Обозначение переключателя на электрической схеме: Обозначение переключателя на электрической схеме — советы электрика

Содержание

ГОСТ 2.755-87 ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

ГОСТ 2.755-87
(CT СЭВ 5720-86)

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва 1998

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В ЭЛЕКТРИЧЕСКИХ СХЕМАХ.

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

Unified system for design documentation.

Graphic designations in diagrams.

Commutational devices and contact connections

ГОСТ
2.755-87

(CT СЭВ 5720-86)

Дата введения 01.01.88

Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов.

Настоящий стандарт не устанавливает условные графические обозначения на схемах железнодорожной сигнализации, централизации и блокировки.

Условные графические обозначения механических связей, приводов и приспособлений — по ГОСТ 2. 721.

Условные графические обозначения воспринимающих частей электромеханических устройств - по ГОСТ 2.756.

Размеры отдельных условных графических обозначений и соотношение их элементов приведены в приложении.

1. Общие правила построения обозначений контактов.

1.1. Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена.

1.2. Контакты коммутационных устройств состоят из подвижных и неподвижных контакт-деталей.

1.3. Для изображения основных (базовых) функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении:

1) замыкающих                                                                                    

2) размыкающих                                                                       

3) переключающих                                                                              

4) переключающих с нейтральным центральным положением     

1. 4. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. 1.

Таблица 1

Наименование

Обозначение

1. Функция контактора

2. Функция выключателя

3. Функция разъединителя

4.

Функция выключателя-разъединителя

5. Автоматическое срабатывание

6. Функция путевого или концевого выключателя

7. Самовозврат

8. Отсутствие самовозврата

9. Дугогашение

Примечание . Обозначения, приведенные в пп. 1 — 4, 7 — 9 настоящей таблицы, помещают на неподвижных контакт-деталях, а обозначения в пп. 5 и 6 - на подвижных контакт-деталях.

2. Примеры построения обозначений контактов коммутационных устройств приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Контакт коммутационного устройства:

1) переключающий без размыкания цепи (мостовой)

2) с двойным замыканием

3) с двойным размыканием

2.

Контакт импульсный замыкающий:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

3. Контакт импульсный размыкающий:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

4.

Контакт в контактной группе, срабатывающий раньше по отношению к другим контактам группы:

1) замыкающий

2) размыкающий

5. Контакт в контактной группе, срабатывающий позже по отношению к другим контактам группы:

1) замыкающий

2) размыкающий

6. Контакт без самовозврата:

1) замыкающий

2) размыкающий

7. Контакт с самовозвратом:

1) замыкающий

2) размыкающий

8. Контакт переключающий с нейтральным центральным положением, с самовозвратом из левого положения и без возврата из правого положения

9. Контакт контактора:

1) замыкающий

2) размыкающий

3) замыкающий дугогасительный

4) размыкающий дугогасительный

5) замыкающий с автоматическим срабатыванием

10. Контакт выключателя

11. Контакт разъединителя

12. Контакт выключателя-разъединителя

13. Контакт концевого выключателя:

1) замыкающий

2) размыкающий

14. Контакт, чувствительный к температуре (термоконтакт):

1) замыкающий

2) размыкающий

15. Контакт замыкающий с замедлением, действующим:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

16. Контакт размыкающий с замедлением, действующим:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

Примечание к пп. 15 и 16. Замедление происходит при движении в направлении от дуги к ее центру.

3. Примеры построения обозначений контактов двухпозиционных коммутационных устройств приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Контакт замыкающий выключателя:

1) однополюсный

Однолинейное

Многолинейное

2) трехполюсный

2. Контакт замыкающий выключателя трехполюсного с автоматическим срабатыванием максимального тока

3. Контакт замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления:

1) автоматически

2) посредством вторичного нажатия кнопки

3) посредством вытягивания кнопки

4) посредством отдельного привода (пример нажатия кнопки-сброс)

4. Разъединитель трехполюсный

5. Выключатель-разъединитель трехполюсный

6. Выключатель ручной

7. Выключатель электромагнитный (реле)

8. Выключатель концевой с двумя отдельными цепями

9. Выключатель термический саморегулирующий

Примечание. Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом

10. Выключатель инерционный

11. Переключатель ртутный трехконечный

4. Примеры построения обозначений многопозиционных коммутационных устройств приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Переключатель однополюсный многопозиционный (пример шестипозиционного)

Примечание. Позиции переключателя, в которых отсутствуют коммутируемые цепи, или позиции, соединенные между собой, обозначают короткими штрихами (пример шестипозиционного переключателя, не коммутирующего электрическую цепь в первой позиции и коммутирующего одну и ту же цепь в четвертой и шестой позициях)

2. Переключатель однополюсный, шестипозиционный с безобрывным переключателем

3. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три соседние цепи в каждой позиции

4. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три цепи, исключая одну промежуточную

5. Переключатель однополюсный, многопозиционный с подвижным контактом, который в каждой последующей позиции подключает параллельную цепь к цепям, замкнутым в предыдущей позиции

6. Переключатель однополюсный, шестипозиционный с подвижным контактом, не размыкающим цепь при переходе его из третьей в четвертую позицию

7. Переключатель двухполюсный, четырехпозиционный

8. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса

9. Переключатель многопозиционный независимых цепей (пример шести цепей)

Примечания к пп. 1 — 9:

1. При необходимости указания ограничения движения привода переключателя применяют диаграмму положения, например:

1) привод обеспечивает переход подвижного контакта переключателя от позиции 1 к позиции 4 и обратно

2) привод обеспечивает переход подвижного контакта от позиции 1 к позиции 4 и далее в позицию 1; обратное движение возможно только от позиции 3 к позиции 1

2. Диаграмму положения связывают с подвижным контактом переключателя линией механической связи

10. Переключатель со сложной коммутацией изображают на схеме одним из следующих способов:

1) общее обозначение

(пример обозначения восемнадцатипозиционного роторного переключателя с шестью зажимами, обозначенными от А до F)

2) обозначение, составленное согласно конструкции

11. Переключатель двухполюсный, трехпозиционный с нейтральным положением

12. Переключатель двухполюсный, трехпозиционный с самовозвратом в нейтральное положение

5. Обозначения контактов контактных соединений приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Контакт контактного соединения:

1) разъемного соединения:

— штырь

— гнездо

2) разборного соединения

3) неразборного соединения

2. Контакт скользящий:

1) по линейной токопроводящей поверхности

2) по нескольким линейным токопроводящим поверхностям

3) по кольцевой токопроводящей поверхности

4) по нескольким кольцевым токопроводящим поверхностям

Примечание . При выполнении схем с помощью ЭВМ допускается применять штриховку вместо зачернения

6. Примеры построения обозначений контактных соединений приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Соединение контактное разъемное

2. Соединение контактное разъемное четырехпроводное

3. Штырь четырехпроводного контактного разъемного соединения

4. Гнездо четырехпроводного контактного разъемного соединения

Примечание . В пп. 2 - 4 цифры внутри прямоугольников обозначают номера контактов

5. Соединение контактное разъемное коаксиальное

6. Перемычки контактные

Примечание. Вид связи см. табл. 5 , п. 1.

7. Колодка зажимов

Примечание . Для указания видов контактных соединений допускается применять следующие обозначения:

1) колодки с разборными контактами

2) колодки с разборными и неразборными контактами

8. Перемычка коммутационная:

1) на размыкание

2) с выведенным штырем

3) с выведенным гнездом

4) на переключение

9. Соединение с защитным контактом

7. Обозначения элементов искателей приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Щетка искателя с размыканием цепи при переключении

2. Щетка искателя без размыкания цепи при переключении

3. Контакт (выход) поля искателя

4. Группа контактов (выходов) поля искателя

5. Поле искателя контактное

6. Поле искателя контактное с исходным положением

Примечание. Обозначение исходного положения применяют при необходимости

7. Поле искателя контактное с изображением контактов (выходов)

8. Поле искателя с изображением групп контактов (выходов)

8. Примеры построения обозначений искателей приведены в табл. 8.

Таблица 8

Наименование

Обозначение

1. Искатель с одним движением без возврата щеток в исходное положение

2. Искатель с одним движением с возвратом щеток в исходное положение.

Примечание. При использовании искателя в четырехпроводном тракте применяют обозначение искателя с возвратом щеток в исходное положение

3. Искатель с двумя движениями с возвратом щеток в исходное положение

4. Искатель релейный

5. Искатель моторный с возвратом в исходное положение

6. Искатель моторный с двумя движениями, приводимый в движение общим мотором

7. Искатель с изображением контактов (выходов) с одним движением без возврата щеток в исходное положение:

1) с размыканием цепи при переключении

2) без размыкания цепи при переключении

8. Искатель с изображением контактов (выходов) с одним движением с возвратом щеток в исходное положение:

1) с размыканием цепи при переключении

2) без размыкания цепи при переключении

9. Искатель с изображением групп контактов (выходов) (пример искателя с возвратом щеток в исходное положение)

10. Искатель шаговый с указанием количества шагов вынужденного и свободного искания (пример 10 шагов вынужденного и 20 шагов свободного искания)

11. Искатель с двумя движениями с возвратом в исходное положение и с указанием декад и подсоединения к определенной (шестой) декаде

12. Искатель с двумя движениями, с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями (пример, двумя)

Примечание. Если возникает необходимость указать, что искатель установлен в нужное положение с помощью маркировочного потенциала, поданного на соответствующий контакт контактного поля, следует использовать обозначение (пример, положение 7)

9. Обозначения многократных координатных соединителей приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Соединитель координатный многократный.

Общее обозначение

2. Соединитель координатный многократный в четырехпроводном тракте

3. Вертикаль многократного координатного соединителя

Примечание. Порядок нумерации выходов допускается изменять

4. Вертикаль многократного координатного соединителя с m выходами

5. Соединитель координатный многократный с n вертикалями и с m выходами в каждой вертикали

Примечание. Допускается упрощенное обозначение: n — число вертикали, m — число выходов в каждой вертикали

ПРИЛОЖЕНИЕ

Справочное

Размеры (в модульной сетке) основных условных графических обозначений приведены в табл. 10.

Таблица 10

Наименование

Обозначение

1. Контакт коммутационного устройства

1) замыкающий

2) размыкающий

3) переключающий

2. Контакт импульсный замыкающий при срабатывании и возврате

3. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса

4. Искатель с двумя движениями с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями, например двумя

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

РАЗРАБОТЧИКИ

П. А. Шалаев, С.С. Борушек, С.Л. Таллер, Ю.Н. Ачкасов

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.10.87 № 4033

3. Стандарт полностью соответствует СТ СЭВ 5720-86

4. ВЗАМЕН ГОСТ 2.738-68 (кроме подпункта 7 табл. 1) и ГОСТ 2.755-74

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 2.721-74

Вводная часть

ГОСТ 2.756-76

Вводная часть

6. ПЕРЕИЗДАНИЕ. Октябрь 1997 г.

Обозначение на электрических схемах пакетного переключателя

Условные графические обозначения коммутационных изделий — выключателей, переключателей, электромагнитных реле построены на основе символов контактов: замыкающих (рис. 1, б), размыкающих (в, г) и переключающих (г, е). Контакты, одновременно замыкающие или размыкающие две цепи, обозначают, как показано на рис. 1, (ж, и и).

За исходное положение замыкающих контактов на электрических схемах принято разомкнутое состояние коммутируемой электрической цепи, размыкающих — замкнутое, переключающих — положение, в котором одна из цепей замкнута, другая разомкнута (исключение составляет контакт с нейтральным положением). УГО всех контактов допускается изображать только в зеркальном или повернутом на 90° положениях.

Стандартизованная система УГО предусматривает отражение и таких конструктивных особенностей, как неодновременность срабатывания одного или нескольких контактов в группе, отсутствие или наличие фиксации их в одном из положений.

Так, если необходимо показать, что контакт замыкается или размыкается раньше других, символ его подвижной части дополняют коротким штрихом, направленным в сторону срабатывания (рис. 2, а, б), а если позже, — штрихом, направленным в обратную сторону (рис. 2, в, г).

Отсутствие фиксации в замкнутом или разомкнутом положениях (самовозврат) обозначают небольшим треугольником, вершина которого направлена в сторону исходного положения подвижкой части контакта (рис. 2, д, е), а фиксацию — кружком на символе его неподвижной части (рис. 2, ж, и).

Последние два УГО на электрических схемах используют в тех случаях, если необходимо показать разновидность коммутационного изделия, контакты которого этими свойствами обычно не обладают.

Условное графическое обозначение выключателей на электрических схемах (рис. 3) строят на основе символов замыкающих и размыкающих контактов. При этом имеется в виду, что контакты фиксируются в обоих положениях, т. е. не имеют самовозврата.

Рис. 3.

Буквенный код изделий этой группы определяется коммутируемой цепью и конструктивным исполнением выключателя. Если последний помещен в цепь управления, сигнализации, измерения, его обозначают латинской буквой S, а если в цепь питания — буквой Q. Способ управления находит отражение во второй букве кода: кнопочные выключатели и переключатели обозначают буквой В (SB), автоматические — буквой F (SF), все остальные — буквой А (SA).

Если в выключателе несколько контактов, символы их подвижных частей на электрических схемах располагают параллельно и соединяют линией механической связи. В качестве примера на рис. 3 показано условное графическое обозначение выключателя SA2, содержащего один размыкающий и два замыкающих контакта, и SA3, состоящего из двух замыкающих контактов, причём один из которых (на рисунке — правый) замыкается позже другого.

Выключатели Q1 и Q2 служат для коммутации цепей питания. Контакты Q2 механически связаны с каким-либо органом управления, о чем свидетельствует отрезок штриховой линии. При изображении контактов в разных участках схемы принадлежность их одному коммутационному изделию традиционно отражают в буквенно-цифровом позиционном обозначении (SА 4.1, SA4.2, SA4.3).

Рис. 4.

Аналогично, на основе символа переключающего контакта, строят на электричсеких схемах условные графические обозначения двухпозиционных переключателей (рис. 4, SA1, SA4). Если же переключатель фиксируется не только в крайних, но и в среднем (нейтральном) положении, символ подвижной части контакта помешают между символами неподвижных частей, возможность поворота его в обе стороны показывают точкой (SA2 на рис. 4). Так же поступают и в том случае, если необходимо показать на схеме переключатель, фиксируемый только в среднем положении (см. рис. 4, SA3).

Отличительный признак УГО кнопочных выключателей и переключателей — символ кнопки, соединенный с обозначением подвижной части контакта линией механической связи (рис. 5). При этом если условное графическое обозначение построено на базе основного символа контакта (см. рис. 1), то это означает, что выключатель (переключатель) не фиксируется в нажатом положении (при отпускании кнопки возвращается в исходное положение).

Рис. 5.

Рис. 6.

Если же необходимо показать фиксацию, используют специально предназначенные для этой цели символы контактов с фиксацией (рис. 6). Возврат в исходное положение при нажатии другой кнопки переключателя показывают в этом случае знаком фиксирующего механизма, присоединяя его к символу подвижной части контакта со стороны, противоположной символу кнопки (см. рис. 6, SB1.1, SB 1.2). Если же возврат происходит при повторном нажатии кнопки, знак фиксирующего механизма изображают взамен линии механической связи (SB2).

Многопозиционные переключатели (например, галетные) обозначают, как показано на рис. 7. Здесь SA1 (на 6 положений и 1 направление) и SA2 (на 4 положения и 2 направления) — переключатели с выводами от подвижных контактов, SA3 (на 3 положения и 3 направления) — без выводов от них. Условное графическое обозначение отдельных контактных групп изображают на схемах в одинаковом положении, принадлежность к одному переключателю традиционно показывают в позиционном обозначении (см. рис. 7, SA1.1, SA1.2).

Рис. 7.

Рис. 8

Для изображения многопозиционных переключателей со сложной коммутацией ГОСТ предусматривает несколько способов. Два из них показаны на рис. 8. Переключатель SA1 — на 5 положений (они обозначены цифрами; буквы а—д введены только для пояснения). В положении 1 соединяются одна с другой цепи а и б, г и д, в положениях 2, 3, 4 — соответственно цепи б и г, а и в, а и д, в положении 5 — цепи а и б, в и г.

Переключатель SA2 — на 4 положения. В первом из них замыкаются цепи а и б (об этом говорят расположенные под ними точки), во втором — цепи в и г, в третьем — в и г, в четвертом — б и г.

Зорин А. Ю.

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2. 702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

НаименованиеИзображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании 
 Контакт размыкающий с замедлением, действующим при возврате 
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):

гнездоштырь

Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2. 721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

НаименованиеОбозначение
Автоматический выключатель в силовых цепяхQF
Автоматический выключатель в цепях управленияSF
Автоматический выключатель с дифференциальной защитой (дифавтомат)QFD
Выключатель нагрузки (рубильник)QS
Устройство защитного отключения (УЗО)QSD
КонтакторKM
Тепловое релеF, KK
Реле времениKT
Реле напряженияKV
ФоторелеKL
Импульсное релеKI
Разрядник, ОПНFV
Плавкий предохранительFU
Трансформатор токаTA
Трансформатор напряженияTV
Частотный преобразовательUZ
АмперметрPA
ВольтметрPV
ВаттметрPW
ЧастотометрPF
Счетчик активной энергииPI
Счетчик реактивной энергииPK
ФотоэлементBL
Нагревательный элементEK
Лампа осветительнаяEL
Прибор световой индикации (лампочка)HL
Штепсельный разъем (розетка)XS
Выключатель или переключатель в цепях управленияSA
Выключатель кнопочный в цепях управленияSB
КлеммыXT

Изображение электрооборудования на планах

Хотя ГОСТ 2. 701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

НаименованиеИзображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.

Подпишитесь и получайте уведомления о новых статьях на e-mail

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

ГОСТ 2.755-87
(CT СЭВ 5720-86)

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва 1998

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В ЭЛЕКТРИЧЕСКИХ СХЕМАХ.

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

Unified system for design documentation.

Graphic designations in diagrams.

Commutational devices and contact connections

ГОСТ
2.755-87

(CT СЭВ 5720-86)

Дата введения 01.01.88

Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов.

Настоящий стандарт не устанавливает условные графические обозначения на схемах железнодорожной сигнализации, централизации и блокировки.

Условные графические обозначения механических связей, приводов и приспособлений — по ГОСТ 2.721.

Условные графические обозначения воспринимающих частей электромеханических устройств — по ГОСТ 2.756.

Размеры отдельных условных графических обозначений и соотношение их элементов приведены в приложении.

1. Общие правила построения обозначений контактов.

1.1. Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена.

1.2. Контакты коммутационных устройств состоят из подвижных и неподвижных контакт-деталей.

1.3. Для изображения основных (базовых) функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении:

1) замыкающих                                                                                   

2) размыкающих                                                                      

3) переключающих                                                                             

4) переключающих с нейтральным центральным положением    

1. 4. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. 1.

Таблица 1

Наименование

Обозначение

1. Функция контактора

2. Функция выключателя

3. Функция разъединителя

4. Функция выключателя-разъединителя

5. Автоматическое срабатывание

6. Функция путевого или концевого выключателя

7. Самовозврат

8. Отсутствие самовозврата

9. Дугогашение

Примечание. Обозначения, приведенные в пп. 1 — 4, 7 — 9 настоящей таблицы, помещают на неподвижных контакт-деталях, а обозначения в пп. 5 и 6 — на подвижных контакт-деталях.

2. Примеры построения обозначений контактов коммутационных устройств приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Контакт коммутационного устройства:

1) переключающий без размыкания цепи (мостовой)

2) с двойным замыканием

3) с двойным размыканием

2. Контакт импульсный замыкающий:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

3. Контакт импульсный размыкающий:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

4. Контакт в контактной группе, срабатывающий раньше по отношению к другим контактам группы:

1) замыкающий

2) размыкающий

5. Контакт в контактной группе, срабатывающий позже по отношению к другим контактам группы:

1) замыкающий

2) размыкающий

6. Контакт без самовозврата:

1) замыкающий

2) размыкающий

7. Контакт с самовозвратом:

1) замыкающий

2) размыкающий

8. Контакт переключающий с нейтральным центральным положением, с самовозвратом из левого положения и без возврата из правого положения

9. Контакт контактора:

1) замыкающий

2) размыкающий

3) замыкающий дугогасительный

4) размыкающий дугогасительный

5) замыкающий с автоматическим срабатыванием

10. Контакт выключателя

11. Контакт разъединителя

12. Контакт выключателя-разъединителя

13. Контакт концевого выключателя:

1) замыкающий

2) размыкающий

14. Контакт, чувствительный к температуре (термоконтакт):

1) замыкающий

2) размыкающий

15. Контакт замыкающий с замедлением, действующим:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

16. Контакт размыкающий с замедлением, действующим:

1) при срабатывании

2) при возврате

3) при срабатывании и возврате

Примечание к пп. 15 и 16. Замедление происходит при движении в направлении от дуги к ее центру.

3. Примеры построения обозначений контактов двухпозиционных коммутационных устройств приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Контакт замыкающий выключателя:

1) однополюсный

Однолинейное

Многолинейное

2) трехполюсный

2. Контакт замыкающий выключателя трехполюсного с автоматическим срабатыванием максимального тока

3. Контакт замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления:

1) автоматически

2) посредством вторичного нажатия кнопки

3) посредством вытягивания кнопки

4) посредством отдельного привода (пример нажатия кнопки-сброс)

4. Разъединитель трехполюсный

5. Выключатель-разъединитель трехполюсный

6. Выключатель ручной

7. Выключатель электромагнитный (реле)

8. Выключатель концевой с двумя отдельными цепями

9. Выключатель термический саморегулирующий

Примечание. Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом

10. Выключатель инерционный

11. Переключатель ртутный трехконечный

4. Примеры построения обозначений многопозиционных коммутационных устройств приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Переключатель однополюсный многопозиционный (пример шестипозиционного)

Примечание. Позиции переключателя, в которых отсутствуют коммутируемые цепи, или позиции, соединенные между собой, обозначают короткими штрихами (пример шестипозиционного переключателя, не коммутирующего электрическую цепь в первой позиции и коммутирующего одну и ту же цепь в четвертой и шестой позициях)

2. Переключатель однополюсный, шестипозиционный с безобрывным переключателем

3. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три соседние цепи в каждой позиции

4. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три цепи, исключая одну промежуточную

5. Переключатель однополюсный, многопозиционный с подвижным контактом, который в каждой последующей позиции подключает параллельную цепь к цепям, замкнутым в предыдущей позиции

6. Переключатель однополюсный, шестипозиционный с подвижным контактом, не размыкающим цепь при переходе его из третьей в четвертую позицию

7. Переключатель двухполюсный, четырехпозиционный

8. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса

9. Переключатель многопозиционный независимых цепей (пример шести цепей)

Примечания к пп. 1 — 9:

1. При необходимости указания ограничения движения привода переключателя применяют диаграмму положения, например:

1) привод обеспечивает переход подвижного контакта переключателя от позиции 1 к позиции 4 и обратно

2) привод обеспечивает переход подвижного контакта от позиции к позиции и далее в позицию ; обратное движение возможно только от позиции к позиции

2. Диаграмму положения связывают с подвижным контактом переключателя линией механической связи

10. Переключатель со сложной коммутацией изображают на схеме одним из следующих способов:

1) общее обозначение

(пример обозначения восемнадцатипозиционного роторного переключателя с шестью зажимами, обозначенными от А до F)

2) обозначение, составленное согласно конструкции

11. Переключатель двухполюсный, трехпозиционный с нейтральным положением

12. Переключатель двухполюсный, трехпозиционный с самовозвратом в нейтральное положение

5. Обозначения контактов контактных соединений приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Контакт контактного соединения:

1) разъемного соединения:

— штырь

— гнездо

2) разборного соединения

3) неразборного соединения

2. Контакт скользящий:

1) по линейной токопроводящей поверхности

2) по нескольким линейным токопроводящим поверхностям

3) по кольцевой токопроводящей поверхности

4) по нескольким кольцевым токопроводящим поверхностям

Примечание. При выполнении схем с помощью ЭВМ допускается применять штриховку вместо зачернения

6. Примеры построения обозначений контактных соединений приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Соединение контактное разъемное

2. Соединение контактное разъемное четырехпроводное

3. Штырь четырехпроводного контактного разъемного соединения

4. Гнездо четырехпроводного контактного разъемного соединения

Примечание. В пп. 2 — 4 цифры внутри прямоугольников обозначают номера контактов

5. Соединение контактное разъемное коаксиальное

6. Перемычки контактные

Примечание. Вид связи см. табл. 5, п. 1.

7. Колодка зажимов

Примечание. Для указания видов контактных соединений допускается применять следующие обозначения:

1) колодки с разборными контактами

2) колодки с разборными и неразборными контактами

8. Перемычка коммутационная:

1) на размыкание

2) с выведенным штырем

3) с выведенным гнездом

4) на переключение

9. Соединение с защитным контактом

7. Обозначения элементов искателей приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Щетка искателя с размыканием цепи при переключении

2. Щетка искателя без размыкания цепи при переключении

3. Контакт (выход) поля искателя

4. Группа контактов (выходов) поля искателя

5. Поле искателя контактное

6. Поле искателя контактное с исходным положением

Примечание. Обозначение исходного положения применяют при необходимости

7. Поле искателя контактное с изображением контактов (выходов)

8. Поле искателя с изображением групп контактов (выходов)

8. Примеры построения обозначений искателей приведены в табл. 8.

Таблица 8

Наименование

Обозначение

1. Искатель с одним движением без возврата щеток в исходное положение

2. Искатель с одним движением с возвратом щеток в исходное положение.

Примечание. При использовании искателя в четырехпроводном тракте применяют обозначение искателя с возвратом щеток в исходное положение

3. Искатель с двумя движениями с возвратом щеток в исходное положение

4. Искатель релейный

5. Искатель моторный с возвратом в исходное положение

6. Искатель моторный с двумя движениями, приводимый в движение общим мотором

7. Искатель с изображением контактов (выходов) с одним движением без возврата щеток в исходное положение:

1) с размыканием цепи при переключении

2) без размыкания цепи при переключении

8. Искатель с изображением контактов (выходов) с одним движением с возвратом щеток в исходное положение:

1) с размыканием цепи при переключении

2) без размыкания цепи при переключении

9. Искатель с изображением групп контактов (выходов) (пример искателя с возвратом щеток в исходное положение)

10. Искатель шаговый с указанием количества шагов вынужденного и свободного искания (пример 10 шагов вынужденного и 20 шагов свободного искания)

11. Искатель с двумя движениями с возвратом в исходное положение и с указанием декад и подсоединения к определенной (шестой) декаде

12. Искатель с двумя движениями, с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями (пример, двумя)

Примечание. Если возникает необходимость указать, что искатель установлен в нужное положение с помощью маркировочного потенциала, поданного на соответствующий контакт контактного поля, следует использовать обозначение (пример, положение 7)

9. Обозначения многократных координатных соединителей приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Соединитель координатный многократный.

Общее обозначение

2. Соединитель координатный многократный в четырехпроводном тракте

3. Вертикаль многократного координатного соединителя

Примечание. Порядок нумерации выходов допускается изменять

4. Вертикаль многократного координатного соединителя с m выходами

5. Соединитель координатный многократный с n вертикалями и с m выходами в каждой вертикали

Примечание. Допускается упрощенное обозначение: n — число вертикали, m — число выходов в каждой вертикали

ПРИЛОЖЕНИЕ

Справочное

Размеры (в модульной сетке) основных условных графических обозначений приведены в табл. 10.

Таблица 10

Наименование

Обозначение

1. Контакт коммутационного устройства

1) замыкающий

2) размыкающий

3) переключающий

2. Контакт импульсный замыкающий при срабатывании и возврате

3. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт — позже, чем соответствующие контакты нижнего полюса

4. Искатель с двумя движениями с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями, например двумя

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

РАЗРАБОТЧИКИ

П. А. Шалаев, С.С. Борушек, С.Л. Таллер, Ю.Н. Ачкасов

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.10.87 № 4033

3. Стандарт полностью соответствует СТ СЭВ 5720-86

4. ВЗАМЕН ГОСТ 2.738-68 (кроме подпункта 7 табл. 1) и ГОСТ 2.755-74

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

6. ПЕРЕИЗДАНИЕ. Октябрь 1997 г.

Обозначение розеток и выключателей на чертежах

В давние времена инженеры вручную рисовали схемы, всячески их упрощая. Это ускоряло выпуск проектной документации. С развитием техники появилась необходимость выработки определенных правил, для того чтобы любой человек мог разобраться в чертежах. С целью создания единой системы оформления и чтения чертежей все электротехнические элементы обозначаются в соответствии с требованиями ГОСТ 21.614 и ГОСТ 21.608. Стандарты предусматривают введение условно-графических обозначений на чертежах (ОУГ), в том числе для розеток и выключателей. Их правильное нанесение дает возможность без ошибок трактовать содержимое чертежа, в то время как отсутствие привело бы к возникновению споров и разногласий.

План расположения электротехнических приборов в квартире

На рисунке выше изображена электрическая схема электроснабжения помещения. В распределительную коробку входят ноль синего цвета и фаза красного. Скрутка ноля расходится на розетки и лампы, а фазы – на розетки и двухклавишный выключатель (коричневый провод), с которого идут два провода на лампы.

Чертеж – это официальный документ, который составляется по всем действующим правилам.

Когда делают графическое обозначение выключателей, светильников, розеток и других приборов, преимущественно применяются простые геометрические фигуры: треугольники, квадраты, окружности, сегменты, отрезки и точки. Сочетая их, создают стандартные изображения электрических приборов и механизмов, используемых в электротехнике.

При необходимости разобраться в существующей схеме или составить ее нужно обратиться к ГОСТу, где есть изображение любого электротехнического элемента.

Условное обозначение розеток

В нормативной технической документации за основу электрической розетки взят полукруг. К нему добавляются один или несколько отрезков, отражающих разновидности изделия.

Изображения электротехнических изделий на чертежах

Когда от выпуклой части полукруга вверх отходит одна черта – это обозначается двухполюсная розетка, две – сдвоенная двухполюсная, три веерообразных – трехполюсная (рис. а). Горизонтальной чертой отмечается наличие защитного заземления у изделия. Вертикальная черта внутри полукруга говорит о том, что розетка скрытая (рис. б). Она вставляется во внутреннюю коробку и выравнивается по плоскости стены.

Если полукруг имеет черную сплошную заливку, это означает, что розетка должна быть влагостойкой (рис. в). Ее можно устанавливать на наружные поверхности зданий.

Когда делается изображение выключателя, за основу взята окружность, к которой также добавляются отрезки с крючками на концах, характеризующие конкретный тип изделия. Для освещения применяются преимущественно однополюсные выключатели.

Условное обозначение выключателей

Условные обозначения и внешний вид типовых выключателей освещения

Количество крючков означает, сколько у него клавиш. На рисунке выше они имеют небольшие отличия, что связано с тем, скрытый тип выключателя или открытый. На розетках также приводятся их обозначения, поскольку в некоторых моделях их совмещают в общие блоки (рис. г).

Если окружность выполнена с внутренней черной заливкой, это означает повышенную защиту изделия от влаги. На рисунке ниже приведено расширенное обозначение электрических выключателей и переключателей. Двух,- и трехполюсные устройства – это пакетные выключатели, применяемые для включения электродвигателей, подачи электричества в жилье, а переключатели на два направления проходного типа служат для управления из двух и более мест.

Условные обозначения на чертежах выключателей

На рисунке выше указана защищенность изделий в виде маркировки из латинских букв IP и двух последующих цифр. Первая из цифр означает защиту от проникновения твердых загрязнений в зависимости от размеров, а следующая – стойкость против влаги. Диапазон возможных значений находится в пределах 0-9. Часто встречается маркировка IP44, IP54, IP65, IP20.

Расположение розеток и выключателей в квартире

Схема проводки и расположение электротехнических приборов в квартире составлены правильно, если нет потребности в дополнительных тройниках и удлинителях.

В особом внимании нуждается кухня, где сосредоточено максимальное количество потребителей электроэнергии. К электроплите проложен отдельный кабель из электрощитка (красная пунктирная линия на рисунке ниже). Все розетки сделаны скрытыми и с заземлением, как видно по их условным обозначениям.

Размещение выключателей и розеток на плане типовой квартиры

Их следует правильно подобрать, чтобы мощность соответствовала проводке и подключаемым приборам. На кухне указаны только самые необходимые розетки и выключатели для освещения и основных электроприборов. Не обозначены розетки для встроенной техники и вытяжной вентиляции. Кроме того, следует предусмотреть подключение электроприборов: миксера, чайника, хлебопечки, кофеварки, светильников для определенных зон и многих других. Для этого устанавливают 3-4 дополнительные розетки рядом со столешницей. В некоторых кухонных столах и шкафчиках сейчас заранее монтируются выдвижные розеточные блоки.

Выключатели также сделаны встроенными. Кое-где их можно совместить с розетками, например, для включения вытяжной вентиляции, холодильника и микроволновой печи.

Выключатели применяются преимущественно однополюсные для скрытой проводки. Защитное отключающее устройство устанавливают на входе перед счетчиком, согласно ПУЭ. В ванной комнате предусмотрена розетка для стиральной машины с повышенной защитой от влаги. Выключатель там устанавливается снаружи.

В зале целесообразно поставить двух,- или трехклавишный выключатель для люстры. Традиционное групповое включение светильников часто оказывается удобнее, чем использование диммера, который не всегда подходит. Например, его нельзя применять для люминесцентных ламп.

Выключатели можно показывать на схеме в общем виде, а в спецификациях указывать их характеристики. Придерживаясь ГОСТов, можно подробно указывать на схемах типы розеток и выключателей, по которым наглядно видно, что нужно покупать для электроснабжения дома или квартиры.

Выбор. Видео

О показателях качества розеток и выключателей расскажет следующее видео.

Условные обозначения розеток и выключателей на схемах в соответствии с требованиями ГОСТов позволяют легче разбираться в чертежах при проектировании, монтаже и ремонте электрооборудования.

Оцените статью:

Обозначение автоматического выключателя на схеме. Обозначение электрических элементов на схемах Трехполюсный автоматический выключатель обозначение на схеме

Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.

Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база

Нормативная база

Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:

Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.

Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.

Электрические щиты, шкафы, коробки

На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, гостевого дома. Эти другие обозначения есть на следующей картинке.

Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

Элементная база для схем электропроводки

При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.

Изображение розеток

На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т. д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.

Обозначение розеток на чертежах

Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.

Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.

Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или , духовки и т.д.

Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.

Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).

Отображение выключателей

Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.

Кроме обычных могут стоять — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.

В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

Лампы и светильники

Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.

Радиоэлементы

При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.

Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.

Буквенные обозначения

Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).

Название элемента электрической схемыБуквенное обозначение
1Выключатель, контролер, переключательВ
2ЭлектрогенераторГ
3ДиодД
4ВыпрямительВп
5Звуковая сигнализация (звонок, сирена)Зв
6КнопкаКн
7Лампа накаливанияЛ
8Электрический двигательМ
9ПредохранительПр
10Контактор, магнитный пускательК
11РелеР
12Трансформатор (автотрансформатор)Тр
13Штепсельный разъемШ
14ЭлектромагнитЭм
15РезисторR
16КонденсаторС
17Катушка индуктивностиL
18Кнопка управленияКу
19Конечный выключательКв
20ДроссельДр
21ТелефонТ
22МикрофонМк
23ГромкоговорительГр
24Батарея (гальванический элемент)Б
25Главный двигательДг
26Двигатель насоса охлажденияДо

Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.

Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:

  • реле тока — РТ;
  • мощности — РМ;
  • напряжения — РН;
  • времени — РВ;
  • сопротивления — РС;
  • указательное — РУ;
  • промежуточное — РП;
  • газовое — РГ;
  • с выдержкой времени — РТВ.

В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.

Умение читать электротехнические схемы, способность распознавать на чертеже дома обозначенные символами различные условные графические обозначения коммутационных аппаратов и элементов сети – позволит разобраться в обустройстве проводки самостоятельно.

Понятная пользователю схема даёт ему ответ на вопрос, какие провода подключить к тем, или иным клеммам электроприбора. Но для чтения чертежа недостаточно помнить символы разнообразных электротехнических устройств, нужно также понимать, что они делают, какие функции выполняют, чтобы улавливать взаимосвязь между ними, необходимой для того, чтобы понять работу всей системы целиком.

Изучению всей номенклатуры электротехнических аппаратов посвящается много времени в специальных учебных заведениях, и нет никакой возможности в одной статье вместить обозначение всех этих устройств, с детальным описанием их функциональных возможностей и характерных взаимосвязей с другими приборами.

Поэтому нужно начинать с изучения простых схем, включающих в себя небольшой набор элементов.

Проводники, линии, кабели

Самый распространённый компонент любой электросети – обозначение проводов. На схемах он обозначается линией. Но нужно помнить, что один отрезок на чертеже может означать:

  • один провод, являющийся электрическим соединением между контактами;
  • двухпроводную однофазную, или четырёх проводную трёхфазную линию групповой электрической связи;
  • электрический кабель, включающий в себя целый набор силовых и сигнальных групп электрических связей.

Как видим, уже на стадии изучения, казалось бы, простейших проводов существуют сложные разнообразные обозначения их разновидностей и взаимодействий.


Изображение распредкоробок, щитков

На данном фрагменте из таблицы № 6 ГОСТ 2.721-74 показаны различные обозначения элементов, как простых одножильных соединений и их пересечений, так и жгутов проводников с ответвлениями.


Изображение проводов, ламп и вилки

Нет смысла начинать заучивать все эти значки. Они сами отложатся в сознании после изучения разнообразных чертежей, при котором время от времени придётся заглядывать в данную таблицу.

Компоненты сети

Набор элементов, состоящий из светильника, выключателя, розетки является достаточным для функционирования жилой комнаты, он обеспечивает освещение и питание электроприборов.

Выучив их обозначение, можно с лёгкостью понять обустройство проводки у себя в комнате, или даже спроектировать свой собственный план электропроводки, учитывающий насущные потребности.

Обозначение одноклавишного выключателя, двухклавишного и проходноого выключателя

Взглянув на таблицу №1 ГОСТ 21.608-84, можно удивиться тому разнообразию имеющихся в обиходе электротехнических изделий. Находясь у себя дома и читая данную статью, стоит оглянуться и найти у себя в комнате компоненты электросети, соответствующие обозначенным в таблице. Например, розетка обозначается на схеме полукругом.



Существует много их разновидностей (только фаза и ноль, с дополнительным контактом заземления, двойные, блочные с выключателями, скрытые и т. д.), поэтому каждая имеет своё графическое обозначение, также как и множество типов выключателей.


Пример монтажной схемы небольшой квартиры

Немного практики для запоминания

Выделив найденные элементы, желательно попробовать их начертить, можно даже по правилам, указанным в таблице №2. Данное упражнение поможет запомнить выбранные компоненты.

Имея начертание графических символов, можно соединить их линиями, и получить схему проводки в комнате. Поскольку провода спрятаны в стенном покрытии, монтажный чертёж нарисовать не удастся, но электрическая схема будет верной.


Пример простой схемы

Косыми чёрточками обозначено количество проводников в линии. Стрелками указаны выходы на щиток с защитными автоматами и УЗО. Линия синего цвета означает подключение двухпроводным кабелем к коробке распределения, от которой выходят по три провода на выключатель и светильник.

Чёрным показана трёхпроводная проводка с защитным проводником РЕ. Данный рисунок приведён лишь для примера. Для проектирования сложных электрических систем нужно пройти целый курс высшего специализированного учебного заведения.

Но, выучив несколько часто встречающихся символов, можно нарисовать от руки проводку комнаты, гаража или целого дома, и работать по ней, воплощая её в реальности.

УЗО, автоматы, электрощит

Для полноты картины нужно ещё выяснить обозначение распределительных коробок, защитного автомата, УЗО, счётчика.

На изображении видно, что однополюсный автоматический выключатель отличается от двухполюсного наличием косых линий на обозначении проводов подключения.

Защитные системы

Для возможности понимания обустройства всей проводки загородного дома (не только электросети), нужно также изучить средства молниезащиты,ноля, фазы, значок датчика движения и других сигнальных средств ПОС (пожарно-охранной сигнализации).

схема молниезащиты загородного дома проволочным молниеотводом, устанавливаемым на крыше

На рисунке указана схема молниезащиты загородного дома проволочным молниеотводом, устанавливаемым на крыше:

  1. проволочный молниеприемник;
  2. ввод воздушной ВЛ и заземление крюков ВЛ на стене;
  3. токоотводящий провод;
  4. контур заземления.

Датчики сигнализации имеют свое специфическое обозначение, в паспортах некоторых производителей они могут отличаться. Наиболее типичными символами представлены средства ПОС, описанные ниже.

На данном рисунке показан план коттеджа с изображённой схемой подключения различных датчиков пожарно-охранной сигнализации.

Пример плана коттеджа

В этой статье показана та часть обозначений, которая касается обустройства дома или квартиры. Для более полного ознакомления с графическими символами электротехники и других отраслей, нужно изучать ГОСТ и различные справочники.

И ещё раз стоит напомнить, что мало выучить значки, нужно понимать принцип работы обозначаемых элементов в электрике.

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2. 701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».


Исходя из этого норматива, все схемы разделены на 8 типов:
  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.
  9. Среди существующих 10 видов, указанных в данном документе, выделяют:

    1. Комбинированные.
    2. Деления.
    3. Энергетические.
    4. Оптические.
    5. Вакуумные.
    6. Кинематические.
    7. Газовые.
    8. Пневматические.
    9. Гидравлические.
    10. Электрические.

    Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

    Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

    В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

    «Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

    После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

    Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах


Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:
  • 2. 755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

9 функциональных признаков УГО

УГО Наименование
Дугогашение
Без самовозврата
С самовозвратом
Концевой или путевой выключатель
С автоматическим срабатыванием
Выключатель-разъединитель
Разъединитель
Выключатель
Контактор

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГО Наименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

ГОСТ 2. 271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

Наименование Обозначение
Выключатель автоматический в силовой цепиQF
Выключатель автоматический в управляющей цепиSF
Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
Рубильник или выключатель нагрузкиQS
УЗО (устройство защитного отключения)QSD
КонтакторKM
Реле тепловоеF, KK
Временное релеKT
Реле напряженияKV
Импульсное релеKI
ФоторелеKL
ОПН, разрядникFV
Предохранитель плавкийFU
Трансформатор напряженияTV
Трансформатор токаTA
Частотный преобразовательUZ
АмперметрPA
ВаттметрPW
ЧастотомерPF
ВольтметрPV
Счетчик энергии активнойPI
Счетчик энергии реактивнойPK
Элемент нагреванияEK
ФотоэлементBL
Осветительная лампаEL
Лампочка или прибор индикации световойHL
Разъем штепсельный или розеткаXS
Переключатель или выключатель в управляющих цепяхSA
Кнопочный выключатель в управляющих цепяхSB
КлеммыXT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2. 702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2. 302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

При проведении электромонтажных работ, важным нюансом является наличие знаний в данной области. Это поможет подключить объект к питанию максимально безопасно. Одним из важнейших устройств в электрической схеме считается защитный автомат. Его задача состоит в отключении питания при появлении короткого замыкания или перегрузки сети. вы можете в нашем Интернет-магазине. В статье мы рассмотрим условное обозначение автоматического выключателя на схеме.

Обозначение автоматов

При создании чертежей электросхем принято, чтобы проводилось обозначение автоматического выключателя на схеме по ГОСТу 2.702-2011. Тут содержатся все необходимые правила. Государственные стандарты в однолинейной схеме требуют изображения средств защиты такими комбинациями:

Устройство для защиты двигателя изображается по-другому. Обозначение автоматических выключателей на схеме выглядит, помимо графических указателей, с использованием буквенного символа. Приспособление, в зависимости от характеристик, изображается в таких вариантах:

Первый представляет собой автомат для управления, который защищает силовые цепи, регулирует работу машин и оборудования. Следующий предназначен для производства, передачи, преобразования и распределении электричества. Последний – это дифавтомат, применяющийся при обеспечении высокой безопасности электроприборов, которые часто используются.

Классификация автоматического выключателя

Подбор электротехнического устройства происходит согласно схеме. Аппарат должен отвечать заявленным требованиям. ГОСТ Р 50030.2-99 показывает, что все защитные автоматы классифицируются на несколько разновидностей по таким критериям как:


Автоматы классифицируются на такие виды:

  • выключатели с накопителем энергии;
  • аварийный;
  • расцепитель тока;
  • блокировщик;
  • необслуживаемый и обслуживаемый;
  • автоматическое управление или ручное;
  • с наличием плавкого предохранителя;
  • газовый, воздушный, вакуумный;
  • токоограничивающий и т.п.

Кроме того, устройства различают по числу полюсов (до 4). К примеру, это двухполюсный защитный аппарат. Различают устройства также по номинальной частоте, роду тока и числу фаз.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2. 755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2. 742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D – Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В – ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



Условные графические обозначения в электрических схемах

Страница 16 из 54

Для единообразного понимания и облегчения чтения чертежей все элементы электрических схем (контакторы, автоматические выключатели, кнопки, реле, контакты, обмотки аппаратов) изображаются условными графическими обозначениями. Наиболее часто встречающиеся условные обозначения приведены в табл. 6. На схемах всем элементам одного аппарата дают одинаковое буквенное обозначение, которое указывает основную функцию, выполняемую этим аппаратом, например: П — пускатель магнитный, В и Н — контакторы или магнитные пускатели направления вращения электродвигателя вперед или назад, РВ — реле времени, РТ — реле токовое, УП — универсальный переключатель и т. д. Все элементы аппаратов на схеме показываются в положении, когда они не находятся под напряжением и по их обмоткам не протекает ток.

Рис. 27. Схема ручного и автоматического управления асинхронным электродвигателем с короткозамкнутым ротором

Таблица 6
Условные графические обозначения в схемах

 

Наименование

Обозначение

Наименование

Обозначение

Электродвигатель -асинхронный, трехфазный, с короткозамкнутым ротором

Трансформатор трехфазный с соединением обмоток треугольник — звезда с выведенным нулем

Электродвигатель асинхронный, трехфазный, с фазным ротором

Трансформатор тока

Электродвигатель синхронный, трехфазный

Трансформатор напряжения

Электродвигатель постоянного тока

Автотрансформатор

Наименование

Обозначение

Наименование

Обозначение

Реактор

Диод полупроводниковый

Резистор: 1 — нерегулируемый; 2 — регулируемый

Обмотка реле, контактора, магнитного пускателя, электромагнита

Конденсатор: 1 — нерегулируемый; 2 — регулируемый

Реле (общее обозначение)

Предохранитель плавкий

Контакт Коммутационного устройства: 1 — замыкающий; 2 — размыкающий

Наименование

Обозначение

Наименование

Обозначение

Контакт для коммутации сильноточной цепи: 1—замыкающий; 2 — размыкающий

Выключатель путевой с замыкающим контактом

Реле электротепловое

Выключатель трехполюсный с автоматическим возвратом

Выключатель кнопочный нажимной с самовозвратом: 1 — с замыкающим контактом; 2 — с размыкающим контактом

Разъединитель трехполюсный

Контакты, которые замыкаются при протекании тока в обмотке управляющего ими аппарата(контактора, магнитного пускателя, реле), называются замыкающими; контакты, которые при тех же условиях размыкаются, называются размыкающими. При прекращении протекания тока в обмотке управляющего аппарата контакты возвращаются в исходное положение. В качестве примера построения схем на рис. 27 изображена схема ручного и автоматического управления асинхронным короткозамкнутым электродвигателем с помощью упомянутого ранее блока управления БУ5140. На схеме буквами АВ обозначен автоматический выключатель А3124, Р — рубильники, Пр — предохранитель, УП — универсальный переключатель режимов управления (ручного р и автоматического а), ТР — тепловое реле и его размыкающие контакты, П — пускатель магнитный, его обмотка и контакты. Ручной пуск электродвигателя осуществляется поворотом рукоятки универсального переключателя УП в положение р, при этом замыкается цепь питания обмотки пускателя, пускатель замыкает свои главные контакты и включает электродвигатель. Автоматическое управление пуском электродвигателя осуществляется при повороте рукоятки универсального переключателя в положение а. При получении импульса от внешнего датчика (реле) его контакт АС (на схеме очерчен пунктиром) замыкается, обмотка пускателя получает питание и пускатель включает электродвигатель. Остановка электродвигателя осуществляется поворотом рукоятки переключателя в положение «О».

Условные обозначения на эл схемах

Электрическая схема – это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы – условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов – замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта – замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты кнопок управления, реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Условные графические обозначения и размеры некоторых элементов принципиальных схем:

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2. 756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Введение

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.

Среди существующих 10 видов, указанных в данном документе, выделяют:

  1. Комбинированные.
  2. Деления.
  3. Энергетические.
  4. Оптические.
  5. Вакуумные.
  6. Кинематические.
  7. Газовые.
  8. Пневматические.
  9. Гидравлические.
  10. Электрические.

Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т. п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах

  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

УГОНаименование
Замыкающий
Размыкающий
Переключающий
Переключающий с наличием нейтрального положения

9 функциональных признаков УГО

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГОНаименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

УГОНаименование
PFЧастотомер
PWВаттметр
PVВольтметр
PAАмперметр

ГОСТ 2. 271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

НаименованиеОбозначение
Выключатель автоматический в силовой цепиQF
Выключатель автоматический в управляющей цепиSF
Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
Рубильник или выключатель нагрузкиQS
УЗО (устройство защитного отключения)QSD
КонтакторKM
Реле тепловоеF, KK
Временное релеKT
Реле напряженияKV
Импульсное релеKI
ФоторелеKL
ОПН, разрядникFV
Предохранитель плавкийFU
Трансформатор напряженияTV
Трансформатор токаTA
Частотный преобразовательUZ
АмперметрPA
ВаттметрPW
ЧастотомерPF
ВольтметрPV
Счетчик энергии активнойPI
Счетчик энергии реактивнойPK
Элемент нагреванияEK
ФотоэлементBL
Осветительная лампаEL
Лампочка или прибор индикации световойHL
Разъем штепсельный или розеткаXS
Переключатель или выключатель в управляющих цепяхSA
Кнопочный выключатель в управляющих цепяхSB
КлеммыXT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2. 702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2. 302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

Как составить схему электропроводки в квартире или доме

Во время капитального ремонта или первичной отделки помещения часто возникает вопрос прокладки новой проводки. К сожалению, нередки случаи, когда проводка прокладывается «на глазок» без продуманного плана. Это может привести к ряду негативных последствий:

— Розетки и выключатели закрыты после финальной расстановки мебели.

— Лишние затраты на материалы при монтаже электроточек, которые не будут использованы.

— Недостаток розеток и выключателей в необходимых местах.

— Опасность попадания в кабель при сверлении отверстия в стене.

— Отсутствие возможности ремонта электросети при скрытом монтаже.

Правильно составленная схема электропроводки в доме или квартире поможет избежать всех перечисленных выше проблем и сделает использование электроприборов более комфортным.

Какие должны быть обозначения на электрических схемах

Прежде чем изобразить электрическую схему, нужно ознакомиться со схематическими обозначениями всех её элементов. Зная их, вы сможете не только составить собственный план проводки, но и читать электрические схемы, составленные электриками. Все условные обозначения элементов проводки прописаны в ГОСТ 21.210:2014 (для стран СНГ), а также ДСТУ Б А.2.4-19:2008 (Украина). Часто используемые обозначения представлены в таблице:

 

Общее обозначение выключателя

 

Общее обозначение двухполюсной штепсельной розетки

 

Однополюсный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная штепсельная розетка для скрытой проводки со степенью защиты от IP20 до IP23

 

Двухполюсный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная розетка открытой установки с защитным контактом со степенью защиты от IP20 до IP23

 

Однополюсный выключатель скрытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная штепсельная розетка для скрытой проводки с защитным контактом со степенью защиты от IP20 до IP23

 

Однополюсный сдвоенный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Сдвоенная двухполюсная штепсельная розетка для открытой проводки со степенью защиты от IP20 до IP23

 

Однополюсный сдвоенный выключатель скрытой установки со степенью защиты от IP20 до IP23

 

Штепсельная розетка с защитным контактом со степенью защиты от IP44

 

Однополюсный сдвоенный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Блок выключателя и штепсельной розетки для открытой проводки со степенью защиты от IP20 до IP23

 

Светильник с лампой накаливания

 

Блок из трех выключателей и штепсельной розетки для скрытой проводки со степенью защиты от IP20 до IP23

 

Светильник с несколькими лампами (люстра)

 

Распределительная коробка

 

Общее обозначение линии проводки

 

Общее обозначение электрощита

 

Обозначение количества проводников в линии проводки

 

Шкаф распределительный

Изучив необходимые элементы электрических схем, можно приступать к созданию схемы проводки.

Этапы построения схемы проводки

Правильное построение схемы состоит из нескольких этапов, которые помогают наиболее точно произвести разметку проводки.

1. Общий план квартиры или дома. 

Для того, чтобы изобразить схему проводки, нам потребуется план всех помещений, в которых предполагается сделать проводку электричества. Для этого можно сделать несколько копий с техпаспорта на квартиру. Также удобно использовать план помещений, перенесенный на лист в клеточку, где одну клеточку можно условно принять за полметра. Очень важно отметить на плане наличие дверей, с указанием в какую сторону они открываются.

Нам потребуется минимум две копии плана помещения – для плановой расстановки мебели и для составления электросхемы.

2. Плановая расстановка мебели.

 На данном этапе определяется, где какие бытовые приборы и элементы мебели будут размещаться и определяются места будущей установки розеток и выключателей. На листе с планом помещения прорисовываем основные элементы мебели. Желательно это выполнять цветными ручками или карандашами, где цветом выделять приборы, которые потребляют электроэнергию.

3. Определение мест и количества розеток.

 Когда проект расстановки мебели готов и определены точки потребления электричества, можно приступать к нанесению на электросхему розеток. Их нужно размещать в местах установки бытовой техники с учетом количества и мощности потребителей. Планируя размещение розеток, учтите, что они должны находиться в отдалении от нагревательных приборов.

4. Определение типа, размещения и количества осветительных приборов. 

Тщательно продумайте систему освещения помещений и отметьте на электросхеме все точки освещения.

5. Определение места и типа выключателей.

 Когда выбрана система освещения, нужно определить место под выключатели. Для того чтобы выключатели были в доступных местах важно обозначить в какую сторону будут открываться двери. Комфортной считается установка переключателей на расстоянии 10-20 см от дверного проёма.

6. Разбивка потребителей электроэнергии по группам. 

После того как составлен проект расстановки техники и мебели, а также составлена схема размещения электроточек, нужно провести разделение потребителей электроэнергии на группы. Благодаря этому снижается нагрузка на проводку, что способствует стабильности работы электросети. Рекомендуется отдельно выделить линии розеток, освещения, а также для потребителей мощностью свыше 2 кВт: электропечь, духовка, стиральная или посудомоечная машина, теплый пол, электрокотел и пр.

7. Выбор способа монтажа проводки.

 На данном этапе нужно внимательно осмотреть помещение и установить:

— Где находятся перекрытия и несущие стены?

— Есть ли специальные каналы для проводки в плитах, а также, в каком они состоянии?

— Будут ли устанавливаться подвесные или натяжные потолки?

— Есть ли возможность штробирования стен и потолка или готовые штробы?

— Какая будет отделка стен?

— Где будет находиться электрощиток?

Ответив на каждый из перечисленных пунктов можно определить оптимальный вариант прокладки проводки. Так, например, если планируется монтаж подвесных или натяжных конструкций на потолке, то можно значительно сократить расходы на кабель, а также его монтаж, если проложить его в коробе или гофротрубе по наименьшему расстоянию по потолку.

8. Прокладка магистралей и определение места для распределительных коробок. 

Схему разводки электропроводки нужно начинать с самой удаленной от электрощитка точки. Если в помещении находится несколько электроточек, то целесообразно установить распределительную коробку на выходе. Прорисовываем все проводники, идущие от электроточек на схеме по каждой комнате.

9. Соединение распределительных коробок с электрощитом. 

После того, как на чертеж нанесены все проводники по всем комнатам и обозначены распределительные коробки, нужно соединить их с электрощитом. На каждую выделенную группу потребителей нужно провести отдельную линию.

На каждом этапе построения электросхемы квартиры или дома можно указывать расстояние до тех или иных предметов, способ и глубину укладки провода, его сечение, тип и мощность осветительных приборов и пр. Детализация схемы поможет точно определить местонахождение скрытой проводки, а также облегчит расчеты материалов.

ДСТУ Б А.2.4-19:2008 

Оцените новость:

Общие сведения о электрических чертежах




Цели

1. Распознавайте символы, часто используемые на диаграммах двигателя и управления.

2. Прочтите и постройте лестничные диаграммы.

3. Прочитать электрические схемы, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.

5. Прочтите информацию с паспортных табличек двигателя.

6.Ознакомьтесь с терминологией, используемой в цепях двигателей.

7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются разные типы электрических чертежей. и их схемы управления. Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.

Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и это с практическим применением.


ЧАСТЬ 1 Символы — Сокращения — лестничные диаграммы

Обозначения двигателей

Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя. Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.

Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы. Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы.FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.

Сокращения терминов двигателя

Аббревиатура — это сокращенная форма слова или фазы. Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых из аббревиатуры, обычно используемые в принципиальных схемах двигателей.

Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линии электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB

REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1PH однофазный соленоид SOL SW переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD

Лестничные схемы двигателей

На чертежах управления двигателем

представлена ​​информация о работе схемы, устройства расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), панели контактов и конкретный символ, который конкретный тип переключателя, как показано в FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.

Для установки, обслуживания и ремонта используются различные схемы и чертежи. и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.

Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читая слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.


FGR. 1 Символы управления двигателем.


FGR. 2 Переключите компоненты символа.


FGR. 3 Типовая лестничная диаграмма.


FGR. 4 Электропроводка двигателя и цепи управления.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.

Показаны проводники, которые пересекаются друг с другом, но не имеют электрического контакта. путем пересечения линий без точки.

Проводники, которые входят в контакт, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания схема.

Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.

Релейная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.

Это отличный помощник в поиске и устранении неисправностей, поскольку он просто показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как нормально открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены, когда куплен и не подключен ни в какую цепь. Иногда это называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять обесточенное положение в цепи. Обесточенное положение относится к положению компонента когда цепь обесточена или в цепи нет напряжения. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.


FGR. 5 Идентификация катушек и связанных контактов.

Обычный метод, используемый для идентификации катушки реле и задействованных контактов им — поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, на большинстве диаграмм представлен список ключей показать, что означают буквы; обычно они взяты из названия устройства.

Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, рожки и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство на каждой ступени лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого Правило — размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.

Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. За Например, несколько пусковых кнопок управляют одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь сокращения для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. За Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).


FGR. 6 Нагрузки размещены справа, а контакты слева.


FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.


FGR. 8 Лестничная диаграмма с подробными номерами ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.)), начиная с верхней ступени и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:

• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается кнопкой реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они управляют одним и тем же нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.

«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти номера звеньев этих контактов указаны справа от L2 в скобках. на ступеньке катушки, контролирующей их работу.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR появляются в двух разных местах на линии. диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально открытых контактов.

• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.

Какой-то тип «идентификации провода» требуется для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 блок питания, обозначенный номером 1.

• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.

• Общие электрические провода обозначены одинаковыми номерами.

• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут отмечены с таким же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.


FGR. 9 Числовая система перекрестных ссылок.


FGR. 10 Нумерация проводов.


FGR. 11 Альтернативная идентификация проводки с документацией.


FGR. 12 Представление механических функций.


FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор неправильно заземлен на стороне L1 цепи.

FGR. 11 иллюстрирует альтернативный метод назначения номеров проводов.При использовании этого метода все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать ряд описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают, что их нормально замкнутые и нормально разомкнутые контакты механически связаны. Таким образом, нажатие на кнопку откроет один набор контактов. и закрыть другой. Пунктирная линия между катушками F и R указывает что они механически взаимосвязаны.Следовательно, катушки F и R не могут одновременное закрытие контактов из-за механической блокировки устройства.

Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Очевидно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.

ЧАСТЬ 1 ВИКТОРИНА

1. Определите, что означает термин «цепь управления двигателем».

2. Почему символы используются для обозначения компонентов на электрических схемах?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?

4.Опишите базовую структуру принципиальной электрической схемы.

5. Линии используются для обозначения электрических проводов на схемах.

а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?

г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?

6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопок это относится? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какую допустимую кодировку можно использовать для идентификации каждого из контактов?

8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?

9. Одно из требований для конкретного двигателя — шесть значений давления выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?

10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?

11. Пунктирная линия, обозначающая механическую функцию электрического Схема ошибочно принята за проводник и подключена как таковая. Какие два типа к чему это могло привести?


ЧАСТЬ 2 Электромонтажные схемы — однолинейные блочные схемы

Схемы подключения


FGR.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.

Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и подобные показаны в фактическом положении, которое можно найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимую информацию для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.


FGR. 15 Прокладка проводов в кабелях и коробах.


FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя опущено.

Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.

Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема расположения кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с чертежом такого рода — кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал относительно количества, размера, функции и обслуживания, а также включает количество и размер проводов, проложенных в кабелепроводе.

На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или подключении оборудования. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления низкого напряжения и рассчитаны на текущие требования управляющего трансформатора.


FGR. 17 Комбинированная разводка и лестничная диаграмма.


FGR. 18 Однолинейная схема моторной установки.


FGR. 19 Однолинейная схема системы распределения электроэнергии.

Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что сигнальная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.

Силовая цепь опущена для наглядности, так как ее можно проследить. легко на монтажной схеме (жирные линии).

Однолинейные схемы

Однолинейная диаграмма (также называемая однострочной) использует символы вместе с одна линия, чтобы показать все основные компоненты электрической цепи.Немного производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля установки. Монтаж сводится к максимально простому виду, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы — это чрезвычайно сложные электрические сети, которые могут быть географически распределенным на очень больших территориях. По большей части они также трехфазные сети — каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и Т. Д.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы — это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока пути.

FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока путем изменения частота, подаваемая на двигатель.Привод также регулирует мощность напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:

• На выпрямительный блок подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную Напряжение переменного тока в напряжение постоянного тока.

• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для создания регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.


FGR. 20 Блок-схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ВИКТОРИНА

1. Каково основное назначение электрической схемы?

2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?

3. Какую роль может сыграть электрическая схема в поиске неисправностей двигателя? схема управления?

4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Разъяснить функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.


ЧАСТЬ 3 Клеммные соединения двигателя

Классификация двигателей

Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.

Большинство используемых сегодня промышленных машин приводится в действие электродвигателями. Отрасли перестанут функционировать без должным образом спроектированных, установленных, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и электронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, пока Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателей и классификации.

Дополнительно должны быть установлены двигатели в соответствии со статьей 430. Национального электротехнического кодекса (NEC).

Подключение двигателя постоянного тока

В промышленных приложениях используются двигатели постоянного тока, поскольку соотношение скорость-крутящий момент можно легко варьировать. Двигатели постоянного тока обладают регулируемой скоростью. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.

FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.



FGR. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы поля, а Fl и F2 обозначают выводы поля шунта.

Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры не имеет отношения к моторной классификации.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.

• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.

• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстого провода) последовательно с якорем.


FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов мудрое и вращение по часовой стрелке. Для дифференциального соединения, обратное S1 и S2.

Все соединения, показанные на рисунках 22, 23 и 24, предназначены для вращения против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым нужно подключать извне схемы.

Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.

Подключение двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности двигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800, или 3600 об / мин — либо оснащаться регулируемым приводом.

Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.

Роторные модели, у которых витки проволоки вращают обмотки ротора, также доступны. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.


FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.


FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.

ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

Большинство однофазных асинхронных двигателей переменного тока сконструированы в дробном исполнении. мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там несколько типов однофазных двигателей они в основном идентичны кроме средств запуска. «Двухфазный двигатель» наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:

• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.

• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.

• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, воздуходувки, бытовую технику, такую ​​как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Как правило, отраслевой стандарт поменять местами провода пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключается к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двойным напряжением фазного двигателя, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются для получения желаемого напряжения следующим образом. схема подключения на заводской табличке.

Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от напряжение питания 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего размера и снижает потери мощности в линии.


FGR. 28 Двигатель с постоянным разделением конденсаторов.

Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат — более высокий пусковой крутящий момент, чем у расщепленной фазы. мотор можно производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором фазы конденсатора в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором — разные значения емкости для запуска и работы. Постоянный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие трудно запускаемые устройства.

ПОДКЛЮЧЕНИЯ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ

Трехфазный асинхронный двигатель переменного тока — наиболее распространенный двигатель, используемый в коммерческих и промышленное применение.

Однофазные двигатели большей мощности обычно не используются, так как они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, как трехфазные моторы.

Двигатели переменного тока большой мощности обычно бывают трехфазными.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены так, что фазы соединены в конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.

ПОДКЛЮЧЕНИЯ ДВУХВАЛЬТНЫХ ДВИГАТЕЛЕЙ


FGR. 29 Подключение электродвигателя трехфазной звездой и треугольником.

Обычно производят трехфазные двигатели, которые могут быть подключены работать на разных уровнях напряжения.

Наиболее распространенный номинал нескольких напряжений для трехфазных двигателей — 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.

FGR. 30 иллюстрирует типичную идентификацию терминала и подключение таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.

Каждая фазная катушка (A, B, C) разделена на две равные части и соединена либо последовательно для работы от высокого напряжения, либо параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти отведения имеют маркировку от T1 до Т9. Подключения высокого и низкого напряжения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. Во всех случаях см. электрическую схему, поставляемую с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.

Прод. к части 2 >>

% PDF-1.6 % 519 0 объект > endobj 416 0 объект > endobj 3 0 obj > поток 2006-11-08T09: 59: 33ZQuarkXPress ™ 6.52013-11-11T18: 21: 42-05: 002013-11-11T18: 21: 42-05: 00QuarkXPress ™ 6.5 %% DocumentProcessColors: голубой пурпурный желтый черный %% DocumentCustomColors: (Холодный серый PANTONE 2 C) %% CMYKCustomColor: 0 0 0 .1 (Холодный серый PANTONE 2 C) %% EndCommentsapplication / pdfuuid: f7751e93-6f39-11db-b05c-001124864beauuid: c8e8982f-161b-438b-bddf-52cbbdb20036 конечный поток endobj 1185 0 объект > / Кодировка >>>>> endobj 510 0 объект > endobj 161 0 объект > endobj 281 0 объект > endobj 280 0 объект > endobj 294 0 объект > endobj 307 0 объект > endobj 357 0 объект > endobj 355 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> endobj 358 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> endobj 359 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> endobj 360 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> endobj 361 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> endobj 362 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> endobj 10786 0 объект > поток HWYT ~ _a) / c7 @ ‘CtA # ҊP 4?}} Ve`2Bt پ> Yw? M \ VɀdtN% u || [) 4Qli} ҚOpYX /} Yl? ֟ mQ.YlM [Jjfbx / c: d9I (Q * 2eMfImdLPF

% PDF-1.3 % 8006 0 объект > endobj xref 8006 221 0000000016 00000 н. 0000004776 00000 п. 0000006428 00000 н. 0000006627 00000 н. 0000006714 00000 н. 0000006838 00000 н. 0000006929 00000 п. 0000007067 00000 н. 0000007139 00000 н. 0000007329 00000 н. 0000007392 00000 н. 0000007586 00000 н. 0000007649 00000 н. 0000007748 00000 н. 0000007844 00000 н. 0000007907 00000 н. 0000008014 00000 н. 0000008120 00000 н. 0000008183 00000 п. 0000008246 00000 н. 0000008375 00000 н. 0000008438 00000 н. 0000008501 00000 н. 0000008628 00000 н. 0000008691 00000 п. 0000008790 00000 н. 0000008889 00000 н. 0000009002 00000 н. 0000009065 00000 н. 0000009128 00000 н. 0000009252 00000 н. 0000009358 00000 п. 0000009421 00000 п. 0000009484 00000 н. 0000009623 00000 н. 0000009757 00000 н. 0000009820 00000 н. 0000009883 00000 п. 0000010026 00000 п. 0000010089 00000 п. 0000010152 00000 п. 0000010292 00000 п. 0000010355 00000 п. 0000010485 00000 п. 0000010547 00000 п. 0000010704 00000 п. 0000010766 00000 п. 0000010873 00000 п. 0000010935 00000 п. 0000011024 00000 п. 0000011086 00000 п. 0000011197 00000 п. 0000011259 00000 п. 0000011319 00000 п. 0000011377 00000 п. 0000012034 00000 п. 0000012432 00000 п. 0000012454 00000 п. 0000012602 00000 п. 0000012624 00000 п. 0000012774 00000 п. 0000012796 00000 п. 0000012947 00000 п. 0000012969 00000 п. 0000013120 00000 п. 0000013142 00000 п. 0000013292 00000 п. 0000013314 00000 п. 0000013465 00000 п. 0000013487 00000 п. 0000013638 00000 п. 0000013681 00000 п. 0000013703 00000 п. 0000013854 00000 п. 0000013876 00000 п. 0000014025 00000 п. 0000014047 00000 п. 0000014196 00000 п. 0000014218 00000 п. 0000014370 00000 п. 0000014392 00000 п. 0000014540 00000 п. 0000014562 00000 п. 0000014714 00000 п. 0000014736 00000 п. 0000014888 00000 п. 0000014910 00000 п. 0000015058 00000 п. 0000015080 00000 п. 0000015230 00000 п. 0000015252 00000 п. 0000015402 00000 п. 0000015424 00000 п. 0000015575 00000 п. 0000015597 00000 п. 0000015749 00000 п. 0000015771 00000 п. 0000015922 00000 п. 0000015944 00000 п. 0000016096 00000 п. 0000016118 00000 п. 0000016268 00000 п. 0000016290 00000 н. 0000016442 00000 п. 0000016464 00000 п. 0000016616 00000 п. 0000016638 00000 п. 0000016789 00000 п. 0000016811 00000 п. 0000016963 00000 п. 0000016985 00000 п. 0000017137 00000 п. 0000017159 00000 п. 0000017311 00000 п. 0000017333 00000 п. 0000017485 00000 п. 0000017507 00000 п. 0000017658 00000 п. 0000017680 00000 п. 0000017832 00000 п. 0000017854 00000 п. 0000018006 00000 п. 0000018028 00000 п. 0000018180 00000 п. 0000018202 00000 п. 0000018351 00000 п. 0000018373 00000 п. 0000018521 00000 п. 0000018543 00000 п. 0000018694 00000 п. 0000018716 00000 п. 0000018867 00000 п. 0000018889 00000 п. 0000019040 00000 п. 0000019062 00000 п. 0000019213 00000 п. 0000019235 00000 п. 0000019383 00000 п. 0000019405 00000 п. 0000019501 00000 п. 0000019526 00000 п. 0000061358 00000 п. 0000061383 00000 п. 0000102235 00000 п. 0000102260 00000 н. 0000150462 00000 н. 0000150487 00000 н. 0000198812 00000 н. 0000198837 00000 н. 0000228247 00000 н. 0000228272 00000 н. 0000244619 00000 н. 0000244644 ​​00000 н. 0000265927 00000 н. 0000265952 00000 п. 00002

00000 н. 00002

00000 н. 0000315500 00000 н. 0000315525 00000 н. 0000341181 00000 п. 0000341206 00000 н. 0000363758 00000 н. 0000363783 00000 н. 0000385255 00000 н. 0000385280 00000 п. 0000405717 00000 н. 0000405742 00000 н. 0000426279 00000 н. 0000426304 00000 н. 0000448980 00000 н. 0000449005 00000 н. 0000470202 00000 н. 0000470227 00000 п. 0000491512 00000 н. 0000491537 00000 н. 0000512253 00000 н. 0000512278 00000 н. 0000534361 00000 п. 0000534386 00000 п. 0000549427 00000 н. 0000549451 00000 п. 0000558925 00000 н. 0000558950 00000 н. 0000571206 00000 н. 0000571231 00000 н. 0000596022 00000 н. 0000596047 00000 н. 0000620929 00000 н. 0000620954 00000 н. 0000644652 00000 н. 0000644677 00000 н. 0000667583 00000 н. 0000667608 00000 н. 0000689070 00000 н. 0000689095 00000 н. 0000710423 00000 п. 0000710448 00000 н. 0000732681 00000 н. 0000732706 00000 н. 0000754324 00000 н. 0000754349 00000 н. 0000779183 00000 п. 0000779208 00000 н. 0000804355 00000 н. 0000804380 00000 н. 0000827500 00000 н. 0000827525 00000 н. 0000845645 00000 н. 0000845670 00000 н. 0000898873 00000 н. 0000898898 00000 н. 0000943964 00000 н. 0000943989 00000 н. 0000995371 00000 п. 0000995396 00000 н. 0001042235 00000 п. 0001042260 00000 п. 0001094804 00000 п. 0001094829 00000 п. 0000004879 00000 н. 0000006404 00000 п. трейлер ] >> startxref 0 %% EOF 8007 0 объект > endobj 8225 0 объект > транслировать H Lgǟ ++] [€ R) zuY $ 6 [# h & Ș + v, а tҲECnlta, fd.˒ = w

Нормально разомкнутые и нормально замкнутые переключающие контакты

Возможно, наиболее сбивающим с толку аспектом дискретных датчиков является определение нормального состояния датчика.

Контакты электрического переключателя обычно классифицируются как нормально разомкнутые или нормально замкнутые, имея в виду разомкнутый или замкнутый статус контактов в «нормальных» условиях. Но что именно определяет «нормально» для коммутатора?

Ответ несложный, но его часто неправильно понимают из-за двусмысленности слова «нормальный».

«Нормальный» статус переключателя — это состояние, в котором его электрические контакты находятся в состоянии отсутствия физической стимуляции. Другой способ думать о «нормальном» состоянии — это думать, что переключатель находится в состоянии покоя.

Для кнопочного переключателя с мгновенным контактом это состояние контакта переключателя, когда он не нажат. Электрические переключатели всегда изображаются на принципиальных схемах в их «нормальном» состоянии, независимо от их применения.

Нормально открытый и нормально закрытый

Например, на следующей схеме показан нормально разомкнутый кнопочный переключатель, управляющий лампой в цепи переменного тока 120 вольт («горячий» и «нейтральный» полюса источника питания переменного тока обозначены L1 и L2, соответственно):

Мы можем сказать, что этот переключатель является нормально разомкнутым (НЕТ) переключателем, поскольку он вытянут в разомкнутом положении.

Лампа включится, только если кто-то нажмет на выключатель, удерживая его нормально разомкнутые контакты в «замкнутом» положении. Нормально разомкнутые переключающие контакты в электротехнической промышленности иногда называют контактами формы А.

Если бы мы использовали вместо этого нормально замкнутый кнопочный переключатель, поведение было бы прямо противоположным. Лампа включилась бы, если бы переключатель оставался в покое, но она погаснет, если бы кто-нибудь нажал на переключатель.

Нормально замкнутые переключающие контакты в электротехнической промышленности иногда называют контактами формы B:

Это кажется довольно простым, не правда ли? Что может сбивать с толку в «нормальном» состоянии переключателя?

Однако путаница становится очевидной, когда вы начинаете рассматривать переключение процесса (т.е.е. переключатели, активируемые измерениями процесса, такими как давление, расход, уровень и т. д.).

Чтобы лучше понять эту концепцию, мы рассмотрим простое применение реле потока: переключатель, созданный для срабатывания, когда через трубу протекает достаточная скорость жидкости.

Реле потока предназначено для обнаружения потока жидкости через трубу. На схематической диаграмме символ переключателя выглядит как тумблер с «флажком» внизу.

Пример

На принципиальной схеме, конечно, показана только схема, а не труба, на которой физически установлен переключатель:

Это конкретное реле потока используется для включения световой сигнализации, если поток хладагента по трубе когда-либо падает до опасно низкого уровня, а контакты нормально замкнуты, о чем свидетельствует замкнутый статус на диаграмме.

Здесь возникает путаница: даже если этот переключатель обозначен как «нормально замкнутый», он будет проводить большую часть своего срока службы в открытом состоянии при наличии адекватного потока охлаждающей жидкости по трубе.

Только когда поток через трубу достаточно замедлится, этот переключатель вернется в свое «нормальное» состояние и подаст электроэнергию на лампу.

Другими словами, «нормальное» состояние для этого переключателя (замкнут) на самом деле является ненормальным состоянием для процесса, в котором он работает (низкий расход), по той простой причине, что переключатель должен быть активирован, а не находиться в состоянии покоя, пока процесс работает как надо.

Мы часто задаемся вопросом, почему контакты переключателя процесса помечены в соответствии с этим условным обозначением «нет стимуляции», а не в соответствии с типичным статусом процесса, в котором используется переключатель.

Ответ на этот вопрос заключается в том, что производитель коммутатора не имеет ни малейшего представления о предполагаемом использовании.

Производитель реле потока не знает и не заботится о том, будет ли его продукт использоваться в качестве детектора низкого или высокого потока.

Другими словами, производитель не может предсказать, каким будет типичный статус вашего процесса, и поэтому определение «нормального» статуса для коммутатора должно быть основано на каком-то общем критерии, не связанном с вашим конкретным приложением.

Этим общим критерием является состояние покоя: когда датчик подвергается минимальной (или нулевой) стимуляции от процесса, который он воспринимает.

Вот список «нормальных» определений для различных типов переключателей процесса:

  • Концевой выключатель: цель не касается выключателя
  • Датчик приближения: цель далеко
  • Реле давления: низкого давления (или даже вакуума)
  • Реле уровня: низкий уровень (пустой)
  • Реле температуры: низкотемпературное (холодное)
  • Реле потока: низкий расход (жидкость остановлена)

Это условия, представленные состояниями переключателя, показанными на схематической диаграмме.Это вполне могут быть не состояния переключателей, когда они подвергаются типичным условиям эксплуатации в процессе.

Полезный совет, который следует помнить о переключателях процесса и соответствующих им символах схематических диаграмм, заключается в том, что символы обычно нарисованы таким образом, что движение подвижного элемента переключателя вверх представляет усиливающийся стимул.

Вот несколько примеров, показывающих разные.

Типы переключателей процесса и конфигурации контактов НО / НЗ, сравнивая их состояния без стимула и когда стимул превышает пороговое значение каждого переключателя или настройку «срабатывания».

Нормальное состояние каждого переключателя, определенное производителем, обозначено зеленым текстом:

Обязательно помнить, что способ, которым переключатель изображен на принципиальной схеме, просто представляет его «нормальное» состояние, как определено производителем.

Это может быть или не быть статусом переключателя во время «типичной» работы процесса, и это может быть или не быть статусом этого переключателя в момент, когда вы исследуете схему!

«Нормальный» статус переключателя означает только одно: что этот переключатель будет делать при минимальном воздействии — то есть, что он будет делать, когда его стимул меньше порога срабатывания переключателя.

статей, которые могут вам понравиться:
Кнопочные переключатели и типы
Основы концевых выключателей
Реле в учебниках по релейной логике
Что такое контактор?
Цепи реле

Коммутаторы | Electronics Club

Переключатели | Клуб электроники

Контакты переключателя (полюс, ход и т. Д.)
Стандартные переключатели (SPST, DPDT и т. Д.)
Специальные переключатели (многоходовые, наклонные, язычковые и т. Д.)

См. Также: Реле | Последовательный и параллельный

Выбор переключателя

Особенности, которые следует учитывать при выборе коммутатора:

  • Тип контактов , например DPDT.
  • Номинальные значения по напряжению и току.
  • Принцип работы переключение, скольжение и т. Д.

Следующие термины используются для обозначения различных типов стандартных переключателей:

SPST = однополюсный, одинарный
SPDT = однополюсный, двусторонний
DPST = двухполюсный, одинарный бросок
DPDT = двухполюсный, двойной бросок


Контакты переключателя

Для описания переключающих контактов используется несколько терминов:

  • Полюс — количество контактных групп переключателя.
  • Бросок — количество токопроводящих позиций (используется только для одинарных и двойных)
  • Путь — количество ведущих позиций.
  • Momentary — переключатель возвращается в нормальное положение при отпускании.
  • Разомкнут — положение выключено, контакты не токопроводящие.
  • Замкнут — на позиции, контакты проводящие, позиций может быть несколько.
Простой выключатель

Простой двухпозиционный выключатель с одним набором контактов, однополюсный , и одно положение переключения, которое проводит, одиночный ход .Этот тип переключателя называется SPST (однополюсный, однопозиционный). и его действие описано как ON-OFF . Механизм переключателя имеет два положения: закрыто = включено и открыто = выключено, но это называется «однопозиционный». потому что ведет только одна позиция.

Простой нажимной переключатель

Простой кнопочный выключатель, такой как дверной звонок, имеет один набор контактов и положение включения. только на мгновение, как только вы отпустите переключатель, он снова выключится. Это действие называется нажатием на включение (нажатие для замыкания контактов).Кратковременное действие показано с помощью скобок, например: (ON) -OFF .

Номинальные характеристики контактов переключателя

Контакты переключателя рассчитаны на максимальное напряжение и ток, и могут быть разные рейтинги для переменного и постоянного тока. Значения переменного тока выше, потому что ток падает до нуля. много раз в секунду, и вероятность образования дуги на контактах переключателя снижается.

Для проектов низковольтной электроники номинальное напряжение не имеет значения, но может потребоваться чтобы проверить текущий рейтинг.Максимальный ток меньше для индуктивных нагрузок (катушек и двигатели), потому что они вызывают большее искрение на контактах при выключении.



Стандартные переключатели

Фотографии © Rapid Electronics


ВКЛ-ВЫКЛ, SPST

SPST = однополюсный, односторонний

Простой двухпозиционный выключатель.

Этот тип может использоваться для переключения источника питания на цепь. На фотографии показан тумблер SPST

.

При использовании с электросетью этот тип переключателя должен быть в токоведущем проводе, но лучше использовать переключатель DPST, чтобы изолировать как фазу, так и нейтраль.

Rapid Electronics: Тумблер SPST


(ON) -OFF, Push-to-Make, SPST мгновенный

При отпускании нажимной выключатель возвращается в свое нормально разомкнутое = выключенное положение. кнопку, это показано скобками вокруг (ON). Это стандартный переключатель дверного звонка.

Rapid Electronics: нажимной выключатель


ВКЛ. (ВЫКЛ.), Push-to-break, SPST Momentary

Размыкающий переключатель возвращается в свое нормально замкнутое = включено положение, когда вы отпускаете кнопку, это показано скобками вокруг (ВЫКЛ).

Rapid Electronics: нажимной выключатель


ON-ON, SPDT

SPDT = однополюсный, двойной бросок

Этот переключатель может быть включен в обоих положениях, в каждом случае включается отдельное устройство. Его также называют переключателем .

Например, переключатель SPDT может использоваться для включения красной лампы в одном положении и зеленой лампы в другом положении.

Тумблер SPDT может использоваться как простой выключатель, подключившись к COM и одному из A или B клеммы показаны на схеме.A и B взаимозаменяемы, поэтому переключатели обычно не имеют маркировки.

Тумблерные, ползунковые и перекидные переключатели SPDT


ON-OFF-ON, SPDT Center Off

Это специальная версия стандартного переключателя SPDT, показанного выше. Он имеет третье положение переключения в центре, которое выключено.

Rapid Electronics: Центральный выключатель SPDT

Мгновенная (ВКЛ) -ВЫКЛ- (ВКЛ) версии также доступны, в которых переключатель возвращается в центральное положение выключения при отпускании.Скобки используются для отображения мгновенного действия.

Rapid Electronics: (ON) -OFF- (ON) переключатель


Двойное включение-выключение, DPST

DPST = двухполюсный, одинарный бросок

Пара двухпозиционных переключателей, которые работают вместе (показаны пунктирной линией в символе цепи).

Переключатель DPST часто используется для электросети, поскольку он переключает как активные, так и нейтральные соединения.

Rapid Electronics: Кулисный переключатель DPST


Двойной ON-ON, DPDT

DPDT = двойной полюс, двойной бросок

Пара включенных переключателей, которые работают вместе (показаны пунктирной линией в символе цепи).

Реверсивный переключатель

DPDT-переключатель может быть подключен как реверсивный переключатель для двигателя, как показано на схеме ниже:

Rapid Electronics: Ползунковый переключатель DPDT


ВКЛ-ВЫКЛ-ВКЛ, DPDT Center Off

Это специальная версия стандартного переключателя DPDT, показанного выше. Он имеет третье положение переключения в центре, которое выключено. Это может быть полезно для управления двигателем, поскольку у вас есть прямое, выключенное и обратное положение.

Rapid Electronics: DPDT центральный выключатель

Мгновенная (ВКЛ) -ВЫКЛ- (ВКЛ) версии также доступны, в которых переключатель возвращается в центральное положение выключения при отпускании.Скобки используются для отображения мгновенного действия.

Rapid Electronics: DPDT центральный выключатель без фиксации



Специальные переключатели

Фотографии © Rapid Electronics


Двухпозиционный переключатель (например, ON-OFF, SPST)

Выглядит как кнопочный выключатель мгновенного действия, но это стандартный двухпозиционный выключатель SPST: нажмите один раз, чтобы включить, нажмите еще раз, чтобы выключить. Это называется фиксирующим действием .

Rapid Electronics: Двухпозиционный переключатель SPST


Микровыключатель (обычно ВКЛ-ВКЛ, SPDT)

Микропереключатели

предназначены для переключения полностью открытыми или полностью закрытыми в ответ на небольшие движения и небольшие силы.Они доступны с прикрепленными рычагами и роликами.

Микропереключатели

часто используются в качестве датчиков в машинном оборудовании для определения положения деталей, включая двери, например. они могут использоваться для остановки машины, если открывается дверь или панель, открывающая движущиеся части.

Нормальные выключатели могут страдать от повреждения дуговым разрядом (искрой) на своих контактах, когда они не полностью открыты или закрыты, микровыключатели предназначены для предотвращения этой проблемы.

Rapid Electronics: микровыключатели


Ключевой переключатель

Переключатель с ключом.Показанный пример — SPST.

Rapid Electronics: клавишные переключатели


Переключатель наклона (SPST)

Переключатели наклона содержат токопроводящую жидкость, которая при наклоне замыкает контакты внутри, замыкая переключатель. Их можно использовать в качестве датчиков для определения положения объекта. Некоторые переключатели наклона содержат ядовитую ртуть.


Геркон

Контакты герконового переключателя замыкаются поднесением небольшого магнита к переключателю. Они используются в цепях безопасности, например, для проверки того, что двери закрыты.Стандартные герконы — это SPST (простое включение-выключение), но также доступны версии SPDT (переключаемые).

Предупреждение: геркон имеет стеклянный корпус, который легко разбивается! Для получения рекомендаций по обращению посетите веб-сайт Electronics in Meccano.

Rapid Electronics: герконы


DIL-переключатель

DIL = двухрядный.

DIL-переключатель — это набор миниатюрных двухпозиционных переключателей SPST, в показанном примере 8 переключателей. Размер корпуса такой же, как у стандартной интегральной схемы DIL.

DIL-переключатели

используются для настройки цепей, например, установки кода пульта дистанционного управления. Они также известны как переключатели DIP (Dual In-Line Parallel).

Rapid Electronics: DIL-переключатели


Многополюсный переключатель

На рисунке показан 6-полюсный двухпозиционный переключатель, также известный как 6-полюсный переключающий переключатель. Его можно настроить на мгновенное или фиксирующее действие. Действие фиксации означает, что он ведет себя как кнопочный переключатель, нажмите один раз для первой позиции, нажмите еще раз для второй позиции и т. д.

Rapid Electronics: 6-полюсный переключатель


Многопозиционный переключатель

Многопозиционные переключатели имеют 3 или более проводящих положений и могут иметь несколько полюсов (контактные группы).

Символ показывает 1-полюсный 4-позиционный переключатель.

Популярный тип имеет вращающееся действие и доступен с различными схемами контактов от 1-полюсного 12-контактного до 4-полюсного 3-контактного. Количество путей (положений переключателя) можно уменьшить, установив упор под крепежную гайку.Например, если вам нужен 2-полюсный 5-позиционный переключатель, вы можете купить 2-полюсный 6-позиционный переключатель и отрегулировать упор.

Сравните многопозиционный переключатель (много положений переключателя) с описанным выше многополюсным переключателем (множество наборов контактов).

Rapid Electronics: многоходовые поворотные переключатели


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент переключателей и других компонентов для электроники, и я рад рекомендую их как поставщика.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Веб-сайт размещен на Tsohost

Условные обозначения на схемах компонентов »Примечания по электронике

Электронные схемы являются ключом к проектированию и определению электронных схем: каждый отдельный тип компонента имеет свой собственный символ схемы, позволяющий рисовать и лаконично читать схемы.


Схемы, схемы и символы Включает:
Обзор графических образов цепей Резисторы Конденсаторы Индукторы, катушки, дроссели и трансформаторы Диоды Биполярные транзисторы Полевые транзисторы Провода, переключатели и соединители Блоки аналоговых и функциональных схем Логика


Четкие символы использовались для обозначения различных типов электронных компонентов в схемах с самого начала электротехники и электроники.

Сегодня условные обозначения схем и их использование в значительной степени стандартизированы. Это позволяет любому относительно быстро прочитать электрическую схему и узнать, что она делает. Схематические символы используются для обозначения различных электронных компонентов и устройств на принципиальных схемах от проводов до батарей и пассивных компонентов до полупроводников, логических схем и очень сложных интегральных схем.

Используя общий набор символов схем в схемах, инженеры-электронщики во всем мире могут передавать информацию о схемах кратко и без двусмысленности.

Понять, что означают различные символы цепи, не займет много времени. Часто это все равно происходит, когда вы изучаете общую электронику. Символы для более сложных интегральных схем и т.п. обычно представляют собой прямоугольники с включенными номерами их типов, а это означает, что не существует бесконечного множества различных символов, которые нужно изучить и понять.

Хотя существует ряд различных стандартов, используемых для различных обозначений схем по всему миру, различия обычно невелики, а поскольку большинство систем хорошо известны, обычно остается мало места для двусмысленности.

Система условных обозначений

Для схематических символов по всему миру используются различные системы. Хотя между ними есть некоторые различия, разные органы по стандартизации осознают необходимость общих символов, и большинство из них одинаковы. Основные системы условных обозначений и органы стандартизации:

  • IEC 60617: Этот стандарт выпущен Международной электротехнической комиссией, и этот стандарт для символов электронных компонентов основан на более старом британском стандарте BS 3939, который, в свою очередь, был разработан на основе гораздо более старого британского стандарта 530.Часто делается ссылка на стандарт электрических компонентов BS, и теперь используется стандарт IEC. Всего в базе данных около 1750 обозначений схем.
  • Стандарт ANSI Y32: Этот стандарт для обозначений электронных компонентов является американским и также известен как IEEE Std 315. Этот стандарт IEEE для обозначений схем имеет различные даты выпуска.
  • Австралийский стандарт AS 1102: Это австралийский стандарт символов электронных компонентов.

Из них наиболее широко используются стандарты IEC и ANSI / IEEE для электронных символов, то есть схематические символы. Оба очень похожи друг на друга, хотя есть ряд различий. Однако, поскольку во всем мире используется множество принципиальных схем, обе системы будут хорошо известны большинству инженеров-электронщиков.

Условные обозначения и условные обозначения

При разработке принципиальной схемы или принципиальной схемы необходимо идентифицировать отдельные компоненты.Это особенно важно при использовании списка деталей, поскольку компоненты на принципиальной схеме могут быть перекрестно связаны со списком деталей или спецификацией материалов. Также важно идентифицировать компоненты, поскольку они часто маркируются на печатной плате, и таким образом можно идентифицировать схему и физический компонент для таких действий, как ремонт и т. Д.

Для идентификации компонентов используется то, что называется условным обозначением цепи. Это условное обозначение цепи обычно состоит из одной или двух букв, за которыми следует цифра.Буквы обозначают тип компонента, а число определяет, какой именно компонент этого типа. Примером может быть R13, C45 и т. Д.

Чтобы стандартизировать способ идентификации компонентов в схемах, IEEE представил стандарт IEEE 200-1975 как «Стандартные справочные обозначения для электрических и электронных деталей и оборудования». Позже он был отозван, и позже ASME (Американское общество инженеров-механиков) инициировало новый стандарт ASME Y14.44-2008.

Некоторые из наиболее часто используемых позиционных обозначений схем приведены ниже:

Транзистор Стабилитрон
Более часто используемые условные обозначения принципиальных схем
Условное обозначение Тип компонента
ATT Аттенюатор
BR Мостовой выпрямитель
BT аккумулятор
С Конденсатор
D Диод
Ф Предохранитель
IC Интегральная схема — альтернатива широко используемой нестандартной аббревиатуре
Дж Гнездо разъема (обычно, но не всегда относится к гнезду)
L Катушка индуктивности
LS Громкоговоритель
п. Заглушка
PS Блок питания
Q Транзистор
R Резистор
S Переключатель
SW Switch — альтернатива широко распространенному нестандартному сокращению
т Трансформатор
TP Контрольная точка
TR — альтернатива широко применяемой нестандартной аббревиатуре
U Микросхема
VR Резистор переменный
X Преобразователь
XTAL Кристалл — альтернатива широко применяемой нестандартной аббревиатуре
Z Стабилитрон
ZD — альтернатива широко применяемой нестандартной аббревиатуре

Обозначения принципиальных схем

Поскольку существует очень много различных символов схем, охватывающих широкий диапазон различных компонентов всех типов, они были разделены и представлены на разных страницах в соответствии с их категориями

Используя различные стандартные символы схемы в схематических диаграммах, можно создать схему, которая не только легко читается, но и допускает меньшее количество неверных интерпретаций, чем при использовании нестандартных символов.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Символы электрических схем

Ниже приведен рисунок, на котором показаны наиболее часто используемые символы электрических схем жилых домов.

Другие символы жилых домов см. На нашей странице с символами чертежей.

Чтение электрических чертежей

Наиболее часто используемые символы электрических схем, включая розетки, выключатели, фонари и другие специальные символы, такие как дверные звонки и датчики дыма, показаны на рисунке ниже.

Примечание: Пояснения к обычным бытовым электрическим устройствам, таким как трехпозиционные переключатели и переключаемые дуплексные розетки, приведены под рисунком.

Примечания:

Двойная розетка: Стандартная розетка с двумя розетками для вилок.

Двойная розетка с раздельной вилкой: Обычно используется на кухнях или в любом другом месте, где нагрузка на данную розетку будет высокой. Две розетки дуплексной розетки находятся на отдельных автоматических выключателях на электрическом щите. Это снижает вероятность того, что два прибора, подключенные к одной розетке, отключат автоматический выключатель.

Переключаемая дуплексная розетка: Эту розетку можно включать и выключать с помощью переключателя. Часто используется для ламп.

Тумблер: Общий выключатель света.

3-позиционный переключатель: Немного сбивает с толку, но это означает, что в доме есть два переключателя для управления одним и тем же элементом (обычно это свет или группа огней). Например, у вас может быть два входа в гостиную и выключатель на обоих входах, чтобы включить свет в гостиной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *