Заземление tn: Системы заземления TN-S, TN-C, TNC-S, TT, IT

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.

При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

 


Смотрите также:


Смотрите также:

Системы заземления TN-S, TN-C, TNC-S, TT, IT – ГОСГОРПРОМНАДЗОР

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в Правилах устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Основным документом, регламентирующим использование различных систем заземления, является ПУЭ,, разработанные в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» – комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

  1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток.

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» – ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

  1. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

 

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное – жизнь человека.

что такое заземление,правильное заземление, устройство заземления,нормы заземления,теория заземления,заземление оборудования,устройство защитного заземления,системы заземления

В России основным документом, регламентирующим требования к заземлению и его устройству, являются ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК (ПУЭ). В настоящий момент актуальны ПРАВИЛА УСТРОЙСТВА ЭЛКТРОУСТАНОВОК издание седьмое. Утверждены Приказом Минэнерго России от 08.07.2002 №204.

Пункт 1.7.28 ПУЭ Издание, 7 гласит:

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.


Заземляющее устройство (заземление) может быть как одним вертикальным электродом (например из модульного заземления) погруженным в землю на определенную глубину ( в зависимости от требуемого значения сопротивления), так и представлять из себя совокупность вертикальных и горизонтальных заземлителей: 

 

Из представленной картинки  видно, что заземляющее устройство (ЗУ) состоит из заземлителя и заземляющего проводника.

Заземлитель – проводящая часть или совокупность  соединенных между собой проводящих частей, находящихся в электрическом контакте с землёй. Или простыми словами – часть заземляющего устройства находящихся в земле – это могут быть стальные уголки, модульное заземление в виде стальных штырей с медным покрытием, трубы отопления, обсадные трубы скважин.

 

Допустимые материалы и формы заземлителей и заземляющих проводников согласно ПУЭ 7:


Заземлитель может быть простым металлическим стержнем (стальными или с медным покрытием) и/или совокупностью вбитых стальных уголков в форме определенной геометрической фигуры (треугольник, квадрат, линия и т.д.)

Заземлители делятся на искусственные и естественные.

·         Искусственные заземлители – это заземлители выполняемые специально в целях заземления людьми.

·         Естественные заземлители – это металлические объекты, находящиеся в контакте с землей, которые могут быть использованы в целях заземления: водопроводные трубы, обсадные трубы скважин и т. д. Использование естественных заземлителе также регламентируются Правилами Эксплуатации электроустановок (ПУЭ изд. 7).

Заземляющий проводник – проводник, соединяющий заземляемую часть с заземлителем. Это могут быть стальные пластины, оцинкованные стальные пластины, медные кабеля сечением в соответствии с нормативными документами.

Ниже представлены пункты ПУЭ издание 7 нормирующие величину площади сечения защитных проводников в зависимости от площади сечения фазных проводников и некоторые особенности:


Качество заземления определяется значением сопротивления растеканию электрического тока. Чем сопротивление заземляющего устройства ниже, тем качество лучше. Сопротивление ЗУ можно снизить, увеличивая глубину и/или количество электродов в заземляющем устройстве, тем самым увеличивая площадь растекания тока, а так же можно снизить сопротивление ЗУ повышением концентрации солей в грунте. Требуемое значение сопротивления в конкретном случае нормируется требованиями ПУЭ либо производителями оборудования, которое требует заземления в процессе эксплуатации.

Пункты ПУЭ издание 7 нормирующие сопротивление заземляющих устройств:


 

РАЗНОВИДНОСТИ СИСТЕМ ЗАЗЕМЛЕНИЯ

 

ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TNC, TNS, TNCS, TT, IT.

 

В данном материале мы рассмотрим TN и TT системы, как наиболее часто встречающиеся на практике в нашей стране. Система IT, в которой нейтраль источника питания изолирована от земли или заземлена  через приборы или устройства, имеющие большое сопротивление, применяется, как правило, в электроустановках зданий и сооружений специального назначения.

·         система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухо заземлённой нейтари источника посредством нулевых защитных проводников. Т.е. все разновидности систем заземления с маркировкой TN подразумевают то, что на подстанции нейтраль соединена с заземляющим устройством, тем самым в нейтрали (отходящей от источника) соединены функции нулевого рабочего и нулевого защитного проводника (обозначается как PEN).

Далее систему TN можно разделить по признаку того как нулевой рабочий проводник (N) и нулевой защитный проводник (PE) доставляется потребителю на подсистемы – TN-C, TN-S, TN-C-S;

·         система TNC – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) совмещены в одном проводнике на всем её протяжении. Простым языком это означает, что потребителю в случае 3-х фазного подключения приходит 4-х жильный кабель (3 фазы и ноль) и 2-х жильный кабель в случае однофазного подключения (1 фаза и ноль). Основной  и опасный недостаток системы в том, что при обрыве нуля возможно появление линейного напряжения на корпусах электроустановок. До сих пор может встречаться в нашей стране;

 

·         система TNS (пришла на смену системе TN-C в 1930 гг.) – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) проводники разделены на всем ее протяжении. Простым языком это означает, что к потребителю от подстанции в случае трехфазного подключения приходит 5-ти жильный кабель (3 фазы, ноль и «земля»), в случае однофазного подключения 3-х жильный кабель ( фаза, ноль, «земля») – нулевой рабочий проводник (N) и нулевой защитный проводник (PE) разделялись на подстанции, а заземление на подстанции представляет сложную конструкцию из металлической арматуры. При такой системе обрыв рабочего ноля не приводит к появлению линейного напряжения на корпусах электроустановок;


·         система TNCS (можно назвать ее частным случаем системы TN-S) – трансформаторная подстанция имеет непосредственную связь  токопроводящих частей с землёй и наглухо заземленную нейтраль , на линии (участок от подстанции до потребителя) же в какой-то части нулевой рабочий (N) и защитный (PE) проводники объединены в проводнике PEN, а начиная с какой-то точки происходит их разделение на N (нулевой рабочий проводник) и РЕ (защитный проводник). Например: на участке  от подстанции до ввода в здание потребителя  применяется совмещенный нулевой рабочий (N) и защитный (PE) обозначаемый PEN, т.е применяется система TN-C, а при вводе в здание производится разделение PEN на рабочий нулевой проводник (N) и защитный (PE) далее по зданию до распределительного щита идут уже жила- фаза, жила — «чистый» ноль и жила -«чистая» земля, т.е. система TN-S. Вероятно из-за такой трансформации получилось TN-C-S. Есть случаи, когда разделение происходит в вводно распределительном устройстве (ВРУ) внутри здания.


В случае организации TN-C-S для частного дома необходимо производить разделение PEN на N и PE в щите учета (перед вводом в дом, как правило, эти щиты  расположены на столбах, если идет воздушная линия или стоят на земле около участка, в случае, если идет линия в земле) до счетчика и вводного автомата, при чем разделение PEN должно происходить без разрыва этого проводника с использованием прокалывающего зажима, либо использовать Н-образную шину разделения PEN на N и PE c надежными болтовыми соединениями проводников ( в этом случае будет разрыв PEN, но при таком соединении разрыв допустим)

 

 
Н-образная шина разделения проводника PEN

 
Схема разделения проводника PEN с помощью Н-образной шины
 перед вводом в дом


ПЭЭП!!!!

В соответствии с ПУЭ 7, система TN-C-S является основной и рекомендуемой системой. При организации системы TN-C-S, ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN, а также повторных заземлений PEN  воздушной линии по столбам через определенное расстояние (от 40 до 200 метров в зависимости от количества грозовых часов в году на определённой местности).

Достоинства: возможность обнаружения КЗ фазы на корпус оборудования простыми автоматами и практически пожаробезопасная .

Недостатки: при повреждении ноля на линии до разделения возникает ситуация, когда под фазным напряжением оказываются заземленные корпуса оборудования, что представляет опасность для человека и никакая автоматика не сможет разорвать цепь, так как PE после разделения идет в обход всех автоматических выключателей.  Внутри помещения это решается системой уравнивания потенциалов (СУП) – все металлические части объекта соединяются с главной шиной заземления (ГЗШ), на которую также заведен проводник от местного заземляющего устройства. В результате если произойдет обрыв ноля на линии и в доме все заземленные корпуса оборудования будут под фазным напряжение, то под таким же напряжением окажутся и все металлические части дома, следовательно разности потенциалов между ними не будет и при одновременном касании человека металлических частей дома и заземленных корпусов оборудования, приборов находящимся под напряжением(из-за аварии на линии)  поражения электрическим током не будет.
В случае когда нет возможности соблюсти условия организации системы TN-C-S обозначенные выше, ПУЭ рекомендуют систему заземления TT.

 

·         Система ТТ – система с трансформаторной подстанцией, которая имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки потребителя имеют непосредственную связь с землей через заземлитель, независимый от заземлителя нейтрали трансформаторной подстанции. Т.е. к потребителю приходит, например, система TN-C (нулевой рабочий (N) и нулевой защитный (РЕ) совмещены), а электроустановка потребителя имеет свое независимое (не имеющее связи с PEN) заземление.


Достоинства:  разрушение нуля никак не влияет на

PE, т.е. при разрушении нуля на линии линейного напряжения не будет на заземленных корпусах оборудования;
Недостатки: основным недостатком системы ТТ является невозможность для обычного автомата отследить КЗ фазы на корпус оборудования.

ПУЭ рекомендуют систему заземления ТТ только как «дополнительную», только при условии того, что нет возможности соблюсти условия организации системы TN-C-S.
Тем не менее в сельской местности довольно часто встречаются системы заземления ТТ из-за низкого качества большинства воздушных линий. Если в частный дом с столба приходят пара неизолированных проводов  – это именно такой случай и сделать правильную, удовлетворяющую всем требованиям ПУЭ TN-C-S никак не удастся.

 

ВАЖНОЕ ТРЕБОВАНИЕ К ОРГАНИЗАЦИИ СИСТЕМЫ TT – ОБЯЗАТЕЛЬНОЕ ПРИМЕНЕНИЕ УЗО. Как правило устанавливают вводное УЗО с током утечки 300-100 мА, для отслеживания КЗ между фазой и PE (это необходимо для предотвращения пожара в щите, а в последствие в доме), а за ним для каждой конкретной цепи в доме с утечкой 30-10мА(для защиты людей от поражения электрическим током.

Заземление в частном доме

Электропитание жилых домов осуществляется только по сетям с глухозаземленной нейтралью. Для таких сетей ГОСТ Р 5051.2-94 регламентирует применение заземление по схемам TN и TT.

Особенностью системы TN является то, что заземляемые части потребителей соединены с нейтралью источника питания нулевыми проводниками. Включает в себя три схемы:

  • TN-C. Нулевые проводники — рабочий и защитный – представлены одним проводником по всей длине линии. Повсеместно распространена в старых домах. В настоящее время использовать не рекомендуется.
  • TN-C-S. Аналогична подсистеме TN-C, но на вводе в дом производится расщепление общего проводника на нулевой рабочий и отдельно нулевой защитный. При этом требуется произвести дополнительно повторное заземление жилого дома. Рекомендуется взамен TN-C.
  • TN-S. Нулевые проводники – рабочий и защитный – проложены раздельно по всей длине линии. Обеспечивает наибольшую безопасность. Рекомендуется в современном строительстве. Требует применения в трехфазной сети пятижильного, а в однофазной – трехжильного кабеля.

В отличие от предыдущей системы в системе TT глухозаземленная нейтраль источника питания не соединяется проводниками с заземляемыми частями потребителей. Для защитного заземления потребителей необходимо отдельное заземляющее устройство. Применение системы TT раньше было запрещено. Теперь ее применение возможно, но только при условии установки в доме УЗО. Как минимум, одного на вводе в дом. Наиболее целесообразны и экономичны системы заземления для частного дома по схемам TN-C-S и TN-S.

Для того, чтобы принять решение, как правильно сделать заземление дома, нужно выяснить, какая  из систем заземления была применена в подведенной к дому линии электропередачи.  

В старых системах электроснабжения трехфазная система выполнена четырехжильным кабелем, а однофазная – двухжильным. Специальная жила для защитного заземления в них отсутствует. А нулевая жила заземлена у источника электроэнергии. То есть используется схема заземления дома TN-C. В большинстве случаев именно такая подводка электроэнергии производилась к домам частного сектора. Поэтому заземление в частном доме приходится делать заново. При этом требуется  не только делать контур заземления дома снаружи, входящий в состав повторного заземления, но и переделывать внутреннюю электропроводку. В результате реализуется схема заземления частного дома по типу TN-C-S.

Если в кабеле, подведенном к вашему дому, есть специальная жила для защитного заземления, значит, есть возможность реализовать схему TN-S.  Выполнять дополнительно повторное заземление дома может потребоваться только в случае необходимости его молниезащиты.

Повторное заземление безусловно необходимо при использовании схем заземления TN-C-S и TT. При использовании схемы TN-S оно может потребоваться для устройства молниезащиты. Повторное заземление оборудуется непосредственно около заземляемого дома. Конструктивно такое заземление включает в себя заземлитель и заземляющий проводник. В качестве заземлителя используются металлический штырь, уголок, труба. Обычно применяются не один, а несколько заземлителей. Чаще всего  берут    три заземлителя, из которых образуется контур в виде треугольника. Расстояние между заземлителями должно быть около 2 м. Заземлители забиваются на глубину не менее 2-3 м. Между ними роется неглубокая траншея (приблизительно 50 см.). В нее укладываются горизонтальные соединители, обычно выполняемые из полосового металла. Все заземлители соединяются между собой в виде замкнутого контура.  Лучший способ соединения – сварка. От контура также по траншее укладывается заземляющий проводник, соединяющий контур заземления с заземляющей шиной в вводном щите. Сделать такое устройство заземления дома не представляет труда. Можно сделать заземление в частном доме с использованием типовых комплектов, предлагаемых промышленностью, например, ZANDZ-6, или комплектов для реализации типовых схем заземления: «Воронья лапа», «Комбинированное заземление», «Замкнутый контур заземления дома».

 Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:

  • тел/факс: (8212)21-30-20

 

Почему система tn-s считается самой безопасной

Заземление – это важный технологический процесс, который защищает человека от случайного поражения электрическим разрядом во время работы бытовой техники или электрических приборов.

Для замены проводки, ее ремонта или модернизации предварительно нужно ознакомиться с системой заземления, которая применена в конкретном строительном сооружении.

От этого по окончании работ будет зависеть безопасность домочадцев, а также эксплуатация оборудования.

Классификация систем заземления

Заземление в частном доме

Существует несколько видов систем заземления, которые были разработаны Международной электротехнической комиссией и приняты Госстандартом РФ. Все они перечислены и подробно описаны в “Правилах устройства электроустановок” (ПУЭ).

  • Система TN и три подвида;
  • Система ТТ;
  • Система IТ.

Их основное отличие заключается в используемом источнике электроэнергии, а также способы заземления электрических приборов. Классификации систем заземления обозначаются буквами по определенному принципу.

По первой букве удается определить, каким образом заземлен источник питания:

  • Т – непосредственное соединение нулевого рабочего проводника источника электроэнергии (нейтрали) с землей.
  • I – с землей в данном случае соединена нейтраль источника электроэнергии исключительно через сопротивление.

Вторая буква в аббревиатуре указывает на заземление в проводящих отрытых частях здания:

  • Т – свидетельствует о раздельном (местном) заземлении источника питания и электрических приборов.
  • N – источник электроэнергии заземлен, но потребители заземлены только через PEN-проводник.

Буква N определяет функциональный способ, суть реализации которого заключается в устройстве нулевого защитного и нулевого рабочего проводников:

  • С – функции обоих проводников действуют благодаря общему проводнику под названием – PEN.
  • S – свидетельствует о том, что рабочий нулевой проводник (N) и защитный (PE) раздельные.


Системы заземления также делятся на рабочие и защитные. Первое предназначено для безопасной и производительной работы всех электрических приборов, суть последнего – обеспечить полную безопасность в процессе эксплуатации этих приборов.

Значения напряжения и тока могут достигать критических отметок лишь по двум причинам – неправильное использование оборудования и удар молнии.

Естественные и искусственные виды заземления

Естественное заземление – конструкции непосредственно соприкасающиеся с землей

В качестве естественной защиты используются:

  • Свинцовые оболочки кабелей, проложенные в траншеях под землей; рельсовые пути неэлектрифицированных подъездных путей, железных дорог и т.д.
  • Железобетонные и металлические конструкции любых строительных сооружений, которые непосредственно соприкасаются с землей.
  • Проведенные под землей водопроводные и канализационные магистрали. Нельзя использовать металлические трубы, по которым проходят взрывоопасные и горючие вещества.

Как правило, для искусственных заземлителей используют горизонтальные и вертикальные электроды. Роль вертикальных может играть прутик или стальная труба, длиной не менее 3 метров. Суть реализации состоит в том, чтобы верхние концы погрузить в землю и соединить полоской из стали, используя сварочный аппарат. Такая технология образует контур заземления.

Для безопасного использования электрических приборов должны быть использованы естественные заземлители. Их применение позволяет сэкономить семейный бюджет и время, поскольку нет необходимости сооружать искусственные заземлители. Если естественный вид удовлетворяет все требования ПУЭ по сопротивлению растекания, искусственное можно не сооружать.

Сравнение искусственного и естественного контура

Трубопроводы, находящиеся в земле, выполняют роль естественного заземлителя

Естественный контур – это две и более металлические конструкции, которые контактируют с почвой для безопасного использования бытовой техники. Естественное заземление также делится на следующие разновидности:

  • Трубопроводы, предназначенные для различных целей, находящиеся в земле.
  • Арматура строительных сооружений, которая погружается в слои грунта.

Данные типы защитного контура обязательно должны быть связаны с объектом минимум двумя элементами. Как правило, их устанавливают в разных частях конструкции.

В качестве естественной защиты запрещается использовать:

  • отопительные системы и канализационные магистрали;
  • трубы, поверхность которых покрыта антикоррозийным составом;
    Искусственный заземлитель
  • металлоконструкции, предназначенные для транспортировки горючих и токсичных веществ.

Искусственный контур – это специальные конструкции, изготовленные из металла. Для работы их погружают в слои грунта. Наиболее распространенные примеры искусственных защитных контуров:

  • Металлические полотна, заложенные в землю. Им могут быть свойственны разные формы и размеры.
  • Стержни, уголки, трубы и стальные балки, помещенные в землю.

Каждый элемент искусственного контура в обязательном порядке должен иметь коррозиестойкие электрические проводники, изготовленные из цинка или меди.

Типы искусственного заземления

Основной регламентирующий документ в России, который позволяет использовать разные системы заземления – ПУЭ пункт 1,7. Он был разработан с учетом способов устройства заземляющих систем, их классификации и принципов. Документ утвержден специальным протоколом Международной электротехнической комиссии.

Сокращенные названия существующих систем являются сочетаниями первых букв французских слов.

  • Т – заземление.
  • N – подсоединение к нейтрали.
  • I – изолирование.
  • С – соединение рабочего и защитного нулевых проводников в один провод.
  • S – раздельное использование защитного и рабочего нулевых проводников.

Чтобы понять, в чем заключаются отличия и способы реализации, нужно ознакомиться с каждой разновидностью более детально.

Устройство заземления TN

Самый распространенный вид заземляющих систем. Суть его заключается в соединении нулей с землей вдоль всей длины. Этот тип имеет еще одно альтернативное название – снабжение глухозаземленной нейтрали.

Для реализации способа требуется технологично вбить в вертикальном положении группу штырей в землю, чтобы глубина залегания была не менее 2,5 метров. Все штыри должны быть соединены друг с другом при помощи кабеля и полоски в единый контур жилого дома.

Система TN-C

Достаточно устаревшая система, которая все еще используется в старых жилых фондах. Суть защиты заключается в том, что ноль N играет также роль защитного провода РЕ, две функции совмещены в одном проводнике. Преимущество этого способа заключается в простоте реализации и бюджетном изготовлении, предназначен для электрических приборов мощностью не более 1000 В.

На сегодняшний день этот тип несет потенциальную опасность, поскольку не имеет ни единого отдельного проводника. Если при аварийной или нештатной ситуации обрывается нулевой провод, весь электрический потенциал концентрируется на приборах, а это уже несет опасность для здоровья и жизни человека, есть вероятность образования пожара.

Система TN-S

В проектируемых новых зданиях используется новая заземляющая система. Суть ее реализации заключается в присутствии отдельного провода фазы, нейтрали и защитного проводника. Проводники РЕ и N – отдельные составляющие системы электроснабжения.

Из принятых и утвержденных способов заземления электрической сети система TN-S считается самой безопасной и надежной. Из недостатков следует выделить дороговизну.

Система заземления TN-C-S

Система заземления TN-C-S

Данная заземляющая система вобрала в себя лучшие качества своих предшественников и частично исключила их недостатки. Способ относительно прост в реализации, еще одно достоинство вида – можно реализовать во время реконструкции и модернизации устаревших зданий. Смысл состоит с организации системы TN-C, здесь разделяют нейтральный провод на два проводника N и PE, далее начинает реализовываться способ TN-S.

Однако по-прежнему не решена проблема защитного контура системы ТN-С. Если шина обрывается, весь электрический потенциал концентрируется на бытовых приборах. Бороться с этим недостатком можно с помощью вспомогательных конструкций, например, реле напряжения, которое способно автоматически проводить аварийное отключение приборов от сети.

Функциональное заземление типа ТТ

Функциональное заземление используется в тех условиях, когда организовать заземляющий контур типа ТN попросту невозможно. Суть реализации заключается в двух разделенных заземляющих устройствах. Чаще всего применяют при прокладке воздушных линий электропередач. Также его используют при аварийном состоянии нулевых проводников.

Особенность защиты человека от поражения током заключается в обязательной установке и использовании прибора защитного отключения с дифференциальным током не более 30 мА.

Заземляющая схема IT

Система используется исключительно на горных выработках, например, шахтах или карьерах. Особенности использования электрического оборудования на подобных предприятиях таковы, что обеспечить качественный защитный контур там попросту невозможно.

Заземляется только нейтраль трансформатора с помощью контрольно-измерительных приборов, которые выполняют функции защиты от утечки электроэнергии. Если приборы улавливают избыточное энергопотребление, происходит аварийное отключение приборов.

Основное назначение заземления – сделать использование электрических приборов безопасным, а также продлить их эксплуатационный срок. Не стоит пренебрегать проектированием и сооружением заземления, это неоправданный риск.

Системы заземления

На сегодняшний день в России, согласно пунктам 1.7.3-1.7.7 главы 7 ПУЭ (Правила устройства электроустановок) приняты три системы  заземления: TN, TT и IT. Система TN в свою очередь подразделяется на три разновидности: TN-C, TN-C-S и TN-S.

Для начала расшифрую эти обозначения.

Первая буква в обозначении системы обозначает характер заземления источника питания:

  • T (лат. Terra) — соединение нейтрали источника питания с землей.
  • I (англ. isolation) — все токоведущие части изолированы от земли.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:

  • T — связь открытых проводящих частей электроустановки с землей независимо от характера соединения с ней источника питания.
  • N (Neutral) — связь открытых проводящих частей электроустановки с точкой заземления источника питания.

Буква, следующая через дефис после N определяет способ устройства нулевого защитного и нулевого рабочего проводников:

  • C (англ. Combined) — функции защитного PE и рабочего N проводников совмещены в одном PEN проводнике;
  • S (англ. Separated) — функции защитного PE и рабочего N проводников обеспечиваются раздельными проводниками.

А теперь рассмотрим подробнее каждую из систем.

TN-C

Это самая старая и пожалуй самая распространенная система в нашей стране благодаря своей дешевизне и простоте монтажа. Хотя на данный момент при реконструкции и введении в эксплуатацию вновь возводимых объектов эта система запрещена к применению, в старом жилом фонде TN-C все еще встречается повсеместно.

Технически система заземления TN-C выполнена следующим образом: на ТП (Трансформаторной подстанции) выполняется контур заземления или другими словами заземляющее устройство.

От него к потребителю приходит один провод, который совмещает в себе функции и нулевого рабочего и нулевого защитного проводника.

В данной системе используется так называемое зануление — все нетоковедущие части соединены перемычками с нулевым проводом.

Главный недостаток TN-C — при обрыве или отгорании ноля возникает опасность поражения электрическим током, так как потенциал может оказаться на корпусе электроприбора. Как вариант можно использовать УЗО, но оно не сможет в полной мере выполнять свои функции.

В системе TN-C запрещено выполнять

систему уравнивания потенциалов

TN-S

Данная система является на данный момент самой совершенной и безопасной. Единственный недостаток присущий этой системе — при монтаже она выходит дороже и TN-C и TN-C-S. Зато и плюс этой системы очевиден — высокий уровень электробезопасности.

Суть системы TN-S сводится к тому, что защитный и рабочий проводники разделяются прямо в ТП и идут отдельными проводами. То есть к дому в случае трехфазного питания подходят уже пять проводов, а в случае однофазного — три провода. При этом на вводе в здание делается повторное заземление.

TN-S рекомендована к применению на всех ответственных объектах, а также строящихся и капитально ремонтируемых зданиях. Но повсеместному распространению TN-S мешает, как я уже сказал выше, высокий уровень затрат при монтаже.

TN-C-S

Система TN-C-S является неким гибридом двух предыдущих систем. Ее применение обусловлено в первую очередь дороговизной TN-S и очевидными недостатками TN-C.

В данной системе как и при TN-C от ТП до ввода в здание идет один совмещенный PEN проводник. В ВРУ он разделяется на два проводника — нулевой рабочий и нулевой защитный и дальше они уже отходят к потребителям отдельными провода. На вводе здания также выполняется повторное заземление.

Данная система нашла широкое применение благодаря относительной легкости внедрения при реконструкции и высокому уровню электробезопасности.

TT

Система ТТ нашла свое применение в основном в сельской местности и при строительстве временных сооружений. Применяется в случае, если условия электробезопасности в системе TN не могут быть полностью обеспечены.

В системе TT все открытые проводящие части электроустановки присоединены к заземляющему устройству, электрически независимому от глухозаземленной нейтрали источника питания. Другими словами нулевой проводник от ТП никак не связан с заземляющим проводником на всем протяжении линии. Само заземление делается на стороне потребителя, к нему подключаются все PE проводники.

Таким образом все токопроводящие части приборов, соединенные с PE проводником, оказываются полностью изолированы от элекрической сети.

Следует помнить, что система TT требует обязательного

применения УЗО

IT

И наконец система IT — она используется только в электроустановках зданий специального назначения, к которым предъявляются повышенные требования безопасности и надежности, например в медицинских учреждениях. В жилых зданиях не применяется.

IT представляет из себя систему, в которой нейтраль источника питания изолирована от земли, или заземлена через приборы или устройства, имеющие большое сопротивление. При этом все открытые проводящие части электроустановки заземлены. Ток утечки на корпус в такой системе будет низким и не повлияет на работу оборудования.

Для тех, кто хочет более подробно ознакомиться с системами заземления предлагаю скачать брошюру из технической коллекции Schneider Electric «Системы заземления в электроустановках низкого напряжения».

Системы заземления

При проведении в квартире капитального ремонта или строительстве загородного дома касательно вопроса электричества, как правило, большое внимание уделяют расположению выключателей, розеток и организации освещения, но практически никогда не задумываются о необходимости квалифицированного проектирования и монтажа системы заземления. А ведь основное предназначение заземления – это защита человека от поражения электротоком, опасность которого возникает при нарушении изоляции или пробое фазного проводника на корпус электрооборудования.

Заземление для большинства неискушенных в электротехнике людей ассоциируется с закопанным в землю штырем, соединенным проводом с установленным на крыше молниеотводом или с имеющей металлические «хвостики» так называемой евророзеткой.

Некоторые считающие себя продвинутыми в этом вопросе обыватели организовывают домашнее заземление, путем присоединения к водопроводным трубам, которые, по их мнению, всегда уходят в землю, забывая при этом, что соседи снизу могут установить непроводящие пластиковые трубы.

В случае если электроприбор будет иметь утечку или пробой на корпус, за счет выноса потенциала подобное заземление таит угрозу поражения электротоком во всех помещениях, через которые проходит труба водопровода. Например, пробой на корпус возник в установленной в ванной и заземленной таким образом стиральной машине. В результате на водопроводном кране в соседней квартире по отношению к входящей в землю канализационной трубе появится разность потенциалов. Теперь если принимающий ванную дотронется до крана, то учитывая низкое сопротивление мокрой кожи, ток через его тело может достигнуть опасной для жизни величины. Хотя подобные некомпетентные советы по самостоятельной, а при несчастном случае и уголовно наказуемой, организации заземления в квартире можно встретить даже на сайтах компаний, имеющих лицензию на проведение электромонтажных работ. Поэтому следует помнить, что неправильно смонтированное заземление в некоторых случаях представляет большую опасность, чем его отсутствие.

Термин «заземление» употребляется для обозначения операции по преднамеренному присоединению к заземляющему устройству какой-либо точки электросети, электроприбора или оборудования.

Заземляющее устройство включает заземлитель (конструкцию из проводящего электроток материала, которая находится в электрическом контакте с землей) и заземляющий проводник (проводящий электрический ток материал, соединяющий заземляемое оборудование с заземлителем).

Конструкция заземлителя может быть как довольно простой в виде забитого в землю металлического стержня, так и сложной конфигурацией элементов определенной формы.

Квалифицировано спроектированное и качественно смонтированное заземляющее устройство имеет определенное требованием ПУЭ электрическое сопротивление, величина которого изменяется незначительно при изменении влажности или промерзании грунта.

Используемый для устройства системы заземления материал должен обладать высокими антикоррозийными свойствами. По своему функциональному назначению системы заземления подразделяются на два типа – защитное заземление и рабочее заземление. Первое предназначено для обеспечения безопасной эксплуатации электроустановок и приборов, второе – для обеспечения работы электроустановок.

В системах электроснабжения современных жилых и общественных зданий могут использоваться системы заземления четырех типов: TN-C, TN-S, TN-C-S, ТТ. За этими аббревиатурами скрыта исчерпывающая информация о характере заземления источника питания, открытых проводящих частей электроустановки и устройстве нулевых рабочего и защитного проводников.

В крупных населенных пунктах источником электроснабжения зданий служат городские трансформаторные подстанции (ТП), в которых используется система заземления TN.

То есть осуществляется непосредственное присоединение нейтрали (общей точки обмоток трансформаторов) источника питания к установленной тут же системе заземления, то есть нейтраль источника глухозаземлённая (первая буква Т (Тerra — земля) в аббревиатуре), а заземление открытых проводящих частей электроустановок и электроприборов потребителей осуществляется при помощи нулевого защитного проводника, соединенного с той же системой заземления (вторая буква N (Neutre — нулевой) в аббревиатуре). То есть от ТП к зданию идут предназначенные для питания устройств фазные проводники (L), нулевой рабочий проводник (N) и нулевой защитный проводник (PE — Protective Earthing).

В современной электронной технике используются импульсные блоки питания, имеющие на входе симметричный фильтр импульсных помех с присоединенной к корпусу средней точки, что приводит к выносу напряжения в 110 В на корпус.

При использовании системы заземления TN-C устройств защитного отключения (УЗО) является неработоспособным, поэтому нет защиты людей от поражения электрическим током.

Учет указанных выше недостатков привел к тому, что в действующей с 2006 года на территории Украины новой редакции ПУЭ принята система заземления TN-C-S (Separe — разделять), а применение TN-C запрещено.

Система TN-C-S является модернизацией описанной выше схемы, в которой РЕN во вводно-распределительном устройстве разделяется на нулевой защитный РЕ и нулевой рабочий N проводники.

В этом случае идущая к розеткам проводка выполняется тремя или пятью проводами (при трехфазной схеме).

Подобное заземление в развитых странах начало активно внедрятся с 1960-х годов и сегодня широко используется в Великобритании, Польше, Венгрии, Чехии, Словакии, Западной Австрии, Швейцарии, Германии, в странах Северной Европы (в частности, в Швейцарии и Финляндии) и США.

Для повышения безопасности защитный РЕ провод повторно заземляется на вводе в здание и объединяется неразрывными проводниками со всеми металлическими конструкциями: трубами, арматурой бетонных плит и т.п.

В отличие от системы TN-C безопасность теперь может обеспечиваться не только защитой от сверхтоков (автоматическими выключателями), но и применением УЗО, быстродействие которых гарантирует высокий уровень защиты человека при каких либо утечках тока (например, при пробое изоляции).

Недостатком подобной схемы заземления, как и в предыдущем варианте, является обрыв на участке объединенного РЕN проводника (так называемое отгорание нуля), при котором на подключенных к защитному РЕ проводу устройствах появляется фазовый потенциал.

Самой безопасной из TN систем заземления является широко распространенная в Великобритании схема TN-S, при которой нулевой защитный РЕ и нулевой рабочий N проводники разъединены по всей длине начиная от ТП.

Использование в такой системе УЗО позволяет гарантировать для находящихся в помещении людей высокую безопасность при всех авариях на электролинии.

Недостатком такой системы является необходимость модернизации электросетей на всей их протяженности, что требует значительных капиталовложений.

Учитывая сложность организации заземления (зануления) в городской квартире, все работы по модернизации электропроводки и переводе электроснабжения на европейские стандарты должны выполняться только квалифицированными специалистами.

Имеющие большой опыт работы сотрудники ПП «Енерго-поліс» качественно и в сжатые сроки выполняют соответственно действующим нормам ПУЭ расчет и монтаж системы заземления квартиры или офиса с использованием высококачественных и долговечных материалов.

При проектировании системы заземления загородного дома, идущий от ТП объединенный РЕN проводник разделяют на нулевой защитный РЕ и нулевой рабочий N для организации схемы TN-C-S на вводе в здание или на ближайшей опоре с обязательным повторным заземлением. Помимо этого ДБН В.2.

5-27-2006 допускают использование в индивидуальных частных домах системы заземления ТТ с обязательной установкой УЗО. При такой схеме РЕN проводник не разделяется и используется только в качестве рабочего нуля, а для заземления используется заземляющее устройство, независимое от заземлителя нейтрали ТП.

Подобная организация электроснабжения является на сегодняшний день одной из наиболее безопасных и широко распространена в странах южной Европы – Италии, Испании, Португалии, Греции, а также в Японии.

Заземляющее устройство загородного дома может быть выполнено с использованием различных материалов и иметь разные конфигурации заземлителя: контур вокруг здания, вбитые в землю штыри или их комбинация.

Специалисты  осуществляют проектирование и монтаж заземляющих устройств любой сложности с использованием комплектующих фирмы OBO Bettermann.

При проектирование заземляющих устройств учитывается совмещение защитного заземления линии электроснабжения с системой заземления внешней молниезащиты, системой уравнивания потенциалов и установкой устройства защиты от импульсных перенапряжений.

http://electro-servis.kiev.ua/zazem/zazem.htm

Территория электротехнической информации WEBSOR

Главное меню:

  • Основы
  • Электромашины
  • Оборудование
  • Нормы
  • Подстанция
    • Комплектные трансформаторные подстанции
    • Оборудование подстанций
    • Вакуумные выключатели
      • ВВ/TEL
      • ВР
      • ВРО
      • ВР1
      • ВР1 для КСО
      • ВРС
      • 3АН5
      • ВГГ-10
    • Камеры КСО
    • Ограничители перенапряжений 6(10) кВ
    • Масляный выключатель
      • ВПМ-10
      • Техническое описание ВПМ
      • ВМП-10
      • ВМГ-133
    • Выключатель нагрузки автогазовый ВНА
      • Описание выключателя
      • Изображение выключателя
    • Ремонт электрооборудования
    • Повышение надежности МВ, приводов МВ
    • Установки компенсации реактивной мощности
      • Общие сведения об УКРМ
      • УКРМ 0,4 кВ
      • УКРМ 6(10) кВ
    • Выбор места расположения питающих подстанций
  • Электроснабжение
  • Освещение
  • Воздушная линия

Нормы

СИСТЕМЫ ЗАЗЕМЛЕНИЯ

Для подключения оборудования в жилых зданиях существует несколько различных схем электроснабжения. Различаются они по способу заземления электрооборудования и источника электроэнергии (в качестве которого часто используется понижающий трансформатор). В настоящее время применяются три основные системы заземления: TN, ТТ и IT

. В том случае, если тип используемой системы неизвестен, следует обратиться для его уточнения к технической документации на присоединительный ввод.Тип системы заземления обозначают двумя буквами. Первая буква в обозначении определяет характер заземления источника питания:Т — непосредственное соединение нейтрали (нулевого рабочего проводника) источника питания с землей;I — нейтраль источника электропитания соединена с землей через сопротивление.Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:Т — раздельное (местное) заземление источника электропитания и электрооборудования;N — источник электропитания заземлен, а заземление потребителей производится только через PEN-проводник.Следующие за N буквы определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:S — функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников обеспечиваются раздельными проводниками;С — функции нулевого защитного и нулевого рабочего проводников обеспечиваются одним общим проводником (PEN).

Применение УЗО в электроустановках различных систем заземления

В системе ТТ все открытые проводящее части электроустановки присоединены к заземлению, электрически независимому от заземлителя нейтрали источника питания. ГОСТ Р 50669-94 предписывает применение системы ТТ как основной в случае подключения указанных электроустановок к вводно-распределительным устройствам соседнего (капитального) здания.В ГОСТ Р 50571.3-94 п. 413.1.

4 указано, что в системе ТТ устройства защиты от сверхтока могут использоваться для защиты от косвенного прикосновения только в электроустановках, имеющих заземляющие устройства с очень малым сопротивлением.

При этом гарантированное отключение питания электроустановки должно производиться при появлении на открытых проводящих частях электроустановки напряжения не более 50 В.

В реальных условиях осуществить автоматическое отключение питания электроустановки системы ТТ с помощью автоматических выключателей по ряду причин (необходимости обеспечения большой кратности тока короткого замыкания, низкого сопротивления заземляющего устройства и др. ) весьма проблематично.

Эффективное решение проблемы автоматического отключения питания дает применение чувствительных ВД. В п. 1.7.59 ПУЭ (7-е изд.) содержится требование обязательного применения ВД для обеспечения условий электробезопасности в системе ТТ. При этом уставка (номинальный отключающий дифференциальный ток) должна быть меньше значения тока замыкания на заземленные открытые проводящие части при напряжении на них 50 В относительно зоны нулевого потенциала.

В электроустановках индивидуальных жилых домов, коттеджей, дачных (садовых) домов и других частных сооружений, где не всегда имеется возможность выполнить заземлитель с требуемыми нормами, необходимо применять систему ТТ с обязательной установкой ВД. В этом случае требования к значению сопротивления заземлителя значительно снижаются.

Допустимые значения сопротивления заземления

Чувствительность ВД, мАСопротивление, Ом
предельное безопасное напряжение 25 Впредельное безопасное напряжение 50 В
10 30 100 300 500 650 1000 3000

Система заземления типа TN-S

На сегодняшний день система TN-S считается самой надежной и безопасной. Именно поэтому в ПУЭ при реконструкции старых и постройки новых зданий рекомендуется монтировать именно систему заземления TN-S. В этой статье я расскажу, что представляет из себя TN-S, а также расскажу о положительных и отрицательных сторонах этой системы.

В европейских странах данная система пришла на смену более простой и дешевой системы заземления TN-C еще в начале 40-х годов прошлого века, но в силу экономической составляющей она не прижилась в СССР и крайне медленно внедряется сегодня в России.

Особенность данной системы

Главной отличительной чертой передачи энергии при такой системе является то, что в трехфазных сетях у вас будут пять проводов, фазы: А, В, С рабочий ноль PN и заземление PE.

Схема заземления типа TN-S выглядит следующим образом

Получается, что все воздушные линии электропередач обязаны иметь целых пять проводов, вместо четырех при системе TN-C.

При этом пятый провод PE выполняет чисто защитные функции. Так же при такой системе заземления у конечного потребителя проводка должна быть выполнена трехжильным проводом: фаза, рабочий ноль, защитное заземление.

Явные плюсы системы TN-S

К положительным аспектам использования системы заземления TN-S относится то, что здесь гарантируется повышенная степень электробезопасности за счет полноценного применения такого защитного устройство как УЗО.

Причем оно будет срабатывать не только при прикосновении человека к корпусу электроустановки, оказавшимся под напряжением, но и отключит поврежденный участок сразу при возникновении пробоя изоляции без участия человека.

Кроме этого в такой системе нет жесткого требования в дополнительном заземляющем контуре, за которым требуется вести постоянный технический контроль.

Так же отпадает необходимость выполнения отдельных заземлений металлических корпусов электроприборов.

В такой системе отсутствуют так называемые высокочастотные наведенные помехи, что положительно отражается на работоспособности чувствительных электроприборов.

Минусы системы TN-S

Минус у такой системы один и связан он в первую очередь с финансами. Для того, чтобы полностью перевести энергосистему на такую систему, придется выполнить реконструкцию абсолютно всех существующих ЛЭП. Именно поэтому в России гораздо перспективней выглядит использование системы TN-C–S, про которую подробно написано на моем канале.

Как перейти на такую систему

Конечно, многие захотят максимально обезопасить свое жилье и реализовать такую систему заземления.

Ждать пока будет принята и реализована федеральная программа по реконструкции сетей можно очень долго, поэтому у владельцев частных домовладений есть выход в виде реализации системы заземления TN-C-S.

Ведь эта система как раз сочетает в себе TN-C и TN-S и полностью отвечает всем современным требованиям ПУЭ.

Это все, что я хотел вам сказать об очень надежной, но дорогостоящей системе заземления TN-S.

Спасибо за ваше драгоценное внимание.

Системы заземления tn

Заземление — это специальное электросоединение корпуса установки и заземляющего устройства, которое обеспечивает безопасный контакт человека с этой установкой. Если заземление выполнено качественно и по всем стандартам, поражение человека электрическим током при прикосновении к частям установки под напряжением исключено.

Именно такое, качественное заземление предлагает вам компания «ЛАСПИ-2». Вы легко можете связаться с нами и заказать нужную услугу, позвонив номеру +7 (499) 347-31-09 или +7 (903) 106-29-25.

Система заземления и ее принцип действия

Чем же объясняется действие защитного заземления? В этой системе берут участие три составляющих: заземлитель, почва (земля) и нулевые проводники заземления.

Когда изоляция повреждена, электрический ток проходит этим элементам, направляясь к нейтрали трансформатора и, благодаря низкому сопротивлению заземлителя, снижает уровень напряжения.

Таким образом, каждый из трех ключевых составляющих выполняет свою функцию. В результате, на человека попадает минимальное количество негативного воздействия тока.

Система заземления TN — в ее основе лежит глухозаземленная нейтраль источника с подсоединенными к ней проводящими частями электроустановки. Более простыми словами это означает, что нейтраль, которая находится на трансформаторной подстанции подключена напрямую к заземляющему контуру. TN система имеет несколько разновидностей, каждая из которых несет на себе конкретные задачи.

Виды TN заземления

TN система имеет несколько разновидностей, каждая из которых несет на себе конкретные задачи:

  • система заземления tn c. Ее проводники работают совмещенно на всем протяжении системы. Другими словами такой тип называют защитным занулением;
  • tn s система заземления. Защитный и рабочий нулевые проводники здесь, наоборот, разделены. Поэтому эта система считается самой действенной и безопасной для человека, однако и по стоимости она превышает другие;
  • система заземления tn c s — это что-то среднее между первым и вторым вариантами. В ней проводники соединены в одном месте, а далее расходятся по всему зданию. Этим местом совмещения может оказаться главный щит помещения. С точки зрения взаимовыгодного соотношения цены и качества этот вариант наиболее приемлем.

Несмотря на то, какая из перечисленных систем вас интересует, профессионалы компании «ЛАСПИ-2» оборудуют любую выбранную вами систему в максимально короткие временные рамки за минимальную цену. Гарантия надежности и безопасности выполненных работ — это обязательная составляющая всех наших услуг.

Какие задачи решает предварительное составление плана электрики?

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление.

Основные требования к системам заземления содержатся в пункте 1. 7 Правил устройства электроустановок (ПУЭ).

В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия.

Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель.

Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство.

Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S.

Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора.

При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.

2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией.

Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода.

При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений.

В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг.

При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT.

Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.

При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры

Заземление своими руками! Какую систему заземления выбрать: TT, TN-S, TN-C-S, TN-C?

TT

 

В популярной за городом системе ТТ нейтральный провод N полностью изолирован от кабеля заземления РЕ, к которому подключают корпуса электрических приборов. Нейтраль нигде не должна пересекаться с заземляющим контуром. Еще одна особенность схемы – заземление местное, на прилегающей территории. Возле здания, во дворе или на приусадебном участке. Отсюда проистекают достоинства и недостатки, влияющие на выбор системы.

К преимуществам относится полный контроль со стороны собственника, арендатора или другого лица, ответственного за недвижимость. Не приходится надеяться на добросовестную работу электриков, правильно заземливших контуры по пути к потребителю. Или неправильно, что становится причиной серьезных проблем.

 

Кроме нехватки совести у профессионалов, повреждение заземления часто возникает по иным причинам, особенно на больших расстояниях в сельской местности. Контакты отрывает ветер, возникает преждевременная коррозия, трактора случайно задевают столбы. Металлисты ищут металлолом, где только возможно, вандалы развлекаются рубкой проводов внизу на опорах. Больше всего проблем при воздушном расположении оголенной проводки, самом популярном в настоящее время. Подземная надежнее, но ее ремонт иногда превращается в титанические раскопки, и затягивается надолго.

 

Главный недостаток системы заземления ТТ – владелец недвижимого имущества должен самостоятельно обеспечить соответствие нормативам или пригласить толкового специалиста. На практике это бывает трудно сделать. Нередко монтажом занимаются случайные люди с примитивными подручными инструментами.

 

Система ТТ используется при подключении к электросети следующих объектов:

  • небольших частных домов и дач;
  • мобильных сооружений – вагончиков, ларьков, бытовок;
  • малых населенных пунктов, удаленных от трансформаторных станций.

Само собой, нет другого выбора, если электропитание идет от местного генератора, будь то дизель, солнечные батареи, ветряк или вращаемое потоком воды колесо.

 

Как правило, провод РЕ обводят внутри вокруг постройки, попутно к нему подсоединяют отводы к розеткам. Желательно сделать замкнутое кольцо, тогда при разрыве в одном месте все части продолжают функционировать. Затем выводят через электрощит наружу, попутно подсоединив выключатель-автомат. Автоматика должна быть качественной, проверенной на практике. Кабель заземляют с помощью вкопанных круглых штырей с металлическими пластинами на концах. Применяют стержни диаметром не менее 14 мм (один или несколько), в том числе удобные модульные штыри.

 

Отраслевые авторитеты указывают в нормативах множество обязательных и желаемых параметров заземляющей сети, которые могут со временем изменяться. Это диаметр проводов, материалы для изготовления проводки, размеры подземной части, глубина вкапывания, близость к фундаменту здания и надземным сооружениям. Регулируется нормами сопротивление уходящих под землю проводников, и минимальная сила тока, при которой должен срабатывать автоматический выключатель. Срабатывание происходит при коротком замыкании, когда фаза попадает на корпус прибора. За точной и актуальной информацией следует обратиться к специальной литературе, навести справки онлайн или проконсультироваться у квалифицированного электрика.

 

Не так давно ТТ-заземление вообще было запрещено в России. Вахтовики и дачники монтировали его незаконно. Строителям крупных коттеджей с удобствами и инженерными коммуникациями было труднее нарушать закон. Теперь претензии государства смягчились, но лучше ознакомиться со всеми юридическими нюансами. По крайней мере, монтируя заземление своими руками Вы будете знать, на что рассчитывать в случае какой-либо проверки. Пока что официально использование ТТ-системы разрешено, если нельзя заземлить по одному из вариантов TN.

Детальное изучение темы «Система заземления TT» представляем в следующей статье: Система заземления TT! В каких случаях использовать систему заземления TT?!

 

TN-S

 

Это самая сложная и дорогая заземляющая система. Необходима прокладка 5-жильного (3 фазы) или 3-жильного (1 фаза) провода от трансформаторной подстанции. Сделать такое заземление своими руками нереально, пусть им занимаются профессиональные электрики. В крайнем случае, можно пригласить специалиста, и оказать ему посильную помощь при монтаже, немного снизив цену на услуги.

 

В России нет строгих обязательств по переходу на TN-S. Данную схему рекомендует Ростехнадзор наряду с TN-C-S, но какой именно вариант использовать, решает потребитель. В Европе TN-S используется давно и повсеместно, более 40 лет. Поэтому европейцам проще подключить новый объект поблизости от уже работающего трансформатора.

 

Еще один нюанс – кабель необходимо проложить без случайных ошибок и преднамеренных нарушений. В частности, качественно заземлить его на подстанции. С этим у жилищных, строительных и коммунальных организаций редко бывает полный порядок.

 

Некоторые хозяйства откровенно мошенничают: соединяют провода N и PE где-то у входа в здание. Затем выдают получившуюся систему TN-C-S за TN-S, прописанную в документах. В таких условиях просто нет смысла заказывать TN-S-заземление со значительной переплатой за услуги. Разве что заказчик может проконтролировать весь процесс монтажа или монтирует электросеть самостоятельно. Фактически это осуществимо на предприятиях, которые располагают собственными бригадами электриков, закупают кабели оптом целыми бухтами.

 

При правильном исполнении TN-S-система чрезвычайно надежная и безопасная. Заземление и нейтраль разделены еще где-то далеко от потребителя, качество каждого канала теоретически очень высокое. На электрощите установлены два отдельных автомата для выходящих линий. Количество входящих автовыключателей зависит от числа подключенных фаз. При покупке и установке оборудования необходимо учитывать максимальное напряжение. По фактически сложившимся стандартам, трехфазные производственные сети работают под напряжением 380 В, однофазные бытовые (жилые, офисные) рассчитаны на 220 В.

 

3-жильные и 5-жильные кабели четко маркируются с помощью цвета оболочки (оплетки) проводников, цветовых сочетаний или цифро-буквенных обозначений. Не допускается произвольное использование жил. Предназначенные для заземления и нейтрали надо подключать только к соответствующим автоматам и контактам розеток.

Раскрыть все оссобенности использования самой сложной «системы заземления TN-S» мы попытаемя в другой статье, посвященной только теме: Система заземления TN-S! В каких случаях использовать систему заземления TN-S?!

 

TN-C

 

Схема популярна в старых многоэтажках и частных домах, является давним советским стандартом. В розетке только 2 гнезда, настоящего заземления нет. «Сделано в СССР» отличается от евростандарта лишь толщиной штырей и шириной гнезд, из-за чего возникает чисто механическая несовместимость.

 

Электропроводящие корпуса приборов иногда подключают к нулевому проводу (нейтрали). Если на корпусе случайно окажется фаза, произойдет короткое замыкание со срабатыванием автомата или перегоранием плавкого предохранителя. Это действенная, но неудобная защита. Достаточно выйти из строя одному электроприбору, как отключенными от электричества оказываются все остальные. Чтобы избежать всеобщего отключения, можно установить несколько раздельных автовыключателей на электрическом щите. Особенное внимание уделяют мощным (холодильник, стиральная машина), новым с умной электроникой и специальным (лабораторное оборудование).

 

Для включения штекеров с тремя плоскими штырьками применяют переходники, которые решают лишь проблему механической совместимости. Заземляющий конец вилки входит в слепое пластиковое гнездо, где соприкасается только с изолятором, контакта с проводниками нет. Категорически не следует что-либо переделывать в переходнике или удлинителе, даже сопровождая изменения предупреждающими надписями. В частности, соединять нулевой провод с заземляющим. При практическом использовании это чревато быстрым возникновением короткого замыкания. Или, казалось бы, выключенный электроприбор «бьет током», если вилка питания оставлена в розетке.

 

TN-C-система разрешена в старом жилом фонде. Если Вы купили городскую квартиру или дом в деревне, где надо обновить проводку, и думаете, какую систему заземления выбрать, можно оставить прежнюю схему. Так будет проще и дешевле, при отсутствии приборов, особо чувствительных к качеству заземления. Достаточно купить новые кабели, розетки, выключатели и автоматы вместо изношенных. Затем установить в точности, как были установлены прежние, что легко сделать собственными руками.

 

Также TN-C-заземление, или фактически его отсутствие, часто устраивают нелегально. Это касается временных построек и мест, удаленных от цивилизации. Если в таежном поселке работает дизель-генератор, никаких проверок с большой земли не предвидится, то удобство с экономией выходят на первый план. Скорее всего, за пару месяцев не произойдут серьезные неприятности по причине плохого заземления. Но осторожность требуется. Оставлять сторожа полезно не только на случай посещения поселка медведем, пожары среди тайги случаются даже чаще.

Более подробно тему «Система заземления TN-C» мы раскрываем в следующей статье: Система заземления TN-C! В каких случаях использовать систему заземления TN-C?!

 

TN-C-S

 

Рекомендуется для новых капитальных построек, где фактически нет других вариантов, какую систему заземления выбрать. Единственная альтернатива, согласно рекомендациям Ростехнадзора – это более дорогая и сложная система TN-S, монтаж которой не всякая организация сможет выполнить, тем более без нарушений. Любая проверка со стороны электриков или пожарников одобрит выбор  TN-C-S.

 

Технические нюансы хорошо знакомы специалистам, которые теперь постоянно монтируют подобные схемы. На электрощите при вводе в здание объединяют нулевой провод и заземление. В розетке 3 гнезда, безопасность максимальная. Нейтраль N и земля PE входят в каждую комнату уже разделенными. Если необходимо подключить старый электроприбор без заземленного корпуса, вилкой с двумя контактами, применяют переходник. Третий контакт переходника входит в гнездо розетки, но не имеет продолжения, внутри не соединен с остальными. Пусть таким и остается.

 

В многоэтажках входной электрощит общественный, владелец каждой квартиры не имеет права что-либо там делать. За электроснабжение, обслуживание и ремонт отвечает жилищная организация. Но при поселении в новое жилье, будь оно собственное или арендованное, стоит проконтролировать наличие двух отдельных каналов на квартирном щитке. В новостройке желательно также проверить срабатывание дифавтоматов на нейтрали и заземлении. При выявлении любых нарушений следует сразу предъявить претензии, не ожидая, когда виноватыми сделают уже самих жильцов.

 

Строительство частного коттеджа налагает больше обязанностей на хозяев. Они отвечают за качество и состояние всей электросети, начиная от места подключения к общей линии. Проверки непременно будут, поэтому лучше заранее позаботиться о своем хозяйстве. Найти хорошего электрика, который правильно установит электрощиток, подключит кабели и бытовые приборы. Редкий хозяин сможет самостоятельно выполнить работы от «А» до «Я». Но поучиться у мастера полезно. Тогда в случае срочного ремонта не придется вызывать профессионала за солидные деньги. К тому же аварии чаще случаются ночью или на выходных.

 

Чем хороша TN-C-S-система, так это тем, что не нужно монтировать локальное заземление со вкапыванием металла в землю. Два провода, нейтральный и заземляющий, просто соединяются на щитке. Требования соблюдены, и расходы на установку минимальные. Проложить 3-проводный кабель только в пределах дома намного выгоднее, чем тянуть его от трансформаторной будки. Поэтому практически все потребители электроэнергии предпочитают TN-C-S-заземление вместо сомнительного TN-S.

Подробнее изучить «систему заземления TN-C-S» Вы можете в другой статье: Система заземления TN-C-S! В каких случаях использовать систему заземления TN-C-S?!

 

Конечно, заземление корпуса – это во многом перестраховка. Реально оно требуется лишь для некоторых моделей лабораторной техники. Подавляющее большинство бытовых электроприборов прекрасно работает по двухконтактной схеме TN-C.

TN-C, TN-C-S, TN-S, TT, IT

По мере того, как растут экономические показатели и совершенствуются различные технические решения, порой приходится отказываться от привычных технологий и разрабатывать что-то более современное, безопасное и надежное. К таким решениям относятся различные системы заземления, широко применяемые в быту и на производстве. В этой статье рассмотрим пять таких систем, которые до сих пор можно встретить на различных объектах. На технические и эксплуатационные вопросы по системам заземления отвечает ТКП 339-2011.

Пожалуй, еще во времена Эдисона и Доливо-Добровольского, подаривших миру коммерчески выгодные решения для постоянного и переменного тока, инженеры, врачи и обычные горожане начали задумываться о безопасности электрических сетей. Поэтому всего лишь спустя четверть века, а именно в 1913 году, миру была предложена первая система заземления. Изначально на принимаемые технические решения для защиты электрооборудования от коротких замыканий и защиты человека от поражения током сильно влияла доступность металла для проводников. С течением времени появились и стали применяться системы заземления, обеспечивающие надежную работу электроприемников и безопасность для человека.

Существует три основных вида систем заземления, некоторые из которых подразделяются на свои подсистемы. Эти системы – TN, TT, IT. Начнем с первой.

Первой рассмотрим TN – систему заземления с глухозаземленной нейтралью источника N, в которой открытые для доступа токопроводящие элементы электрических установок присоединяются к нейтрали с помощью нулевых защитных проводников, обозначаемых PE. Существует три варианта исполнения такой системы:

TN-C, или TN-Combined (комбинированная). При таком исполнении по всей длине линии роль защитного и рабочего нуля играет один проводник, то есть на всем протяжении от подстанции до электроприемников протянут четырехжильный кабель: три фазы и совмещенный проводник PEN. При такой системе открытые токопроводящие части электроустановок (например, корпус двигателя, выключателя или трансформатора) подключаются (зануляются) к нейтрали подстанции или генератора. Именно эта система была первой в истории. Если происходит замыкание фазы на корпус такого оборудования, то КЗ отключается предохранителями или выключателями, питающими данное оборудование. До отключения КЗ корпус будет находиться под напряжением, что означает опасность получить удар током.

Преимущество у данной системы одно – экономия материала. Недостатков масса, перечислим их:

— вынос потенциала на корпуса другого оборудования при КЗ;

— возрастание напряжения в 1,73 раза для однофазных приемников при обрыве нуля;

— при существовании в токе гармоник, кратных трем (обычное дело в современном мире, наполненном цифровой электроникой), ток в нулевом проводнике принимает опасно высокие значения;

— высокая опасность пожара, так как происходящие однофазные КЗ порождают высокие токи;

— непригодность для установки устройств защитного отключения (УЗО) или автоматов дифференциального тока (АВДТ).

Вследствие этого было создано решение, призванное избавить заводы и людей от таких неприятных последствий. Этим решением было создание системы TN-C-S (Combined, Separated – комбинированная и разделенная). Здесь проводник PEN начинается на подстанции, но в некоторой точке (например, до вводного автомата) он разделяется на PE (защитный) и N (рабочий). Такую систему применяют при модернизации электросетей, сконструированных по системе TN-C. Такая система лишена недостатков TN-C, касающихся электробезопасности.

TN-S – в этом случае нулевой и защитный проводники разделены на всей длине линии. Такая система используется при проектировании современных сетей до 1 кВ. Как и в случае предыдущего решения, становится возможным использование УЗО и дифавтоматов. Теперь замыкание фазы на корпус не представляет угрозы здоровью.

Вторым типом систем заземления является система TT. Здесь нейтраль источника также заземлена, но электропроводные корпуса оборудования присоединяются к своему, независимому от источника, заземлению. Такая система создается, когда, например, домик в деревне подключили к модульному заземлению. Из-за меньшего сопротивления заземления, к которому могут подключаться металлические корпуса, токи однофазных КЗ здесь гораздо выше, чем в системах TN, и для обеспечения безопасности людей обязательно требуется установка УЗО. На промышленных предприятиях такая система обычно применения не имеет, хотя из-за отсутствия возможности передачи потенциала по проводнику PE (ввиду его отсутствия) эта система создает наименьшее количество помех и наибольшую безопасность.

Третьей рассмотрим систему IT, где нейтраль источника не заземлена или заземлена, но через большое сопротивление (сотни или тысячи Ом). Токопроводящие части установок, к которым имеется беспрепятственный доступ, присоединены к своему, отдельному заземляющему устройству, а защиту от прикосновения обеспечивает УЗО. Однофазные замыкания на землю вызывают повышение напряжения в 1,73 раза и небольшое возрастание токов, поэтому такую систему используют там, где прерывание питания на отключение КЗ недопустимы. Однако при эксплуатации таких сетей требуется уметь точно и быстро находить место повреждения, так как в рассматриваемых сетях без резистивного заземления при КЗ возможны перенапряжения.

В этой статье неоднократно упоминалась защита от КЗ и утечек, или дифференциальных токов. Как убедиться, что на вашем предприятии в случае короткого замыкания или обрыва провода не пострадает ни оборудование, ни персонал? Все очень просто: обращайтесь в ТМРсила-М за проведением электрофизических измерений!

 

Типы систем распределения для электроснабжения — Bender

Тип системы электроснабжения Ваши преимущества Недостатки
SELV или PELV (безопасное сверхнизкое напряжение или защитное сверхнизкое напряжение) • Отсутствие опасности при контакте • Ограниченная мощность, если развертывание оборудования должно быть рентабельным • Особые требования к токовым цепям
Защитная изоляция • Максимальный уровень безопасности
• Можно комбинировать с другими типами систем
• Двойной изоляция оборудования
• Рентабельность только для малых нагрузок
• Изоляционный материал представляет опасность возгорания при тепловых нагрузках
IT-система • Обеспечивает ЭМС
• Повышенная готовность: просто сообщается о первой неисправности Отключение в случае второй неисправность
• Низкий ток утечки на землю в небольших системах
• Влияние на соседей сокращается количество установок, что, в свою очередь, упрощает заземление.
• Небольшие технические затраты на установку кабелей и проводов.
• Использование соответствующих устройств упрощает поиск неисправностей.
• Оборудование должно иметь универсальную изоляцию для напряжения между внешними проводниками.
• Для проводов N требуется устройство защиты от перенапряжения.
• Возможные проблемы с отключением от сети при втором замыкании на землю.
Система TT • Обеспечивает ЭМС
• Защита зависит от мощности короткого замыкания системы
• Небольшие технические усилия для установка кабеля и проводника
• Напряжение прикосновения может варьироваться от одной области к другой
• Может сочетаться с системой TN
• Совместимость только с низкими номинальными мощностями из-за использования GFCI
• Требуются регулярные функциональные испытания
• Рабочее заземление комплекс (≤ 2 Ом).
• Эквипотенциальное соединение обязательно для каждого здания
Система TN-C • Простота установки
• Низкие материальные затраты
• Не благоприятствует ЭМС
• Строительные паразитные токи и низкочастотные магнитные поля делают систему несовместимой для использования в зданиях, в которых размещается информационное оборудование
• Риск для жизни и здоровья в случае поломки PEN
• Повышенный риск электрических пожаров
Система TN-CS • Экономичный компромисс для зданий, в которых нет информационных технологий оборудование. • Не благоприятствует ЭМС
• Возможны низкочастотные магнитные поля
Система TN-S • Дружественна к ЭМС
• Низкое повышение напряжения в исправных фазах
• Повышенные затраты на инженерные системы безопасности при удаленном множественном питании
• Риск многократного заземления остается незамеченным

Система электроснабжения с помощью устройств защиты от перенапряжения УЗИП

Базовая система электроснабжения, используемая в электроснабжении для строительных проектов, представляет собой трехфазную трехпроводную и трехфазную четырехпроводную систему и т. д., но Значение этих терминов не очень строгое.Международная электротехническая комиссия (МЭК) разработала единые положения для этого, и это называется системой TT, системой TN и системой IT. Какая система TN делится на систему TN-C, TN-S, TN-C-S. Ниже приводится краткое введение в различные системы электропитания.

система электропитания

Согласно различным методам защиты и терминологии, определенным МЭК, низковольтные системы распределения электроэнергии делятся на три типа согласно различным методам заземления, а именно системы TT, TN и IT, и описываются как следует.



Система электропитания TN-C

Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.

Система электропитания TN-CS

Для временного электропитания системы TN-CS, если передняя часть питается по методу TN-C, а строительные нормы и правила указывают, что строительная площадка должна использовать TN-S система электропитания, общая распределительная коробка может быть разделена в задней части системы.Помимо линии PE, система TN-CS имеет следующие особенности.

1) Рабочая нулевая линия N подключена к специальной защитной линии PE. Когда несимметричный ток линии велик, на нулевую защиту электрического оборудования влияет нулевой потенциал линии. Система TN-C-S может снизить напряжение корпуса двигателя на землю, но не может полностью устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии. Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток неуравновешенности нагрузки не был слишком большим, и чтобы линия защитного заземления заземлялась повторно.

2) Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, потому что устройство защиты от утечки на конце линии вызовет срабатывание переднего устройства защиты от утечки и вызовет крупномасштабный сбой питания.

3) В дополнение к линии PE необходимо подключить к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках.На линии защитного заземления нельзя устанавливать переключатели и предохранители, и заземление не должно использоваться в качестве защитного заземления. линия.

Посредством приведенного выше анализа система питания TN-C-S была временно изменена в системе TN-C. Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TN-C-S на использование электроэнергии в строительстве все еще возможно. Однако в случае несбалансированной трехфазной нагрузки и специального силового трансформатора на строительной площадке необходимо использовать систему питания TN-S.

Система электропитания TN-S

Система электропитания режима TN-S представляет собой систему электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S. Характеристики системы питания TN-S следующие.

1) Когда система работает нормально, на выделенной линии защиты нет тока, но есть несбалансированный ток на рабочей нулевой линии. На линии PE на землю нет напряжения, поэтому нулевая защита металлического корпуса электрооборудования подключена к специальной линии защиты PE, которая является безопасной и надежной.

2) Рабочая нейтральная линия используется только как цепь однофазной осветительной нагрузки.

3) Специальная защитная линия PE не может разрывать линию или входить в реле утечки.

4) Если устройство защиты от утечки на землю используется на линии L, рабочая нулевая линия не должна повторно заземляться, а линия PE имеет повторное заземление, но не проходит через устройство защиты от утечки на землю, поэтому устройство защиты от утечки также может быть установлен на линии L источника питания системы TN-S.

5) Система электропитания TN-S безопасна и надёжна, подходит для систем электропитания низкого напряжения, таких как промышленные и гражданские здания. Перед началом строительных работ необходимо использовать систему электроснабжения TN-S.

Система электропитания TT ​​

Метод TT относится к системе защиты, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T означает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Все заземления нагрузки в системе TT называется защитным заземлением. Характеристики этой системы питания следующие.

1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.

2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.

3) Заземляющее устройство системы TT потребляет много стали, и его трудно перерабатывать, время и материалы.

В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица использует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.

Отделите линию PE новой добавленной специальной защитной линии от рабочей нулевой линии N, которая характеризуется:

1 Отсутствует электрическое соединение между общей линией заземления и рабочей нейтральной линией;

2 При нормальной работе рабочая нулевая линия может иметь ток, а линия специальной защиты не имеет тока;

3 Система TT подходит для мест с сильно разбросанными защитными покрытиями.

Система электропитания TN

Система электропитания режима TN Этот тип системы электропитания представляет собой систему защиты, которая соединяет металлический корпус электрооборудования с рабочим нулевым проводом.Она называется системой нулевой защиты и представлена ​​TN. Его особенности заключаются в следующем.

1) Когда устройство находится под напряжением, система защиты от перехода через нуль может увеличить ток утечки до тока короткого замыкания. Этот ток в 5,3 раза больше, чем у системы ТТ. На самом деле это однофазное короткое замыкание, и предохранитель предохранителя перегорел. Расцепитель низковольтного выключателя немедленно отключится и отключится, что сделает неисправное устройство более безопасным и отключенным.

2) Система TN экономит материалы и человеко-часы и широко используется во многих странах и странах Китая. Это показывает, что система TT имеет много преимуществ. В системе электропитания в режиме TN он делится на TN-C и TN-S в зависимости от того, отделена ли линия защитного нуля от рабочей нулевой линии.

Принцип работы:

В системе TN открытые проводящие части всего электрического оборудования подключены к защитной линии и подключены к точке заземления источника питания.Эта точка заземления обычно является нейтральной точкой системы распределения электроэнергии. Система питания системы TN имеет одну точку, которая напрямую заземлена. Открытая электропроводящая часть электрического устройства подключается к этой точке через защитный провод. Система TN обычно представляет собой трехфазную сетевую систему с заземленной нейтралью. Его особенность заключается в том, что открытая проводящая часть электрооборудования напрямую подключена к точке заземления системы. Когда происходит короткое замыкание, ток короткого замыкания представляет собой замкнутый контур, образованный металлической проволокой.Образуется металлическое однофазное короткое замыкание, приводящее к достаточно большому току короткого замыкания, чтобы защитное устройство могло надежно срабатывать для устранения повреждения. Если рабочая нейтральная линия (N) повторно заземляется, при коротком замыкании корпуса часть тока может быть отведена в точку повторного заземления, что может привести к сбою надежной работы защитного устройства или во избежание отказа, тем самым расширяя неисправность. В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Поэтому самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N подключены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N. Исходная линия — это линия N.Предполагаемый ток нейтрали делится между линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением. По указанным выше причинам в соответствующих правилах четко указано, что нейтральная линия (т.е. линия N) не должна заземляться повторно, за исключением нейтральной точки источника питания.

IT-система

IT-система питания I указывает, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T указывает на то, что электрическое оборудование на стороне нагрузки заземлено.

Система электроснабжения в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии не разрешено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах. Условия электроснабжения в подземных выработках относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю остается небольшим и не нарушит баланс напряжения источника питания. Следовательно, это более безопасно, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать.Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.

Введение в заземление и соединение

Заземление и соединение — это два очень разных, но часто путающих метода предотвращения поражения электрическим током.

Принцип заземления состоит в том, чтобы ограничить продолжительность напряжения прикосновения, если вы вступили в контакт с открытой проводящей частью. Земля создает безопасный путь для прохождения тока вместо поражения электрическим током.

Целью соединения является снижение риска поражения электрическим током, если вы прикасаетесь к отдельным металлическим частям при неисправности в электрической установке. В этом случае защитные заземляющие проводники уменьшают величину напряжения прикосновения.

Заземление и соединение являются важными требованиями для любой электрической установки и соответствуют требованиям безопасности BS7671.

Что такое система заземления?

В простейшем случае система заземления — это устройство, при котором электрическая установка подключается к заземляющему устройству. Обычно это делается в целях безопасности, но иногда и для функциональных целей, например, в случае телеграфных линий, которые используют землю в качестве проводника, чтобы сэкономить на стоимости обратного провода в длинной цепи. В случае неисправности в электрической установке человек может получить удар электрическим током, прикоснувшись к металлической части под напряжением, потому что электричество использует тело как путь к земле. Заземление обеспечивает альтернативный путь прохождения тока короткого замыкания на землю.

В Великобритании существуют три основные системы заземления, используемые для неспециализированных установок и определенные в Правилах электромонтажа IET, две — это системы TN (где оператор распределительной сети (DNO) отвечает за заземление), а другая — система TT ( который не имеет собственного заземления):

Обозначения: T = земля (земля), N = нейтраль, C = комбинированный, S = отдельный

Системы

TN-S имеют одно соединение нейтрали с землей, расположенное как можно ближе к трансформатору питания, и отдельные кабели питания повсюду.В источниках низкого напряжения трансформатор можно даже подключить к оболочке питающего кабеля, что даст отдельный путь обратно к трансформатору подстанции. Максимальное сопротивление контура внешнего замыкания на землю DNO в этих конфигурациях обычно составляет 0,8 Ом.

Это наиболее распространенная конфигурация, используемая в Великобритании. Он также известен как защитное многократное заземление (PME) и обеспечивает низковольтное питание с надежным и безопасным заземлением. Эта система позволяет нескольким пользователям использовать один кабель питания.Возникающее в результате увеличение тока приводит к увеличению напряжения в защитной заземленной нейтрали (PEN), которая требует многократного подключения к земле на всем протяжении маршрута питания. Нейтраль заземляется рядом с источником питания, на входе в установку и в необходимых точках распределительной системы. Поскольку DNO использует комбинированный нейтраль и обратный тракт PEN, максимальное сопротивление внешней цепи замыкания на землю составляет 0,35 Ом.

Несмотря на свою популярность, схема TN-C-S может оказаться опасной, если PEN-проводник станет разомкнутой цепью в источнике питания, потому что ток не будет немедленно возвращаться на уровень подстанции. Из-за этого есть определенные объекты, где его нельзя использовать, в том числе заправочные станции, строительные площадки, стоянки для автофургонов и некоторые хозяйственные постройки.

Конфигурация аналогична системе TN-S, но не дает потребителям индивидуального заземления. Вместо этого потребители должны поставлять свою землю, например, закапывая стержни или плиты под землю, чтобы обеспечить путь с низким сопротивлением. Часто системы TT используются там, где устройства TN-C-S не могут быть использованы (например, в примере с бензоколонкой выше) или в сельской местности, где питание осуществляется на воздушных столбах.Меры защиты от ударов, такие как УЗО, часто используются для обеспечения автоматического отключения питания там, где существуют различные типы почвы, которые могут вызвать значения полного сопротивления контура внешнего замыкания на землю.

Что такое склеивание?

Электрическое соединение — это практика соединения всех открытых металлических предметов, не предназначенных для проведения электричества в определенной зоне, с использованием защитного соединительного проводника, цель которого — защитить людей, которые могут коснуться двух отдельных металлических частей, от поражения электрическим током в случае электрического повреждения.Это снижает напряжение, которое могло быть там.

Как упоминалось ранее, знать, когда элемент следует заземлить, а когда — соединить, может сбить с толку.

В качестве примера возьмем металлический кабельный лоток, который часто используется в электрических установках. Если:

  • Лоток является незащищенной проводящей частью (т. Е. К нему можно прикоснуться, и он обычно не находится под напряжением), его НЕОБХОДИМО заземлить.
  • Лоток является внешней проводящей частью (т. Е. Значение омического сопротивления между предполагаемой внешней частью и землей меньше 22 кОм), ее БУДЕТ необходимо закрепить.
  • Лоток не является открытой или сторонней проводящей деталью, поэтому его НЕ нужно заземлять или склеивать.

Узнайте больше о том, как определить посторонние проводящие детали здесь.

Power Systems and Polarization — In Compliance Magazine

Коллега недавно спросил, что означают обозначения «IT» и «TN» системы распределения электроэнергии. «Система распределения электроэнергии» — это все части электрической системы между «основным источником энергии» и входным оборудованием потребителя.

Для целей этого обсуждения «основной источник питания» — это вторичная обмотка распределительного трансформатора, где выходное напряжение — это напряжение использования, обычно принимаемое равным 100, 120, 127, 220, 230 или 240 вольт.

Существует три основных системы распределения электроэнергии: TN, TT и IT. В системе TN существует три варианта: TN-S, TNC и TN-C-S. Мы рассмотрим, что означают эти обозначения и как они влияют на безопасность системы и продуктов, подключенных к системе.

Кроме того, мы дадим определение «поляризации» применительно к системе распределения энергии и безопасности продукции.

А еще мы обсудим заземление системы распределения электроэнергии.

Вот что означают буквы:

T = терра (земля)

N = нейтраль (нейтральный провод энергосистемы)

I = полное сопротивление (значение не указано)

C = комбинированный S = отдельный

Терра (или земля) буквально означает тело земли.Для целей данного обсуждения это означает электрическое соединение с землей с помощью заземляющего стержня, закопанного в землю.

Нейтраль означает нейтральный проводник энергосистемы. Есть два определения. Обычно нейтральный проводник является общей точкой трехфазного четырехпроводного («звездообразного») основного источника питания. Это первое определение.

В двух из трех систем, TN и IT, нейтральный проводник соединен с землей с помощью заземляющего стержня.Отсюда у нас есть второе определение: нейтральный провод — это тот, который подключен к земле. Это определение важно, поскольку оно используется для идентификации нейтрального проводника

.

(В Национальных электротехнических нормах и правилах заземления провод заземления также обозначается как «идентифицированный» провод. Нейтральный провод «идентифицируется» по цвету изоляции. В США и Канаде цвет белый. В Европе цвет синий.)

Импеданс означает, что полное сопротивление последовательно подключено между нейтральным проводником и заземляющим стержнем.Я слышал, что значение этого импеданса составляет от 1000 до 10000 Ом.

Комбинированный означает, что функцию двух проводников выполняет (объединяет в) один проводник.

Отдельный означает, что функцию двух проводников выполняет (отдельно) каждый из двух проводников.

В обозначениях энергосистемы используются две буквы: TN, TT и IT. Первая буква указывает на способ заземления нулевого проводника. Вторая буква указывает на способ заземления защитного проводника.Теперь мы можем определить три основные системы распределения электроэнергии.

TN : Нейтраль системы TN подключена к заземляющему стержню, а защитный проводник подключен к нейтрали. Система TN является преобладающей в США и Канаде.

Преимущество системы TN — очень низкий импеданс между защитным проводом и нейтральным проводом, что обеспечивает работу устройства защиты от максимального тока.

Недостатком системы TN является то, что в точке замыкания на землю возникает падение напряжения на защитном проводе.Это увеличивает потенциал доступных заземленных частей относительно земли, что может привести к поражению электрическим током.

Недостатком системы TN в США является то, что нейтраль заземлена в двух или более местах, одно из которых находится у основного источника питания, а другое — у служебного входа. Это означает, что земля параллельна нейтрали, и что часть нейтрального тока будет течь по земле.

В свою очередь, сигнальные заземления между зданиями (или даже между частями зданий) также могут нести часть нейтрального тока (который является причиной пожаров в некоторых изделиях).

TT : Нейтраль системы TT подключена к заземляющему стержню, а защитный проводник подключен к собственному, отдельному заземляющему стержню. Система TT является преобладающей в Великобритании.

Преимущество системы TT состоит в том, что она преодолевает недостаток системы TN. Поскольку защитный проводник имеет собственное отдельное заземление, доступные заземленные части системы всегда находятся под потенциалом земли, даже в случае неисправности.

Недостатком системы TT является то, что полное сопротивление между защитным проводом и нейтральным проводом не обязательно низкое, что ставит под угрозу работу устройства максимального тока.

IT : Нейтраль IT-системы подключена к импедансу, который соединен с землей, а защитный проводник подключен к собственному, отдельному заземляющему стержню. (Импеданс составляет 1000 Ом или больше.)

ИТ-система является преобладающей во Франции, Норвегии и других странах.

Одним из преимуществ IT-системы является то, что она преодолевает недостаток системы TN. Поскольку защитный проводник имеет собственное отдельное заземление, доступные заземленные части системы всегда находятся под потенциалом земли, даже в случае неисправности.

Еще одно преимущество IT-системы состоит в том, что в случае замыкания на землю система намеренно остается работоспособной, то есть устройство максимального тока не срабатывает до второго замыкания на землю. (Часто в системе используется монитор замыкания на землю, так что при возникновении замыкания на землю срабатывает аварийный сигнал и могут быть предприняты корректирующие действия.)

Недостатком системы IT является то, что при замыкании на землю напряжение относительно земли изменяется. Например, рассмотрите различные напряжения относительно земли в трехфазной распределительной системе, имеющей 220 вольт между фазой и нейтралью и 380 вольт между фазами в таблице 1.

Напряжение IT
Фаза Нормальные условия Условия замыкания на землю
N — Земля 0 вольт 220 вольт
A — Земля 220 0 (замыкание на землю)
B — Земля 220 380
C — Земля 220 380
А — Н 220 220
Б — Н 220 220
К — Н 220 220
А — Б 380 380
A — C 380 380
B — C 380 380

где
N = нейтраль
A = фаза A
B = фаза B
C = фаза C

Таблица 1

(Обратите внимание, что напряжения между фазой и нейтралью и фаза-фаза не меняются.Поскольку все оборудование соединено между собой по схеме «фаза-нейтраль» или «фаза-фаза», все оборудование продолжает нормально работать, даже если в системе есть замыкание на землю.)

Давайте теперь посмотрим на варианты системы TN.

TN-S : Система TN-S имеет отдельные нейтральный и защитный проводники по всей системе.

Это обычная система в США и Канаде.

TN-C : Система TN-C объединяет нейтральный и защитный проводники по всей системе.

TN-C-S : Система TN-C-S включает часть системы с комбинированными нейтральным и защитным проводниками и часть системы с отдельными нейтральным и защитным проводниками.

Это нормально для домашних хозяйств в США, где сушилки и плиты, подключенные к розетке, имеют нейтраль, подключенную непосредственно к раме сушилки или плиты.

Обратите внимание, что независимо от системы, TN, TT или IT, схема заземления нейтрали в значительной степени не влияет на конструкцию продукта.

Некоторые органы власти склонны беспокоиться о номинальном напряжении компонентов, подключенных к сети, заземленной в тех случаях, когда оборудование предназначено для подключения к системе IT. Они обеспокоены тем, что эти компоненты подвергаются более высокому напряжению между фазой и землей, возникающему при замыкании на землю системы.

Некоторые органы власти также склонны беспокоиться о величине тока утечки там, где оборудование предназначено для подключения к ИТ-системе. Опять же, их беспокоит более высокое напряжение между фазой и землей, возникающее при замыкании на землю системы.

Некоторые органы власти склонны беспокоиться об электрической прочности и испытательном напряжении высокого напряжения в цепях электросети, в которых оборудование предназначено для подключения к системе IT. Обратите внимание, однако, что величина переходных перенапряжений не обязательно изменяется из-за замыкания фазы на землю.

А теперь перейдем к поляризации. Для целей этого обсуждения поляризация — это идентификация одного или нескольких выводов системы питания, будь то нейтральный вывод или фазный вывод.Как мы видели, все проводники системы распределения электроэнергии идентифицированы.

По большей части нейтральный проводник — даже если он обычно заземлен — рассматривается как фазный провод.

Как уже упоминалось, система TN-C объединяет нейтральный проводник с защитным проводом. В системах и оборудовании TN-C для безопасности важно соблюдать поляризацию, т. Е. Чтобы нейтраль в оборудовании была соединена с нейтралью в системе питания.Рассмотрим домашнюю электрическую сушилку, металлический корпус которой подключен к нейтральному выводу сетевого шнура. Во избежание поражения электрическим током обязательно подключать нейтраль сушильной машины только к нейтрали питания. Необходимо соблюдать полярность.

В США лампы, использующие розетки на базе Эдисона, должны быть снабжены поляризованными вилками. Нейтральный полюс вилки подключается к корпусу розетки. Это означает, что корпус винта, будучи доступным, имеет потенциал земли.Это повышает безопасность розетки на базе Эдисона.

Поляризация может использоваться для повышения безопасности оборудования, где оба полюса питания не используются одинаково.

Поляризация через розетки несовместима в различных системах распределения электроэнергии. В США и Канаде поляризация поддерживается в розетках на 120 вольт и 15 ампер за счет того, что один контакт шире другого. Более широкое лезвие — нейтральный проводник. (Обратите внимание, что клемма заземления не обеспечивает поляризацию.)

В Великобритании поляризация в розетке на 13 ампер поддерживается тремя положениями лезвия L, N и E. Схема подключения обозначается маркировкой на вилке. Обратите внимание, что для двухпроводных вилок требуется фиктивная клемма заземления как для поляризации, так и для активации жалюзи в розетке.

В Австралии и Новой Зеландии поляризация поддерживается за счет угловой ориентации лезвия. Схема подключения обозначается маркировкой на вилке.

Поляризация не поддерживается европейскими розетками Schuko, французскими, датскими и швейцарскими розетками.Обратите внимание, что французские, датские и швейцарские вилки можно вставлять только в одном направлении. Но полярность проводки к розетке не соблюдается. Будьте осторожны, чтобы не предположить, что только потому, что вилка может быть вставлена ​​в розетку только в одном направлении, она является поляризованной.

БЛАГОДАРНОСТИ

  • Эту тему предложил Рон Веллман из HP Corporate Product Rules.
  • Системы TN, TT и IT определены в IEC 364 и повторены в IEC 950.
  • Для получения дополнительной информации о заземлении нейтрали см. Стандартное руководство для инженеров-электриков , Дональд Г.Финк и Х. Уэйн Берри, редакторы. Издано Книжной Компанией Макгроу-Хилл. ISBN 0-07-020975-8.

Copyright 1995 Ричард Нут Первоначально опубликовано в Информационном бюллетене по безопасности продукции, Vol. 8, No. 5, December 1995

Ричард Нут — консультант по безопасности продукции, занимающийся безопасным проектированием, безопасным производством, сертификацией безопасности, стандартами безопасности и судебно-медицинскими исследованиями.

▷ Типы заземления (в соответствии со стандартами IEC)

Введение

В предыдущей статье мы изучили основы заземления, а также базовый тип заземления, при котором нейтраль заземляется на источнике, а, возможно, заземление выполняется даже на стороне потребителя.

Помимо этого, международный стандарт IEC 60364 формально определяет различные типы устройств заземления. Разберем их здесь подробнее.

Стандарт IEC по заземлению

Стандарт IEC 60364 определяет двухбуквенные коды для обозначения типа заземления. Он также определяет три семейства схем заземления.

  • Двухбуквенный код основан на заземлении на стороне источника — устройства.
  • Первая буква указывает, как выполняется заземление на стороне источника (генератор / трансформатор).
  • Вторая буква указывает, как выполняется заземление на стороне устройства (место, где потребляется электричество в помещении клиента).

Используемые буквы следующие:

T — (французское слово «Terre» означает Земля) — означает прямое соединение точки с землей.

I — Это означает, что либо точка не подключена к земле, либо она подключена через высокое сопротивление

N — Это означает, что имеется прямое соединение с нейтралью в источнике установки, которая, в свою очередь, связана с землей

Исходя из комбинации этих трех букв, МЭК предлагает три семейства схем заземления, как показано ниже:

  • Сеть TN
  • Сеть ТТ
  • ИТ-сеть
Сеть TN

В системе заземления типа TN одна из точек на стороне источника (генератор или трансформатор) подключена к земле.Эта точка обычно является звездой в трехфазной системе. Корпус подключенного электрического устройства подключается к земле через эту точку заземления на стороне источника. См. Рис. ниже которого изображено это:


На диаграмме выше:

PE — аббревиатура от «Protective Earth» — это проводник, который соединяет открытые металлические части электроустановки потребителя с землей.

N — Также называется нейтральным. Это проводник, который соединяет точку звезды в трехфазной системе с землей.

Существует три подтипа сетей TN, как показано ниже:

TN-S : Здесь отдельные проводники для защитного заземления (PE) и нейтрали проходят от электроустановки Потребителя до источника. Они соединяются между собой только у источника питания.


TN-C : В нем есть комбинированный провод, называемый PEN (защитная земля-нейтраль), который подключен к земле в источнике.


TN-C-S : В этом типе заземления часть системы использует комбинированный PEN-проводник для заземления, тогда как для остальной части системы используется отдельный провод для PE и N.

Обычно комбинированный PEN-проводник используется около источника системы.



Сеть TT

В системе заземления типа TT потребитель использует собственное локальное заземление в помещении, которое не зависит от любого заземления на стороне источника.

Этот тип заземления предпочтителен в телекоммуникационных приложениях, поскольку в этой системе отсутствуют высокочастотные или низкочастотные помехи, которые проходят через нейтральный провод, подключенный к оборудованию.



ИТ-сеть

В системе заземления типа IT соединение с землей либо отсутствует, либо выполняется через заземляющее соединение с высоким импедансом.



Стандарты заземления, специфичные для страны

UK — Использует защитное многократное заземление (PME), которое является формой заземления типа TN-C-S

Австралия / Новая Зеландия — Также используется заземление типа TN-C-S, известное как система с несколькими нейтралью на землю (MEN).

США / Канада — Использует TN-C для питания от трансформатора, но использует TN-C-S в структуре на территории клиента

Франция / Япония / Дания — использует заземление типа TT, и заказчик должен самостоятельно организовать свое собственное заземление.

EE212-00 Электротехнические услуги в жилых помещениях, заземление и подключение (4)

Обзор

Этот четырехчасовой курс предоставит обзор требований и использования NFPA 70 — National Electric Code (NEC) 2017 года, чтобы предоставить студентам инструкции и знания электрических требований для бытовых услуг, заземления и подключения.Презентация будет охватывать многие аспекты установки и эксплуатации электрических служб, включая подключение оборудования, заземление, проводку и защиту от сверхтоков, а также тщательное освещение и акцент на важности электробезопасности как во время установки, так и в течение срока службы и использования. установки. Важное внимание будет уделено правильной установке и эксплуатации электрического заземления на нейтральной стороне главной панели, а также принципам правильного подключения и связанным методам для обеспечения наилучшей работы и безопасности.

Код курса

EE212-00

Длина

4 часа

Комиссии

  • Пожалуйста, свяжитесь с TFACA для получения информации о ценах.

Предварительные требования

Нет

Ограничения

Нет

Сертификация

Нет

Максимальный размер класса

НЕТ

Необходимые студенческие материалы

  • Ручка
  • Карандаш
  • Бумага
  • Хайлайтер
  • Калькулятор
  • Справочники

Список литературы

  • 2017 NFPA 70 — Национальный электротехнический кодекс

Задачи курса

  • Чтобы предоставить обзор передовой практики эксплуатации бытовых электрических служб.
  • Дать обзор передовой практики эксплуатации электрического заземления в жилых помещениях.
  • Дать обзор передовых методов эксплуатации электрических соединений в жилых помещениях.

Прочие примечания

Нет

Регистр

Щелкните здесь, чтобы зарегистрироваться через портал Acadis.

Качество заземления: не только для аудиофилов

Как и почему потенциал заземления влияет на нашу аудиосистему и как ее улучшить.Поделиться через фейсбук Поделиться в твиттере Поделиться в pinterest Поделиться в linkedin

Несколько слов о человеческом слухе Самым чувствительным человеческим чувством является слух: его невероятное разрешение — одна миллиардная, миллионная — двенадцать знаков после запятой. Хотя аудиоустройства хорошего качества включают в себя фильтры питания, некоторые внешние помехи все равно попадут на путь прохождения сигнала от усилителя к динамикам и нашим чувствительным ушам.
Как мы можем слышать высокие частоты? Высокие частоты из электросети попадают в наши аудиоустройства через их источники питания.Мы не слышим эти высокие частоты, мы слышим их изменения. Представьте себе цифровые пакеты (или шумы) на расстоянии 1 мс друг от друга: мы услышим 1 кГц. Если в сети с напряжением 230 В переменного тока наведена высокочастотная составляющая всего 1 мВ, она обязательно попадет в блок питания. Добавьте затухание 1000 частей источника питания и фильтра мощности; теперь у нас есть мощность 1 мкВ, одна миллионная. Наш слух, однако, более точен; еще на шесть знаков после запятой.

Питание от электросети Все мы питаем наши устройства от общей сети, электросети, и каждый электроприбор вносит в него свою долю помех.Все устройства должны соответствовать стандартам EMC, которые определяют границы допустимого электромагнитного излучения. Однако в современную эпоху импульсных источников питания и преобразователей частоты помехи в энергосистеме намного сильнее, чем это было много лет назад. Производители обычно вынуждены интегрировать фильтры в свои устройства, цель которых — ограничить выбросы. Чем эффективнее фильтр, тем дороже продукт, а значит, менее конкурентоспособен.Вот почему его баланс выбросов на соответствует норме EMC .
Как работают фильтры Мы не будем вдаваться в технические подробности различных типов фильтров. Как правило, фильтры адаптированы к конкретному устройству, поэтому его рабочая зона имеет наибольшую эффективность именно там, где это необходимо.
Выражения, используемые далее: L — фаза, в Европе 230 В / 50 Гц N — нейтральный провод PE — защитный провод (или земля / земля) HF — высокая частота
Проводка внутри простого силового фильтра Опуская детали, обычно в простейших фильтрах используются конденсаторы с диэлектриком X1 между L и N, дополненные конденсаторами Y1 между L и PE и между N и PE.Как правило, к заземляющему PE подключается также экран или внешний корпус устройства, который проводит другие высокочастотные компоненты на PE и в землю.
Ток утечки (IL) это электрический ток, который проходит через PE на землю. Это сумма токов IF от внутренних фильтров устройства и тока IP, который возникает между изолированными частями устройства из-за внутренних емкостей и индуктивностей внутри устройства. Наибольшая доля тока утечки приходится на вышеупомянутые фильтры (IF).Они передают высокочастотные помехи от устройств к заземляющему проводу. Доли всех устройств складываются и уходят в землю через PE. Все устройства, подключенные к любой фазе, вносят свой вклад в ток утечки. , так как PE-провод является общим для всех фаз.

Заземление и схемы подключения Сегодня существует несколько типов устройств сети и систем напряжения. Мы собираемся ограничить нашу область применения двумя, которые используются дома. TN обозначает сеть, в которой одна точка напрямую заземлена, а части устройства, не находящиеся под напряжением, подключены к этой точке.
TN-C Эти более старые , обычно алюминиевые сборки с двумя проводниками, сегодня не подходят как с точки зрения безопасности, так и с точки зрения Hi-Fi: аудиосистема «не имеет надлежащего заземления». Если заземляющий контакт подключен к N в розетке, все компоненты ВЧ-помех сразу же попадут на PE. Из-за тока и паразитного сопротивления также происходит падение напряжения. Экранирование аудиоустройств, подключенных к такой сети, перестает быть экранированием, потому что все ВЧ помехи от N.
TN-S Эта сеть TN имеет PE и N, полностью отделенные от точки заземления. Новые домашние сборки TN-S намного лучше. Весь ток проходит через L и N, включая компоненты высокочастотных помех. В этом случае PE служит, например, для защиты от опасного контактного напряжения в случае неисправности, но также ведет к токам утечки отдельных устройств. Затем токи утечки подводятся к общей точке заземления в главном распределительном щите.

Качество заземления часто недооценивается.Сопротивление заземления, конечно, измеряется в недавно построенных домах, но это редко бывает в зданиях, которым несколько десятилетий. Влага почвы, окисление контактов или ослабленные винты существенно влияют на его качество.
Функции заземления Система заземления объединяет общий потенциал всех не находящихся под напряжением проводящих частей, придавая им потенциал поверхности земли. Таким образом, он обеспечивает защиту от поражения электрическим током, молнии и перенапряжения. Как уже упоминалось, защитный заземляющий провод PE также ведет к высокочастотным компонентам фильтров большинства приборов.Чтобы эти ВЧ компоненты эффективно отводились, сопротивление заземления должно быть как можно меньше . То же самое касается эффективности защиты от ударов и молнии. Электрическое сопротивление заземления (RE) определяется путем измерения сопротивления между поверхностью земли и точкой соединения (заземления / заземления) здания. Значение зависит от типа и влажности почвы, количества и качества точек заземления и т. Д.
Как измерить сопротивление заземления и какое оно должно быть? В домах оно должно быть меньше 5 Ом, в неблагоприятных условиях — 15 Ом.Измерения должен проводить техник, проводящий проверку, с использованием электродов в земле или с помощью нового индукционного метода с использованием токоизмерительных клещей. Типы грунтов и их устойчивость
Тип почвы Сопротивление Ом · м
Торф 30
Верхний слой почвы 100
Влажный песок 200–300
Влажный гравий 300–500
Сухой песок или гравий 1000–3000
Сухая каменистая земля 3000–10000
Сопротивление почвы / грунта очень сильно зависит от влажности.Поверхностная влажность меняется до глубины около двух метров, в дальнейшем стабильна.

Как улучшить качество существующего заземления (не только для аудиофилов) Хотя допустимая граница меньше 5 Ом, идеальное сопротивление должно быть как можно меньше. Менее 1 Ом — идеал для каждого аудиофила. К сожалению, в плохих почвенных условиях такие значения недостижимы. Заземляющие стержни забиваются на 20–30 см ниже уровня земли и соединяются толстым заземляющим проводом или шинами.Все стыки необходимо покрыть асфальтом или другим защитным слоем. В любых почвенных условиях значения сопротивления заземления можно значительно улучшить за счет использования дополнительных заземляющих стержней. Сопротивление одного стержня R = 0,9 * ρ / L , где ρ — удельное сопротивление данного грунта, L — длина заземляющего стержня в метрах. В идеале стержни должны быть расположены в форме звезды, от точки общего заземления на расстоянии 2-3 метра друг от друга. Окончательное удельное сопротивление заземления складывается с обратными значениями.На изображении ниже представлен план здания. Он должен иметь заземляющие шины под фундаментом, которые затем ведут к общей точке заземления (зеленая) . Сюда также должны проходить молниеотводы и PEN-проводники (здесь TN-S, PE, N — к главному распределительному щиту).
Цена на заземление — крайний пример Цена в основном зависит от пролета всего заземления и количества заземляющих стержней. Один средний оцинкованный заземлитель длиной 2 м стоит около 20 евро, медный вариант — 200 евро.Т-образный заземляющий стержень длиной 1,5 м стоит около 10 евро.
Пример Влажный каменистый грунт с сопротивлением ρ = 250 Ом / м R = 0,9 * ρ / л R = 0,9 * 250/2 = 112,5 Ом. Один стержень заземления, забитый в эту очень плохую почву, будет иметь значение приблизительно 112 Ом . На изображении выше 48 заземляющих стержней расположены в форме звезды. Чтобы упростить подсчет, представим себе одинаковое сопротивление заземления (112 Ом) на всех стержнях. Конечное сопротивление этой системы заземления будет RE = R / N = 112/48 = 2.3 Ом. На самом деле результат будет даже немного лучше, потому что старое заземление под фундаментом дома будет добавлено к новой дополнительной системе. Цена 48 двухметровых стержней составляет около 1000 евро, добавьте материал для их соединения и работайте.
Вы строите новый дом и хотите получить лучшее сопротивление заземления? Поместите заземляющие стержни на 2-3 метра рядом друг с другом в выкопанные фундаментные полосы, чем глубже, тем лучше. Соедините стержни с заземляющими стержнями. Проведите шины от основной точки заземления в форме звезды к отдельным заземляющим стержням.Никогда не закрывайте петлю на штанге. Покройте все болтовые соединения асфальтом и залейте бетонную смесь, на которую будет наноситься изоляция и опорная плита. Также желательно иметь дополнительное заземление, идущее от точки заземления в сад. Забейте заземляющие стержни как можно глубже, в зависимости от качества почвы, в идеале — 2 метра. Еще раз соедините их по схеме звезды, идя к общей точке заземления. Максимальный разумный размер сборки от точки заземления — от 20 до 25 м.

Хотите пойти еще дальше? Создайте свою собственную схему TT и полностью отключите аудиосистему от остальной сети. Цепь ТТ имеет собственную точку заземления. Также важно его качество и удаленность от других точек заземления. Используя специальную версию нейтрализатора EMI RD с дизайном TT, вы можете полностью изолировать вашу аудиосистему от сети и общего PE. Эффективный фильтр электромагнитных помех F4SX направляет ВЧ помехи на проводник защитного заземления домашней сети.Изолирующие трансформаторы T-ULN разделяют составляющую постоянного тока и остатки помех. В этом случае аудиосистема питается от еще более чистого напряжения с собственной точкой заземления. Точка заземления PE-AUDIO должна быть надлежащего качества, в идеале менее 1 Ом.

Что делать с качеством существующей домашней сети? 1) Приобретите хороший фильтр питания, например нейтрализатор электромагнитных помех RD EMI, и полностью отделите свою аудиосистему от общей сети. 2) Проверить качество основной точки заземления (техник-осмотр), возможно, улучшить качество заземления.3) Если вы дополнительно подключили экран, дополняющий ваши аудиокомпоненты, с помощью омметра, убедитесь, что экран любого из компонентов не подключен к PE. Если это так, не используйте дополнительное экранирование; это вызывает нежелательные контуры заземления. 4) Подключите питание к компонентам из одной точки в форме звезды, как это делает нейтрализатор RD EMI. 5) Измерьте импеданс токовой петли (техник-техник). 6) Подайте питание на аудиосистему от самой чистой из имеющихся фаз (как правило, к дому подводятся три фазы, и данная розетка может быть легко переключена в главном распределительном щите).7) Для аудиосистемы идеальной ситуацией является отдельная электрическая цепь и кабели, идущие непосредственно от главного распределительного щита, к которому подключена точка заземления здания. 8) Улучшение качества точки заземления.

Заключительная записка Эта статья предназначена для того, чтобы дать читателю представление о проблемах заземления и его связи с высокочастотными помехами — как оно может влиять на аудиосистему, почему это важно и почему в сети возникает все больше и больше помех.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *