического оборудования — Системы заземления, защитные проводники и проводники защитного уравнивания потенциалов
- DIN VDE 0100-444: 2010-10 Установка низковольтных систем — Часть 4-444: Защитные меры — Защита от перенапряжения и электромагнитные помехи
- DIN VDE 0100-701: 2008-10 Монтаж низковольтных систем — Часть 7-701: Требования к производственным помещениям, помещениям и системам особого типа — помещения с ванной или душем
литература
Герхард Кифер: VDE 0100 и практика .12-е издание. VDE-Verlag GmbH, Берлин / Оффенбах 2009, ISBN 978-3-8007-3130-5.
Гюнтер Спрингер: Электротехника . 18-е издание. VDE-Europa-Lehrmittel Verlag, Вупперталь 1989, ISBN 3-8085-3018-9.
Вернер Хёрманн, Бернд Шредер: Серия VDE 140- Защита от поражения электрическим током в системах низкого напряжения — Комментарий к DIN VDE 0100-410 (VDE 0100-410): 2007-06 . 18-е издание. VDE-Europa-Lehrmittel Verlag, Берлин 2010, ISBN 978-3-8007-3190-9.
Ганс Шультке: Азбука электрического монтажа . 14-е издание. EW Medien und Kongress GmbH, Франкфурт 2009, ISBN 978-3-8022-0969-7, стр. 131 сл.
Индивидуальные свидетельства
- ↑ Schrack, Требования безопасности для потребительских систем (памятная записка от 9 марта 2016 г. в интернет-архиве ), сентябрь 2007 г. (PDF; 3,4 МБ)
- ↑ BMWFJ, Безопасность электрических систем — Электротехника Постановление (памятная записка от 28 декабря 2010 г. в Интернет-архиве )
- ↑ Внедрение системы TN на RWE (памятная записка от 5 июля 2016 г. в Интернет-архиве ), 26 февраля 2010 г. (PDF; 297 кБ)
- ↑ Электромонтаж и ЭМС в здании (Мементо от 21 июля 2016 г. в Интернет-архиве ) (PDF; 623 кБ)
- ↑ ЭМС-совместимая сеть для машин и устройств (Мементо от 13 января 2018 г. в Internet Archive ), январь 2007 г. (PDF; 412 kB)
- ↑ Moeller, пояснения к DIN VDE 0100-410 (памятка от 13 января 2018 г. в Internet Archive ), 2008 (PDF; 246 kB) 90 350 ↑ Новые правила строительства для комнат с ванной или душем (Памятка от 21 февраля 2017 г. в Интернет-архиве ) (PDF; 5.2 MB), 1 февраля 2002 г.
electric — Почему в американских домах проводка TNC-S, а не TNC
У нас,
, используется защита RCD (устройство остаточного тока), и даже в наши дни она довольно широко скрывается за маскировкойСевероамериканская электрическая проводка действительно начиналась как система TN-C (все защитное заземление выполняется путем привязки объектов к нейтрали), еще в старые плохие дни, до того, как у нас были трехконтактные розетки и GFCI (прерыватели цепи замыкания на землю), и доказательства этого можно увидеть по сей день (например, отвратительно распространенный NEMA 10).Однако произошло две вещи:
В отличие от Европы, которая координировала совершенно новый стандарт для электромонтажа, устанавливает «все сразу», если вы будете через процесс IEC, защитное заземление (TN-CS) и защита GFCI (RCD) были добавлены в NEC США ( правила электропроводки США, более или менее) отдельно; кроме того, правила защиты GFCI в NEC были поэтапно в , от места к месту.
Наша защита GFCI началась с широкого внедрения на уровне розеток из-за желания модернизировать защиту от ударов в существующих домах, особенно во влажных помещениях (ванные комнаты и кухни).Это контрастирует со стилем УЗО IEC, который получил широкое распространение в форме выключателя из-за большего количества новых установок в Европе.
Следствием этих двух вещей является то, что чувствительный UL 943 Class A GFCI, широко применяемый в настоящее время в США, в конечном итоге выполняет совершенно иную функцию по сравнению с защитой IEC RCD — первый предназначен для защиты от поражения электрическим током, в том числе «не может отпустить» опасности вплоть до утопления при шоковом воздействии, в то время как последнее защищает в первую очередь от огня с защитой от сильных ударов в качестве побочного эффекта.
Однако перенесемся на некоторое время вперед, и США, в значительной степени решив проблему поражения электрическим током, по-прежнему имеют серьезную проблему с пожаром , частично электрическую по своей природе. Эта проблема с электрическим возгоранием объясняется множеством нарушений и дефектов, которые вызывают так называемые «дуги», но, точнее говоря, это неисправность с отслеживанием поверхности, когда чрезмерный ток периодически просачивается через поврежденную изоляцию, медленно обугливаясь / пиролизируя ее до точка, где он тлеет в электрический огонь.
В результате производители электрической защиты в США разработали так называемый прерыватель цепи дугового разряда (Arc Fault Circuit Interrupter), или AFCI, который предназначен для прослушивания сигнатуры кондуктивных РЧ-сигналов этих дуговых замыканий и разрыва цепи при их обнаружении. Однако из-за сочетания конструктивных ограничений и исторической случайности первые AFCI были построены на основе того, что в основном является платформой GFCI, и, таким образом, в них была предусмотрена функция защиты оборудования от замыкания на землю 30 мА, которая используется для улавливания дуговых замыканий на землю. -земля, несмотря на то, что функциональность не соответствует стандартам UL.
В результате стремительного внедрения автоматических выключателей AFCI и сохранения этой функции отключения GFPE тремя из четырех североамериканских производителей выключателей (GE — единственная, кто отказался от нее) во многих случаях возник современный дом в в США будет защита УЗО на уровне 30 мА в большинстве ответвленных цепей, с некоторыми цепями, защищенными на уровне 6 мА. Однако эта защита обеспечивается на уровне отдельных ответвленных цепей, а не , а не на уровне службы , как это обычно делается при питании от пяти континентов.
Почему это так, спросите вы? Что ж, общая защита от замыканий на землю применяется в крупных низковольтных трехфазных сетях в Северной Америке для защиты от пожаров и хорошо работает в этих приложениях. Однако чувствительность североамериканских устройств защиты от замыканий на землю при рабочих токах в жилых домах требует, чтобы они использовали электронный датчик замыкания на землю , в отличие от ранних УЗО прямого действия IEC , которые использовали дифференциальный ток в измерительных трансформаторах тока для срабатывания отключения. катушка без всякой смысловой электроники.Это имеет положительную сторону, поскольку североамериканские GFCI смогли достичь надежной работы при низких уровнях утечки на раннем этапе; однако у него есть обратная сторона , что подключение GFCI в обратном направлении (с подачей питания на стороне НАГРУЗКИ) нарушит его неочевидным образом.
Как следствие этого, вы не можете разумно использовать GFCI в качестве основного прерывателя в Северной Америке, если вы не желаете использовать тот же подход, что и большие Wye-сервисы, иначе вы столкнетесь с проблемами, как только начнете делать прочие сложных и желанных вещей, например, солнечная энергия.Кроме того, больший размер служб США означает, что центральное УЗО должно быть чрезмерно нечувствительным из-за того простого факта, что дифференциальные токи утечки выше.
Николай Бозов | Промышленная автоматизация и управление
Типы систем заземленияСегодня тремя системами заземления системы, определенными стандартами IEC 60364 и NF C 15.100, являются системы TN, TT и IT.
Для обеспечения защиты людей, оборудования и непрерывности работы токопроводящие провода и токоведущие части электроустановки «изолированы» от заземленных открытых проводящих частей.Изоляция включает:
- разделение изоляционными материалами.
- разделение линейными зазорами в газах (например, в воздухе) или путями утечки вдоль изоляторов (например, для предотвращения пробоя в электрическом распределительном устройстве).
Описанные различные схемы заземления (часто называемые типом энергосистемы или схемами заземления системы) характеризуют метод заземления установки после вторичной обмотки трансформатора СН / НН и средства, используемые для заземления открытых проводящих проводов. части установки РН, питаемые от нее.
Таким образом, обозначение типов систем заземления обозначается двумя буквами. Первая буква для подключения нейтрали трансформатора (2 возможности):
- Т для «заземленного».
- I для «раскопанных» (или «изолированных»).
Вторая буква для типа соединения открытых токопроводящих частей установки (2 возможности):
- T для «прямого» заземления
- Н для «подключен к заземленной нейтрали» в исходной точке установки.
Комбинация этих двух букв дает три возможных конфигурации: TT, TN и IT.
Система ТТ
Одна точка источника питания подключена непосредственно к земле. Все открытые и посторонние проводящие части подключаются к отдельному заземляющему электроду на установке. PE-соединение обеспечивается локальным заземляющим электродом. Этот электрод может быть или не быть электрически независимым от электрода истока. Две зоны воздействия могут перекрываться, не влияя на работу защитных устройств.Таким образом, защита людей от непрямого контакта обеспечивается УЗО со средней или низкой чувствительностью.
Система ТТ
T = Terra = нейтраль с прямым заземлением
T = Terra = каждый элемент оборудования имеет отдельное заземление с низким сопротивлением
Рисунок 1. Системы заземления TT.
Техника защиты людей: открытые токопроводящие части заземлены и используются устройства защитного отключения (УЗО).УЗО вызывает отключение распределительного устройства, как только ток короткого замыкания имеет напряжение прикосновения, превышающее безопасное напряжение Ui.
Принцип работы: прерывание при первом повреждении изоляции.
Основные характеристики
- Самое простое решение для проектирования и установки. Используется в установках, снабжаемых непосредственно общественной распределительной сетью низкого напряжения.
- Не требует постоянного контроля во время работы (может потребоваться периодическая проверка УЗО).
- Защита обеспечивается специальными устройствами, устройствами защитного отключения (УЗО), которые также предотвращают риск возгорания, когда они настроены на <= 500 мА.
- Каждое нарушение изоляции приводит к прерыванию подачи питания, однако отключение ограничивается неисправной цепью путем последовательной установки УЗО (селективные УЗО) или параллельно (выбор цепи).
- Нагрузки или части установки, которые при нормальной работе вызывают высокие токи утечки, требуют специальных мер для предотвращения ложных отключений, т.е.е. запитать нагрузки разделительным трансформатором или использовать специальные УЗО.
Преимущество: Требуется всего 3 проводника
Недостаток: Эффективная система только при удалении трансформатора от потребителей. Применяется в низковольтных сетях в районах, в которых подстанция находится на большом удалении от потребителей, то есть в сельской местности. Используется в сетях среднего напряжения совместно с (воздушными) линиями электропередач.
Системы TN
Источник заземлен как для системы ТТ (см. Выше).В установке все открытые и посторонние проводящие части подключены к нейтральному проводу. Ниже представлены версии систем TN.
Система TN-C
Нейтральный проводник также используется в качестве защитного проводника и называется проводником PEN (защитный проводник и нейтраль). Эта система не допускается для проводов сечением менее 10 мм2 или переносного оборудования.
T = Terra = нейтраль с прямым заземлением
N = низкоомный обратный проводник к нейтрали трансформатора
C = комбинированный провод для PE и N = PEN
Рисунок 2.Системы заземления TN-C.
Система TN-C требует эффективного эквипотенциального окружения внутри установки с рассредоточенными заземляющими электродами, расположенными как можно более равномерно, поскольку PEN-проводник является одновременно нейтральным проводником и в то же время несет токи дисбаланса фаз, а также гармонические токи 3-го порядка (и их кратные).
Следовательно, PEN-проводник должен быть подключен к нескольким заземляющим электродам в установке.
Внимание: В системе TN-C функция «защитный провод» имеет приоритет над «функцией нейтрали».В частности, PEN-провод всегда должен быть подключен к заземляющей клемме нагрузки, а для подключения этой клеммы к нейтральной клемме используется перемычка.
Преимущество: всего 4 проводника
Недостаток: чувствительность к электромагнитным помехам, поскольку гармоники отводятся через PEN, что означает, что нагрузки с проводником N дополнительно нагружаются гармониками.
Система TN-S
Система TN-S (5 проводов) обязательна для цепей с поперечным сечением менее 10 мм2 для переносного оборудования.Защитный провод и нейтральный провод разделены. В подземных кабельных системах, где существуют кабели в свинцовой оболочке, защитным проводником обычно является свинцовая оболочка. Использование отдельных проводов PE и N (5 проводов) обязательно
T = Terra = нейтраль с прямым заземлением
N = низкоомный обратный провод к нейтрали трансформатора
S = отдельные провода для PE и N
Рисунок 3. Системы заземления TN-S.
Преимущество: система соответствует директивам EMC
Недостаток: 5 проводников
Система TN-C-S
Системы TN-C и TN-S могут использоваться в одной установке.В системе TN-CS система TN-C (4-х проводная) никогда не должна использоваться после системы TN-S (5-ти проводная), поскольку любое случайное прерывание нейтрали на восходящей части приведет к прерыванию цепи. защитный провод в выходной части и, следовательно, опасность.
В этой системе комбинированный провод N и PE (PEN) выходит из трансформатора, но в какой-то момент провод PEN разделяется на отдельные линии PE и N. Тем не менее, PEN является правильным описанием для этого PE, потому что нейтраль может быть отделена от комбинированного проводника в любое время.После того, как нейтраль была отделена от комбинированного проводника, ее нельзя снова подключить к PEN, т.е. это должна быть «ответвительная линия»! Если нейтральный провод, который уже был отделен от PEN, был бы повторно подключен к нему, это образовало бы параллельное соединение с неисчислимым импедансом и, следовательно, также неисчислимой нагрузкой короткого замыкания. Кроме того, это может привести к возникновению нежелательных блуждающих («бродячих») токов.
Рисунок 4. Системы заземления TN-C-S.
ИТ-системы
Между нейтральной точкой источника питания и землей не выполняется преднамеренное соединение.
I = нейтраль трансформатора изолирована или с заземлением с высоким сопротивлением
T = Terra = каждый элемент оборудования имеет отдельное заземление с низким сопротивлением
Преимущество: первая неисправность = проводящее соединение от фазы к корпусу не вызывает отключения.
Недостаток: должна быть установлена дополнительная система контроля для обнаружения первой неисправности.
Используется, например, в ситуациях, когда важна высокая доступность электроустановок, например.грамм. в операционных больниц, во взрывоопасных зонах.
Рисунок 5. Системы заземления IT.
▷ Типы заземления (согласно стандартам IEC)
Введение
В предыдущей статье мы изучили основы заземления, а также базовый тип заземления, при котором нейтраль заземляется на источнике, а дополнительно заземление выполняется даже на стороне потребителя.
Помимо этого, международный стандарт IEC 60364 официально определяет различные типы устройств заземления. Разберем их здесь подробнее.
Стандарт IEC по заземлению
Стандарт IEC 60364 определяет двухбуквенные коды для обозначения типа заземления. Он также определяет три семейства схем заземления.
- Двухбуквенный код основан на заземлении стороны источника — устройства.
- Первая буква указывает, как выполняется заземление на стороне источника (генератор / трансформатор).
- Вторая буква указывает, как выполняется заземление на стороне устройства (место потребления электроэнергии в помещении заказчика).
Используются следующие буквы:
T — (французское слово «Terre» означает Земля) — означает прямое соединение точки с землей.
I — Это означает, что либо никакая точка не подключена к земле, либо она подключена через высокий импеданс
N — Это означает, что имеется прямое соединение с нейтралью в источнике установки, которая, в свою очередь, связана с землей
Исходя из комбинации этих трех букв, МЭК предлагает три семейства схем заземления, как показано ниже:
- Сеть TN
- TT Сеть
- ИТ-сеть
Сеть TN
В системе заземления типа TN одна из точек на стороне источника (генератор или трансформатор) подключена к земле.Эта точка обычно является звездой в трехфазной системе. Корпус подключенного электрического устройства подключается к земле через эту точку заземления на стороне источника. См. Рис. ниже которого изображено это:
На диаграмме выше:
PE — аббревиатура от «Protective Earth» — это проводник, который соединяет открытые металлические части электроустановки потребителя с землей.
N — Также называется нейтральным. Это проводник, который соединяет точку звезды в трехфазной системе с землей.
Существует три подтипа сетей TN, как показано ниже:
TN-S : Здесь отдельные проводники для защитного заземления (PE) и нейтрали проходят от электроустановки Потребителя до источника. Они соединяются между собой только у источника питания.
TN-C : Здесь есть комбинированный провод, называемый PEN (защитная заземление-нейтраль), который соединен с землей в источнике.
TN-C-S : В этом типе заземления часть системы использует комбинированный PEN-проводник для заземления, тогда как для остальной части системы используется отдельный провод для PE и N.
Обычно комбинированный PEN-проводник используется около источника системы.
Сеть TT
В системе заземления типа TT потребитель использует собственное местное заземление в помещении, которое не зависит от любого заземления на стороне источника.
Этот тип заземления предпочтителен в телекоммуникационных приложениях, поскольку в этой системе отсутствуют высокочастотные или низкочастотные помехи, которые проходят через нейтральный провод, подключенный к оборудованию.
ИТ-сеть
В системе заземления типа IT соединение с землей либо отсутствует, либо выполняется через заземляющее соединение с высоким импедансом.
Стандарты заземления, специфичные для страны
UK — Использует защитное многократное заземление (PME), которое является формой заземления типа TN-C-S
Австралия / Новая Зеландия — Также используется заземление типа TN-C-S, известное как система с несколькими нейтралью на землю (MEN)
США / Канада — использует TN-C для питания от трансформатора, но использует TN-C-S в структуре на территории клиента
Франция / Япония / Дания — используется заземление типа TT, и заказчик должен самостоятельно организовать свое собственное заземление.
Система заземленияи статья 250 NEC
Для заземления электросети необходимо, чтобы сетевое оборудование и электрооборудование потребителя были заземлены.Это сделано для повышения безопасности, а также для уменьшения вероятного повреждения оборудования.
Самые эффективные системы заземления предотвращают перенапряжения, так как они также сводят к минимуму риск поражения электрическим током. Система заземления работает, поскольку она обеспечивает заранее определенный путь для токов утечки. Это система, отключающая неисправную цепь или установку путем активации защитных устройств.
Существует три различных типа систем заземления —
Система распределения низкого напряжения или низкого напряжения идентифицируется или определяется с помощью пяти букв, которые обозначают букву T для прямого подключения к земле; N — нейтраль; C для комбинированного; S для отдельного и I для изолированного от земли или земли.Первая буква показывает заземленный источник питания, а вторая буква обозначает раму или способ заземления металлических конструкций. Следующие две буквы обозначают функции защитного и нулевого проводов.
Есть три возможных конфигурации: —
- ТТ или нейтраль трансформатора заземлены, а также корпус заземлен.
- IT или незаземленная нейтраль трансформатора; заземленный каркас.
- TN или нейтраль трансформатора с заземлением, корпус соединен с нейтралью.Это может быть далее разделено на TN-C-S; TN-C или TN-S.
Системы заземления — это одна из первых вещей, которую необходимо тщательно учитывать при настройке электрической системы.
Возвращаясь к буквам на системе, всегда помните, что первая буква обозначает соединение между источником питания (источником энергии) и землей (землей). Примером может служить трансформатор или генератор.
Очень важно с самого начала выбрать правильный тип системы электрического заземления.Ваш выбор в конечном итоге повлияет на электромагнитную совместимость и безопасность источника питания.
Также важно обеспечить соединение PE или защитного заземления. Это гарантирует, что каждая открытая проводящая поверхность имеет такой же электрический потенциал, что и поверхность земли, следовательно, это предотвращает прикосновение любого человека к устройству во время короткого замыкания, предотвращая при этом поражение электрическим током или поражение электрическим током. FE или функциональное заземление используется для таких устройств, как антенны.Он может пропускать ток во время обычных операций.
Роль подрядчика
Электротехнический подрядчик — это профессионал, которому поручено установить как простые, так и сложные электрические системы. Он и его команда должны установить системы заземления, также известные как системы заземления. Для этого команда должна знать все соответствующие стандарты и нормы по установке систем заземления. Задача усложняется по мере того, как объекты, для которых они проектируют системы заземления, становятся больше.Для более крупных объектов проект системы заземления часто остается в руках квалифицированного инженера-электрика.
Догадки просто не сработают, когда дело доходит до установки систем заземления. Вот почему была создана статья 250 NEC или Национального электротехнического кодекса. Эта статья содержит универсальные требования к соединению и заземлению электроустановок во всех типах конструкций от жилых, коммерческих до промышленных предприятий в США
.Примером этого является заземление проводов; каковы правильные места для заземляющих соединений; какие системы следует заземлить или незаземлить; правильный размер заземляющих и заземляющих проводов и т. д.В конечном итоге всегда важна безопасность пользователя, поскольку заземление защищает его от возможных смертельных травм и ударов. Статья 250, как и остальная часть NEC, постоянно обновляется, чтобы идти в ногу с меняющимися технологиями и методами. Важно быть в курсе таких обновлений, чтобы исключить несоответствия. Если вы не уверены, что делать, лучше доверить проект экспертам.
Ссылки по теме
https://fyi.