Дроссель лампы дневного света: Зачем нужен дроссель для ламп дневного света, ДРЛ, ДНаТ ?

Содержание

Как включить лампу дневного света, если сгорел дроссель (драйвер)… | Домашний мастер

Здравствуйте уважаемые читатели канала «Домашний мастер».

Очень часто для освещения дома и других помещений используются люминесцентные лампы дневного света и одна из частых причин неработоспособности лампы — выход из строя дросселя (драйвера).

Если все-таки у вас случилась такая неприятность, а запасного дросселя нет под рукой и в магазин идти не хочется, я расскажу как можно запустить люминесцентную лампу дневного света без дроселя (драйвера).

Сейчас чаще стали использовать светодиодные лампочки, но наверно у многих остались витые энергосберегающие лампочки, пускай даже и перегоревшие. Нам понадобится из этой лампочки плата управления, которая находится внутри корпуса лампочки, главное чтобы плата была не сгоревшая, перегорает в большинстве случаев нить накала в самой колбе, а плата сгорает очень редко.

У меня осталось много сломанных лампочек такого типа, я их не выкидывал, так так в них содержатся полезные для меня запчасти.

Лампочки могут быть выполнены как в виде спирали или с прямой трубкой, но их вид неважен, так как в этих лампочках все равно находится плата управления. Вот одна из моих лампочек их которой я буду делать пускатель для лампы дневного света:

Вскрывается лампочка довольно просто, нужно всего лишь взять обычный нож, поставить его вдоль шва на корпусе лампочки и приложив небольшое усилие разъединить корпус на две части:

Внутри корпуса лампы мы видим ту самую плату управления, которая нам нужна:

Подключение этой платы тоже довольно простое. На картинке ниже мы видим два красных провода, которые идут от цоколя лампочки. Эти два провода мы будем подключать к сети 220В.

А две пары контактов по бокам платы, которые были подведены к стеклянной трубке будут крепиться к контактам лампы дневного света:

Для того чтобы проверить как будет работать лампа, не обязательно монтировать все это хозяйство в светильник, я для этого пользуюсь простыми дешевыми клемниками, они как раз подходят на контакты лампы:

На видео ниже можно увидеть работу лампы дневного света на плате управления от обычной витой лампочки:

 

описание, конструкция, виды, как выбрать

Пользовательским недостатком конструкции первых ламп дневного света (так тогда называли такие светильники) было неприятное гудение балластного реостата. Со временем уровень шума удалось снизить, но необходимость в трансформаторе осталась. Разберёмся в том, что такое трансформатор для питания люминесцентных ламп, и как его правильно выбрать.

Конструкция и принцип действия люминесцентной лампы

Существует три основных типа люминесцентных ламп: с холодным катодом, с горячим катодом и электролюминесцентные. Все они для создания света используют люминофоры, возбуждаемые электронами.

Эксплуатационные показатели:

  1. Цветовая температура – 5600 К.
  2. Светоотдача – 46… 105 лм/Вт.
  3. Сроки службы – 10 000 … 45 000 часов (без учета балластного реостата).

Данные устройства работают путем ионизации паров ртути в стеклянной трубке.

Движущийся в газе поток электронов испускает фотоны.

Люминофорным покрытием ультрафиолетовый свет преобразуется в стандартный видимый.

Лампа состоит из стеклянной трубки, заполненной инертным газом (обычно аргоном) при низком давлении. На каждой стороне трубки имеется вольфрамовый электрод. При подаче напряжения в межэлектродном промежутке возбуждается тлеющий разряд, вызывающий свечение газа.

Назначение балласта

Обязательные электрические характеристики светильника дневного света:

  1. Потребляемый ток.
  2. Пусковое напряжение.
  3. Частота тока.
  4. Коэффициент амплитуды тока.
  5. Уровень освещённости.

Дроссель обеспечивает высокое начальное напряжение для инициирования тлеющего разряда, а затем быстро ограничивает ток для безопасного поддержания нужного уровня напряжения.

Основные функции балластного трансформатора рассматриваются далее.

Безопасность

Балласт регулирует мощность переменного тока для электродов. При прохождении переменного тока через дроссель напряжение повышается. Одновременно ограничивается сила тока, чем предотвращается короткое замыкание, которое приводит разрушению люминесцентного светильника.

Подогрев катодов

Для работы светильника необходим всплеск высокого напряжения: именно тогда происходит пробой межэлектродного промежутка, и загорается дуга. Чем холоднее лампа, тем выше необходимое напряжение. Напряжение «проталкивает» ток через аргон. Но у газа есть сопротивление, которое тем выше, чем холоднее газ. Поэтому требуется создать более высокое напряжение при максимально низких температурах.

Для этого требуется реализовать одну из двух схем:

  • с помощью пускового выключателя (стартёра), содержащего небольшую неоновую или аргоновую лампу мощностью 1 Вт. Она нагревает биметаллическую полосу в стартёре и облегчает инициирование газового разряда;
  • вольфрамовыми электродами, через которые проходит ток. При этом электроды нагреваются и ионизируют газ в трубке.

Обеспечение высокого уровня напряжения

При разрыве цепи магнитное поле прерывается, импульс высокого напряжения посылается через светильник, и возбуждается разряд. Используются следующие схемы создания высокого напряжения:

  1. Предварительный подогрев. В этом случае электроды нагреваются до инициирования разряда. Пусковой выключатель замыкается, позволяя току протекать через каждый электрод. Переключатель стартера быстро охлаждается, размыкая переключатель и запуская напряжение питания на дуговой трубке, в результате чего и возникает разряд. Во время работы вспомогательное питание на электроды не подаётся.
  2. Быстрый запуск. Электроды нагреваются постоянно, поэтому балластный трансформатор включает две специальные вторичные обмотки, которые обеспечивают низкое напряжение на электродах.
  3. Мгновенный запуск. Электроды перед началом работы не нагреваются.  Для устройств мгновенного пуска трансформатор обеспечивает относительно высокое пусковое напряжение. Вследствие этого разряд легко возбуждается между «холодными» электродами.

Ограничение электрического тока

Необходимость в этом возникает тогда, когда нагрузка (например, дуговой разряд) сопровождается падением напряжения на клеммах при увеличении тока.

Стабилизация процесса

К люминесцентным светильникам предъявляются два требования:

  • чтобы запустить источник света, для создания дуги в парах ртути необходим скачок высокого напряжения;
  • как только лампа запускается, газ оказывает уменьшающееся сопротивление.

Эти требования варьируются в зависимости от мощности источника.

Конструкция дросселя лампы дневного света

Проволока

Проводники представляют собой нити, изготавливаемые из вольфрама, который дополнительно легируется высокотемпературными силикатами калия или алюминия. Минимальная температура рекристаллизации проводника – не менее 2100С.

Сердечник

Один из электродов представляет собой биметаллическую полосу, которая изгибается при нагревании, вызывая контакт с другим электродом. Когда два электрода соприкасаются друг с другом, ток становится постоянным.

Заливочная масса

В колбы люминесцентных светильников бытового предназначения закачивается аргон. Инертные свойства аргона исключают корродирующее действие кислорода, особенно в источниках с горячей вольфрамовой нитью. Использование аргона предотвращает испарение проводников.

Корпус

Стеклянная трубка содержит небольшое количество ртути и аргон, находящийся под очень низким давлением. Трубка также содержит люминофорный порошок, который наносится на внутреннюю часть стекла. Стекло корпуса должно иметь высокую механическую и диэлектрическую прочность.

Разновидности и сравнительный анализ дросселей

Важно! На практике используются три типа электронного балласта: магнитные, полупроводниковые и электронные.

Электромагнитный дроссель

Магнитные трансформаторы не содержат печатных плат, и используются в газоразрядных лампах высокой интенсивности. Они работают при частоте переменного тока 50 Гц.

Конструктивно трансформатор магнитного типа представляет собой сердечник, выполненный из толстой проволоки с хорошей магнитной проводимостью, и катушечные обмотки, при помощи которых создаётся высокое напряжение.

Электронный дроссель

Электронные балластные трансформаторы собраны на pnp-транзисторах, которые включаются в электронный полумост.

Электронные балласты меньше и легче, чем магнитные, они могут действовать и при переменных значениях частоты тока.

Полупроводниковый дроссель

Преимущество схемы заключается в том, что возможна передача значительной мощности, при нечувствительности к изменениям частоты питающего тока. Коммутация происходит быстрее, а величина магнитного поля уменьшается.

Разнообразие дросселей по мощности в ваттах

Различают дроссели малой, средней и большой мощности. Первые (мощностью до 11…15 Вт) используются в миниатюрных и энергосберегающих светильниках, вторые (до 30…40 Вт) – в офисных лампах, а более мощные – для освещения залов, гостиных, холлов и прочих помещений значительной площади.

Различие по условиям пуска

Например, для люминесцентных ламп мощностью до 40 Вт самым распространённым режимом работы является режим быстрого запуска. Преимущества быстрого запуска заключаются в плавном нарастании напряжения, увеличении срока службы и возможности диммирования – плавного изменения яркости испускаемого светового потока.

Для ламп меньшей мощности (менее 30 Вт) характерен режим предварительного нагрева. Источники света, работающие в этом режиме, лучше, поскольку для непрерывного нагрева электродов не требуется дополнительная мощность. Однако такие лампы мерцают во время запуска и характеризуются коротким сроком службы.

Маркировка дросселей по степени потери мощности

Общеприняты маркировки В, С и D. Наименьшей потерей мощности характеризуются дроссели В, сниженным уровнем потерь – С, обычным уровнем – D.

Как подобрать нужную модель по техническим характеристикам и производителю

Любой трансформатор рассчитан для использования с люминесцентными лампами определённой мощности. Выбор проводится с учётом следующих факторов:

  1. Количества обслуживаемых светильников.
  2. Суммарно потребляемой мощности.
  3. Качества поставляемой электроэнергии (амплитуды скачков по току, напряжению и частоте).
  4. Габаритных размеров устройства.
  5. Функциональных возможностей.

Программируемые трансформаторы обладают очевидными преимуществами:

  • возможностью обеспечения параллельной работы всех источников света, которые установлены в помещении;
  • малым временем запуска (не более 700 мс). Поэтому, если одна лампа выходит из строя, другие остаются зажжёнными;
  • регулируемой продолжительностью задержки при включении;
  • возможностью использования и в других приложениях (например, для работы датчиков присутствия).

Важно! Программируемые трансформаторы гарантируют пониженные значения энергопотребления, быстрый предварительный нагрев катодов ламп до оптимальной стартовой температуры и быстрое зажигание светильников. Они допускают кратковременную перегрузку и, следовательно, могут использоваться для временного повышения светового потока.

Добротная схема балласта должна сохранять свою работоспособность при нагреве корпуса до 90С (с гарантией не менее трёх лет).

При выборе учитывают максимальный ток, потребляемый светильником. Например, трансформатор, который рассчитан на ток 200 мА, нельзя применять в схемах пуска с токами более 250 мА.

Конструкция трансформатора предусматривает регулирование светового потока в диапазоне, который установлен санитарно-гигиеническими требованиями. Они определяются по ГОСТ Р 55710-2013.

Основные неполадки и способы ремонта

Нет зажигания лампы

Убедитесь, что настенный выключатель в порядке. Выключите переключатель, выньте трубки и вновь вставьте, чтобы убедиться, что они полностью зафиксированы. Если лампа действует прерывисто, это обычно указывает на перегрев балласта.

Проблемы с изоляцией

Возникают, если температура превышает 90С. Изоляция должны быть такой, чтобы обеспечивалась хорошая циркуляция воздуха. Для этого между всеми компонентами светильника и смежными элементами помещения должен быть зазор не менее 7…8 мм.

Концы чернеют

Конец трубки становится черным, если у светильника слишком быстрый цикл переключения или, если неисправен катод. Поэтому лучше оставлять лампы включенными, а не быстро их выключать и снова включать. Каждое переключение вызывает постепенную эрозию электронно-эмиссионных материалов, покрывающих электроды.

Полосы внутри лампы

Дефект связан с потерей герметичности корпуса. Такую лампу необходимо заменить.

Обзор популярных моделей

Schwabe Hellas

Популярный немецкий бренд, продукция которого сертифицирована соответственно требованиям ISO 9001: 2000 и ISO 14001: 2005.   Знаки качества применяются ко всем стандартным балластам Schwabe Hellas, которые отвечают европейским нормам напряжения и электромагнитной совместимости.

Helvar 65W, Helvar 85W

Производство сосредоточено в Шотландии и Северной Ирландии.  Выпускаются магнитные балласты Многолетний опыт разработки балласта и превосходные производственные знания гарантируют высокое и равномерное качество продукции. Магнитные балласты Helvar имеют классы энергоэффективности B2 и B1.

Правила эксплуатации

При обслуживании устройств необходимо придерживаться определённых правил. Предварительно (до отсоединения балласта) производится маркировка проводов. Это сэкономит время монтажа. Неправильное подсоединение приводит к перегреву проводов, а часто светильник вообще не включается.

Важно! При регулировке учитываются исходные требования к работе светильников, которые управляются трансформатором.

В частности, необходимо установить, что приоритетнее – максимальная светоотдача, минимальное время пуска или отсутствие перегрева корпуса.

При установке балластов следует учесть, что каждый трансформаторов способен питать до четырёх светильников (конкретное количество указывается в инструкции пользователя).

Важный параметр трансформатора – коэффициент балласта. Его значение определяет светоотдачу конкретной системы светильников.  Для стандартных 40-ваттных ламп значение балластного коэффициента должно быть не ниже 0,95; с уменьшением мощности значение снижается, но не должно быть ниже 0,87. В продаже встречаются трансформаторы и с более низким балластным фактором (от 0,70 до 0,75), но их можно применять лишь с лампами, работающими в режиме быстрого запуска.

Важно! Более низкий балластный коэффициент уменьшает выходной сигнал, и гарантирует потребление пропорционально меньшей мощности.

Тщательный выбор трансформатора к светильникам с определенным балластным фактором оптимизирует потребление энергии, и позволяет точнее настроить уровни освещения.

Дроссель для ламп дневного света

Одним из наиболее экономичных вариантом считается дневное освещение. Люминесцентные лампы уже давно используются вместо традиционных лампочек накаливания во многих местах. Они получили широкое распространение, благодаря спектру освещения с разнообразными оттенками и яркостью светового излучения. Подобные свойства обусловлены особенностями конструкции, в состав которой входит и дроссель для ламп дневного света. Совместно с другими элементами, дроссель обеспечивает надежную и безопасную работу люминесцентных источников освещения.

Принцип работы и функции дросселя

Знакомство с дросселем рекомендуется начинать с рассмотрения его основных функций. Всем известно, что в люминесцентных лампах имеется балласт, поглощающий излишки мощности в электрической цепи. В светильнике мощностью около 40 Вт на дроссель приходится примерно 6 Вт или 15%.

Основными функциями данного устройства являются следующие:

  • Предварительный разогрев катодов и подготовка их к дальнейшей эмиссии электронов.
  • Обеспечение нужного напряжения, чтобы создать стартовый разряд.
  • Ограничение тока, проходящего через электрическую цепь устройства после старта.

В случае использования в качестве питания переменного тока, с помощью дросселя обеспечивается сдвиг фаз или отставание между напряжением и током. Данная величина обозначается в маркировке прибора в виде cos ϕ, называемая также, коэффициентом мощности. Мощность люминесцентной лампы и технические характеристики дросселя должны соответствовать друг другу, в противном случае светильник очень быстро выйдет из строя.

Действие дросселя осуществляется совместно со стартером по следующей схеме:

  • В начале напряжение, подаваемое на лампу, поступает на стартер. Конструкция данного элемента состоит из конденсатора и баллона, заполненного инертным газом, внутри которого находятся биметаллические контакты.
  • Действие напряжения вызывает ионизацию газа, в результате, начинается течение тока по дроссельной цепи. Происходит разогрев контактов и газа, после чего сила тока увеличивается до 0,5 А. После этого разогреваются катоды с одновременным освобождением электронов. Под их воздействием в свою очередь разогреваются пары ртути, находящиеся в трубке светильника.
  • В момент замыкания контактов наступает завершение ионизации, в стартере падает температура и контакты размыкаются.
  • В дросселе возникает самоиндукция, которая совместно с амплитудными колебаниями сети пробивает газовое наполнение лампы. После этого ток вновь начинает протекать через катод и электрическую цепь дросселя.

Электронный дроссель для ламп дневного света

В отличие от обычного дросселя, электронные приборы считаются более сложными. Их конструкция включает в себя следующие элементы:

  • Фильтр электромагнитных помех. Служит для гашения электромагнитных импульсов самой лампы и внешних сетевых помех.
  • Устройства преобразования тока. Инвертор преобразует ток из постоянного в переменный, а с помощью выпрямителя достигается нужное значение тока.
  • Схема, корректирующая коэффициент мощности, контролирует сдвиг по фазе переменного тока, проходящего через нагрузку.
  • Сглаживающий фильтр используется для снижения уровня пульсаций переменного тока.
  • Балласт. Представляет собой индукционную катушку, обеспечивающую накопление энергии, плавную регулировку яркости света, подавление различных помех.

Работа этих приборов происходит в определенном порядке. Электронный дроссель для ламп дневного света также называют электронной пускорегулирующей аппаратуры – ЭПРА. После включения светильника ток от выпрямителя поступает к буферу конденсатора, где сглаживается частота пульсации. Высокое напряжение после инвертора попадает в цепь, осуществляя зарядку микросхем и конденсаторов. Когда напряжение достигает 5,5 В, происходит сброс микросхемы. После зарядки компенсационного конденсатора обратной связи он регулируется с помощью транзисторов.

При достижении напряжением значения 12 В наступает следующий этап работы системы – предварительный нагрев. Минимальное напряжение для поджига составляет 600 ватт, а сама процедура занимает всего 1,7 секунды. Использование ЭПРА исключает чрезмерный нагрев люминесцентной лампы, обеспечивая, таким образом, пожарную безопасность.

Схема лампы дневного света с дросселем

В каждом люминесцентном светильнике существуют посадочные места. Каждое из них оборудовано двумя разъемами, к которым подключаются штыри цоколя. Всего имеется четыре контакта, размещенные на концах колбы.

Через каждую пару контактов подается питание для спиралей, запускающих источник света. При подключении напряжения происходит их разогрев с образованием свободных электронов. Образующееся электронное облако существенно облегчает ионизацию инертного газа, насыщенного парами ртути. Благодаря высокой температуре катодов, испаряется ртутный конденсат.

Высоковольтный импульс, поступающий из дросселя, приводит к образованию тлеющего разряда. В дальнейшем его будет поддерживать уже сетевое напряжение. Тлеющий разряд, в свою очередь, приводит к появлению ультрафиолетового излучения, превращающегося в свет с видимым спектром. Этому способствует люминофор, нанесенный на стенки стеклянной трубки.

Иногда требуется подключить лампу дневного света без дросселя. Прежде всего, нужно создать тлеющий разряд. С этой целью на контакты кратковременно подается импульс высокого напряжения. Поэтому при отсутствии дросселя можно воспользоваться умножителем напряжения, собранного на диодах и стабилитронах. Данная схема функционирует следующим образом:

  • Питание светильника осуществляется через мостовой выпрямитель.
  • Ограничение рабочего тока производится с помощью вольфрамовой спирали, установленной в обычной лампе накаливания.
  • Пусковое напряжение создается умножителем.
  • Появляется тлеющий заряд, после чего умножитель отключается. Далее люминесцентная лампа светится самостоятельно за счет питания, поступающего из электрической сети.

Как проверить дроссель лампы дневного света мультиметром

В случае неисправности люминесцентной лампы следует проверить не только дроссель, но и общее состояние светильника. В первую очередь проверяется вся электрическая схема на общее сопротивление. Для этого можно воспользоваться омметром, в котором выставляется сопротивление в измеряемом диапазоне.

Часто применяются стрелочные тестеры или мультиметры с выставленной величиной замеров. Диагностические замеры выполняются без использования внешних источников напряжения.

Светильник укладывается на ровную поверхность, после чего щупы измерительного устройства подключаются к местам выводов проводов. Но измерить сопротивление сразу не получится, поскольку электрическая схема в лампочке стартера будет разорвана. Поэтому стартер вынимается из патрона, после чего его контакты замыкаются накоротко и можно проводить измерения.

Отдельная проверка дросселя происходит следующим образом. Вначале также снимается стартер и замыкается накоротко его электрический патрон. После этого на снятой люминесцентной лампе поочередно замыкаются контакты двух патронов. Далее выполняются непосредственные замеры сопротивления путем соединения двух щупов прибора с выводами проводов на светильнике.

Как проверить дроссель лампы дневного света мультиметром

Стоимость электрической энергии постоянно возрастает, что не всегда позволяет эффективно использовать мощные приборы. Одним из решений такой проблемы является внедрение ламп дневного света, которые намного экономичней лампочек накаливания.

Существует несколько видов таких продуктов, позволяющие устанавливать их в различных механизмах. Узнать, как правильно подобрать эти изделия можно на сайте http://83412555525.ru/.

Основные понятия

Лампы дневного света представляют собой люминесцентные приборы, которые выделяют намного больше энергии, чем классические вольфрамовые источники.

Состоит такой прибор из нескольких основных элементов:

  • колба. Изготавливают ее из специального стекла. При этом на внутреннюю сторону каркаса наносят специальный люминофор;
  • ртуть. Она и является основным источником света при прохождении сквозь нее электрической энергии;
  • система зажигания. Сюда можно отнести вольфрамовые спирали, стартер, конденсатор и др.

Принцип работы этой лампы довольно простой. Изначально ток подается на вольфрамовые нити, располагающиеся в различных сторонах колбы. Чтобы повысить проводимость ртути с помощью системы зажигания формируется пучок высокой энергии, которая и заставляет газ излучать свет. После этого протекание электрики происходит уже между нитями. Перед выходом световые лучи фильтруются люминофором.

Проверка дросселя

Этот механизм ломается довольно редко. Но все-таки надо знать, как его проверять, чтобы исключить любые варианты. Для таких целей используют обычный мультиметр в режиме измерения сопротивления. Процесс проверки довольно простой и предполагает подключение к выводам дросселя щупов прибора. В зависимости от характера поломки он может показать такие значения:

  1. Бесконечное сопротивление. Это означает, что внутри системы присутствует обрыв или перегорела обмотка. Подобное явление очень часто можно выявить, просто проверив, есть ли неприятный запах горелого.
  2. Очень малое сопротивление. Подобное явление свидетельствует о нарушении изоляции, а также возникновении замыкания в обмотке или сердечнике.

После анализа состояния дросселя следует просто заменить его. Отремонтировать систему можно только в том случае, если у вас есть опыт работы с радиоэлектрическими приборами.

Смотрите также:

Как купить квартиру на вторичном рынке? http://euroelectrica.ru/kak-kupit-kvartiru-na-vtorichnom-ryinke/.

Интересное по теме: Что такое интегральная микросхема

Советы в статье «Куда сдавать оцинкованную сталь » здесь.

В другом случае обратитесь к специалисту, который предложит вам оптимальный вариант решения данной проблемы.


разновидности устройств, назначение, схема и отзывы

Лампы дневного света (ЛДС) — это первые экономичные приборы, которые появились после традиционных светильников с нитью накаливания. Они относятся к газоразрядным устройствам, где обязательно требуется элемент, ограничивающий мощность в электрической цепи.

Назначение дросселя

Дроссель для ламп дневного света управляет напряжением, подаваемым на электроды лампы. Кроме того, у него есть следующие назначения:

  • защита от скачков напряжения;
  • разогрев катодов;
  • создание высокого напряжения для запуска лампы;
  • ограничение силы электрического тока после пуска;
  • стабилизация процесса горения лампы.

Для экономии дроссель подключается на две лампы.

Принцип действия электромагнитного пускорегулирующего устройства (ЭмПРА)

Первая схема запуска люминесцентной лампы, которая была создана и применяется до сих пор, включает элементы:

  • дроссель;
  • стартер;
  • два конденсатора.

Схема лампы дневного света с дросселем подключается в сеть на 220 В. Все детали, соединенные вместе, называются электромагнитным балластом.

При подаче питания замыкается цепь вольфрамовых спиралей лампы, и включается стартер в режиме тлеющего разряда. Через лампу ток пока не проходит. Нити постепенно разогреваются. Контакты стартера в исходном состоянии разомкнуты. Один из них выполнен биметаллическим. Он сгибается при нагревании от тлеющего разряда и замыкает цепь. При этом ток возрастает в 2-3 раза и катоды лампы разогреваются.

Как только замкнутся контакты стартера, разряд в нем прекращается и биметаллическая пластина начинает остывать. В результате подвижный контакт размыкается и происходит самоиндукция дросселя в виде значительного импульса напряжения. Его достаточно, чтобы электроны пробили газовую среду между электродами и лампа зажглась. Через нее начинает проходить номинальный ток, который затем снижается в 2 раза по причине падения напряжения на дросселе. Стартер постоянно остается в выключенном состоянии (контакты разомкнуты), пока ЛДС горит.

Таким образом, балласт запускает лампу и в дальнейшем поддерживает ее в активном состоянии.

Достоинства и недостатки ЭмПРА

Электромагнитный дроссель для ламп дневного света отличается низкой ценой, простотой конструкции и высокой надежностью.

Кроме того, имеются недостатки:

  • пульсирующий свет, приводящий к усталости глаз;
  • до 15 % теряется электроэнергия;
  • шумы в момент запуска и при работе;
  • лампа плохо запускается при низкой температуре;
  • большие размеры и вес;
  • длительный запуск лампы.

Обычно гудение и мерцание лампы происходят при нестабильном питании. Балластники производят с разными уровнями шума. Чтобы его уменьшить, можно выбрать подходящую модель.

Лампы и дроссели подбираются равными друг другу по мощности, иначе срок службы светильника значительно сократится. Обычно их поставляют в комплекте, а замену балласта делают устройством с теми же параметрами.

Люминесцентные лампы в комплекте с ЭмПРА стоят недорого, и для них не нужна настройка.

Для балластника характерным является потребление реактивной энергии. Для снижения потерь параллельно сети питания подключается конденсатор.

Электронный балласт

Все недостатки электромагнитного дросселя необходимо было устранить, и в результате исследований был создан электронный дроссель для ламп дневного света (ЭПРА). Схема представляет собой единый блок, производящий запуск и поддерживание процесса горения путем формирования заданной последовательности изменения напряжения. Подключить его можно с помощью прилагаемой к модели инструкции.

Дроссель для ламп дневного света электронного типа имеет достоинства:

  • возможность мгновенного запуска или с любой задержкой;
  • отсутствие стартера;
  • отсутствие моргания;
  • повышенная светоотдача;
  • компактность и легкость устройства;
  • оптимальные режимы работы.

ЭПРА дороже электромагнитного устройства из-за сложной электронной схемы, которая включает фильтры, коррекцию коэффициента мощности, инвертор и балласт. В некоторых моделях устанавливается защита от ошибочного запуска светильника без ламп.

В отзывах пользователей говорится об удобстве применения ЭПРА в энергосберегающих ЛДС, которые встраиваются непосредственно в цоколи для обычных стандартных патронов.

Как запустить люминесцентную лампу с помощью ЭПРА?

При включении от электронного балласта на электроды подается напряжение, и происходит их разогрев. Затем на них поступает мощный импульс, зажигающий лампу. Он образуется путем создания колебательного контура, входящего в резонанс перед разрядом. Таким путем хорошо подогреваются катоды, испаряется вся ртуть в колбе, благодаря чему происходит легкий запуск лампы. После возникновения разряда резонанс колебательного контура тут же прекращается и напряжение снижается до рабочего.

Принцип работы ЭПРА похож на вариант с электромагнитным дросселем, так как лампа запускается высоким напряжением, которое затем снижается до постоянной величины и поддерживает разряд в лампе.

Частота тока достигает 20-60 кГц, за счет чего мерцание исключено, а КПД становится выше. В отзывах часто предлагается заменить электромагнитные дроссели на электронные. Важно, чтобы они подходили по мощности. Схема может создавать мгновенный пуск или с постепенным нарастанием яркости. Холодный пуск производить удобно, но при этом срок службы светильника становится намного меньше.

Лампа дневного света без стартера, дросселя

ЛДС можно включать без громоздкого дросселя, используя вместо него простую лампу накаливания с аналогичной мощностью. В данной схеме стартер также не нужен.

Подключение производится через выпрямитель, в котором напряжение удваивается с помощью конденсаторов и поджигает лампу без разогрева катодов. Последовательно с ЛДС через фазный провод включается лампа накаливания, ограничивающая ток. Конденсаторы и диоды выпрямительного моста следует подбирать с запасом по допустимому напряжению. При питании ЛДС через выпрямитель колба с одной стороны скоро начнет темнеть. В таком случае надо изменить полярность питания.

Подключение лампы дневного света без дросселя, где вместо него применяется активная нагрузка, дает слабую яркость.

Если вместо лампы накаливания установить дроссель, лампа будет светиться заметно сильней.

Проверка исправности дросселя

Когда ЛДС не горит, причина кроется в неисправности электропроводки, самой лампы, стартера или дросселя. Простые причины выявляются тестером. Перед тем как проверить дроссель лампы дневного света мультиметром, следует отключить напряжение и разрядить конденсаторы. Затем переключатель прибора устанавливается в режим прозвонки или на минимальный предел измерения сопротивления и определяются:

  • целостность обмотки катушки;
  • электросопротивление обмотки;
  • межвитковое замыкание;
  • обрыв в обмотке катушки.

В отзывах предлагается проверять дроссель, подключив его к сети через лампу накаливания. При межвитковом замыкании она горит ярко, а исправная — вполнакала.

При обнаружении неисправности дроссель проще заменить, поскольку ремонт может обойтись дороже.

Чаще всего в схеме выходит из строя стартер. Для проверки его работоспособности вместо него подключают заведомо исправный. Если лампа так и не зажигается, значит, причина в другом.

Дроссель также проверяют с применением исправной лампы, подключив от него два провода к ее цоколю. Если лампа загорится ярко, значит, дроссель работоспособен.

Заключение

Дроссель для ламп дневного света совершенствуется в направлении улучшения технических характеристик. Электронные устройства начинают вытеснять электромагнитные. Вместе с тем продолжают применяться старые варианты моделей в связи с их простотой и низкой ценой. Необходимо разбираться во всем многообразии типов, правильно их эксплуатировать и подключать.

Люминесцентные лампы и комплектующие к ним

Люминесцентные лампы — одни из самых надежных, долговечных и экономически выгодных видов ламп. Другие их преимущества — невысокая температура нагрева во время эксплуатации, повышенная световая отдача. Замена люминесцентными лампами традиционных ламп накаливания дает ощутимую выгоду за счет экономии электроэнергии.

Люминесцентные лампы относятся к типу газоразрядных источников света. Основным источником оптического излучения в люминесцентных лампах является разряд в газе, который после преобразования покрытием люминофора превращается в видимый свет.

Наиболее распространены ртутные люминесцентные лампы, в которых в парах ртути происходит разряд, излучающий в ультрафиолетовом спектре.

Люминесцентные лампы необходимо утилизировать установленным образом.

На данный момент существует огромный выбор форм, длины и размеров люминесцентных ламп, который удовлетворит любым запросам к комплектации систем освещения самых разных помещений.

Люминесцентные трубчатые лампы (линейные) выполнены в форме прямой трубки.

Диаметр трубки обозначается так называемым Т-размером. После буквы Т идет значение диаметра в восьмых частях дюйма. Например, существуют люминесцентные лампы Т4, Т5, Т8 и т.д. То есть, маркировка T8 обозначает размер в 26 мм, а T12 — в 38 мм. Буква G указывает на тип цоколя. Буква W – на ваттность. Так, например, люминесцентная лампа 8W G5 расшифровывается как лампа на 8 ватт, тип цоколя – G5.

Подключение люминесцентных ламп необходимо производить с помощью пуско-регулирующих устройств (балластов). Пускорегулирующая аппаратура (ПРА) для люминесцентных ламп также помогает избавиться от мерцания и гула, увеличивает экономичность. Существуют балласты двух типов — электромагнитный балласт (дроссель) и электронный балласт (ЭПРА). С электромагнитным балластом для автоматического регулирования процесса зажигания лампы должен применяется пускатель (стартер). Также для подключения линейных люминесцентных ламп используются такие вспомогательные элементы как ламподержатели (патроны), стартеродержатели (патроны для стартера) и держатели для ламп (клипсы).

Люминесцентные лампы белого цвета
Люминесцентные лампы применяются для освещения помещений, в рекламном производстве: для подсветки световых коробов и объёмных букв, для внутренней подсветки в игровых автоматах, а также для освещения рекламно-выставочных стендов, витрин, залов торговых центров и для других целей — везде, где нужен яркий белый свет. Более рассеянный, чем у других источников, свет и разнообразие размеров люминесцентных ламп позволяет подсветить большую площадь.

Для создания равномерного светового поля рекомендуем располагать лампы на расстоянии 30 см друг от друга. Небольшие монтажные размеры системы подсветки, собранной на основе люминесцентных ламп, дают возможность незаметно расположить её за козырьком на стенах, потолке или в алюминиевом профиле.

 

Спектр излучения, который имеют энергосберегающие люминесцентные лампы зависит от состава люминофора, покрывающего ее внутренние стенки. Разный состав дает разную цветовую температуру. Лампы с температурой цвета 6400 К называют «люминесцентными лампами дневного света».

  • «NARVA» — Германия
  • «HAVELLS SYLVANIA» — Германия
  • «OSRAM» — Германия
Тип Мощность, Вт Цвет освещения Диаметр, мм Длина, мм Цоколь
LT 4W / 760-010 4 daylight (дневной) 16 136 G5
LT 6W / 760-010 6 daylight 16 212 G5
LT 8W / 760-010 8 daylight 16 288 G5
LT 13W / 760-010 13 daylight 16 517 G5
LT 14W T5-EQ / 860 14 daylight 16 549 G5
LT 15W / 760-010 15 daylight 26 438 G13
LT 16W / 760-010 16 daylight 26 720 G13
LT 18W / 760-010 18 daylight 26 590 G13
LT 21W T5-EQ / 860 21 daylight 16 849 G5
LT 28W T5-EQ / 860 28 daylight 16 1149 G5
LT 30W / 760-010 30 daylight 26 895 G13
LT 36W / 760-010 36 daylight 26 1200 G13
LT 38W / 760-010 38 daylight 26 1047 G13
LT 58W / 760-010 58 daylight 26 1500 G13
Лампа-кольцо

Тип Мощность, Вт Цвет освещения Диаметр трубки, мм Длина, мм Цоколь
LC 22W / 760-010 22 daylight 29 216 G 10q
LC 32W / 760-010 32 daylight 32 307 G 10q
LC 40W / 760-010 40 daylight 32 409 G 10q
Цветные люминесцентные лампы

Цветные люминесцентные лампы являются своеобразной альтернативой неоновым трубкам. Они удобны в монтаже и очень хорошо вписываются в интерьер — в выключенном состоянии они имеют обычный белый цвет и незаметны на потолке и других белых поверхностях, а при включении становятся цветными.

Возможными областями применения могут быть:

   — системы освещения в залах дискотек и клубов;

   — подсветка разнообразных ниш на фасадах зданий;

   — входы и витрины магазинов и торговых павильонов;

   — другие варианты оформления — везде, где необходимо получить насыщенный цветной свет.

Тип Мощность, Вт Цвет освещения Диаметр, мм Длина, мм Цоколь
LT 18W / 014 18 pink (розовый) 26 590 G13
LT 18W / 017 18 green (зеленый) 26 590 G13
LT 18W / 019 18 violet (фиолетовый) 26 590 G13
LT 36W / 019 36 violet (фиолетовый) 26 1200 G13
LT 58W / 015 58 red (красный) 26 1500 G13
LT 58W / 017 58 green (зеленый) 26 1500 G13
Лампы ультрафиолетового излучения
Ультрафиолетовые лампы применяют для облучения вывесок и конструкций, созданных из флюоресцентных пластиков, оклеенных плёнками или окрашенных специальными красками, способными светиться при облучении ультрафиолетом. Наиболее ярко данный эффект проявляется в затемненных помещениях — барах, клубах, дискотеках и концертных залах.
Тип Мощность, Вт Диаметр, мм Длина, мм Цоколь
LT 15W / 073 15 26 438 G13
LT 18W / 073 18 26 590 G13
LT 30W / 073 30 26 895 G13
LT 36W / 073 36 26 1200 G13
Комплектующие к люминесцентным лампам
Электромагнитные ПРА (дроссели, ЭМПРА) для подключения люминесцентных ламп
Описание
Электромагнитный балласт (дроссель) подключается последовательно с люминесцентной лампой. Параллельно лампе подключается стартер. Дроссель формирует за счёт самоиндукции запускающий импульс, а также ограничивает ток через лампу. Преимуществом электромагнитного балласта является простота конструкции и невысокая цена. Недостатки: мерцание ламп, относительно долгий запуск, большее потребление энергии по сравнению с электронным балластом, возможен гул дросселя.
«ELECTROSTART», Болгария
  • Точно контролированное сопротивление и гарантированные постоянные параметры.
  • Вакуумная пропитка.
  • Специальный эмалированный провод с высокой теплоустойчивостью, tw 130.
  • Гарантированная долговечность — 10 лет.
  • Соответствие нормам EN 60921, EN 61347, VDE 0712, BDS 7604-82.
  • Возможность использования выводных клемм для безвинтового или винтового соединения к схеме.
Тип Номер Напряже-
ние, В
Частота,
Гц
Мощность
лампы, Вт
Ток
лампы, А
Тип
лампы
Конденсатор
220В/250В ±10% µF
cos φ
индукт.
EEI Перегрев
EN 60920
Δt/ΔtAH °C
LSI-С 9.26.53.004 230 50 1 х 4 0.170 Т5 2 0.27 В2 50/70
1 х 6 0.160 0.31
1 х 8 0.145 0.35
2 х 4 0.145 0.38
LSI-NL 15 9. 26.53.115 230 50 1 х 15 0.350 Т8 4.3 0.3 С 60/100
LSI-NL 18 9.26.53.218 230 50 1 х 18 0.370 Т8 4.3 0.33 С 70/120
LSI-NL 30 9.26.53.230 230 50 1 х 30 0.365 Т8 4.3 0.49 С 65/150
LSI-NL 36 9.26.53.136 /
9.26.53.336 /
9.26.25.436
220 50 1 х 36 0.430 Т8 4.3 0.48 /
0.49 /
0.50
С 65/160 /
65/180 /
65/165
LSI-NL 36 9.26.53.236 230 50 1 х 36 0.430 Т8 4.3 0.47 С 65/165
LSI-NL 58 9. 26.52.158 220 50 1 х 58 0.670 Т8 6.0 0.48 С 65/170
Тип Длина, мм Ширина, мм Высота, мм Вес, кг
с I L
LSI 37 90.5 105 41 26 0.33
LSI-NL 15 60 137.5 155 41 26 0.52
LSI-NL 18 60 137.5 155 41 26 0.50
LSI-NL 30 60 137.5 155 41 26 0. 51
LSI-NL 36 60 137.5 155 41 26 0.51 / 0.50
LSI-NL 58 104 180 195 41 26 0.83
ЭПРА — электронные балласты (КНР)
Описание
Электронные балласты для подключения электролюминесцентных ламп Т5 и Т8. Корпус — алюминиевый, по бокам — пластиковые крышки с отверстиями под крепеж.
ЭПРА могут применяться как внутри, так и снаружи помещений (при условии защиты от попадания влаги).
Комплектация
ЭПРА укомплектованы проводами двух цветов, патронами и клипсами.
Количество
и номинал ламп
Напряжение, В Частота, Гц Тип ламп Тип
корпуса
Габаритные размеры
(длина х ширина х высота), мм
2 лампы на 20-40 Вт 220 50 Т8 металлический 153 х 40 х 28
2 лампы на 58-65 Вт 220 50 Т8 металлический 153 х 40 х 28

Схема подключения:

Электронный пуско-регулирующий аппарат (балласт) для разрядных ламп, используется для обеспечения режима зажигания и стабилизации тока при включении люминесцентных ламп в сеть переменного тока с частотой 50 Гц, номинальным напряжением 220 В.

ЭПРА обладают рядом преимуществ по сравнению с электромагнитными дросселями:

  • ЭПРА позволяют подключить люминесцентные лампы без использования стартера.
  • ЭПРА обеспечивают стабилизацию силы тока питания лампы, что увеличивает срок ее службы, поскольку токи на пусковых режимах значительно превышают номинальное значение, а это может привести к выходу лампы из строя.
  • Исключение из схемы электронного балласта электромагнитного элемента (то есть самой дроссельной катушки) позволило избавиться от шума и повысить коэффициент полезного действия, так как исчезли потери на вихревые токи и нагрев дросселя.
  • При помощи балласта зажигание лампы происходит практически мгновенно и без привычного мерцания. В дальнейшем, благодаря схеме автоматической стабилизации тока, обеспечивается ровное свечение без стробоскопических эффектов и вне зависимости от колебаний сетевого напряжения.
  • Общее снижение энергопотребления осветительного прибора при использовании ЭПРА может достигать 60%, срок службы источников света (ламп) возрастает примерно на 50%.
  • ЭПРА значительно повышают степень безопасности эксплуатации осветительных приборов, поскольку обеспечивают защиту от короткого замыкания и перегрева, подавление радиочастотных помех, отключение неисправных источников света, плавный автоматический перезапуск лампы.
  • ЭПРА более легкие, чем электромагнитные дроссели.

Технические характеристики:Напряжение сети: 198-242 В.Частота переменного тока: 50-60 Гц.

Компактные ЭПРА — узкие электронные балласты для тонких световых коробов (КНР)

 

Описание
Габаритные размеры этих электронных балластов позволяют устанавливать их в профиль для создания тонких световых коробов.
ЭПРА может применяться как внутри, так и снаружи помещений (при условии защиты от попадания влаги).
Комплектация
Встроенные провода двух цветов с клеммами.
Количество
и номинал ламп
Напряжение, В Частота, Гц Тип ламп /
диаметр, мм
Тип
корпуса
Габаритные размеры
(длина х ширина х высота), мм
2 лампы на 4-20 Вт 220 50 Т5 / 16 металлический 214 х 15 х 15
2 лампы на 22-28 Вт 220 50 Т5 / 16 металлический 320 х 18 х 18

Стартеры предназначены для запуска люминесцентных ламп и используются в схеме подключения лампы к дросселю. При одиночном подключении лампы к дросселю используют стартеры на напряжение 220 В. При последовательном подключении на один дроссель двух ламп, используют 2 стартера на напряжение 127 В.

Наименование Люминесцентная лампа Схема подключения
Narva BSt 65 4..65 Вт одиночная 220В
Narva BSt 20 4..22 Вт одиночная 127В;
последовательная 220В
Sylvania FS-11 4..65 Вт одиночная 220В
Osram St 111 4..65 Вт одиночная 220В
Osram St 151 4..22 Вт одиночная 127В;
последовательная 220В
 

1. ПРА
2. Люминесцентная лампа
3. Стартер

Одиночное соединение
люминесцентных ламп
Схема последовательного
соединения люминесцентных ламп
Ламподержатели (патроны) для двухцокольных люминесцентных ламп
Описание

Патроны для Т-ламп отличаются высокой надежностью и безопасностью. Особую роль играют свойства ротора, обеспечивающего надежную теплоизоляцию. Корпус из поликарбоната имеет маркировку температуроустойчивости Т130. Для всех патронов максимально допустимая температура на задней стороне патронов Тм составляет 110°С.

Чтобы подключить одну трубчатую электролюминесцентную лампу, необходимо 2 патрона. При использовании схемы подключения со стартером, один из патронов выбирается со стартеродержателем. Предлагаются накидные и поворотные (более удобные) ламподержатели.

«LST», Великобритания-Китай

Все изделия фирмы «LST» удовлетворяют национальным и международным стандартам безопасности VDE и имеют надлежащие сертификаты качества CE, РОСТЕСТ.

Ротор производится из термопластичной пластмассы РВТ (полибутелентерефталата) и обеспечивает долгосрочную тепловую стойкость до 140°С. Фиксация штырьков лампы предотвращает их искривление и обеспечивает хороший контакт.

«A.A.G. STUCCHI», Италия

Компания «A.A.G. STUCCHI» основана в 1944 году,имеет международные сертификаты ISO 9002,ISO 14001,ISO 9001 и является одним из крупнейших в мире производителей компонентов для светотехнической индустрии.

Степень защиты ламподержателей: IP 20. Номинальный ток и напряжение: 2 А — 250В.

«Vossloh Schwabe», Германия

Компания «Vossloh Schwabe» является мировым лидером по производству и продажам комплектующих для светотехники.

Особенностью патронов является большой ротор из полибутелентерефталата, характеризующийся термоустойчивостью. Для обеспечения хорошего контакта и предотвращения искривления штырьков цоколя лампы, ротор снабжен специальными штырьковыми опорами. Степень защиты: IP 20. Номинальная мощность: 2/250. Отверстия под винты М3.

 

Ламподержатели (патроны) для кольцевых люминесцентных ламп

Описание

«A.A.G. STUCCHI», Италия

Корпус из поликарбоната имеет маркировку температуроустойчивости Т110. Степень защиты: IP 20. Номинальный ток и напряжение: 2 А — 250В.

«Vossloh Schwabe», Германия

Корпус из поликарбоната имеет маркировку температуроустойчивости Т110. Степень защиты: IP 20. Номинальная мощность: 600W/600V.
Цоколь
лампы
Тип
лампы
Комплектация Крепление Код Вид Чертеж Производитель
G10q T-R9
кольцевая
без стартеро-
держателя
на автоматических
защелках
ST103/P «A. A.G. STUCCHI»
Стартеродержатели (патроны для стартера)
Описание
Патроны для стартера, используются при подключении люминесцентных ламп с электромагнитным дросселем и стартером.
«LST», Великобритания-Китай
Стартеродержатели изготовлены из негорючего поликарбоната, температура плавления — 130°С.
Посадочный
размер
Крепление Код Фото Чертеж Производитель
25 мм крепление
на винт
LST 15. 917 «LST»
Клипсы (держатели) для люминесцентных ламп
Описание
Держатели для люминесцентных ламп крепятся к опорной поверхности винтом (саморезом) или заклепкой. На одну лампу обычно используют 2 клипсы.
«LST», Великобритания-Китай
Крепежные клипсы изготовлены из хром-никелевой стали.
Тип (диаметр)
лампы
Код Фото Чертеж Производитель
для лампы
Т5 (16 мм)
LST 17. 011 «LST»
для лампы
Т8 (26 мм)
LST 15.011 «LST»
Компактные люминесцентные энергосберегающие лампы
Компактные люминесцентные энергосберегающие лампы «ГЕЛЬВЕТИКА» («Гельветика-Трейдинг», Россия-КНР)
Описание
Люминесцентные лампы уже давно начали вытеснять обычные лампы накаливания по всему миру, поскольку обладают массой преимуществ. Однако, распространению препятствовало то, что обычные линейные люминесцентные лампы имеют довольно большую длину. Изогнув колбу такой лампы и разделив её на меньшие по размеру колбы, а также используя современные люминофоры, удалось создать компактную люминесцентную лампу (КЛЛ, CFL), которую также называют энергосберегающей лампой.
Компактные люминесцентные лампы сравнимы по размеру с обычными лампами накаливания и сохраняют все лучшие характеристики линейных люминесцентных ламп.
КЛЛ имеют встроенную систему ЭПРА (электронный пускорегулирующий аппарат, который также называют электронным балластом), используются как обычные лампы накаливания и не требуют никакого дополнительного оборудования.
Энергосберегающие лампы полностью безопасны, при применении по назначению и соблюдении правил эксплуатации.
Преимущества компактных люминесцентных ламп:
  • На 80% меньше потребляют электроэнергии, по сравнению с обычными лампами накаливания (при аналогичной яркости света), поэтому их называют энергосберегающими лампами. Денежные траты на электроэнергию сокращаются в 5 раз!
  • При равном потреблении энергии, компактная люминисцентная лампа дает в 5 раз больше света, чем обычная лампа накаливания. У ламп накаливания 85-90% электроэнергии превращается не в свет, а в тепло!
  • Служат в 8 раз дольше по сравнению с обычными лампами накаливания (при одинаковой светоотдаче).
  • Заметно снижаются затраты на обслуживание компактных люминесцентных ламп, особенно в случаях расположения источника света в местах с трудным доступом.
  • Компактные люминесцентные лампы очень слабо нагреваются, что позволяет использовать их в светильниках с ограничением уровня температуры.
  • КЛЛ могут работать в постоянном режиме в местах, где требуется освещение на протяжении всех суток (коридоры производственных помещений, аварийное, дежурное освещение и т.д.). Отсутствие частого «включения-выключения» только увеличивает срок службы энергосберегающих ламп.
  • КЛЛ отличает меньшая чувствительность к тряске и вибрациям, по сравнению с обычными лампами накаливания.
  • Энергосберегающие лампы зажигаются мгновенно, без жужжания и раздражающего мерцания, дают ровный свет, не слепящий глаза, что позволяет использовать их в открытых светильниках.
Применение компактных люминесцентных ламп:
Компактные люминесцентные лампы предназначены для эксплуатации в осветительных приборах жилых, офисных, коммерческих, административных и промышленных помещений, в декоративных осветительных установках.
Компактные люминесцентные лампы можно использовать в любом светильнике в качестве заменителя обычных ламп накаливания.
Не рекомендуется использование КЛЛ в открытых уличных светильниках, а также использование с регуляторами яркости (диммерами), электронными стартерами, реле времени и световыми датчиками.
Для обеспечения правильного температурного режима работы энергосберегающей лампы зазор между пластиковым корпусом цоколя лампы и плафоном должен быть не менее 15 мм.
КЛЛ нельзя выбрасывать в обычный мусорный контейнер. Лампы требуют специальной утилизации (отработавшую лампу можно сдать в районный ДЭЗ или РЭУ, или в магазин «IKEA»). Не следует разбирать или разбивать энергосберегающие лампы.
При извлечении из упаковки, монтаже и демонтаже рекомендуется держать лампу за пластиковое основание, а не за стеклянную часть.
Технические характеристики:
Температура эксплуатации от -25°С до +40°С
Цветовая температура 2700 К (теплый белый)
Класс энергосбережения А
Питание 220-240 В, 50/60Гц
Срок службы (мин. ) 8000 часов
при 10000 циклов «вкл.-выкл.»
Виды компактных люминесцентных ламп:
Большой выбор форм, размеров и мощностей компактных люминесцентных ламп позволяет использовать их в различных светильниках, способных украсить интерьер любого дома, магазина или офиса.
Компактные люминесцентные лампы предназначены для установки в обычные патроны. Цоколь лампы может иметь резьбу Е14 и Е27 диаметром 14 мм и 27 мм соответственно, что позволяет монтировать их в обычные патроны (E14 для патрона «миньон» и E27 для стандартного бытового патрона).
Выбор той или иной лампы зависит от необходимой мощности, размеров цоколя и лампы и эстетических предпочтений.
Серия «Spiral»
Популярные лампы в форме спирали, к которым уже давно привыкли потребители. Благодаря эстетичной форме и функциональным качествам этих ламп, они повсеместно вытесняют стандартные лампы накаливания. Интересная форма ламп гармонично дополняет бра и люстры с открытыми плафонами.Цоколь: Е14Мощность: 9, 13 Вт
Серия «3U»
Колба лампы состоит из трех U-образных люминесцентных трубок.Эти КЛЛ подходят для замены наиболее распространенных типов ламп накаливания в светильниках, люстрах, особенно в местах, где необходимо создать постоянное экономное освещение и высокий уровень светового комфорта. Используются в жилых, бытовых, общественных, административных и промышленных помещениях, а также на лестничных площадках для круглосуточного освещения.Цоколь: Е14, Е27Мощность: 7, 11, 15, 20 Вт
Серия «Candle»
Форма колбы этой лампы напоминает пламя свечи.Лампы предназначены для системы профессионального освещения гостиниц, офисов, магазинов, ресторанов, кафе, кинотеатров. Также подходят для декоративного освещения там, где лампы работают продолжительное время. Очень хорошо подходят для замены стандартных ламп накаливания в форме свечи (бра, люстры, светильники).Цоколь: Е14Мощность: 5 Вт
Серия «Standart»
КЛЛ с формой обычной лампы накаливания.Интенсивность и распределение света очень близки к аналогичным характеристикам матовых ламп накаливания. Лампы дают мягкий комфортный рассеяный свет. Предназначены для замены ламп накаливания в системах профессионального освещения (гостиницы, рестораны, магазины, офисы). С большим успехом используется в быту, особенно в светильниках, где лампа видна непосредственно.Цоколь: Е27Мощность: 11 Вт
Галогенные лампы
Галогенные лампы для прожекторов
Галогенные лампы используются в прожекторах внешней подсветки.

Галогенные лампы рекомендуется использовать с защитно-пусковым устройством (ЗПУ), что увеличивает срок эксплуатации в среднем на 70%.

 

Мощность Длина, мм Тип цоколя Световой поток, Лм Срок службы, ч.
100W 78-80 R7s 1280 2000
150W 78-80 R7s 2300 2000
300W 114-118 R7s 5000 2000
500W 114-118 R7s 9500 2000
1000W 189.1 R7s 22000 2000

 

1000W
300W, 500W
150W
Металлогалогенные лампы
Металлогалогенные лампы для прожекторов
Металлогалогенные лампы используются в прожекторах внешней подсветки.

Металлогалогенные лампы рекомендуется использовать с защитно-пусковым устройством (ЗПУ), что увеличивает срок эксплуатации в среднем на 70%.

 

Мощность Длина, мм Тип цоколя Световой поток, Лм Срок службы, ч.
70W 115 R x 7S 5500 6000
150W 135 R x 7S 11500 2000
250W 225 E40 20500 1200
400W 281 E40 36000 1200

 

250W, 400W 70W, 150W
Светодиодные лампы
Светодиодные лампы для шлейфов BELT-LIGHT (КНР)
Лампы с 4 и 5 LED Лампы с 12 LED

Светодиодные лампы предназначены для декоративного освещения и для использования в шлейфе БЕЛТ-ЛАЙТ (BELT LIGHT).

Belt-Light — это монтажный шлейф с патронами для установки цветных лампочек. С помощью широкой световой гаммы лампочек можно создавать яркие динамичные панно большого формата, а в комплексе с контроллером — эффект «бегущие огни».

В шлейф можно устанавливать лампы накаливания или светодиодные лампы с цоколем Е27. Мощность лампы должна быть для пластикового шлейфа Belt-Light — не больше 10 Вт, для резинового шлейфа Belt-Light — не больше 15 Вт.

 

Код LED-12 LED-G-45 LED-G-45 4Led
Потребляемая мощность, Вт 1.0 0.4 0.4
Количество светодиодов, шт. 12 5 4
Вид колбы лампы «грибок» шарик шарик
Материал колбы лампы прозрачный бесцветный пластик белый светорассеивающий пластик белый и цветной
светорассеивающий пластик
Диаметр колбы, мм 45 45 45
Цоколь Е27 Е27 Е27
Напряжение питания, В 220 220 220
Срок службы (min), час. 50000 50000 50000
Цвета: желтый, синий, зеленый белый, красный, желтый,
синий, «Мульти» (RGB)
желтый, зеленый
Дополнительная информация Внутренняя поверхность колбы лампы
имеет рельеф в виде капель, что
обеспечивает хорошее светорассеивание
и эстетичный внешний вид.
Лампы «Мульти» плавно меняют цвет,
проходя по всем цветам и оттенкам
RGB-круга.
Лампы могут иметь белую либо цветную
колбу. Цветная колба усиливает цвет и
яркость светодиодов.

Как работают люминесцентные лампы

Как работают люминесцентные лампы
Elliott Sound Products Как работают люминесцентные лампы

© 2007 Род Эллиотт (ESP)


Лампы и энергетический индекс
Основной указатель

Содержание
1 Введение

Статья «Традиционные люминесцентные ламповые лампы и их альтернативы» рассматривает работу люминесцентных ламп в довольно простых терминах, но здесь мы рассмотрим лампы и их балласты (как «традиционные» магнитные, так и электронные) и немного углубимся в их внутреннюю часть. выработки.Используются альтернативные схемы балласта (например, «опережение / запаздывание»), и это показано в предыдущей статье. Здесь это не рассматривается, потому что речь идет о том, как они работают, а не о способе подключения фитингов.

Принцип работы люминесцентной лампы сильно отличается от простой лампы накаливания, и современные люминесцентные лампы (особенно компактные люминесцентные лампы или КЛЛ) используют электронные балласты для регулирования напряжения на лампе и тока через нее.При первом запуске необходимо обеспечить значительно более высокое напряжение, чем обычно, чтобы вызвать возникновение внутренней дуги, а после запуска ток должен быть ограничен до безопасного значения для трубки.

В этой статье показаны некоторые способы достижения этих целей, начиная с базового индуктивного балласта, который на протяжении многих лет был основой производства люминесцентных ламп.

Обратите внимание, что показанные здесь формы сигналов представляют собой комбинацию моделирования и реальных измерений. При необходимости смоделированные формы сигналов корректируются для соответствия измеренным. Причина этого подхода проста … симулятор не может представить нагрузку с отрицательным импедансом с соответствующими напряжениями удара и другими характеристиками, которые представляет люминесцентная лампа. Точно так же очень сложно (и потенциально смертельно) пытаться уловить все напряжения и токи, которые существуют в цепях реальных люминесцентных ламп.

Хотя принятый подход действительно вносит некоторые незначительные ошибки в показанные формы сигналов, они относительно незначительны, а конечный результат находится в пределах любого традиционного производственного допуска для балластов, ламп и других компонентов.


2 Индуктивный балласт

Для объяснения индуктивного балласта я использовал старую «компактную» люминесцентную лампу, которая идеально подходит для тестирования. Хотя он по-прежнему работает, световой поток несколько ниже, чем должен быть, но это лишь немного меняет некоторые измеренные значения. Принципы не меняются.

Сама лампа имеет следующие характеристики …

Диаметр трубки 11,3 мм (нестандартная)
Длина 533 мм (21 дюйм)
Сопротивление нити (холодная) 12.8 Ом
Сопротивление нити (горячее) 23 Ом
Балластное сопротивление 105 Ом
Индуктивность балласта 2,11 H
Starter Starter
Стартер 1,2 нФ

Диаметр люминесцентных ламп обычно обозначается как T8 (например). Это означает, что диаметр составляет 8 x 1/8 дюйма, что составляет 1 дюйм (25.4 мм). Ранние трубки были T12 (1½ дюйма или 38 мм в диаметре), но они были уменьшены в размерах до T8, когда были представлены (тогда) «новые» высокоэффективные типы. Стандартная 4-футовая трубка (1200 мм) раньше рассчитывалась на 40 Вт, но их заменили на 36 Вт, а светоотдача была улучшена. Последнее воплощение — T5 (диаметр 16 мм), в котором используется меньшее расстояние между выводами и другой фитинг надгробия. Они также короче (1163 мм) и не подходят для стандартного светильника. разработан для более ранних ламп.

В случае моего тестового образца диаметр трубки намного меньше обычного, потому что лампа обозначена как компактная, поэтому ее складывают, чтобы уменьшить общую длину.Упоминается сопротивление нити, потому что оно будет упомянуто позже в этой статье. Схема представлена ​​ниже и является стандартной во всех отношениях.


Рисунок 1 — Схема люминесцентной лампы

Индуктор — это балласт, и на самом деле это гораздо более важный компонент, чем он может показаться. Он не только ограничивает максимальный ток трубки, но и используется для генерации импульсов высокого напряжения, необходимых для зажигания плазменной дуги внутри трубки. Сама люминесцентная трубка имеет на каждом конце нагреватель, небольшое количество ртути и инертный газ (обычно аргон). Стенка трубки покрыта люминофором, который излучает видимый свет при возбуждении интенсивным коротковолновым ультрафиолетовым светом, излучаемым ртутным дуговым разрядом. Дополнительный конденсатор (C2) предназначен для коррекции коэффициента мощности — подробнее об этом позже.

Маленькая лампочка — стартер. Биметаллическая полоса запечатана в стеклянную оболочку с (обычно) неоновым газом внутри. При подаче питания напряжения более чем достаточно, чтобы вызвать дугу в неоновом пускателе, но не настолько, чтобы вызвать дугу в самой лампе.Тепло от неоновой дуги заставляет биметаллическую полосу изгибаться, пока она не замыкает контакты. Затем дуга в неоновом стартере гаснет, и сеть подключается через балласт и нити на каждом конце трубки через выключатель стартера.

Когда в пускателе нет дуги (или накаливания), биметаллическая полоса охлаждается, и примерно через секунду выключатель размыкается. Прерывание тока через катушку индуктивности вызывает возврат напряжения — импульс высокого напряжения, который (будем надеяться) зажжет дугу в трубке. Если дуга не запускается с первого раза, процесс повторяется до тех пор, пока не начнется. Вот почему стандартные люминесцентные лампы при включении несколько раз мигают. Нити — это нагреватели, которые действуют как катоды (эмиттеры электронов) и необходимы для обеспечения достаточного количества тепла для испарения ртути и обеспечения хорошего потока электронов для возбуждения плазмы. Когда лампа работает нормально, потока электронов достаточно для поддержания приемлемой рабочей температуры нити накала. Обе нити действуют как катоды и аноды поочередно, потому что полярность меняется 50 (или 60) раз в секунду.

Плазма имеет интересную характеристику … отрицательное сопротивление! Как только начинается дуга, более высокий рабочий ток вызывает падение сопротивления и меньшее напряжение появляется на трубке. Если бы это продолжалось, трубка очень быстро разрушилась бы. Балласт предотвращает это, потому что он вводит последовательный импеданс для ограничения тока. Сопротивление не сработает, потому что оно слишком расточительно и не обеспечивает накопления энергии для генерации всплеска обратного напряжения, чтобы повторно зажигать дугу при каждом изменении полярности.


Рисунок 2 — Рабочие кривые

На рисунке 2 вы можете видеть, что когда ток трубки (зеленая кривая) является максимальным, напряжение (красная кривая) на трубке минимально. Вы можете увидеть эффект сразу после каждого скачка напряжения. По мере увеличения тока напряжение падает (для этой лампы минимальное значение было ± 126 В). Пик в точке пересечения нуля формы волны тока генерируется балластом, и именно он повторно зажигает дугу для каждого полупериода подключенной сети.На рисунке 3 показано напряжение на балласте — быстрые переходы соответствуют пикам, приложенным к лампе, и происходят около пика напряжения, где ток прерывается, когда проходит через ноль.


Рисунок 3 — Напряжение и ток в балласте

Форма волны напряжения на балласте по существу представляет собой разницу между приложенным сетевым напряжением и напряжением на лампе. Для работы на 120 В напряжение явно меньше, но лампе все еще нужно где-то между 300-400 В, чтобы зажигать (или повторно зажигать) дугу, поэтому балласт должен иметь возможность компенсировать разницу с помощью обратного импульса на каждом нуле. -пересечение тока.У меня нет люминесцентной лампы на 120 В или балласта, поэтому я не могу предоставить полную информацию. То, что люминесцентные лампы вообще работают с напряжением 120 В, несколько примечательно, но легко понять, почему электронные балласты так популярны в США. Многие балласты для стран с напряжением 120 В используют «балласт» автотрансформатора, который увеличивает доступное напряжение и действует как ограничитель тока.


3 Системные потери

В системе несколько потерь, причем балласт является одним из основных факторов.Балласт, использованный в моих тестах, имеет сопротивление постоянному току 105 Ом, поэтому расходуется почти 7 Вт. Потери на самом деле выше, потому что стальные листы очень быстро нагреваются, поэтому «потери в железе» значительны. Это можно уменьшить только за счет использования стали более высокого качества и более тонких листов. Оба значительно увеличат стоимость.

Каждая нить накала имеет горячее сопротивление 23 Ом, а напряжение почти 6 В присутствует на каждой нити во время работы лампы. Помните, что во время работы конец нити накала, идущий к стартеру, отключается (за исключением очень маленькой емкости на стартере).Измеренное напряжение представляет собой градиент, вызванный током плазмы, и каждая нить накала рассеивает около 1,5 Вт (всего 3 Вт). Только в этих компонентах люминесцентная лампа расходует 10 Вт подаваемой мощности в виде тепла (7 Вт для балласта, 3 Вт для нити накала).

Хотя балластные отходы могут быть уменьшены с помощью более качественного блока, потеря накала необходимы для работы лампы. Это относится ко всем люминесцентным лампам, за исключением специализированных типов с холодным катодом, но для них требуется такой же специализированный электронный балласт.CCFL (люминесцентные лампы с холодным катодом) чаще всего встречаются в ЖК-мониторах и телевизорах, но теперь их заменяют светодиоды в новых моделях.

Есть еще одна потеря, которую пользователь не видит и даже не оплачивает. Эти потери являются результатом низкого коэффициента мощности люминесцентных ламп, и это вызвано преимущественно индуктивной нагрузкой. Индуктивная нагрузка вызывает запаздывающий коэффициент мощности, когда максимальный ток возникает после максимального напряжения. Вы также можете рассматривать это как точку, где нагрузка (лампа и индуктор) фактически возвращает некоторую мощность источнику.Для поставщика электроэнергии это означает, что трансформаторы, кабели и генераторы переменного тока должны выдерживать больший ток, чем должен быть. Это становится очень дорогостоящим, когда очень много нагрузок имеют низкий коэффициент мощности.


Рисунок 4 — Напряжение Vs. Текущие, нескорректированные и исправленные

На рисунке 4 вы можете видеть, что нескорректированная форма сигнала тока имеет видимые искажения около точки пересечения нуля. Как вы также можете видеть, среднеквадратичный ток также значительно выше, чем указано в номинальной мощности.Реактивные нагрузки имеют разные значения мощности и ВА, но для резистивной (или нереактивной) нагрузки они одинаковы.

В этом случае ток без C2 составляет 256 мА, а при добавлении C2 он падает до 162 мА. При приложенном напряжении 240 В это означает, что …

Без компенсации Общая мощность = 38 Вт
ВА = 61,4 Коэффициент мощности = 0,62
С компенсацией Общая мощность = 38 Вт
ВА =9 Коэффициент мощности = 0,97

Коэффициент мощности можно рассчитать, используя фазовую задержку или разделив фактическую мощность на ВА (Вольт * Ампер). Что касается фазового угла, ток отстает от напряжения на 57,4 °, а коэффициент мощности рассчитывается путем взятия косинуса фазового угла — 0,53 в данном случае. Цифры разные, потому что форма волны тока не является чистой синусоидой — она ​​имеет искажения. Добавление конденсатора сдвигает фазу искажения, так что форма сигнала компенсированного тока имеет плоскую вершину (что-то вроде ограничения усилителя).Хотя это вносит гармоники в сеть, их влияние далеко не так плохо, как в некомпенсированной цепи, о чем свидетельствует скорректированный коэффициент мощности. Добавление конденсатора правильного номинала в чисто индуктивную цепь (без искажения формы сигнала) даст коэффициент мощности, равный единице — идеальный вариант.

Обратите внимание, что использование косинуса фазового угла (CosΦ) является сокращением, и может использоваться только , когда оба напряжение и ток являются синусоидальными волнами.Он вообще не работает для сигналов с сильными искажениями, например, генерируемых электронными нагрузками, и будет давать неверные ответ для индуктивных нагрузок, которые включают искажения (например, люминесцентные лампы). Вы всегда получите , получите правильный ответ, если разделите реальную мощность на ВА.

Также доступны пускорегулирующие аппараты «быстрого запуска» и пускорегулирующие устройства без стартера. Они выходят за рамки данной статьи, которая предназначена для описания основных принципов, а не для подробного описания всех имеющихся балластов люминесцентного освещения.


4 электронных балласта

Электронные балласты становятся все более распространенными, потому что их можно сделать более эффективными, чем типичный магнитный балласт, и для них требуется гораздо меньше материала. Это делает их дешевле (в изготовлении, но не обязательно для вас), чем люминесцентные лампы с обычным балластом. В частности, теперь все компактные люминесцентные лампы (КЛЛ) используют электронный балласт, который обычно поставляется вместе с самой лампой. Хотя это удобно, но это ужасная трата ресурсов, потому что все электронные компоненты просто выбрасываются, когда лампа выходит из строя.Лампы T5 в настоящее время становятся стандартом для люминесцентного освещения, и для максимального срока службы электронный балласт необходим.

В некоторой степени повышение эффективности по сравнению с магнитным балластом может быть иллюзией — по крайней мере, частично. Поскольку они намного легче, есть реальная и определенная экономия на транспортных расходах, но магнитные балласты могут быть такими же эффективными, как электронная версия, а может быть, даже больше. Как бы то ни было, переход к электронным балластам сейчас не остановить, и по мере того, как цена снизится, их использование будет продолжать расти.У электронных балластов есть и другие преимущества, о которых мы поговорим позже.

Типовая (более или менее) принципиальная схема электронного балласта, используемого в КЛЛ, показана ниже. Те, которые используются для обычных люминесцентных ламп, будут очень похожи, но обычно будут использовать обновленные компоненты. В то время как электроника в КЛЛ может прослужить всего 15 000 часов, фиксированный электронный балласт, как ожидается, прослужит около 100 000 часов или более (более 10 лет непрерывной работы).На самом деле электронный балласт должен быть способен прослужить столько же, сколько и его магнитный аналог, поэтому срок службы 40 лет не так глуп, как может показаться.


Рисунок 5 — Схема электронного балласта [2]

Схема на Рисунке 5 представляет собой немного упрощенную версию схемы, показанной в листе данных Infineon. Он полностью скорректирован по коэффициенту мощности и имеет защиту для обнаружения неисправных (или отсутствующих) ламп. Характерным режимом отказа люминесцентных ламп является «выпрямление», когда одна нить накала (катод) становится значительно слабее другой.Если не обнаружено, смещение постоянного тока приведет к отказу коммутирующих устройств, что сделает балласт бесполезным (маловероятно, что кто-то отремонтирует их, когда они сломаются).

Электронный балласт действительно имеет ряд преимуществ перед магнитной версией. Поскольку дуга полностью погаснет примерно за 1 мс, при использовании более высокой частоты, чем сеть 50 или 60 Гц, дуга останется. Его не нужно наносить повторно, а просто меняет направление [1]. Кроме того, светоотдача увеличивается примерно на 10% выше 20 кГц, поэтому улучшается световая отдача.

До тех пор, пока коэффициент мощности всех этих электронных балластов не будет скорректирован, они будут вызывать проблемы с распределением. К сожалению, во многих странах не требуется, чтобы приборы малой мощности (обычно менее 75 Вт) имели коррекцию коэффициента мощности, но, учитывая распространение КЛЛ и электронных балластов в обычных люминесцентных лампах, это придется изменить. Поскольку освещение используется в каждом доме, проблема неисправленного коэффициента мощности выйдет из-под контроля, если что-то не будет сделано.

В отличие от магнитного балласта (индуктора), коэффициент мощности электронного балласта нельзя скорректировать простым добавлением конденсатора. Как видно на приведенной выше диаграмме (хотя это может быть не сразу очевидно), на выходе входного мостового выпрямителя имеется очень маленький конденсатор емкостью 220 нФ. Первый полевой МОП-транзистор работает как повышающий преобразователь и переключается на протяжении каждого полупериода. Таким образом, среднеквадратичный ток, потребляемый из сети, поддерживается в фазе с напряжением, а форма волны тока является приблизительно синусоидальной.Это дает очень хороший коэффициент мощности — возможно лучше 0,9. Чтобы предотвратить возвращение высокоскоростных коммутационных импульсов в сеть, необходима обширная фильтрация, на что указывает фильтр EMI (электромагнитные помехи) на входе.

Для компактных люминесцентных ламп (КЛЛ) используется несколько более простая схема, так как схемы предназначены для выбрасывания. Лично я считаю это бессмысленным расточительством и надеюсь, что это не будет продолжаться (или, по крайней мере, будет введена переработка для максимального восстановления).Типичный инвертор CFL показан ниже …


Рисунок 6 — Типовая схема электронного балласта CFL

Я говорю «достаточно типичный», потому что реальные схемы сильно различаются. Доступны специализированные микросхемы драйверов MOSFET, но большинство дешевых (потребительских) CFL будут использовать вариант вышеупомянутого. Обратите внимание, что резистор 0,47 Ом, показанный на входе, обычно представляет собой плавкий резистор, и он используется в первую очередь в качестве предохранителя. Почему бы не использовать настоящий предохранитель? Резисторы дешевле.Большинство деталей будет выбрано таким образом, чтобы выжить в течение указанного срока службы лампы, поэтому лучшие методы проектирования обычно игнорируются, если можно ожидать, что деталь с более низким номиналом (и более дешевая) прослужит около 10 000 часов.

Трансформатор (T1) обеспечивает обратную связь с транзисторами и генерирует базовый ток, необходимый для надежного переключения. Цикл инициируется DIAC — двунаправленным устройством, которое имеет резкий переход из непроводящего состояния в проводящее.Поскольку его характеристики очень похожи на характеристики устройства с отрицательным импедансом, его часто используют в диммерах, люминесцентных балластах и ​​даже в стробоскопах. Для получения дополнительной информации щелкните здесь, чтобы просмотреть руководство по DIAC.

Обратите внимание, что схемы, показанные выше, предназначены только для информации и не должны быть построены так, как показано. Для некоторых компонентов требуются очень специфические параметры, трансформаторы и индукторы имеют решающее значение. В схемах нет ничего плохого, им просто не хватает всей информации, необходимой для их построения.Речь идет о том, как эти вещи работают, а не о том, как их построить.


5 Коэффициент мощности Коэффициент мощности

не совсем понятен большинству энтузиастов электроники, и это вполне понятно, потому что он мало востребован в общих электронных схемах. Есть аспекты коэффициента мощности, которые даже не понимают многие инженеры, которым следует знать лучше. Когда создаются несинусоидальные формы волны тока, даже многие инженеры делают двойное замечание, потому что они не могут использоваться для работы с электронными нагрузками.Я рассмотрю здесь оба случая, а также намереваюсь показать методы пассивной и активной коррекции коэффициента мощности. Хотя пассивный PFC (коррекция коэффициента мощности) отличается простотой, на самом деле он оказывается более дорогостоящим из-за необходимости в большом индукторе. Активный PFC кажется сложным (и это действительно так, если вам нужно его спроектировать), но при разработке используются относительно дешевые компоненты.

Самый простой случай — индуктивная нагрузка. Это относится ко многим электрическим машинам, включая двигатели, трансформаторы и (конечно) балласты люминесцентного освещения (магнитные типы).Когда двигатель или трансформатор полностью нагружены, он проявляет себя как резистивная нагрузка и имеет отличный коэффициент мощности. При малых нагрузках эта же часть оказывается индуктивной, и это приводит к отставанию тока от напряжения. Если нагрузка работает в этом режиме большую часть своего срока службы, необходимо применить поправку, чтобы вернуть коэффициент мощности как можно ближе к единице.

Коэффициент мощности резистивной нагрузки всегда единица — это идеально. Каждый вольт и каждый ампер используются для выработки тепла.Распространенными примерами являются электрические обогреватели, тостеры, чайники и лампы накаливания. Однако не все нагрузки резистивные, поэтому давайте рассмотрим типичный пример (но упрощенный для простоты описания и понимания).

Электрическая машина обычно работает с половинной нагрузкой, но может потребоваться полная мощность при запуске или для работы с переходными нагрузками. Это может быть двигатель или трансформатор — две из наиболее распространенных используемых электрических машин (люминесцентная лампа с магнитным балластом немного сложнее).В каждом случае индуктивная и резистивная составляющие нагрузки будут равны (для половинной мощности), а формы сигналов напряжения, тока и мощности выглядят следующим образом . ..


Рисунок 7 — Электрическая машина на половинной мощности

Как и ожидалось, когда резистивная и индуктивная составляющие равны, наблюдается сдвиг фазы на 45 °, при этом ток отстает от напряжения (отстающий коэффициент мощности). Приложенное напряжение — 240 В, резистивная часть нагрузки — 120 Ом, индуктивное реактивное сопротивление — также 120 Ом, мощность — 240 Вт.Мы должны потреблять 1 А от сети (240 В x 1 А = 240 Вт), но вместо этого потребляем 1,414 А. Дополнительный ток необходимо подавать, но он полностью расходуется впустую. Что ж, это не совсем так — его возвращают в сеть. Однако, если многие нагрузки делают то же самое, то оно просто рассеивается в виде тепла в трансформаторах, линиях электропередачи и генераторах электростанций. Очень мало реальных нагрузок являются емкостными, поэтому в схему добавляется конденсатор.

При сдвиге фазы 45 ° коэффициент мощности равен 0.707, и мы потребляем 1,42 А от сети вместо 1 А. Чтобы восстановить ток, чтобы он был в фазе с напряжением, нам нужно добавить в схему конденсатор. Конденсатор фактически противоположен катушке индуктивности и (сам по себе) будет создавать ведущий коэффициент мощности — ток будет предшествовать напряжению. Добавив в схему конденсатор нужного номинала, коэффициент мощности можно восстановить до единицы, что приведет к значительному снижению тока, потребляемого от сети. Для этого примера 13 мкФ почти идеальны, но даже 10 мкФ уменьшат сдвиг фазы задержки до 14.2 °, и это увеличивает коэффициент мощности до 0,96 — обычно считается максимально близким к идеальному.

Весь процесс несколько противоречит интуиции. То, что нагрузка может потреблять больше тока, чем должно, достаточно легко понять, но то, что повторное потребление большего тока через конденсатор уменьшит сетевой ток, не имеет никакого смысла. Все дело в относительной фазе двух токов, и это действительно работает. В противном случае наша энергосистема оказалась бы в крайне тяжелом положении.


Рисунок 8 — Люминесцентный свет при нормальной работе

На несколько упрощенной схеме выше показаны формы сигналов напряжения и тока люминесцентной лампы. Упрощение заключается в том, что симуляторы не включают в себя нелинейные нагрузки с отрицательным сопротивлением, но на основной принцип (и результирующие формы сигналов) это существенно не влияет. Как видите, форма сигнала тока немного искажена, и это влияет на форму сигнала после применения компенсации. Фактически, гармоники, генерируемые искажением, сдвинуты по фазе, поэтому окончательная форма волны тока выглядит как обрезанная синусоида.Однако после компенсации коэффициент мощности очень хороший, 0,98 — отличный результат.

Без компенсации потребляемый ток составляет 276,5 мА (что дает коэффициент мощности 0,57), а после компенсации он падает до 159,5 мА. Мощность нагрузки (самой лампы) составляет 29,8 Вт, а резистивная составляющая балласта (R1) рассеивает 7,8 Вт — это теряется в виде тепла. Все потраченное впустую тепло снижает общую эффективность, но это неизбежно, поскольку реальные компоненты имеют реальные потери.

Ситуация становится намного хуже, когда используется нелинейная (электронная) нагрузка. На рисунке 9 показаны эквивалентная схема и осциллограммы — ток протекает только на пике приложенного напряжения. Хотя этот ток находится в фазе с напряжением, коэффициент мощности ужасен, потому что форма волны тока не похожа на синусоиду. Резкие пики тока имеют сравнительно высокое среднеквадратичное значение, но мощность, подаваемая и передаваемая в нагрузку, намного меньше.


Рисунок 9 — Осциллограммы мощности электронной нагрузки

Скорректированный ток не показан по той простой причине, что для коррекции формы сигнала необходимы значительные дополнительные компоненты.В отличие от случая, когда ток нагрузки является синусоидальным (или близок к нему), простое добавление конденсатора не принесет ничего полезного. Пики тока таковы, что их можно удалить только с помощью фильтра, предназначенного для пропускания только частоты сети. Как показано, ток составляет 296 мА, но, как видно, пиковое значение составляет почти 2 А. Нагрузка рассеивает 28 Вт, но «полная мощность» (ВА) составляет 71,4 ВА. Это дает коэффициент мощности 0,39 — действительно очень плохо. Если вам интересно, куда пропала разница в 1 Вт между источником и нагрузкой, она теряется в диодах.

Добавив фильтр (пассивный PFC), состоящий из катушки индуктивности и пары конденсаторов, это можно улучшить, но требование относительно большой индуктивности значительно увеличивает вес и стоимость. Один Генри примерно настолько мал, насколько вы можете использовать для определения номинальной мощности нагрузки, и хотя большее значение будет работать лучше, оно также будет снова больше, а также с более высокими потерями. По этим причинам пассивная коррекция коэффициента мощности обычно не используется с импульсными источниками питания.


Рисунок 10 — Пассивная коррекция коэффициента мощности

За счет добавления катушки индуктивности и конденсатора, как показано, коэффициент мощности значительно повышается.Форма волны тока все еще не очень хорошая, но она намного лучше, чем схема без коррекции. Среднеквадратичный ток снижен с 296 мА до 136 мА, что дает 32,6 ВА. Мощность нагрузки составляет 29 Вт, поэтому коэффициент мощности теперь составляет 0,88, что намного более достойно. Как показано на рисунке 9, электроника практически не имеет потерь. Излишне говорить, что это не так, но речь идет о PFC, а не о потерях в цепи.

Катушка индуктивности (L1) представляет собой относительно большой компонент, и из-за этого будет сравнительно дорогим.Чтобы снизить стоимость и вес, электронная схема коррекции коэффициента мощности является лучшим предложением, и она также будет более эффективной. Более низкие потери мощности означают меньше потерь тепла и более прохладную электронику.


Рисунок 11 — Схема активной коррекции коэффициента мощности

Схема, показанная здесь, почти идентична схеме на рисунке 5, но упрощена, чтобы ее было легче понять. Входящая сеть проходит через фильтр электромагнитных помех, состоящий из C1 и L1. Затем он идет на мостовой выпрямитель, но вместо большого электролитического конденсатора все, что нужно, — конденсатор 220 нФ (C2). Выходной сигнал представляет собой пульсирующий постоянный ток и изменяется от почти нуля до полного пикового напряжения (340 В для источника питания 240 В RMS). Затем он передается на очень умный повышающий преобразователь режима переключения — L2, Q1 и D5. Это увеличивает любое мгновенное напряжение на его входе до пикового напряжения — в этом случае моделируемый преобразователь стабилизируется на уровне 446 В (несколько выше, чем обычно используется).

Время включения и выключения тщательно контролируется для поддержания тока, который пропорционален форме волны входящего переменного тока, поэтому рабочий цикл (отношение включения-выключения) постоянно изменяется для поддержания правильного повышенного напряжения и пропорционального тока.D6 включен для быстрой зарядки крышки основного фильтра (C3) от сети, а также обеспечивает подзарядку крышки. Это позволяет упростить схему управления.

Выходное напряжение повышающего преобразователя (обычно) регулируется, но регулирование не обязательно должно быть прекрасным, что опять же в некоторой степени упрощает схему. В схеме, показанной на Рисунке 5, вы видите, что индуктор повышающего преобразователя (1,58 мГн) имеет вторичную обмотку. Это используется, чтобы сообщить IC контроллера, когда был достигнут правильный ток.В упрощенной схеме, показанной на рисунке 11, это не используется — период переключения фиксирован (схема была смоделирована, чтобы я мог получить форму тока, показанную ниже). Хотя эта упрощенная версия не так хороша, как «настоящая», она работает довольно хорошо — по крайней мере, в симуляторе.


Рисунок 12 — Формы сигналов активной коррекции коэффициента мощности

Как видите, форма сигнала тока довольно искажена, но измеренные характеристики симулятора впечатляют, несмотря на его относительную простоту.При 60 Вт в нагрузке (балласт и люминесцентная лампа) фактическая мощность сети составляет 61 Вт (потери в диодах, как и раньше), а при сетевом токе 266 мА он потребляет 64 ВА. Таким образом, коэффициент мощности равен 0,94 — действительно очень удовлетворительный результат. Это значительно лучше, чем схема пассивной коррекции коэффициента мощности, и этого следовало ожидать. Все анализы, которые я видел, показывают, что активная схема коррекции коэффициента мощности превосходит пассивную схему как с точки зрения общей эффективности, так и коэффициента мощности. Катушки индуктивности имеют небольшие размеры (электрически и физически), а потери будут намного ниже, чем в любой пассивной цепи PFC.

Если вам интересно, мощность лампы в два раза больше, чем в двух предыдущих примерах, из-за того, что повышающий преобразователь имеет более высокое выходное напряжение, чем желаемое. Мне очень не хотелось тратить много времени на попытки подобрать уровни мощности, а моя упрощенная версия не регулируется. Успешно запустить симуляцию для импульсного преобразователя было непросто, а симуляции требовали много времени из-за высокочастотного переключения.

Сейчас довольно стандартно, что искажение формы волны обозначается как THD (полное гармоническое искажение), которое в случае активной схемы PFC равно 11.7%. Делайте из этого то, что хотите.


6 Температура

Для правильной работы всех ртутных люминесцентных ламп очень важна температура. Есть относительно узкая полоса над и под которой уменьшается дуга, в результате чего световой поток ниже ожидаемого. Когда трубка холодная, в ней остается меньше паров ртути, поэтому дуга не может достичь полной силы, потому что молекул ртути недостаточно для поддержания разряда на желаемом уровне.

Когда температура слишком высока, давление пара увеличивается, увеличивая эффективное сопротивление дуги и снова уменьшая ток разряда. Для большинства компактных ламп (а также, вероятно, большинства стандартных люминесцентных ламп) температура трубки должна быть около 40 ° C для максимальной светоотдачи. При 0 ° C светоотдача составляет всего 40% — действительно очень тусклая лампа. Более высокие температуры не так сильны, но слишком горячая лампа все равно будет сильно разряжена.


Рисунок 13 — Светоотдача в зависимости отТемпература

Когда температура приближается к -38,83 ° C, световой поток полностью прекращается. Это температура, при которой ртуть замерзает, поэтому пары ртути не могут поддерживать дугу и излучать УФ-излучение. Кроме того, при понижении температуры напряжение, необходимое для зажигания дуги, увеличивается, и при 0 ° C лампе для зажигания потребуется примерно на 40% больше напряжения по сравнению с напряжением зажигания при нормальной температуре окружающей среды.

Во многих частях света 0 ° C (или ниже) — это нормальная температура окружающей среды в течение многих месяцев в году, поэтому лампу будет труднее запустить и она будет иметь низкую мощность, пока лампа не нагреется немного. .В таких климатических условиях трубку следует закрывать, чтобы защитить ее от ветра, который может значительно снизить температуру и светоотдачу.

.Температура окружающей среды
* Примечание — закрытый светильник обеспечивает повышение температуры на + 10 ° C по сравнению с окружающей средой.

Как и все материалы по этой теме, существуют различия в способе подачи материала, и разные типы трубок могут существенно отличаться друг от друга. Цифры в основном согласуются с приведенным выше графиком, но небольшое примечание предполагает, что заявленные температуры находятся в состоянии теплового равновесия. Для стабилизации может потребоваться некоторое время, поэтому исходная светоотдача при первом включении лампы будет одинаковой для открытых и закрытых светильников.Поскольку объем светильника по отношению к лампе не указан, будут большие отклонения, если корпус будет больше или меньше (неустановленных) значений, используемых в таблице.


Ссылки
  1. Электронный балласт для люминесцентных ламп, учебный модуль для студентов — Цзинхай Чжоу, Политехнический институт Вирджинии и государственный университет
  2. ICB1FL02G Интеллектуальная микросхема управления балластом для балластов люминесцентных ламп, техническое описание, версия 1.2, февраль 2006 г., Infineon Technologies AG
  3. Работа флуоресцентных систем при низких температурах (Sylvania)


Лампы и энергетический индекс
Основной указатель
Относительная светоотдача (RLO) [3]
Окружающая температура Открытое приспособление Закрытое приспособление *
-10 ° C 25% 50%
0 ° C 50% 80%
10 ° C 80% 100%
25 ° C 100% 98%
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2007. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.
Страница создана и авторское право © июнь 2007.

ПРА для электронных и электромагнитных источников питания для люминесцентных ламп, пускорегулирующих аппаратов, электронных пускорегулирующих аппаратов, электронных БАЛЛАСТОВ, электромагнитных пускорегулирующих аппаратов, люминесцентных ламп для запуска блока, электронного пускорегулирующего устройства, источника питания, лампового освещения, дроссель для ламп контактор для ламп

Блок электронного и электромагнитного питания (ПРА) для запуска люминесцентных ламп

Электронные балласты

Электронный балласт, или балласт, предназначен для перезапуска цепей люминесцентных ламп.Этот метод обеспечивает более высокую надежность и долговечность ламп. Также при использовании электронного балласта при пуске электросхемы часто не возникает гула и мерцания. Еще одним преимуществом использования ЭПРА является их относительно небольшой вес и габариты.

Схема подключения ЭПРА

Дроссели электромагнитные

ПРА электромагнитные для люминесцентных ламп предназначены для подключения ламп с использованием стартера.Стартер работает только в момент подачи питания на систему зажигания лампы, а после того, как он замкнул цепь и загорелась лампа, напряжение, подаваемое на стартер, снижается. Такая схема подключения менее надежна по сравнению с использованием электронных балластов для ламп, поскольку стартерные двигатели не имеют достаточно длительного срока службы и их необходимо часто менять. А без исправного стартера в этой схеме невозможно зажигание лампы. Также частое включение / выключение ламп создает большую нагрузку на нить накала, что сокращает срок службы ламп.Другими недостатками использования электромагнитных балластов являются: возможное мерцание ламп, относительно длительный срок службы, более высокое потребление энергии по сравнению с электронным балластом, возможное грохотание дроссельной заслонки.

Схема подключения электромагнитного индуктора

Люминесцентная лампа — электрическая волна

Принцип работы — Люминесцентные лампы работают за счет ионизации паров ртути в стеклянной трубке. Это заставляет электроны в газе испускать фотоны УФ-частот.Ультрафиолетовый свет преобразуется в стандартный видимый свет с помощью люминофорного покрытия на внутренней стороне трубки.

Рабочий — Трубчатый светильник / стержень, если он состоит из стеклянной трубки длиной 4 фута, внутренняя сторона которой покрыта люминофором и заполнена парами ртути. Он имеет два металлических электрода / нити на обоих концах. Для его работы требуются еще два элемента — 1) Дроссель и 2) Стартер.

Когда мы включаем свет, ток проходит через дроссель, затем один из электродов и доходит до стартера.Изначально через стартер не протекает ток, поскольку контакты стартера разомкнуты, эти контакты окружены газом. Этот газ начинает нагреваться и ионизирует газ, и через него течет ток. Когда ток начинает течь через стартер, газ начинает охлаждаться, что останавливает прохождение тока, поскольку он деионизирует газ в стартере. Этот процесс повторяется. Во время процесса ионизации / деионизации газа в стартере дроссель генерирует высокое напряжение, которое вызывает ионизацию инертного газа в трубке.

За несколько попыток газ внутри трубки полностью ионизируется (возникает дуга) между двумя электродами, и ток начинает течь от одного электрода к другому, и световой сигнал трубки светится (или излучается свет). После ионизации газа высокое напряжение в значительной степени снижается для нормальной работы лампового освещения, ток через стартер не течет.

Ионизация газообразной ртути заставляет электроны в газе испускать фотоны ультрафиолетового света (или частот, или излучения).Ультрафиолетовый свет попадает на люминофорное покрытие внутри, и покрытие светится, давая видимый свет.

НАЗНАЧЕНИЕ ДРОССЕЛЯ

В люминесцентных лампах используются два типа дросселей — электромагнитные и электронные.

Дроссель (или Магнитный дроссель / балласт) — Дроссель предназначен для создания очень высокого напряжения между двумя электродами (на двух концах трубки). Как только газ ионизируется, создается путь (возникает дуга) между двумя электродами, и через него начинает течь ток, тогда ток через стартер не будет.Стартер перестает работать, а дроссель дает низкое напряжение.

Дроссель ограничивает ток также при возникновении дуги между двумя электродами, чтобы предотвратить перегорание лампы или отказ источника питания.

Дроссель

может вырабатывать высокое напряжение с помощью стартера . Стартер очень часто включает и выключает ток (проходящий через дроссель) (вызывает мерцание света), что создает очень высокое напряжение на дросселе и, следовательно, между концами трубки.

Стартер продолжит работу до тех пор, пока газ не будет ионизирован внутри трубки.
Поскольку пусковой механизм прекращает работу, на дросселе больше нет высокого напряжения. И напряжение на дросселе (и между нитями накала) очень сильно снижается.

Электронный балласт — Электронный балласт выполняет функцию как дросселя, так и стартера. Когда электронный дроссель используется со светом, стартер не требуется. Электронный балласт преобразует переменный ток в постоянный, а затем обратно в переменный с более высокой частотой для работы лампы.Электронный балласт выполняет две основные функции:

  1. Для обеспечения начального высокого напряжения, необходимого для ионизации газа, тем самым создавая дугу между двумя электродами.
  2. Для ограничения тока через трубку после ее запуска. Если ток не контролируется, это может привести к скачку напряжения и повреждению лампы.

К другим функциям электронного балласта относятся зажигание, прогрев, постоянный контроль мощности, коррекция коэффициента мощности и защита от любых неисправностей лампы и балласта.Электронный балласт работает на частоте 20–80 кГц, в отличие от магнитного балласта, который работает на частоте 50–60 Гц. На высоких частотах лампа требует меньше входной мощности, тем самым повышая эффективность. Электронный балласт используется для работы люминесцентной лампы, неоновой лампы или разрядной лампы высокой интенсивности (HID).

Схема подключения люминесцентной лампы с ЭПРА —

ФУНКЦИЯ СТАРТЕРА

Стартер состоит из небольшой колбы, содержащей газ (обычно аргон) и биметаллического контакта (обычно не соприкасающегося друг с другом).Когда питание подается на приспособление и ток не может проходить через люминесцентную лампу, в пускателе возникает дуга (через газообразный аргон), в нем течет ток, и газ в стартере нагревается, и один из металлических контактов начинает изгибаться. Когда газ достаточно нагревается, биметалл выходит из положения и создает прямой путь для тока в стартере. Теперь через нити / электроды люминесцентной лампы протекает максимальный ток, который нагревает газ в лампе.

Между тем, в этой ситуации в стартере не возникает дуги, и стартер начинает охлаждаться, а биметаллический контакт начинает изгибаться обратно в исходное положение. Этот процесс повторяется до тех пор, пока пары ртути не ионизируются в лампе и через них не начинает течь ток. После успешного запуска люминесцентной лампы лампа стартера продолжает охлаждаться, и в конечном итоге биметаллический контакт возвращается в свое положение «покоя». Пускатель специально разработан так, чтобы иметь более высокое напряжение пробоя, чем люминесцентная лампа с гораздо большей длиной.У стартера также есть сопротивление двух нитей накала люминесцентной лампы как части его электрической цепи.

Некоторые стартеры также содержат конденсатор (также известный как конденсатор), который может снизить электрические помехи и помочь в процессе запуска.

ДИАПАЗОН ЛЮМИЧЕСКИХ ЛАМП

Люминесцентные лампы доступны в различных формах и размерах — T5, T8 и T12. Где T обозначает трубку , форма , а число обозначает диаметр трубки.Например, — T5, где 5 означает 5/8 ”. Трубчатые фонари T12 были первыми трубчатыми фонарями диаметром 38 мм (= 12/8 дюйма). Фонари T8 имеют диаметр (25 мм = 8/8 дюйма) меньше, чем T12, в то время как лампы T5 (16 мм) имеют меньший диаметр, чем T8. В настоящее время Т12 больше не производятся из-за неэффективности. На рынке доступны следующие типы ламп —

  • По длине — 4 фута и 2 фута
  • По диаметру — Т12, Т8 и Т5,

Доступны следующие мощности — 36 Вт при длине 4 фута, 18 Вт при длине 2 фута и т. Д.

Диммирование флуоресцентных ламп Как работают люминесцентные светильники

Регулирование яркости флуоресцентных ламп Как работают люминесцентные светильники

Люминесцентная лампа работает так же, как неоновая лампа. На каждом конце есть электроды, которые нагреваются, чтобы уменьшить величину ударного тока, необходимого для возбуждения газа в трубке. После возбуждения трубки электроды продолжают оставаться нагретыми из-за передачи тока, но напряжение, необходимое для поддержания возбуждения газа, значительно падает по сравнению с напряжением удара.

Внутренняя часть лампы покрыта смесью люминофора, которая загорается при контакте УФ-излучения со стеклом. Поскольку свет не является прямым результатом свечения нити накала, люминесцентные лампы по своей природе более эффективны, чем лампы накаливания.

Магнитные и электронные балласты используются с люминесцентными лампами. Электронные балласты предпочтительнее, поскольку они легче по весу, излучают меньше тепла и используют высокочастотные формы волны напряжения для устранения видимого мерцания лампы.Электронные балласты обычно работают в диапазоне 32 кГц, например, а не в диапазоне 120 Гц, используемом в магнетиках. Известно, что это иногда вызывает другие проблемы, такие как увеличение гармоник в линии и помехи для инфракрасных устройств управления, но плюсы перевешивают минусы.

Компактные флуоресцентные лампы

Компактные люминесцентные лампы относятся к люминесцентной лампе, размер которой уменьшен за счет сворачивания спирали или складывания, что создает эффект длинной трубки в небольшом пространстве.

Есть два типа компактных люминесцентных ламп:

Встроенный

Балласт встроен в цоколь лампы.Такие типы могут использоваться как прямая замена стандартных ламп Эдисона Винта или Байонета. Однако диммирование оставляет желать лучшего. Даже версии встроенного CFL с регулируемой яркостью не обеспечивают плавного затемнения в широком диапазоне.

Неинтегрированный

Неинтегрированные компактные люминесцентные лампы имеют отдельный балласт, аналогичный стандартной люминесцентной лампе.

Диммируемые балласты доступны для неинтегрированных компактных люминесцентных ламп и обеспечивают разумные характеристики затемнения.

Компактные флуоресцентные лампы должны быть полностью прожарены в течение 100 часов перед затемнением (см. Дополнительную информацию ниже). Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.

Как затемняют люминесцентные светильники

При затемнении флуоресцентных ламп важно понимать, что невозможно создать плавный переход между выключенным режимом и уровнем. Поскольку свет генерируется разрядом через газ, подобно дуговой лампе или неоновой трубке, всегда будет «скачок» уровня света при первом ударе трубки.Яркость, до которой «подскакивает» уровень, определяется балластом — см. Раздел ниже о регулируемых процентах. Всегда помните, что при уменьшении яркости люминесцентных ламп характеристики не будут такими же, как у традиционных ламп накаливания с регулируемой яркостью.

Люминесцентные светильники затемняются с помощью специального регулируемого балласта. Это связано с тем, что стандартные балласты обычно не способны поддерживать тепло электрода в степени, необходимой для надлежащего возбуждения газа при изменении входного напряжения. Хотя магнитные балласты с регулируемой яркостью существуют, почти все балласты с регулируемой яркостью в наши дни являются электронными.

Электронные балласты изменяют частоту, с которой они работают с лампами, без изменения напряжения на электродах и, следовательно, могут получить гораздо более широкий диапазон регулирования яркости. В то время как магнитные поля действительно позволяли снизить мощность лампы до 20-40%, электронные балласты могут уменьшаться до 1% на некоторых моделях.

О различных балластах с регулируемой яркостью

Балласты обычно называют количеством проводов, которые их питают. На рынке США доступны три различных типа балласта (110 В, 60 Гц).Балласты бывают 2-проводные, 3-проводные и 4-проводные модели. Двухпроводные балласты крайне редки в Европе (более низкая частота означает, что они не работают правильно), поэтому практически все диммируемые флуоресцентные лампы являются трех- или четырехпроводными.

2-проводной

Это очень распространенные балласты, которые проще всего установить. Для них требуется приглушенный горячий и нейтральный (подразумевается заземление), и они доступны в моделях с 5% -ным затемнением от таких компаний, как Lutronand Advance (Philips). Они устанавливаются и управляются на одном диммере так же, как и источник лампы накаливания, за исключением того, что установлен нижний порог.Эта настройка предотвращает работу ламп ниже рекомендованного напряжения, предотвращая преждевременный выход из строя как ламп, так и балластов.

2-проводные пускорегулирующие устройства выпускаются как с прямой, так и с обратной фазой. Чтобы уменьшить яркость балласта с обратной фазой, вам необходимо использовать модуль диммера с обратной фазой, такой как диммер ETC ELV10 в совместимой диммерной стойке.

3-проводной

Эти балласты также распространены и обычно довольно недорогие. Тем не менее, они используют два регулятора яркости для управления и питания, поскольку им требуются приглушенный горячий, переключаемый горячий и нейтраль (понимается заземление).Advance и Lutron производят их в моделях 1%, 5% и 10%. Используется порог, подобный 2-проводным моделям, и в момент, когда один диммер переходит в полную мощность (не тусклый), а другой начинает плавное уменьшение до полного. Модуль диммера является особенным, поскольку по коду у него должен быть только один выключатель для обоих выходов.

4-проводной

В 4-проводном балласте

используются горячий (не тусклый) и нейтральный (понимается заземление) плюс два низковольтных провода для управления 0–10 В постоянного тока (аналоговый) или протоколы управления DSI или DALI (цифровые).Доступны модели с контролем 5% и 10%. Опять же, порог используется для установки минимальной мощности и управляющего напряжения. Используйте стандартные модули диммера в сочетании с платой управления 0–10 В постоянного тока, такой как плата FLO, при диммировании Unison. Обратите внимание, что ток поступает от балласта и опускается на плату FLO, поэтому стандартный ЦАП может не работать. Подробнее об этом позже.

О различных процентах диммирования

Всегда есть много вопросов, связанных с процентами затемнения, которые производители публикуют в отношении балластов.Проценты основаны на светоотдаче, измеренном с помощью люксметра. Человеческий глаз воспринимает увеличение света не линейно, а как функцию, близкую к квадратическому закону, однако в люксметрах действительно используется линейная шкала. Поэтому, глядя на минимальный уровень яркости люминесцентного светильника, глаз будет видеть больше света, чем заявленный процент. Вот таблица, которая поможет вам лучше сравнить рекламируемый или измеренный свет с воспринимаемым светом.

Тип балласта (то, что продают производители) Измеряемый свет (то, что видит метр) Воспринимаемый свет (то, что вы видите)
1% 1% 10%
5% 5% 22.4%
10% 10% 32%
20% 20% 46%

Балласт 5% является наиболее распространенным из всех типов балласта. Покупатели систем часто не понимают, почему их люминесцентные лампы не тускнеют до 5%. Пожалуйста, помогите им понять, почему 5% означает световой поток, а не воспринимаемый свет или контрольный уровень.

Важные советы по установке

  • Хорошая идея — «приправить» лампы на 100 часов перед тем, как погаснуть. Хотя он больше не требуется производителями ламп или балластов, он имеет тенденцию к повышению производительности. Рекомендуется приобрести и установить в кладовке несколько запасных светильников, чтобы обеспечить зону выгорания лампы. Единственным исключением из вышеперечисленного являются компактные люминесцентные лампы, которые необходимо обязательно прогреть в течение 100 часов, прежде чем затемнить. Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.
  • Убедитесь, что светильники надежно заземлены. Лампа должна находиться в непосредственной близости от металлической заземляющей пластины, чтобы уменьшить мерцание и увеличить срок службы лампы. Расстояние должно быть 0,5 дюйма в пределах +/- 0,25 дюйма.
  • Не используйте в одной цепи разные типы балластов или ламп. Вопреки распространенному мнению, балласты могут взаимодействовать друг с другом по одной цепи. То же самое и с лампами, поскольку они горят по-разному и никогда не должны смешиваться в одном светильнике.
  • Используйте следующую таблицу, чтобы определить правильный модуль диммера ETC для ваших балластов:
2-проводный (прямая фаза) 2-проводная (обратная фаза) 3-проводный 4-х проводный
120 В переменного тока (США) D15 / D20 ELV10 D15F / D20F D15 / D20
230VAC (CE, Европа) ED15 / Матрица iSCR Матрица iSine ED15AFRF / Матричный флуоресцентный ED15 / ER15
277VAC (США) AD20 AD20F AD20

ETC в прошлом производила несколько модулей прямой фазы, которые лучше справлялись с низкими нагрузками, известные как L10 (110 В) и AL5 (277 В).В серии L использовались технологии MOSFET и IGBT для более точного регулирования маломощных нагрузок. Из-за улучшений управления затемнением в корпусе Unison DRd и модулях управления Sensor CEM + / CEM3 эти модули были сняты с производства и больше не нужны.

Как настроить систему ETC Legacy Unison для затемнения люминесцентных ламп

При настройке модуля затемнения на процессоре Unison убедитесь, что вы выбрали правильный тип модуля и соответствующий тип нагрузки. Когда вы выбираете люминесцентные лампы, вас спросят, какой процент балласта вы используете.Кривая и порог будут установлены автоматически. Рекомендуется установить уровень в процентах немного выше требуемого значения, установленного производителем балласта, это позволит избежать мерцания в будущем.

Как настроить систему датчика ETC для затемнения люминесцентных ламп

Датчик

немного отличается тем, как он должен быть настроен для правильного затемнения люминесцентных ламп. Сначала вы должны установить кривую, которую хотите использовать. Большинство людей выбирают линейный, но есть и модифицированный линейный, у которого более мягкий нижний конец кривой.После этого установите порог примерно на 60% и измерьте выходное среднеквадратичное напряжение для диммера при его минимальном значении. Требуется, чтобы напряжение в 0,47 раза превышало входное линейное напряжение. Если 60% неверно, выберите другой порог, который ближе к желаемому выходу, и проверьте его с помощью измерителя. С этим типом настройки (допустим, 60% порог) ваш фейдер будет иметь большую область перемещения (от 0 до 59%), где ничего не произойдет.

Прочая информация

В устаревших системах Unison вы можете установить для зоны минимальный уровень 60, максимальный или полный и установить флажок «Использовать ноль как выключенный».«Это даст фейдеру настенной станции полный контроль над балластом во всем диапазоне фейдера и при этом отключится в нижней части хода фейдера. Это очень хорошее решение.

При запуске балластов с консоли управления DMX выделите время, чтобы запрограммировать профиль, имитирующий программирование Unison, или запишите все ваши реплики с затронутыми каналами в диапазоне от 59 до полного. Таким образом, синхронизированное затухание по-прежнему будет работать со всеми флуоресцентными и нефлуоресцентными каналами параллельно.

Устранение неполадок с затемненными флуоресцентными лампами

1. Лампы разного уровня на разных балластах

  • Смесь ламп разных типов и возрастов.

2. Лампы с почерневшими торцами

  • Лампы не были полностью выдержаны в течение 100 часов.
  • Лампы работали долгое время на очень низком уровне.
  • Лампы отработали ниже рекомендованного уровня.

3. Лампы мигают или мигают только на низком уровне

  • Лампы не были полностью выдержаны в течение 100 часов.
  • Балласт загоняется слишком низко.Проверьте настройку нижнего среднеквадратичного напряжения.

4. Лампы мерцают или мигают на всех уровнях

  • 3-проводной балласт затемнен, и переключенные провода поменяны местами.
  • Лампы не были полностью выдержаны в течение 100 часов.
  • Лампы и пускорегулирующие устройства не согласованы.
5.Лампы включаются на полную мощность на нижнем уровне управления и не гаснут.
  • У 4-проводного балласта отсутствует или неправильная проводка для управления.

6. Лампы не тускнеют до самого низкого уровня

  • Лампы не были полностью выдержаны в течение 100 часов.
  • Светильники неправильно заземлены.
  • Старые лампы.

Какие балласты нельзя использовать с оборудованием ETC

Убедитесь, что вы используете правильный модуль (ELV10) при диммировании управляющих балластов с обратной фазой. Все остальные диммерные модули Sensor и Unison обеспечивают управление прямой фазой. Использование балластов, не предназначенных для этих систем, вызовет множество проблем и приведет к неправильному затемнению. Самый распространенный производитель этих балластов — ESI. Lightolier производит блок преобразователя в одно- и двухканальных моделях для адаптации управляющего сигнала прямой фазы к управлению обратной фазой, но стоимость весьма значительна.Большинство выпускаемых сегодня балластов с регулируемой яркостью являются электронными, и с ними легко работать. Однако, поскольку люди модернизируют старые объекты, также используются регулируемые магнитные балласты. Большинство магнетиков можно приглушить, но, как всегда, если есть сомнения, сначала проверьте их. (С вопросами обращайтесь к разработчикам приложений) Магнитные балласты должны иметь термическую защиту для предотвращения перегрева несинусоидальных сигналов.

Существует множество стандартов наименования люминесцентных ламп; вот краткое изложение

Диаметр

Число с префиксом T указывает на диаметр трубы.

Т-номер

Диаметр

T12

1,5 дюйма

T8

1,0 дюйма

T5

0.5 дюймов

Длина и мощность

Длина и мощность трубки взаимозависимы.

Мощность

Длина

40 Вт

48 дюймов (1220 мм)

30 Вт

36 дюймов (910 мм)

20 Вт

24 дюйма (610 мм)

13 Вт

21 дюйм (530 мм)

15 Вт

18 дюймов (460 мм)

14 Вт

15 дюймов (380 мм)

8 Вт

12 дюймов (300 мм)

6 Вт

8 дюймов (230 мм)

4 Вт

6 дюймов (150 мм)

Как работают люминесцентные ламповые лампы? Пояснения и схемы в комплекте

В середине 1930-х годов, когда на рынке появились первые люминесцентные лампы, они стали настоящим откровением.Люди были поражены, увидев, что их дома и офисы освещены так же ярко, как прохладный дневной свет. Узнайте, как они работают здесь.

Что внутри люминесцентной лампы?

  • Люминесцентная лампа состоит из длинной стеклянной газоразрядной трубки. Его внутренняя поверхность покрыта фосфором и заполнена инертным газом, обычно аргоном, со следами ртути.

  • Затем трубка окончательно запаивается при низком давлении двумя нитевидными электродами на обоих концах.

  • Эти электродные нити используются для предварительного нагрева трубки и инициирования быстрой проводимости электронов между двумя концевыми электродами. Первоначально процесс требует относительно большого количества энергии.

  • Энергия также преобразует часть ртути из жидкости в стекло. Затем электроны сталкиваются с атомами газообразной ртути, увеличивая количество энергии. Когда электроны возвращаются к своему первоначальному уровню энергии, они начинают излучать свет. Однако излучаемый ими свет является ультрафиолетовым и невидимым невооруженным глазом, поэтому необходимо сделать еще один шаг, прежде чем мы сможем увидеть свет.

  • Вот почему трубка была покрыта фосфором. Люминофор излучает свет при воздействии света. Под воздействием ультрафиолетового света частицы излучают белый свет, который мы можем видеть.

  • Когда электронная проводимость между электродами завершена, нагревание нитей больше не требуется, и вся система работает при гораздо меньшем токе.

Электропроводка люминесцентных ламп

Вот один пример лампового светильника, состоящего из большого тяжелого квадратного «дросселя» или «балласта» и небольшого цилиндрического «стартера».«Давайте попробуем понять, как работает вся система. При чтении следующих пунктов обращайтесь к принципиальной схеме справа:

  • Дроссель представляет собой большую катушку индуктивности. Он состоит из длинной медной обмотки поверх железных пластин.

  • Катушка индуктивности по своей природе всегда имеет тенденцию отбрасывать накопленный в ней ток каждый раз, когда через нее выключается питание. Этот принцип дросселя используется при освещении люминесцентной лампы.

  • Когда переменное напряжение подается на ламповый светильник, напряжение проходит через дроссель, пускатель и нити лампы.

  • Нити накаливания загораются и мгновенно нагревают трубку. Пускатель состоит из разрядной колбы с двумя электродами рядом с ней. Когда через него проходит электричество, между двумя электродами возникает электрическая дуга. Это создает свет, однако тепло от лампы заставляет один из электродов (биметаллическую полосу) изгибаться, вступая в контакт с другим электродом.Это мешает заряженным частицам создавать электрическую дугу, которая создает свет. Однако теперь, когда тепло от света уходит, биметаллическая полоса остывает и отклоняется от электрода, снова размыкая цепь.

  • В этот момент балласт или дроссель «отталкивают» его от накопленного тока, который снова проходит через нити и снова зажигает ламповый свет.

  • Если трубка не заряжается в достаточной степени, последующие толчки доставляются дросселем из-за быстрого переключения стартера, так что в конце трубка ударяется.

  • После этого дроссель действует только как ограничитель тока с низким импедансом для лампы, пока свет продолжает гореть.

Распространенной проблемой, связанной с этими типами приборов, является гудение или гудение. Причина этого кроется в плохо закрепленном дросселе на приборе, который вибрирует в соответствии с частотой 50 или 60 Гц нашей сети переменного тока и создает гудящий шум. Затяжка винтов воздушной заслонки может мгновенно устранить проблему.

Принцип работы современных электронных пускорегулирующих аппаратов заключается в том, чтобы не использовать стартеры для предварительного нагрева. Кроме того, они очень легкие. Они подавляют первоначальное мерцание лампового света, которое обычно наблюдается в обычных ламповых светильниках, изменяя частоту сетевого питания на гораздо более высокие 20 000 герц или более. Кроме того, электронные балласты очень энергоэффективны.

Надеюсь, это обсуждение предоставило вам достаточно информации о том, как работают люминесцентные лампы.

Список литературы

Люминесцентные лампы


Автор: E.E. Kimberly

Рис. 26-1. Флюоресцентная лампа

Люминесцентная лампа, показанная на рис. 26-1, состоит из трубчатой ​​колбы с электродами, запаянными на каждом конце. Небольшое количество ртути, запечатанное в колбе, образует пар, который является проводником электричества.При приложении к электродам достаточного напряжения столб пара слабо светится. Однако внутренняя часть трубки покрыта порошком люминофора, который при возбуждении свечением паров ртути отвечает ярким свечением и считается «люминесцентным». Различные доминирующие цвета, доступные для этих ламп, получены за счет правильного выбора люминофора, используемого в покрытии, а оттенки зависят от давления пара.

Фиг.26-2. Дроссельная катушка для люминесцентной лампы

Люминесцентные лампы, как и все другие электроразрядные источники света, требуют дополнительных устройств управления. Одно из этих устройств, показанное на рис. 26-2, обычно представляет собой дроссельную катушку с железным сердечником или катушку сопротивления, называемую балластом, включенную последовательно с лампой. Когда лампа включена, дроссельная катушка пропускает напряжение, которое запускает разряд; но, благодаря своему сопротивлению, он снижает напряжение на лампе после разряда. ток начинает течь.Другое из этих устройств управления, показанное на рис. 26-3, представляет собой пусковой выключатель, который на мгновение замыкает цепь через катушку нагревателя на одном конце трубки, а затем размыкает ее после того, как началось свечение. Низкий коэффициент мощности, вызванный балластным реактором, улучшается за счет добавления шунтирующего конденсатора или за счет использования ламп парами, причем одна лампа из каждой пары имеет конденсаторный элемент в своем балласте.

Трубка с нагревателем только на одном конце будет светиться только в течение половины каждого цикла и будет вызывать стробоскопические эффекты, которые нежелательны для большинства применений.По этой причине большинство люминесцентных ламп снабжено нагревательной нитью на каждом конце, так что они светятся во время обеих половин каждого цикла.

Рис. 26-3. Стартер для люминесцентной лампы

На рис. 26-4 показана такая трубка с балластом и стартером. На рис. 26-5 показана принципиальная схема, аналогичная схеме на рис. 26-4, но включающая также конденсатор, который был добавлен для улучшения коэффициента мощности.На рис. 26-6 показана схема, в которой используются две лампы с балластом, имеющим высокий коэффициент мощности.

Рис. 26-4. Цепь люминесцентной лампы с балластом и выключателем стартера
Рис. 26-5. Схема для одиночной люминесцентной лампы с ПРА с высоким коэффициентом мощности
Фиг.26-6. Схема для двух люминесцентных ламп с ПРА с высоким коэффициентом мощности

Люминесцентные лампы имеют спектр, который ближе подходит к дневному свету, чем у ламп накаливания, и по этой причине иногда предпочтительны люминесцентные лампы. В общем, теряют свою полезность из-за уменьшения светоотдачи, вызванного потемнением перед выходом из строя.



Остановка электромагнитных помех от люминесцентных ламп и балластов — 1000 ламп.com Blog

Каждый раз, когда вы имеете дело с электроникой, особенно с чем-нибудь с длинными проводами или трансформатором, вы столкнетесь с электромагнитными помехами (EMI) . Но что такое EMI? Короче говоря, EMI — это любой электрический сигнал (сигнал напряжения или радиочастоты (RF) ) , который мешает другим электрическим устройствам ; особенно относящиеся к коммуникационному оборудованию (например, сотовые телефоны или портативные радиоприемники). Это стало большой проблемой, поскольку электронные балласты заменяют все больше и больше традиционных магнитных балластов.Электронные балласты более эффективны, тише и продлевают срок службы ламп, но они излучают гораздо более сильные поля электромагнитных помех, чем традиционные магнитные балласты.

Причины электромагнитных помех

Электромагнитные помехи возникают из-за того, что одно устройство создает напряжение (генерирует дискретное напряжение без прямого электрического соединения) во втором компоненте. Наведенное напряжение возникает, когда устройства не экранированы должным образом, неправильно расположены (например, намотаны вокруг объектов или проходят параллельно на всем протяжении), используются высокочастотное переменное напряжение или неправильно заземлены.Поскольку балласты обычно издают гудение или гудение — электронные балласты тише, чем традиционные магнитные балласты, но гудение все же существует — иногда предпочтительнее дистанционно установленные балласты. Удаленно установленные электронные балласты создают значительное количество электромагнитных помех из-за их более высоких рабочих частот (магнитные балласты работают на частоте 60 Гц, а электронные балласты обычно работают на частоте 20–60 кГц, что в 50–200 раз больше). Если соединительные кабели не экранированы, высокая частота превратит кабели в мощную антенну, создавая электромагнитное поле, которое может повлиять на радиосвязь, соединения Wi-Fi и сигналы сотовой связи.В люминесцентной системе сама люминесцентная лампа способна излучать электромагнитные волны с частотами от 10 кГц до 100 МГц в зависимости от подключенного к ней электронного балласта.

Независимо от причины, электромагнитные помехи возникают в двух формах: наведенные электромагнитные помехи и излучаемые электромагнитные помехи.

  • Conducted EMI — помеха, добавленная к локальной сети электропитания взаимосвязанных устройств, которые не обязательно совместно используют прямое питание или источник сигнала.

  • Излученные EMI ​​ — генерируемые электромагнитные поля, присущие электронным устройствам.Обычно ассоциируется с солнечными вспышками.

Самый простой способ запомнить разницу заключается в том, что наведенных электромагнитных помех генерируется физическими контактами, а излучаемых электромагнитных помех излучается через воздух.

Определение источников электромагнитных помех

Если вы видите шум сигнала, статические помехи, потерю сигнала или любой другой вид прерывания сигнала в беспроводных устройствах (или даже в подключенном к сети аудиооборудовании, таком как домофоны), то вы, вероятно, имеете проблема с электромагнитными помехами.Чтобы определить источник, отключите все электрические источники. Это означает выключение света и оборудования связи. Затем послушайте прерванное устройство. В случае радио с сильным статическим электричеством выключите все остальное и послушайте, чтобы увидеть, сохраняется ли статический заряд. Если шумовой сигнал отсутствует, то одно или несколько устройств генерируют электромагнитные помехи. Чтобы найти неисправное оборудование, оставьте уязвимое устройство активным и включите каждую систему индивидуально, пока не вернется шум сигнала.Если сигнал шум не возвращается, это, вероятно, совокупный эффект нескольких устройств. Включите нескольких вероятных нарушителей (сравните с проблемными проблемами в предыдущем разделе), такими как балласты, люминесцентные лампы или любое устройство, генерирующее РЧ или микроволны, чтобы определить, какие наборы компонентов создают проблемное поле.

Снижение электромагнитных помех

Хотя электромагнитные помехи не оказывают отрицательного воздействия на растения, животных или людей, они отрицательно влияют на другое электрическое оборудование и повседневные устройства; например, постоянный поиск сигнала сотовой сети быстро разряжает аккумулятор мобильного телефона.Правильно установленные системы не должны создавать интенсивных электромагнитных помех, а это означает, что решение проблем с помехами должно быть простым.

Заземление

Обеспечение надлежащего заземления всех электрических устройств приведет к шунтированию высокочастотных помех на заземление или общий провод. Если заземление не выполнено должным образом, кабели, заземление или электрическое оборудование могут действовать как очень мощная антенна, излучающая сильное электромагнитное поле. Заземление прибора и балласта к общему заземлению поможет предотвратить это.

Электромонтаж

Длина проводов между источником и устройством должна быть как можно короче. Поскольку это не всегда возможно в случае дистанционно установленных балластов, скручивание кабелей вместе поможет нейтрализовать электромагнитные поля, создаваемые длинными участками кабеля. Использование витков кабеля с парными силовыми кабелями или входными выводами будет генерировать противодействующие индуцированные токи, минимизируя или устраняя электромагнитные помехи, создаваемые участками. Вам также следует избегать больших петель или пучков проводов, которые будут действовать как антенны.

Экранирование и фильтры

Можно использовать дополнительные компоненты для блокировки или поглощения электромагнитных помех, вызванных другим оборудованием. Кабельные трассы должны быть размещены в металлических кабелепроводах, а люминесцентные или HID-лампы могут быть размещены в светильниках с медной сеткой или проводящим стеклом для защиты от электромагнитных помех, создаваемых кабелями или лампами. Все оголенные проводники должны быть экранированы. Проводящий материал экрана будет поглощать электромагнитное поле и предотвращать излучаемые или наведенные электромагнитные помехи.Кроме того, фильтры электромагнитных помех или ферритовые сердечники могут быть размещены на балластах, силовых проводах и кабелях, чтобы уменьшить кондуктивные электромагнитные помехи по всей длине кабеля.

Дополнительные методы

Простые альтернативы, такие как перемещение чувствительных устройств (например, перемещение радиостанции за пределы генерируемого поля электромагнитных помех), также возможны. Изменение или замена конструкции светильника, использование альтернативного балласта, уменьшение мощности лампы, уменьшение индуктивной или емкостной нагрузки (или ламповой нагрузки балласта) или изменение компоновки заземленных компонентов — все это жизнеспособные методы снижения электромагнитных помех в системе.

Правила FCC

Федеральная комиссия по связи (FCC) регулирует радио- и проводную связь в США для устройств с частотами кондуктивного излучения от 450 кГц до 30 МГц и частотами излучения от 30 МГц до 960 МГц. Поскольку большинство балластов и систем люминесцентного освещения не соответствуют этим требованиям, они не регулируются FCC. Любые продукты, соответствующие требованиям FCC, будут четко обозначены. Ни одно устройство, способное создавать значительные помехи, не подлежит продаже в США.

Большинство люминесцентных ламп или ламп с электронным балластом не создают достаточно большого электромагнитного поля, чтобы создавать помехи для ваших устройств; однако неправильная установка или несколько систем в большом помещении (например, в помещении для выращивания или в офисе) могут легко достичь уровня шума, способного блокировать беспроводные сигналы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *