Силовой трансформатор для лампового усилителя своими руками – Некоторые приемы намотки трансформаторов для аудио

Содержание

Некоторые приемы намотки трансформаторов для аудио

Предыдущей статье я рассказал о изготовлениии простого намоточного станочка.
Пришло время показать изготовленные трансформаторы для ламповой техники. Первым был выходной трансформатор для гитарного комбоусилителя JCM800. Попалось хорошее железо 0,35 мм на развале. Хорошее сечение 12,5 см.кв. Мотать стал на своём станке. Особо не спешил, за 2-3 часа одна обмотка в день. Каждый слой при помощи строительного фена и свечи пропитывал воском, чтобы потом не варить в парафине весь трансформатор.

Получилась вот такая катушка, схема намотки: 1/4 — I, II — с отводами на 4, 8, 16 Ом, 1/2 — I с выводом от середины обмотки, II — с отводами на 4, 8, 16 Ом, 1/4 — I.

Симметричность плеч первичной обмотки по сопротивлению получилась хорошая.


И вот он первенец установлен на шасси. Получился отличный трансформатор, дает хороший плотный бас и хорошую резкость на высоких тонах.

Процесс намотки еще двух трансформаторов для fender 5E3, к сожалению, не заснял, но полуфабрикаты уже намотанных на фото. Уже намотанный силовой и выходной трансформаторы.

Здесь я решил пойти дальше в плане эстетики. Видел, что на всех фирменных усилителях обмотки закрыты металлическими крышками. Если брать «наши» трансы в перемотку, то там не только крышек нет, но и железо не всегда без коррозии. Это обстоятельство, конечно, не очень мешает, а дает дополнительную изоляцию пластин. Так вот крышки я стал делать самостоятельно из оцинкованной жести с полиэстровым покрытием. Из этой жести гнут отливы на окна. Она бывает с одной стороны белой или коричневой, а с другой стороны серой. Рисуем на отрезке жести выкройку.

Процесс изготовления и очередность реза расписаны на картинке. Заштрихованные части, обозначенные цифрой 3 при сгибе, заправляются под часть 4. После того как крышка будет согнута по всем линиям, одеваем на трансформатор, отмечаем что нужно отрезать и отрезаем. Придаем с помощью струбцин нужную форму и сверлим отверстия для стягивающих болтов. Если есть длинное сверло, сверлим прямо по месту через отверстия в железе собранного трансформатора. Края крышки, которые размечали по ширине железа можно отмерить на 2-3 мм больше, чтобы после стяжки трансформатора эти края с помощью киянки загнуть по периметру. Так будет эстетичнее. Следующая стадия — покраска крышки и железа с торцов. Получаем примерно такой вид.

Следующие два трансформатора выходной и силовой опять же для другого JMC800 я мотал уже на моей трансомоталке.


Выходной пропитывал парафином, описанным выше способом. Силовой этой процедуре подвергать не обязательно. В результате получились такие вот братья.


Средний дроссель не в счет. Отличный дроссель из светильников дневного света, не требующий доработки.

На новой трансомоталке процесс намотки стал гораздо веселее.
В общем, для меня миф об ужасах намотки трансформаторов развеян.
:hi:

Владимир (mrduk)

Москва

В школе активно паял, делал ламповики, но в самостоятельгой жизни стало нехватать времени. В настоящее время достижений нет. Искал схемы усилителей и попал на Ваш сайт, очень захватило и решил возобновить давние пристрастия к конструированию.

 

datagor.ru

Ламповый усилитель. Намотка силового трансформатора

Упрощенный расчет и намотка силового трансформатора.Трансформатор на частоте 50Гц, это устройство для преобразования уровней напряжений и токов с гальванической развязкой от бытовой сети. В работе силовой трансформатор всегда нагревается, поскольку есть потери мощности в меди провода и в стали сердечника. Дешевый вариант трансформатора с алюминиевыми эмалевыми проводами для себя любимого применять не рекомендуется, поскольку их резистивное сопротивление почти в 5 раз выше, следовательно эффективность трансформатора в несколько раз хуже, а габариты больше. Трансформатор должен нагреваться довольно сильно, но постепенно. Для качественного провода ПЭТВ, ПЭТ-155 не страшно, если трансформатор будет работать при температуре 90 градусов Цельсия. Если трансформатор холодный, то значит он обошелся значительно дороже, чем положено. Эмалированные провода марок ПЭЛ или ПЭВ — довольно старинные, низкотемпературные и их применять не рекомендую, особенно с учетом возможного плохого хранения и разрушения изоляции от сырости и старости. Можно применить хороший провод ПСДКТ в стекловолокнистой изоляции (200 градусов), однако он занимает больше места в окне ввиду повышенной толщины изоляционного слоя. Кроме того, ПСДКТ требует аккуратности и умелых рук, поскольку волокнистая изоляция не терпит перемотки. Межслойная изоляция обмоток нужна непременно тонкая и лучше всего использовать тончайшую ленту из фторопласта. Межобмоточная изоляция может быть из фторопласта потолще и лакоткани. Бывает удобно применить толстую электротехническую бумагу, которая лучше формует слой, поскольку её жесткость значительно выше. Натяг провода должен быть хороший, но такой, чтобы не оборвать обмотку при укладке виток к витку в работе на мелком станке. Обычно при малом и среднем темпе намотки натяг контролируют пальцем руки. Пропитка самодельного трансформатора расплавленным парафином в ёмкости типа кастрюля или лаком нужна непременно. Это резко улучшает условия охлаждения и повышает надёжность изоляции. При конструировании трансформатора нужно помнить, что расчёты это только половина дела. На практике нужны очумелые ручки, поскольку корявость в изготовлении обеспечит гадкость в применении или трансформатор просто сгорит. Ш-образное железо выгоднее по условиям результирующего качества, когда удаётся получить не гудящий трансформатор. Но Ш-образное железо нужно хорошо трамбовать в области керна и нормально сжимать скобами и особенно шпильками по углам. Каркасы трансформаторов заслуживают очень уважительного отношения, поскольку от их качества зависит итоговое качество сборки трансформатора. Трансформаторы на основе ПЛ-сердечников (подковообразных) со шлифованными торцами довольно капризны на этапе сборки. Поэтому линейную токовую нагрузку на такие трансформаторы лучше снизить. Иначе будет получен гудящий монстр, а вся работа окажется проделанной зря. Гудение таких трансформаторов победить довольно трудно, причём титанические усилия по затягиванию обжимной скобы нередко оказываются пустыми. Если такой сердечник после сборки гудит, то никакая пропитка не спасёт. Смело несите такой трансформатор на помойку, а затем расслабьтесь. Тороидальные трансформаторы, как правило, вовсе не гудят, но их приходится мотать вручную с применением челнока. Удобно мотать обмотки тороидов в два провода, для чего заранее высчитывают длину витка и наматывают на челнок сдвоенный провод с некоторым запасом. Челнок длиной 30-40 см можно запросто изготовить из упругой стальной проволоки диаметром 2-3 мм. Для тороидов расчет несколько отличается в сторону уменьшения запаса по сечению сердечника, а также увеличения плотности тока в обмотке. Для трансформаторов на повышенные частоты методика расчета очень существенно отличается.

До мощности 200 Вт расчет проводят в последовательности, описанной ниже. По напряжению и току всех вторичных обмоток, определяют мощность, отбираемую от трансформатора. Мощности обмоток суммируют, принимая нагрузку резистивной

Далее, принимая КПД на уровне 90 %, определяют габаритную мощность Р1 трансформатора. Это название определяет сколько будет весить железяка ручного изготовления.

Сечение сердечника должно обеспечить передачу такой мощности через магнитный поток из первичной обмотки во вторичную. В качестве расчетной величины в трансформаторах с каркасами принимают сечение рабочего керна сердечника. Это именно тот фрагмент сердечника, на который одевают каркас с обмотками. Площадь поперечного сечения керна сердечника S возрастает с увеличением мощности, измеряемой в ваттах. В хорошо рассчитанном трансформаторе нагреваются и обмотки и сердечник, причём нагреваются примерно одинаково. Требуемое сечение S керна сердечника (кв.см.) из трансформаторной электротехнической стали определяют по формуле:

По величине сечения S определяют число витков w’ на один вольт обмотки. Стальные сердечники из тонких листов или тонкой ленты имеют потери меньше в сравнении с сердечниками на 0,5мм железе. Поэтому ленточные сердечники из 0,1мм железа нагреваются значительно слабее. Однако такое железо может оказаться существенно дороже. Для трансформаторной стали можно использовать приближенную формулу расчета числа витков на вольт

Если есть подозрение что сталь сердечника худшего качества, то следует увеличить число витков на вольт w’ на 10-20 %. Если хочется получить силовой трансформатор с мелким током холостого хода, то число витков на вольт увеличивают на 30% и далее определяют требуемое число витков во всех обмотках

Под нагрузкой в трансформаторе будет заметное падение напряжения на внутреннем сопротивлении обмоток. Поэтому для компенсации потерь напряжения число витков берут на 3-5 % больше рассчитанного и далее вычисляют ток первичной обмотки

Диаметры проводов обмоток определяют по величинам токов, исходя из допустимой плотности тока по условиям нагрева. Нужно прогнозировать режим работы трансформатора. Если трансформатор включен постоянно и всегда везёт номинальную нагрузку, то плотность тока в меди следует ограничить на уровне 2 А/кв.мм. Если трансформатор включают эпизодически и продолжительность включенного состояния меньше, то плотность тока можно несколько увеличить. Но не следует принимать плотность тока выше 2,2 А/кв.мм. По умолчанию диаметр провода в справочниках указывают по меди, а не по изоляции. Его выбирают по таблице ниже или вычисляют по приближенной формуле:

Когда под руками нет провода нужного диаметра, то можно взять несколько более тонких одинаковых параллельных проводов. Их суммарная площадь сечения должна быть равна сечению одиночного провода. Площадь поперечного сечения проводов также оценивают по таблице или рассчитывают по приближенной формуле.

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 А/кв.мм, поскольку условия охлаждения этих обмоток лучше. Тогда в формуле для расчёта диаметра провода применяют коэффициент 0,7 вместо 0,8. Далее проверяют размещение обмоток в окне сердечника. Общую площадь сечения витков каждой обмотки находят умножением числа витков w на сечение провода 0,8dиз, где dиз — диаметр провода в изоляции, а его берут по таблице. Площади сечения всех обмоток складывают. С учётом изоляции между слоями и обмотками, а также неплотностей намотки и наличия каркаса, полученное значение площади увеличивают в 2,5 раза, при этом площадь окна должна быть больше значения, полученного из расчета.

Расчет автотрансформатора (АТ) имеет некоторые особенности. В автотрансформаторе часть мощности передаётся по проводу обмотки, являющейся общей для первичной и вторичной цепей, а часть – через магнитный поток. Сердечник АТ надо рассчитывать не на полную вторичную мощность Р2, а только на мощность, передаваемую магнитным потоком Рт. Эту мощность определяют по формулам для повышающего или понижающего АТ:

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение n, наиболее отличающееся от единицы, так как в этом случае значение Рт будет больше и надо, чтобы сердечник мог передать такую мощность. Затем определяют расчетную мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 учитывает КПД автотрансформатора, который обычно выше, чем у трансформатора. Далее применяют формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен разности I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий. В завершении статьи следует заметить, что намотка типового силового трансформатора есть занятие нерациональное. Для большинства жизненных случаев на практике легко подобрать готовые силовые трансформаторы. Даже если есть жесткое требование минимального поля рассеяния силовика, при мелком токе холостого хода, то и в этом случае можно выйти из положения применив тороидальные трансформаторы. Для силовых трансформаторов обыкновенной конструкции при повышенных требованиях нужно иметь выбор из кучки и иметь миллиамперметр переменного тока, чтобы измерить реальный ток холостого хода. Практика показала, что большинство общепромышленных силовых трансформаторов, как старых, так и новодел, изготовлены с экономией меди, поэтому имеют повышенный ток хх. Трансформаторы для нужд энергетики (ОСМ и т.п.) или машиностроения вовсе не применимы для электроники, поскольку у них съэкономлены витки, чудовищный ток холостого хода и железо низкого качества. 

                           Евгений Бортник, Красноярск, Россия, сентябрь 2016

paseka24.ru

Самодельный ламповый усилитель своими руками

Сегодня у нас полезная самоделка для ценителей хорошего звука: высококачественный ламповый усилитель сделанный своими руками

Здравствуйте!

Решил я собрать двухтактный ламповый усилитель (уж очень руки чешутся) из, накопившихся у меня за долгое долгое время деталей : корпус, лампы ,панельки к ним , трансформаторы и прочее.

Надо сказать, что всё это добро мне досталось даром (безвозмездно тобишь ) и стоимость моего нового проекта будет 0.00 гривен ,а если что-то надо будет докупить по мелочи , куплю уже за рубли (так как начал я свой проект в Украине , а закончу уже в России).

Начну описание с корпуса.

Когда-то это был ,судя по всему, неплохой усилитель фирмы SANYO  модель DCA 411.

Но послушать мне его не довелось так как достался он мне в жутком грязном и нерабочем виде, перекопан до нельзя и горелый сетевик на 110 В (японец, наверное) закоптил все внутренности. Вместо родных микросхем оконечного каскада какие-то сопли из советских транзисторов (это фото из интернета хорошего экземпляра). Короче, я всё это выпотрошил, и стал думать. Так вот , ничего лучшего чем запихать туда ламповик я не придумал (уж довольно много места там ).

Решение принято . Теперь надо определяться со схемой и деталями. У меня есть достаточное количество ламп 6п3с и 6н9с .

Ввиду того, что однотактник я уже собирал на 6п3с ,мне захотелось больше мощности и ,порывшись в просторах интернета, я выбрал эту схему двухтактного усилителя на 6п3с.

 

Схема самодельного лампового усилителя (УНЧ)

Схема взята с сайта  heavil.ru

 

Надо сказать, что схема, наверное, не самая хорошая, но ввиду её относительной простоты и доступности деталей решил остановиться на ней. Выходной трансформатор  (фигура важная в сюжете ).

В качестве выходных трансформаторов решено использовать «легендарный»  ТС-180. Сразу  камнями не кидайтесь (приберегите их до конца статьи   🙂 ) я и сам в глубоких сомнениях о таком решении , но учитывая моё стремление не тратить ни копейки на этот проект продолжу.

Выводы транса для моего случая я соединил вот так .

(8)—(7)(6)—(5)(2)—(1)(1′)—(2′)(5′)—(6′)(7′)—(8′) первичка

(10)—(9)(9′)—(10′) вторичка

на соединение выводов 1 и 1′ подается анодное напряжение, 8 и 8′ на аноды ламп.

10 и 10′ на динамик. (это я не сам придумал, нашел в интернете). Чтобы развеять туман  пессимизма   я решил проверить частотную характеристику трансформатора на глаз. Для этого собрал такой стенд на скорую руку.

На фото генератор ГЗ-102 , усилитель BEAG APT-100 (100V-100W), Осциллограф С1-65, эквивалент нагрузки 4 Ом (100W), ну и сам трансформатор. Кстати, на сайте есть онлайн калькулятор расчитывающий резистор для подключения светодиода.

Ставлю 1000 гц размахом 80 (примерно) вольт и фиксирую напряжение на экране осциллографа (около 2 в). Далее увеличиваю частоту и жду когда напряжение на вторичке транса начнет падать. Тоже самое делаю в сторону уменьшения частоты.

Результат меня, надо сказать, порадовал АЧХ практически линейна в диапазоне от 30 гц до 16 кГц , ну я думал, что будет намного хуже. Кстати, усилитель  BEAG APT-100 имеет повышающий  трансформатор на выходе и его АЧХ , возможно, тоже не идеальна.

Теперь можно собирать все до кучи в корпус со спокойной совестью. Есть задумка сделать монтаж и компоновку внутри  в лучших традициях, так называемого,  моддинга (минимум проводов на виду) и еще не плохо было бы сделать подсветку светодиодами как в промышленных экземплярах.

Блок питания самодельного лампового усилителя.

Сборку начну с блока питания заодно опишу его.  Сердцем блока питания (да и всего усилителя, наверное) будет тороидальный трансформатор ТСТ-143, который  я в своё время (года 4 назад) выдрал с мясом из какого-то лампового генератора прямо в то время, как его уносили  на свалку. Больше к сожалению ничего не успел L жалко такой генератор, а может он еще и рабочий был или починить можно было … Ладно что-то я отвлекся. Вот он силовик мой .

Конечно в интернете нашел схему на него.

 

Выпрямитель будет на диодном мосте  с фильтром на дросселе для анодного питания. И 12 вольт для питания подсветки и схемы задержки анодного напряжения. Дроссель вот такой у меня.

Его индуктивность составила 5 генри (если верить прибору) , что вполне достаточно для хорошей фильтрации. А диодный мост нашелся вот такой.

Его название BR1010. (10 ампер 1000 вольт). Все начинаю выпиливать усилитель. Думаю — будет как-то так.

Размечаю и вырезаю отверстия в текстолите под панельки для лампочек.

Получается  неплохо 🙂 пока мне всё нравится.

Дальше начинаю придумывать как же расположить на этом текстолите все детальки.

И так , и эдак . сверлим пилим 🙂

Началось что-то вырисовываться.

Нашел в старых запасах фторопластовый провод и сразу же все альтернативы и компромиссы по поводу провода для монтажа исчезли без следа 🙂 .

Такой вот получился монтаж. Всё как бы «кошерно»  накалы перевиты, земля в одной ,практически, точке. Должно работать.

Пришло время городить питание. После проверки и прозвонки всех выходных обмоток  транса припаял все необходимые провода к нему, и начал устанавливать согласно принятому плану.

Как известно, в нашем не легком радиолюбительском деле никуда без подручных материалов : так пригодился  контейнер от киндер-сюрприза.

И крышка от нескафе  и старый компакт диск

Далее устанавливаю выпрямитель и элементы фильтра питания.

Конденсаторы я повыдирал из плат телевизоров и мониторов. Все емкости не менее 400 вольт (знаю, что надо бы побольше, но не хочу покупать).

Мост шунтирую емкостями (какие были под рукой, наверное, поменяю потом)

Многовато получается, ну да ладно, под нагрузкой просядет 🙂

Выключатель питания использую штатный от усилителя (четкий и мягкий ).

С этим готово. Хорошо получилось 🙂

Подсветка для корпуса лампового усилителя.

 

Для реализации подсветки была куплена светодиодная лента .

И установлена следующим образом в корпус.

Теперь свечение усилителя будет видно и в дневное время. Для питания подсветки я сделаю отдельный выпрямитель со стабилизатором на какой-нибудь  КРКЕН подобной  микросхеме (что найду в хламе) , от которого планирую запитать схему  задержки подачи анодного напряжения.

 Реле задержки.

Порывшись в закромах родины, я нашел вот такую совершенно нетронутую штуку.

Это радио-конструктор реле времени для фотоувеличителя .

Собираем, проверяем, примеряем.

Время срабатывания выставил около 40 секунд , а переменный резистор заменил постоянным. Дело идет к завершению. Осталось  все собрать вместе, поставить морду , индикаторы и регуляторы.

Регуляторы (переменники на входе)

Говорят,  от них  может сильно зависеть качество звука . Короче я поставил вот такие

Сдвоенные по 100 кОм . так как у меня их два ,то я решил запараллелить выводы    получив тем самым 50 кОм и повышенную стойкость к хрипам 🙂

Индикаторы .

Индикаторы я задействовал  штатные, со штатной  подсветкой

Схема подключения была мною беспощадно выкушена с родной платы и также задействована.

Вот что  в итоге у меня получилось.

При проверке мощности усилитель продемонстрировал напряжение на выходе 10 вольт неискаженной синусоиды частотой 1000гц на нагрузку 4 ома  (25 ватт) одинаково по каналам , что порадовало 🙂

При прослушивании звук был кристально чистым без фона и пыли , что называется, но чересчур мониторным, что ли?  красивым, но плоским.

Я наивно полагал, что он без тембров заиграет, но …

При использовании программного эквалайзера удалось получить очень красивое звучание, которое всем понравилось. Спасибо всем большое !!!

Автор статьи «самодельный ламповый усилитель своими руками» Вячеслав Ткаченко.

Возможно Вас заинтересуют следующие материалы:

samodelka.info

Проектируем выходной трансформатор для лампового усилителя — Усилители на лампах — Звуковоспроизведение

h2 align=»center»>Проектируем выходной трансформатор для лампового усилителя.

Часть первая.

Каждый радиолюбитель, пожелавший собрать ламповый усилитель, сталкивается с вопросом, а какой же ТВЗ ему применить для своей конструкции?
Как рассчитать, как намотать или заказать трансформатор по расчётным данным?
Ведь в интернете он наверняка вычитал, что ТВЗ – это чуть ли не самый главный элемент всего устройства. И от его качества и параметров зависит в целом качество звука всего усилителя.

Так какие же параметры важнее всего в выходном трансформаторе? Как их рассчитать?
Этому и будет посвящена данная статья.
В ней нет ничего нового. Все данные для расчётов взяты из учебников 50 х годов прошлого столетия. А я лишь постараюсь «простым , доступным языком», изложить их здесь с учётом того, что современные носители звука используют полный звуковой диапазон от 20 Гц до 20 кГц, а наш усилитель и ТВЗ в том числе должен с запасом как вниз, так и вверх перекрывать этот диапазон.

Итак, Его величество – выходной трансформатор.
Какие же параметры выходного трансформатора главней всего?
Да практически все. Это:

— КПД — η

— Активные сопротивления первичной и вторичной обмоток r1 и r2,

Ra = R~ = Ra~ — полное сопротивление анодной нагрузки, т.е. нагрузка, на которую будет нагружена лампа во время работы с вашим ТВЗ и подключенной к нему акустикой.

а — коэффициент «альфа», отношение Ra/ Ri, сопротивления нагрузки к внутреннему сопротивлению лампы в рабочей точке.

L — индуктивность первичной обмотки,

Ls — индуктивность рассеяния,

n — коэффициент трансформации

— Rвых – выходное сопротивление усилителя, определяется внутренним сопротивлением выбранной лампы и параметрами выходного трансформатора.

— Кд – коэффициент демпфирования. Отношение Rн / R вых. Сопротивления нагрузки (динамика) к выходному сопротивлению усилителя.Чем он больше, тем лучше, и при определённых значениях и более, ваш усилитель будет одинаково хорошо звучать с любой по сложности импеданса акустикой.

Итак, для примера я выбираю лампу 300В одного из производителей. Её предельно допустимые электрические параметры следующие:
Ua = 450 вольт,
Ia = 100 ma.
На её ВАХах с помощью программы «TubeCurve» строю нагрузочную линию (обозначена красным).

Согласно своим желаниям. Определяю режим работы лампы.

Ua = 400,53 V,

Ia = 91,78 ma,

Ug1 = – 80 V

Pa = 36,76 watt,

Ra = 5,99 kOm,

Ri = 0,67 kOm,

Pout = 6,304 watt,

КНИ = 2,586%.
Не превышает предельно допустимых.

Это можно проделать и вручную, распечатав ВАХи принтером на листе бумаги.
Определяем коэффициент «Альфа» = а – коэффициент нагрузки.
а = Ra / Ri = 5,99 kOm / 0,67 = 8,94

Многие могут возразить: Ведь коэффициент «Альфа» выбирается 3 – 5 Ri.
Отвечу: альфа = 3 — не «хайэнд», альфа = 5-7 — неплохо, альфа = 9-10 — для особых гурманов.
Не причисляю себя к особым гурманам, поэтому выбрал режим неплохой, но очень близкий к последним.
Если вы заметили, я ещё данным режимом потерял немного выходной мощности.
Лампа 300В обычно без труда выдаёт 8 ватт при анодной нагрузке 2,5 – 3 кОм.
Хочу заверить, что потеря мощности ввиду увеличения анодной нагрузки, практически не заметна по слуховым ощущениям. Да и на 6 ватт мне вряд ли когда доведётся эту лампу слушать.

Далее: определяем коэффициент трансформации .

Сопротивление моей нагрузки (динамика) Rn = R2 = 8 Ом.
Отсюда n = √ 8 / 5990 = 0,0365, или Ктр = 27,36.

Расчёт целесообразней всего начинать от КПД – коэффициента полезного действия.
Многие именитые могут заявить: «Да плевать нам на этот КПД, подумаешь, потеряем немного выходной мощности, мы в «хайэнде» за мощностью не гоняемся!»
При этом забывают, что КПД зависит напрямую от активных сопротивлений r1 и r2, это во-первых, а во-вторых — от этих же сопротивлений зависит R вых оконечного каскада усилителя.
Чему же равен КПД? (η)

Вычисляем:  КПД =  27,36 * 27,36 * 8 Om / 5990 Om =0,99.
Пусть вас не пугает эта цифра. Она говорит только о том, что мы на правильном пути.
Пугать должна цифра 0,85 или даже 0,8. А мы, от идеального трансформатора перейдём к более реальному и зададимся КПД = 0,95. Можно взять и больше, но габариты такого трансформаторы будут неимоверно увеличиваться в размерах. О чём каждый может потом посчитать…

Леонид Пермяк с «Хаенд – борды» составил и любезно предложил график определения R вых. % выходного сопротивления усилителя от КПД трансформатора и выбранного коэффициента «Альфа».

Тогда, при КПД = 0,95 и «Альфа» = 0,89 R вых = 17% от нагрузки 8 Ом.
R вых = 1,36 Ом. И это очень хорошее значение для нагрузки 8 Ом.
Хочу отметить, что этот результат не точный. Он прикидочный, чего нам ожидать.
После вычисления активных сопротивлений первичной и вторичной обмоток, получим более точный результат выходного сопротивления.
Кд (коэффициент демпфирования) при этом будет = 8 / 1,36 = 5,88.

Для нагрузки 4 Ом, R вых. Должно быть меньше 1 ома.
А как же нам получить эти 1, 36 Ом ??? Для этого вычислим максимально допустимое сопротивлений первичной r1 и вторичной r2 обмоток.

r1 = 0,5 * 5990 * (1 – 0,95) = 149, 75 Ом. Вполне выполнимая задача. И она благодаря высокому выбранному Ra — сопротивлению анодной нагрузки.

r2 = 0,5 * 8 * (1 – 0,95) / 0,95 = 0,21 Ом.

Итак, максимально допустимые активные сопротивления первичной и вторичной обмоток равны 149,75 Ом и 0,21 Ом соответственно. Меньше эти значения могут быть. Это приведёт к улучшению параметров всего ТВЗ. А увеличение этих значений – к ухудшению.

Теперь можно вычислить, какое будет R вых. усилителя.

R вых. = 0,21 + (670 Ом + 149,75 Ом)/ 27,36 ² = 1,17 Ом. Замечательный результат.
Выходное сопротивление уменьшилось, значит увеличится коэффициент демпфирования.
Далее вычисляем минимально необходимую индуктивность первичной обмотки L1 для нижней частоты. Для этого воспользуемся формулой сопротивления эквивалентного генератора для нижней частоты.

r1 – активное сопротивление первичной обмотки;

r2 — активное сопротивление вторичной обмотки;

r’2 = r2 * Ктр² — активное сопротивление вторичной обмотки, приведённое к первичной цепи;
R’2 = R2 * Ктр² – сопротивление нагрузки, приведённое к первичной цепи.
R2 – сопротивление нагрузки (динамика). Вычисляем Rэн.

(Ri + r1) = 670 + 149,75 = 819,75
r’2 = 0,2 * 27,362 = 149,71
R’2 = 8 * 27,362 = 5988,56
(r’2 + R’2) = 6138,27
тогда,
Rэн = 819,75 * 6138,27 / 819,75 + 6138,27 = 723,17 Ом.

Вычисляем минимально необходимую индуктивность первичной обмотки L1.

Приняв Fн=10Гц и спад на этой частоте -3 дБ (выражение под квадратным корнем при спаде – 3 дБ = 1, Мн – коэффициент частотных искажений ), вычисляем минимально допустимую индуктивность первички:

L1 = 723,17 / 6,28 * 10 = 11,52 Гн. Округлю до 12 Гн.

Кто-то может возразить, что уж больно мала получилась индуктивность первичной обмотки. Она должна быть как минимум раза в 3 больше. Но, параллельно первичке (и приведённой к ней нагрузке) у нас прежде всего подключено Ri лампы, равное в данном случае 670 Ом. И оно хорошо демпфирует первичку, от которой теперь уже не требуется большой L1.

Потому-то я и старался применить лампу с маленьким Ri — чтобы не потребовалось большой индуктивности и многих витков первички.
Применённая мной формула Rэн есть выражение для двух параллельно соединённых сопротивлений — Ri и Ra c учётом паразитных активных сопротивлений.

Однако, в этой бочке мёда есть и ложка дёгтя. И выражается она в том, что норма на спад величиной -3 дБ слишком слабая. Дело в том, что если на какой-то НЧ-частоте такой спад, то ощутимый спад начинается где-то на декаду выше этой частоты, т.е., если такая норма заложена на частоте 10 Гц, то начало спада — где-то на 100 Гц.
Вот картинка, только из очень древней книги:

Именно поэтому, для того, что бы получить «полноценную» частоту 40 Гц, многие ГУРУ, рассчитывают ТВЗ для нижней частоты Fн = 5 – 6 Гц.
Не буду пересчитывать на Fн = 5 Гц и продолжу расчёт как задумал. А каждый желающий может это проделать самостоятельно, и посмотреть что из этого вышло.

Продолжение следует.

 

vprl.ru

Об изготовлении выходных трансформаторов для ламповых УМЗЧ

Наблюдается интересная тенденция: чем дальше мы отходим от «ламповой» эпохи, тем больше мифов и тумана создается вокруг выходного трансформатора лампового усилителя. Причем не только в вопросах расчета, но и его изготовления. Производителей понять можно, расхваливание своей продукции — закон рекламы, но и во множестве статей независимых авторов процесс намотки трансформатора смахивает на описание тайного обряда.

Давайте разберемся, насколько это сложно и как много времени на это требуется. Разговор пойдет о выходных трансформаторах для однотактных каскадов, а также о других трансформаторах, где не требуются высокая симметрия полуобмоток и выполнение жестких требований по условиям эксплуатации. Предполагается, что у вас есть достаточного сечения магнитолровод, намоточные провода и хотя бы примитивное приспособление для намотки катушек, снабженное счетчиком витков. Имеется в виду любая конструкция — от электрической или ручной дрели, зажатой в тисках, до согнутой резьбовой шпильки, укрепленной в двух деревянных брусках.

Изготовление катушки — дело кропотливое, но не сложное. Чертеж деталей каркаса сборной катушки из гетинак-са или текстолита с защелками показан на рисунке. На чертеже в позиции 1 — щечки; 2, 3 — пластины. Размеры h, b, у, y1и толщина деталей каркаса связаны с размерами и формой магнитопровода. Лучшим материалом для его изготовления можно считать стеклотекстолит (без фольги) толщиной 1,5…2 мм.

При изготовлении деталей оставляйте припуск на окончательную доводку при сборке. Если попытаться сразу выпилить деталь по размеру, то велика вероятность, что ничего защелкиваться не будет, а катушка развалится. У собранной катушки опилите острые углы надфилем и оберните одним-двумя слоями бумаги толщиной 0,1…0,15 мм. На изготовление катушки потребуется два-три часа.

Технологию изготовления трансформатора галетной конструкции затрагивать вообще не будем, поскольку при относительно малом числе галет она проигрывает классической конструкции с неглубоким секционированием и по коэффициенту заполнения, и по индуктивности рассеяния.
Далее начинается более интересное — намотка. Большинство любителей используют рядовую намотку, т. е. провод мотают виток к витку, и через каждый слой укладывают прокладку. Намотать таким образом без станка с укладчиком 3000-4000 витков тонким проводом — титанический труд. Возникает вопрос: а почему не намотать внавал?

Если отбросить благородное возмущение истинных аудиофилов и обратиться к первоисточникам [1, 2], то выяснится, что с коэффициентом заполнения для тонкого провода (0,15-0,4 мм) не так плохо: Г. Цыкин приводит значения 0,7…0,75, у меня получалось 0,5…0,53, что для единичных экземпляров трансформатора с секционированными обмотками вполне допустимо.
Индуктивность рассеяния практически не зависит от способа и плотности намотки. Собственная емкость обмотки (при намотке внавал) получается на 5…10 % меньше. Основной проблемой представляется пониженная электрическая прочность.

Кстати, высокие значения коэффициента заполнения позволяют сделать трансформатор меньше или в тех же габаритах получить большую индуктивность намагничивания. Это важно, так как для высококачественных устройств следует стремиться реализовать трансформатор с минимальными габаритами при заданной индуктивности первичной обмотки. Чем меньше размеры магнито-провода трансформатора, тем лучше — меньше индуктивность рассеяния при заданном секционировании.
Вернемся к обеспечению электрической прочности. В книгах все написано правильно, но большинство рекомендаций относится к серийному производству трансформаторов и соответствию их определенным стандартам. Выполнить трансформатор в соответствии с ними в домашних условиях нереально: нет ни соответствующих материалов, ни технологий. Поэтому будем исходить из двух критериев: первое — реальные условия эксплуатации, второе — неприемлемое в производстве вполне подходит при самостоятельном изготовлении единичных образцов.

Так какое же напряжение может быть на первичной обмотке трансформатора? Допустим, выходная мощность Р усилителя — 5 Вт (это немало для однотактного каскада на распространенных лампах), приведенное к первичной обмотке сопротивление нагрузки R — 2 кОм, напряжение питания Ua — 300 В и КПД трансформатора КПД- 0,85. Чтобы получить такую мощность, действующее напряжение на первичной обмотке должно быть равно:

Urms= √PR/КПД= 117B.

Соответственно его амплитуда будет равна: U rms= √2 Urms = 166 В.
С учетом напряжения питания максимальное напряжение на первичной обмотке относительно корпуса усилителя будет равно:

Uw — U + Ua — 466 В.

Это и определяет требования к межобмоточной изоляции (как правило, один конец вторичной обмотки заземлен) и изоляционным свойствам каркаса. Кабельной бумаги толщиной 0,12 мм достаточно два слоя, можно использовать конденсаторную бумагу в 4-5 слоев либо комбинацию из слоя сантехнической фторопластовой ленты и слоя писчей бумаги. Стеклотекстолитовый каркас с лихвой обеспечивает необходимую электрическую прочность.

Высококачественные выходные трансформаторы всегда выполняют секционированными, иначе не удается получить приемлемые значения индуктивности рассеяния. В простейшем случае первичную обмотку делят на две части, но лучше — на три, между которыми располагают вторичную обмотку. Возможно и более глубокое секционирование, но при этом значительно снижается коэффициент заполнения окна магнитопровода и возрастает емкость между обмотками. Из-за усложнения намотки глубокое секционирование используется довольно редко.

Остановимся на трех секциях первичной обмотки.

Минимум индуктивности рассеяния достигается при неравномерном разделении числа витков — в крайних секциях их число в два раза меньше, чем в средней. Если пренебречь активным сопротивлением обмотки, то в отсутствие сигнала все витки первичной обмотки эквипотенциальны; при максимальной мощности напряжение на частях обмотки будет пропорционально их индуктивности. Следовательно, максимальное переменное напряжение возникает на средней секции обмотки; его амплитуда равна 83 В. Пробивное напряжение изоляции обмоточного провода диаметром более 0,15 мм (ПЭТВ, ПЭВ, ПВТЛ и др.) — не менее 600 В, а число микродефектов допустимо не более 5-7 на 15 м. Для провода диаметром более 0,35 мм микродефекты вообще недопустимы. Поэтому обмотку можно мотать внавал вообще без всяких прокладок; вероятность появления короткозамкнутых витков очень мала.

Для лучшей укладки витков и повышения надежности трансформатора целесообразно через каждые 300-500 витков обмотки укладывать прокладку из конденсаторной бумаги толщиной 0,022 мм в два слоя (такую бумажную ленту можно добыть из старых бумажных конденсаторов — например, группы КБГ). Поэтому основная задача при намотке трансформатора — исключить западание витков.
Межобмоточная изоляция достигается стандартным способом — прокладку делают шире каркаса на 4-5 мм и по ее краям нарезают насечку. Это можно сделать быстро, свернув прокладку в трубку: ее край по контуру прокусывают острыми кусачками. Так как в этом случае используется более толстая и жесткая изоляция (как из условий электрической прочности, так и для возможности нормальной укладки следующей обмотки), западание витков исключено, если вы достаточно внимательны. Желательно исключить западание витков и при укладке межслоевой изоляции. Тут возникают сложности. Так как поверхность обмотки имеет неровности, то даже при наличии насечки на краях прокладки исключить западания витков не удается — провод ее стягивает. Решается этот вопрос следующим образом. На края прокладки накладывается бандаж из узкой полоски тонкой липкой бумаги (можно использовать «малярную ленту») с насечкой по краю, она удерживает прокладку от сползания (или закрывает витки, с которых прокладка уже сползла).

Итак, порядок намотки трансформатора следующий — секции первичной обмотки наматывают внавал с межслоевыми прокладками через каждые 300- 500 витков, секции вторичной обмотки — виток к витку без прокладок (при диаметре провода более 0,6 мм этот процесс сложности не вызывает). Напоминаю еще раз, что межобмоточная изоляция должна быть достаточно жесткой — витки вторичной обмотки должны ложиться ровно. При намотке секций первичной обмотки следует обеспечивать достаточное натяжение провода и стараться, чтобы поверхность обмотки была как можно ровнее. Кстати, при намотке желательно не касаться провода руками, а удерживать его кусочком тонкого фетра или мягкой замши. Намотка ведется от края до края катушки. Выводы обмоток выполняются непосредственно обмоточным проводом с надетой на него фторопластовой трубкой (тонкая трубка прекрасно тянется; растягивая миллиметровую трубочку, можно получить трубку меньшего диаметра). Если провод слишком тонкий, то для повышения механической прочности вывода провод складывают в три-четыре раза и плотно свивают. Эта косичка используется как вывод обмотки, естественно, ее начало должно быть изолировано и надежно закреплено на обмотке. Выводы из цветных проводов, конечно, красивее, но такой вариант практичнее. Конечная изоляция обмоток выполняется из двух слоев кабельной бумаги (можно и писчей).

Коэффициент заполнения окна маг-нитопровода при двух секциях первичной обмотки находится около 0,45, при трех секциях первичной обмотки — около 0,4. Это усредненные данные по результатам намотки нескольких десятков трансформаторов разной мощности.
Управиться с такой работой, в зависимости от имеющегося опыта, вполне можно за пару вечеров.
Для чего пропитывают катушку трансформатора? Основная цель — повышение электрической прочности при неблагоприятных внешних условиях, также пропитка улучшает отвод тепла из внутренних слоев катушки и повышает ее механическую прочность. Конечно, есть и обратная сторона медали, любая пропитка увеличивает собственную емкость трансформатора.
В 99,9 % случаев любительский усилитель стоит на почетном месте в комнате при практически нормальных условиях. Тепловая нагрузка на выходной трансформатор высококачественного усилителя тоже не велика. Во-первых, проектируются такие трансформаторы по несколько иным критериям, чем сетевые, во-вторых, при прослушивании музыки, даже если усилитель имеет значительную выходную мощность, средняя мощность на выходе составляет всего несколько ватт. Поэтому я не советую использовать какую-либо пропитку и тем самым ухудшать, даже незначительно, электрические параметры трансформатора. Конечно, если вы намерены слушать музыку в условиях тропического климата, планируете установить усилитель в автомобиле или предложить его рок-группе, тогда надо задуматься над пропиточным составом и способом пропитки.
Другое дело — магнитопровод трансформатора. В любительской практике часто используют витые магнитопроводы от серийных трансформаторов, которые гри разборке имеют тенденцию расслаиваться. Это не опасно, но отслоившиеся пластинки будут создавать призвуки. По возможности, их следует подклеить, но это мало что даст. Эффективный способ утихомирить трансформатор (клеить все равно надо) — перед окончательной сборкой окунуть подковы магнитопро-вода в масляный лак. Шихтованный магнитопровод тоже целесообразно прокрасить лаком.

При окончательной сборке трансформатора таким же лаком промазывают и формирующую немагнитный зазор прокладку (для ШЛ и ПЛ их соответственно три и две), толщина которой задана при расчете. Ее можно изготовить из тонкого листа электрокартона, текстолита, гети-накса или иного жесткого термостойкого материала. Очень важно обеспечить фиксацию зазора в магнитолроводе надежной стяжкой: стабильность зазора способствует минимизации нелинейных искажений самого трансформатора на низких частотах.
Изготовленный таким образом трансформатор будет иметь электрические параметры не хуже, а возможно, и лучше, чем изготовленный в заводском цехе. В условиях, близких к нормальным, такие трансформаторы работают безотказно.

Итак, сложность самостоятельного изготовления выходного трансформатора сильно преувеличена. Основные хлопоты связаны с поиском магнитопровода, намоточных проводов и сопутствуюших материалов, а не с намоткой. Залогом хороших результатов является обычная аккуратность и внимательность. Даже не имея опыта, вполне реально за неделю изготовить комплект выходных трансформаторов для стереоусилителя. Конечно, не все может получиться сразу, но под лежачий камень вода не течет, поэтому смело беритесь за работу и собирайте свой лучший ламповый усилитель.
Замечу, что теперь появилось много современных изоляционных материалов, так что применять бумагу совсем не обязательно. Использование полиэти-лентерефталатной, лавсановой пленки, армированного фторопласта, стеклоткани приветствуется; применяйте, что легче достать.
У мощных усилителей возможно появление значительного перепада напряжения на выходном трансформаторе при резком сбросе нагрузки. Если при сравнительных прослушиваниях аппаратуры вы предпочитаете делать коммутацию нагрузки на ходу, то не стоит увеличивать электрическую прочность трансформатора, проще зашунтировать его первичную обмотку подходящим варистором или разрядником на 1 кВ.

Естественно, качество трансформ тора зависит и от применяемого магнитопровода, но не следует возводить это в абсолют. В трансформаторах питания бытовой аппаратуры наиболее часто использовалась электротехническая сталь 3411. Она уступает по своим магнитным свойствам современным сталям (производители часто используют сталь 3408), но эти отличия не настолько велики, чтобы их нельзя было частично компенсировать на этапе проектирования трансформатора. На витом магни-топроводе от сетевого трансформатора можно изготовить отличный выходной трансформатор. И вообще, наблюдается любопытный парадокс. Многие производители предлагают высококачественные выходные трансформаторы, но ограничиваются приведением только их основных параметров — чистый «кот в мешке». А трансформаторы с магнито-проводами из стали 3408 и аморфного сплава — «две большие разницы»!

soundbass.org.ua

Проектируем выходной трансформатор для лампового усилителя — Усилители на лампах — Звуковоспроизведение

Часть вторая.

Далее рассчитываем ТВЗ применительно к железу.
Обычно, для лампы 300В берут сердечник от ОСМ 400 ватт. В крайнем случает от ОСМ 250 ватт.
Ввиду того, что мной выбрано Ra достаточно большое и = 5990 Ом, амплитуда тока в связи с этим уменьшилась. Выходная мощность тоже упала.
Попытаюсь использовать имеющиеся у меня стандартный сердечник ШЛ 25 х 50. из электротехнической стали 3408, толщина ленты 0,3 мм.
Такой сердечник согласно справочных данных имеет габаритную мощность при индукции В = 1,6 Тесла, 230 Ватт.
Данный сердечник имеет внушительное окно, что позволит вместить не мало провода.

Для того, что бы продолжать расчёт, необходимо определить пригодность имеющегося железа для данного трансформатора.
Для этого необходимо знать его габаритные размеры и электрические параметры, начальную магнитную проницаемость Мю 0 или индукцию насыщения сердечника.
Чтобы это узнать, необходимо будет провести небольшую лабораторную работу и собрать небольшую схему.

На каркас трансформатора намотать пробные 100 витков. Постепенно увеличивая напряжение с ЛАТРа, отследить по осциллографу тот момент, когда синусоиду начнёт «ломать». Затем допустимое значение индукции рассчитывают по формуле:

где U1 — показания прибора, В; S — площадь сечения магнитопровода, см2 (чистого железа). Однако, не все смогут воспользоваться этим способом, ввиду отсутствия необходимых приборов. Поэтому будем рассчитывать более доступным, но уже приблизительным способом.
Зная, что железо из шихтованных пластин, «Ш» — образное, насыщается при 1,2 Т (Тесла =12000 Г (Гауссов)), а ленточных ШЛ, ПЛ при 1,6 Т = 16000 Г, для ТВЗ однотактных усилителей, примем значение максимальной индукции в сердечнике равное половине максимальной индукции насыщения.
Т.е. от 0,6 Т для Ш железа до 0,8 для ШЛ, ПЛ железа. Итак, имеется сердечник ШЛ 25 х 50 из электротехнической стали 3408, с толщиной ленты 0,3 мм.

-Площадь сечения рабочего керна — Qж = 2,5 * 5 * 0,95 = 11,875 cm2 0,95 — Кст – коэффициент заполнения сердечника сталью. Так обещает завод производитель. -Длина средней магнитной силовой линии lж = 21,3 см — взято из справочника. но можно рассчитать по формуле:

— Средняя длина витка lв = 21,00 см. Зависит от размеров каркаса и зазоров между элементами каркаса и сердечника. но можно рассчитать по формуле:

Тогда, индуктивность первичной обмотки по магнитопроводу будет равна

Где Мю 0, при неизвестном железе автор советует от 400 — до 600, возьму по минимуму 400.
Зазор в сердечнике… при токе 100ма возьму lз = 0,02cm, что будет соответствовать 0,1 мм под каждую подкову. А после всех расчётов зазор подкорректирую.
Исходя из того, что минимально допустимая индуктивность у меня 12 Гн, считаю количество витков W первичной обмотки: W1 = 2448 витков, вторичной, W2 = 2448 / (Ктр = 27,36) =89,47 витков. = 89.
Учитывая то, что средняя длина витка намотки 21 см, а максимально допустимое активное сопротивление 149,75 Ом получаем общую длину провода первичной обмотки 2448 витков * 0,21 м = 514,1 метра.
Тогда:

149,75 Ом : 514,1м = 0,291 Ом/метр.
По этому параметру, согласно таблице определяем диаметр провода. Это между 0,265 и 0,28.
Выбираем больший = 0,28 по меди и для ПЭТВ 0,33 по лаку.
Там же по таблице смотрим, что провод диаметром 0,28, при плотности тока 2 А/мм? соответствует току 124 мА. Ток покоя лампы равен 91,78 мА. Подходит.

Вторичная обмотка: W2 = 89 витков * 0,21 метр = 18,7 метра.
0,21 Ом : 18,7 м = 0,011 Ом/метр.
Соответствует проводу диаметром 1,45 мм по меди 1,56 по лаку. Сечение 1,651 мм?.
Данные по вторичной обмотке в последующем могут быть преобразованы при конструктивном расчёте.
В зависимости от желаемого секционирования, провод может быть применён значительно меньше по диаметру (сечению), но суммарное сечение всех обмоток должно остаться не меньше. 1,651 мм?.

Конструктивный расчёт. (Или, как разместить всё это на каркасе сердечника).

Хочу предупредить, что я делаю намотку очень плотной. Изоляцию между слоями не делаю. Между секциями применяю очень тонкую, 25 микрон пропиленовую изоляцию в несколько слоёв.
После намотки катушку пропитываю в лаке МЛ-92 с последующей сушкой.
Итак, габариты намотки по каркасу 59 х 23 мм. Это значит, что провода первичной обмотки, диаметром 0,28 по меди, 0,33 по лаку уместится 59 : 0,33 = 178 витков, реально
175 витков.
2448 : 175 = 13,988, округляем = 14 слоёв.
Высота намотки = 14 * 0,33 (по лаку) = 4,62 мм без учёта изоляции и вспучивания.

Для укладки вторичной обмотки выберем такой вариант, уложим все витки вторички в одном слое.
59 : 89 = 0,66 мм – мах. Диаметр провода по лаку. Реально столько витков не уложить.
Реально уложится провод диаметром 0,56 мм по меди, 0,62 по лаку.
Провод 0,56 имеет сечение 0,247 кв. мм . А нам необходимо минимальное сечение 1,651 кв.мм. Значит 1,651 : 0,247 = 6,68, округляем = 7 слоёв в параллель.
Высота намотки = 7 * 0,62 = 4,34 мм.
Общая высота намотки = 4,62 + 4, 34 = 8,96 мм. * 1,2 – 1,3 коэффициент вспучивания, зависит от того, кто как мотает = 10,76 – 11,65 мм + толщина изоляции, смотря кто сколько её кладёт.
Вот если это всё уместится на вашем трансформаторе, то можно сказать, что получился удачным, с минимальными необходимыми требованиями.
Если же про расчёте на каркасе остаётся много места, как получилось у меня. То, смело увеличивайте количество витков о одновременным увеличением диаметра провода, так, что бы активные сопротивления обмоток не превысили заданных значений. Меньшие их значения приведут только к улучшению параметров ТВЗ.

Что получилось у меня.
W1 — 3384 витка, провод 0,355 по меди, 0,385 по лаку, r1 = 128 Ом, 24 слоя, (3 — 6 — 6 — 6 — 3). Все последовательно.
W2 — 123 витка, провод 0,425 по меди, 0,47 по лаку, r2 = 0,16 Ом. 20 слоёв, по 5 слоёв между первичкой. Все параллельно. На нагрузку 8 Ом.
Итого 9 слоёв.
Изоляция только между слоями, пропилен 25 микрон, по 3 слоя. Пропитка в лаке МЛ92, с последующей сушкой.
Индуктивность первички могу посчитать пропорционально…
3384 / 2448 = 1,38 1,382 = 1,9. Ранее рассчитанные 12 Гн * 1,9 = 22,8 Гн.
За секционированием не следует сильно гнаться. В данном случае хорошие результаты получаются при общем количестве секций равном 7.
И последнее, уточняем немагнитный зазор.

8 * 3384 * 92 * 10-7 = 0,25мм.
Так как магнитный поток прерывается дважды, толщина прокладки будет вдвое меньше и = 0,125мм под каждую подкову.
Теперь, зная длину провода, можно рассчитать его вес, заодно и стоимость.
Спасибо за внимание. На этом расчёт закончен.
Хочу обратить внимание, что для пентодов, тетродов — расчёт производится точно так же, с учётом их характеристик.
Сопротивление нагрузки Ra выбирается оптимальное, по ВАХ и наименьшим нелинейным искажениям.
Если напряжение на аноде не соответствует паспортным значениям, то необходимо их сначала преобразовать под соответствующие напряжения. Задача довольно хлопотная.

И ещё, можно так же рассчитать индуктивность рассеяния Ls и вычислить частоту среза по ВЧ. Но это потом, при необходимости.

Не судите строго, может быть о чём-то забыл упомянуть.

Один маленький интересный совет.
Если есть возможность, то для уменьшения активного сопротивления обмоток, при том же количестве витков, следует выбирать сердечник квадратного сечения.
Для примера:
Сердечник 16 кв см.
Если стороны рабочего керна равны между собой и равны 4 и 4 см, то длина витка (не считая каркаса) = 16 см.
Изменим размеры сторон. 2 и 8 см = 16 кв.см. Периметр = длине витка =20 см.
4 лишних см. х 2500 витков = 100 лишних метров провода(это только по периметру сердечника).
Для провода 0,3 по меди это 24,8 Ом лишних.
 

 

vprl.ru

Ламповый усилитель своими руками: пошаговая инструкция, схемы, материалы

Ламповые усилители мощности являются элементом системы управления оборудованием. Данные устройства на сегодняшний день активно используются для акустики. Сделать модель для наушников можно самостоятельно. Однако существуют сложные усилители на базе выходных трансформаторов. Предназначены они в основном для колонок различной мощности.

К важным параметрам моделей следует отнести частотность, а также чувствительность оборудования. В зависимости от мощности блоков питания показатель выходного напряжения меняется. Для того чтобы более детально разобраться в данном вопросе, нужно рассмотреть устройство простого усилителя.

Схема усилителя

Простой ламповый усилитель состоит из конденсатора, блока питания и резисторов. Транзисторы в устройствах часто используются ортогонального типа. Непосредственно лампы применяются на 6 Вт. Регуляторы для моделей подбираются как кнопочного, так и поворотного типа. Модуляторы в усилителях встречаются в основном импульсные, однако кодовые модификации также существуют. Для повышения частотности устройства используются такие элементы, как разрядники. В некоторых моделях имеются тиристоры. Выходное напряжение они понижают довольно сильно. При этом конденсаторы не испытывают больших перегрузок. Кассетные регуляторы в моделях данного типа используются редко.

Однотактные модели

Однотактный ламповый усилитель используется для акустических систем, мощность которых не превышает 20 Ватт. В данном случае трансформаторы, как правило, применяются выходного типа. Непосредственно конденсаторы часто используются полевые. При этом лампы можно смело подбирать на 15 Вт. Чувствительность таких устройств сильно зависит от резисторов. Как правило, они на однотактный ламповый усилитель в начале цепи устанавливаются ортогонального типа.

Тиристоры в таких моделях никогда не используются. Связано это с тем, что сопротивление в цепи довольно изменчивое. Также важно отметить, что напряжение следует регулировать при помощи контроллера. Акустика для лампового усилителя подсоединяется через двухпроводной порт. Модулятор у моделей чаще всего применяется именно контактный. В среднем параметр отрицательного сопротивления находится на уровне 50 Ом. Также важно отметить, что чувствительность сильно снижается в усилителях при использовании медных проводников.

Двухтактные модификации

Очень непросто сделать двухтактный ламповый усилитель своими руками. Пошаговая инструкция в этом плане будет весьма полезна. Для сборки трансформатор понадобится выходного типа. Резисторы на двухтактные ламповые усилители проще всего устанавливать однополюсные. На входе конденсаторов потребуется два. Отрицательное сопротивление в цепи они обязаны минимум выдерживать 60 Ом. В данном случае чувствительность приборов может доходить до 3 мк.

Чтобы минимизировать сбои в модуляторах используются подстроечные резисторы. На выходе системы устанавливаются обычные полевые конденсаторы. Блоки питания на двухтактные ламповые усилители подойдут даже в 30 В. Кассетные регуляторы в таких приборах практически никогда не используются. Параметр входного напряжения в усилителях в среднем составляет 15 В. Амплитуда колебаний в данном случае зависит от частотности сигнала.

Гибридные модификации

Гибридные ламповые усилители звука представляют собой набор выходного трансформатора и полудуплексных резисторов. Для того чтобы собрать модель самостоятельно, потребуется блок питания на 40 В. Непосредственно на входе цепи применяются резисторы ортогонального типа. Отрицательное сопротивление они должны выдерживать на уровне 55 Ом. В данном случае тиристоры целесообразнее устанавливать за выходным трансформатором.

Лампы припаиваются в последовательном порядке. Частотность у модели зависит от амплитуды магнитных колебаний. Параметр выходного напряжения в устройствах легко можно регулировать при помощи контроллера. После установки ортогональных резисторов на ламповые усилители звука ставится блок питания. В данном случае дроссель обязан напрямую соединяться с контролером. Акустика для лампового усилителя должна подсоединяться через двухпроводной порт. На последнем этапе сборки следует проверить выходное напряжение трансформатора. Для нормальной работы системы данный показатель не должен превышать 15 В.

Особенности низкочастотных модификаций

Довольно сложно сделать низкочастотный ламповый усилитель своими руками. Пошаговая инструкция способна сильно помочь. Многие специалисты начинать рекомендуют с установки трансформатора. В данном случае резисторы потребуются полевого типа. Проводимость у них хорошая, и прослужить они способны довольно долго. На входе цепи важно припаять конденсатор. В данном случае модель ортогонального типа подойдет хорошо. На следующем этапе целесообразнее заняться непосредственно контроллером для регулировки устройства.

В некоторых случаях его подбирают поворотного типа. Минимум частота должна выставляться на отметке 500 Гц. Лампы в данном случае припаиваются в последовательном порядке. Для соединения трансформатора с контроллером лучше использовать коаксиальный кабель. Для проверки оборудования в первую очередь измеряется параметр выходного напряжения. В данном случае важно учитывать мощность блока питания. Чаще всего он подбирается на 20 В. В этой ситуации параметр отрицательного сопротивления не должен превышать 45 Ом.

Высокочастотные модели

Высокочастотные ламповые усилители мощности относятся к классу двухтактных модификаций. Отличие их заключается в наличии силовых трансформаторов. Все это необходимо для увеличения проводимости сигнала. Параметр максимальной частоты устройств способен доходить до 500 Гц. В данной ситуации сборку модели целесообразнее начинать с установки именно трансформатора.

Панель для этого можно подобрать деревянную. При этом контроллер должен устанавливаться на подкладку. В данном случае выходное напряжение всегда можно проверить при помощи тестера. Непосредственно блок используется в цепи на 30 В. В этой ситуации транзисторы припаиваются лучевые. Отрицательное сопротивление в системе они обязаны выдерживать не менее 43 Ом. Все это позволит без проблем регулировать частотность оборудования.

Лампы в данном случае припаиваются в последовательном порядке. Конденсаторы используются как ортогонального, так и емкостного типа. В этой ситуации многое зависит от типа контроллера. Если рассматривать кнопочные модификации, то без тиристора не обойтись. При поворотных регуляторах можно использовать обычный модулятор.

Модели с резистивной нагрузкой

Очень непросто сделать данного типа ламповый усилитель своими руками. Пошаговая инструкция в этом плане будет весьма полезна. Многие специалисты советуют складывать усилитель на базе электролитических конденсаторов. Непосредственно сборку модели важно начинать с установки трансформатора. Лампы в данном случае припаиваются в последовательном порядке.

Резисторы в моделях используют лучевого типа. Однако на входе цепи устанавливают ортогональные аналоги. Стабилитроны в этой ситуации используются, если блок питания имеется на 30 В. В противном случае с перегрузками в сети отлично справляется модулятор. Контроллер подсоединяется в усилителе за трансформатором. Для повышения чувствительности модели применяются компараторы. Минимум частотность элемента обязана составлять 300 Гц. В свою очередь показатель отрицательного сопротивления не должен превышать 50 Ом.

Усилители с резонансной нагрузкой

Модели данного типа на сегодняшний день являются сильно распространенными. Трансформатор для лампового усилителя нужно подбирать силовой. Также следует учитывать, что контроллеры следует применять лишь кассетного типа. Непосредственно модуляторы устанавливаются с расширителями. Все это дает значительную прибавку к проводимости сигнала.

Чувствительность модели в усилителях зависит от типов резисторов. Если говорить про блок питания на 20 В, то его следует подбирать ортогонального типа. В противном случае предпочтение можно смело отдавать одноконтактным аналогам. В то же время полевые резисторы не смогут обеспечить высокую частотность. Колебания в сети регулировать проще всего через тиристоры. В данном случае выходное напряжение в системе не должно превышать 15 В.

Модель на понижающем трансформаторе

На понижающем трансформаторе довольно сложно сделать ламповый усилитель своими руками. Пошаговая инструкция способна сильно помочь. Лучше всего в этой ситуации для усилителя использовать ортогональные резисторы. Однако сборку модели важно начинать с установки блока питания. Затем к панели следует подсоединить лампы. В данном случае конденсаторы использовать можно емкостные. Отрицательные сопротивление они обязаны держать на уровне 33 Ом. Все это позволит стабилизировать частоту при малых перегрузках. Тиристоры применяются в схемах данного типа очень редко. Однако, если говорить про высокочастотные модели, то они будут уместными.

Использование силовых трансформаторов

Создать усилитель с силовым трансформатором можно только в том случае, если найти качественный компаратор. Также в данной ситуации не обойтись без резисторов подстроечного типа. Начинать сборку модели рекомендуется с панели. Лампы устанавливать следует в последовательном порядке. Блок питания в этой ситуации обязан соединяться напрямую с дросселем.

Показатель отрицательного сопротивления в цепи не должен превышать 55 Ом. При этом выходное напряжение зависит от мощности блока питания. Модуляторы в таких устройствах имеются с переключателями. Все это позволяет быстро понижать частоту, когда нагрузка на конденсаторы резко возрастает. Лучевые транзисторы в моделях необходимо устанавливать за трансформатором. При этом компаратор припаивается в начале цепи.

Применение импульсных трансформаторов

Чтобы сделать усилитель с импульсным трансформатором, в первую очередь заготавливается панель. Проще всего ее подобрать пластиковую. Лампы в этой ситуации необходимо подключать в последовательном порядке. Располагаться трансформатор обязан на подкладке. При этом конденсатор в начале цепи потребуется емкостного типа. Блоки питания для моделей подбираются на 30 В. Все это, в конечном счете, обеспечивает хорошую проводимость сигнала. Неотъемлемым элементом усилителя считается модулятор.

За импульсным трансформатором его устанавливать не стоит. В данном случае нагрузка на конденсаторы будет оказываться большая. Чтобы избежать сбоев в цепи, следует использовать тиристор для понижения чувствительности. Отрицательное сопротивление он обязан выдерживать на уровне 35 Ом. Транзисторы в системе устанавливаются за трансформатором. Непосредственно модуляторы можно использовать кодовые. В магазинах они чаще всего продаются с маркировкой РР20. Отличительная их особенность заключается в наличие широкополосной головки. Таким образом, регулировать частотность прибора получается более плавно.

Модель для наушников

Для компьютерных наушников конденсаторы можно использовать электролитического типа. В данном случае высокой чувствительности от модели не требуется. Для подавления помех в системах применяются разного рода тиристоры. Модуляторы целесообразнее использовать подстроечного типа. Выходное напряжение в цепи не должно превышать 12 В.

Для того чтобы регулировать частотность усилителя, припаиваются компактные контроллеры. В данном случае лампы следует устанавливать в последовательном порядке. Подсоединение блока питания осуществляется через дроссель. Дуплексные резисторы в таких схемах используются очень редко.

Гитарный усилитель

Набор для лампового усилителя следует подбирать только в специализированных магазинах радиотехники. В первую очередь потребуются лучевые транзисторы. В данном случае модулятор важно устанавливать на панели. Конденсаторы используются малой емкости. Особое внимание при сборке следует уделить подбору контроллера. Двухконтактные модели для таких систем подходят идеально. Однако устройства с компараторами лучше не рассматривать.

В последнюю очередь фиксируется непосредственно блок питания. Полоса пропускания у таких систем, как правило, невысокая. Однако следует учитывать, что проблемы с повышенной чувствительностью встречаются довольно часто. Происходит это в большинстве случае из-за перегорания конденсаторов. Решить проблему можно очень просто, установив вспомогательный предохранитель.

Усилитель на транзисторах 2SA872

Самодельный ламповый усилитель на транзисторах данного типа способен в среднем выдавать частоту на уровне 550 Гц. Для того чтобы собрать модель, вполне подойдет обычный силовой трансформатор. Конденсаторы в данном случае можно использовать ортогональные. Непосредственно в начале цепи резисторы используются с малым сопротивлением.

Благодаря этому резкие скачки в системе происходят редко. Модулятор необходимо устанавливать за трансформатором. Подкладку в этой ситуации использовать нужно обязательно. Питание лампового усилителя должно осуществлять через блок питания на 20 В.

Для повышения выходного напряжения применяется компаратор. Чаще всего он подбирается сетевого типа. В среднем отрицательное сопротивление он способен держать на уровне 45 Ом. После установки компаратора можно прикручивать лампы. Для того чтобы не возникал эффект обратной связи, целесообразнее использовать электролитические конденсаторы.

fb.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о