Из чего состоит лампа дневного света: Лампы дневного света: как подклюсить устройство, ремонт

Содержание

Как работает лампа дневного света схема. Из чего состоит люминесцентная лампа

Люминесцентные светильники давно удерживают первенство в освещении нашего быта, чему способствуют долговечность и экономичность данных устройств. Схем подключения люминесцентного светильника существует много, и у каждой из них есть свои особенности.
Сначала разберемся в принципе работы самой лампы . Длинная стеклянная трубка от нескольких сантиметров до… Если учитывать всевозможные современные спирали и изгибы, я не знаю, какова их может быть конечная длина? Мы все же займемся прямыми трубками, которые ограничивались в недавнем прошлом 80 ваттами, и тех, наверное, уже не существует.
Труба заполнена инертным газом с присутствием капельки ртути. Кстати, из-за ртути и утилизируют использованные люминесцентные лампочки в установленном законом порядке, иначе бы случилась экологическая катастрофа.
Суть работы лампы такова: между двумя электродами, представляющими собой нити накала на концах колбы, надо сделать устойчивый электрический пробой , испаряющий и ионизирующий ртуть.

Ионизированные пары ртути создают ультрафиолетовое излучение , воздействующее на люминофор , которым изнутри покрыта колба. В зависимости от состава люминофора свечение может принимать все оттенки радуги.
Наверное, слышали о бактерицидных лампах или о кварцевании ? Так вот в этих светильниках люминофор отсутствует, стекло кварцевое, без препятствий пропускающее ультрафиолетовые лучи, более того, в салонах для загара именно такие светильники и применяются, а ультрафиолет может и раковую опухоль нажить — возьмите на заметку!
Как же создается электрический пробой? Рассмотрим некоторые варианты схем подключения люминесцентного светильника.

схема подключения однолампового люминесцентного светильника

Для начала надо разогреть нити накала, чтоб они могли излучать электроны — это называется электронной эмиссией

. Данную функцию выполняет стартер . Его контакты настолько близки друг от друга, что при подаче 220В возникает между ними дуга, разогревающая биметаллическую пластину устройства. Пластина соединяется с рядом стоящим контактом, замыкая цепь накала люминесцентной лампы. Цепочка соединений всех элементов схемы представлена на Рис.1, по-моему, комментировать здесь нечего. О роли конденсаторов читайте ниже.
Чтобы не было короткого замыкания, в цепь подключается пускорегулирующий аппарат — ПРА , ограничивающий пусковой ток. Это катушка индуктивности, намотанная на сердечник из электротехнической стали, отсюда и название «дроссель».
Как только разогретые электроды начинают излучать электроны, напряжение на контактах стартера падает, они разрываются, на дросселе возникает высокое
напряжение самоиндукции
, способное между электродами создать устойчивый электрический пробой. Люминесцентный светильник зажигается, напряжение на лампочке падает наполовину засчет ПРА, и стартер, выполнив свою функцию, уходит на отдых до следующего этапа зажигания. Его в это время можно даже удалить, все равно светильник будет работать.

схема подключения двухлампового люминесцентного светильника

Смотря какие лампочки подключаете. Если лампы-сороковки, то это простое параллельное подключение: к схеме, указанной чуть выше, добавить еще такую, получим двухламповый люминесцентный светильник. Здесь присутствуют два конденсатора (раньше были, теперь их может и не быть). Маленький конденсатор (С1) уничтожает радиопомехи, большой (С2) — дросселя. Резистор R предназначен для разрядки С2 после выключения. Уберем это усложнение — все равно будет успешное зажигание, что, в общем-то, в современных светильниках и делается.


Другое дело, двадцатки — лампочки мощностью 18Вт (Рис.2 и 3). Их рабочее напряжение всего 60В, тогда как сороковки (36Вт) работают на 108 вольтах, поэтому 18-ваттные часто подключаются к сети 220В парой. Соединяются они последовательно, и у каждой — свой стартер, но балласт общий. Четырехламповые светильники 18Вт — просто два двухламповых в одном. Техника зажигания все та же.
Санитарные нормы не рекомендуют длительное пребывание в местах, освещенных стартерными люминесцентными светильниками, ввиду негативного воздействия мерцающего эффекта на зрение. В качестве альтернативы предлагается

схема подключения люминесцентного светильника с ЭПРА.

ЭПРА — это электронный пускорегулирующий аппарат , представляющий собой своеобразный преобразователь частоты и умножитель напряжения. Высокая частота, на которой работает с этим аппаратом люминесцентная лампа, становится не заметна глазу. Такая схема подключения люминесцентного светильника не только безопасна, но еще и экономичнее, в плане потребления электроэнергии, процентов на 15. Значительная потеря в массе из-за отсутствия электротехнической стали делает светильник более удобным при установке.
Основной упор ЭПРА делает на схему подключения двухлампового люминесцентного светильника, схема вычерчивается на крышке аппарата, поэтому проблемы с подключением сводятся к минимуму.


На моем рисунке фаза сети подается на клемму L, рядом — клемма N, на которую подключается «ноль», а на третий контакт. Все остальное видно на чертеже. Конечно, модификаций ЭПРА много, но не стоит бояться замены одного другим, чертеж на крышке все расставит по своим местам, только если монтаж проводов светильника изменить придется.

Люминесцентные лампы — 2-ой в мире по распространенности источник света, а в Стране восходящего солнца они занимают даже 1-ое место, обогнав лампы накаливания. Раз в год в мире делается более 1-го млрд люминесцентных ламп.

1-ые образцы люминесцентных ламп современного типа были показаны американской
компанией General Electric на Глобальной выставке в Нью-Йорке в 1938 году. За 70 лет существования они крепко вошли в нашу жизнь, и на данный момент уже тяжело представить какой-либо большой магазин либо кабинет, в каком не было бы ни 1-го осветительного прибора с люминесцентными лампами.

Люминесцентная лампа — это обычный разрядный источник света низкого давления , в каком разряд происходит в консистенции паров ртути и инертного газа , в большинстве случаев — аргона. Устройство лампы показано на рис. 1.


Пробирка лампы — это всегда цилиндр 1 из стекла с внешним поперечником 38, 26, 16 либо 12 мм. Цилиндр может быть прямым либо изогнутым в виде кольца, буковкы U либо более сложной фигуры. В торцевые концы цилиндра герметично впаяны стеклянные ножки 2, на которых с внутренней стороны смонтированы электроды 3. Электроды по конструкции подобны биспиральному телу накала ламп накаливания и также делаются из вольфрамовой проволоки. В неких типах ламп электроды изготовлены в виде триспирали, другими словами спирали из биспирали. С внешней стороны электроды подпаяны к штырькам 4 цоколя 5. В прямых и U-образных лампах употребляется только два типа цоколей — G5 и G13 (числа 5 и 13 указывают расстояние меж штырьками в мм).

Как и в лампах накаливания, из пробирок люминесцентных ламп воздух кропотливо откачивается через штенгель 6, впаянный в одну из ножек. После откачки объем пробирки заполняется инертным газом 7 и в него вводится ртуть в виде маленький капли 8 (масса ртути в одной лампе обычно около 30 мг ) либо в виде так именуемой амальгамы, другими словами сплава ртути с висмутом, индием и другими металлами.

На биспиральные либо триспиральные электроды ламп всегда наносится слой активирующего вещества — это обычно смесь окислов бария, стронция, кальция, время от времени с маленький добавкой тория.

Если к лампе приложено напряжение большее, чем напряжение зажигания, то в ней меж электродами появляется электронный разряд, ток которого непременно ограничивается какими-либо наружными элементами. Хотя пробирка заполнена инертным газом, в ней всегда находятся пары ртути, количество которых определяется температурой самой прохладной точки пробирки. Атомы ртути возбуждаются и ионизируются в разряде еще легче, чем атомы инертного газа, потому и ток через лампу, и ее свечение определяются конкретно ртутью.

В ртутных разрядах низкого давления толика видимого излучения не превосходит 2 % от мощности разряда, а световая отдача ртутного разряда — всего 5-7 лм/Вт. Но больше половины мощности, выделяемой в разряде, преобразуется в невидимое уф-излучение с длинами волн 254 и 185 нм.

Из физики понятно: чем короче длина волны излучения, тем большей энергией это излучение обладает. При помощи особых веществ, именуемых люминофорами, можно перевоплотить одно излучение в другое, при этом, по закону сохранения энергии, «новое» излучение может быть только «менее энергичным», чем первичное. Потому уф-излучение можно перевоплотить в видимое при помощи люминофоров, а видимое в ультрафиолетовое — нельзя.

Вся цилиндрическая часть пробирки с внутренней стороны покрыта узким слоем конкретно такового люминофора 9, который и превращает уф-излучение атомов ртути в видимое. В большинстве современных люминесцентных ламп в качестве люминофора употребляется галофосфат кальция с добавками сурьмы и марганца (как молвят спецы, «активированный сурьмой и марганцем»). При облучении такового люминофора уф-излучением он начинает сиять белоснежным светом различных цветов. Диапазон излучения люминофора — сплошной с 2-мя максимумами — около 480 и 580 нм (рис. 2).

1-ый максимум определяется наличием сурьмы, 2-ой — марганца. Меняя соотношение этих веществ (активаторов), можно получить белоснежный свет различных цветовых цветов — от теплого до дневного. Потому что люминофоры превращают в видимый свет больше половины мощности разряда, то конкретно их свечение определяет светотехнические характеристики ламп.

В 70-е годы прошлого века начали делать лампы не с одним люминофором, а стремя, имеющими максимумы излучения в голубой, зеленоватой и красноватой областях диапазона (450, 540 и 610 нм). Эти люминофоры были сделаны сначало для кинескопов цветного телевидения, где с помощью их удалось получить полностью применимое проигрывание цветов. Композиция 3-х люминофоров позволила и в лампах достигнуть существенно наилучшей цветопередачи при одновременном увеличении световой отдачи, чем при использовании галофосфата кальция. Но новые люминофоры еще дороже старенькых, потому что в их употребляются соединения редкоземельных частей — европия, церия и тербия. Потому

в большинстве люминесцентных ламп как и раньше используются люминофоры на базе галофосфата кальция.

Электроды в люминесцентных лампах делают функции источников и приемников электронов и ионов, за счет которых и протекает электронный ток через разрядный просвет. Для того чтоб электроны начали перебегать с электродов в разрядный просвет (как молвят, для начала термоэмиссии электронов), электроды должны быть нагреты до температуры 1100 – 1200 0С.

При таковой температуре вольфрам сияет очень слабеньким вишневым цветом, испарение его сильно мало. Но для роста количества вылетающих электронов на электроды наносится слой активирующего вещества, которое существенно наименее термостойко, чем вольфрам, и при работе этот слой равномерно распыляется с электродов и оседает на стенах пробирки. Обычно конкретно процесс распыления активирующего покрытия электродов определяет срок службы ламп.

Для заслуги большей эффективности разряда, другими словами для большего выхода уф-излучения ртути, нужно поддерживать определенную температуру пробирки. Поперечник пробирки выбирается конкретно из этого требования. Во всех лампах обеспечивается приблизительно однообразная плотность тока — величина тока, деленная на площадь сечения пробирки. Потому лампы разной мощности в колбах 1-го поперечника, обычно, работают при равных номинальных токах. Падение напряжения на лампе прямо пропорционально ее длине. А потому что мощность равна произведению тока наальна их д напряжение, то при схожем поперечнике пробирок и мощность ламп прямо пропорционлине. У самых массовых ламп мощностью 36 (40) Вт длина равна 1210 мм, у ламп мощностью 18 (20) Вт — 604 мм.

Большая длина ламп повсевременно заставляла находить пути ее уменьшения. Обычное уменьшение длины и достижение подходящих мощностей за счет роста тока разряда нерационально, потому что при всем этом возрастает температура пробирки, что приводит к повышению давления паров ртути и понижению световой отдачи ламп. Потому создатели ламп пробовали уменьшить их габариты за счет конфигурации формы — длинноватую цилиндрическую пробирку сгибали напополам (U-об- различные лампы) либо в кольцо (кольцевые лампы). В СССР уже в 50-е годы делали U-образные лампы мощностью 30 Вт в пробирке поперечником 26 мм и мощностью 8 Вт в пробирке поперечником 14 мм.

Но кардинально решить делему уменьшения габаритов ламп удалось исключительно в 80-е годы, когда начали использовать люминофоры, допускающие огромные электронные нагрузки, что позволило существенно уменьшить поперечник пробирок. Пробирки стали делать из стеклянных трубок с внешним поперечником 12 мм и неоднократно изгибать их, сокращая тем общую длину ламп. Появились так называемые компактные люминесцентные лампы. По механизму работы и внутреннему устройству малогабаритные лампы не отличаются от обыденных линейных ламп.

Посреди 90-х годов на мировом рынке появилось новое поколение люминесцентных ламп, в маркетинговой и технической литературе называемое «серией Т5» (в Германии — Т16). У этих ламп внешний поперечник пробирки уменьшен до 16 мм (либо 5/8 дюйма, отсюда и заглавие Т5). По механизму работы они также не отличаются от обыденных линейных ламп. В конструкцию ламп внесено одно очень принципиальное изменение — люминофор с внутренней стороны покрыт узкой защитной пленкой, прозрачной и для ультрафиолетового, и для видимого излучения. Пленка защищает люминофор от попадания на него частиц ртути, активирующего покрытия и вольфрама с электродов, по этому исключается «отравление» люминофора и обеспечивается высочайшая стабильность светового потока в течение срока службы. Изменены также состав наполняющего газа и конструкция электродов, что сделало неосуществимой работу таких ламп в старенькых схемах включения. Не считая того — в первый раз с 1938 года — изменены длины ламп таким макаром, чтоб размеры осветительных приборов с ними соответствовали размерам стандартных модулей очень престижных на данный момент навесных потолков.

Люминесцентные лампы, в особенности последнего поколения в колбах поперечником 16 мм, существенно превосходят лампы накаливания по световой отдаче и сроку службы. Достигнутые сейчас значения этих характеристик равны 104 лм/Вт и 40000 часов.
Но люминесцентные лампы имеют и огромное количество недочетов, которые следует знать и учесть при выборе источников света:

1. Огромные габариты ламп нередко не позволяют перераспределять световой поток необходимым образом.
2. В отличие от ламп накаливания, световой поток люминесцентных ламп очень находится в зависимости от окружающей температуры (рис. 3).

3. В лампах содержится ртуть — очень ядовитый металл, что делает их экологически небезопасными.
4. Световой поток ламп устанавливается не сходу после включения, а спустя некое время, зависящее от конструкции осветительного прибора, окружающей температуры и самих ламп. У неких типов ламп, в которые ртуть вводится в виде амальгамы, это время может достигать 10-15 минут.
5. Глубина пульсаций светового потока существенно выше, чем у ламп накаливания, в особенности у ламп с редкоземельными люминофорами. Это затрудняет внедрение ламп в почти всех производственных помещениях и, не считая того, негативно сказывается на самочувствии людей, работающих при таком освещении.
6. Как было сказано выше, люминесцентные лампы, как и все газоразрядные приборы, требуют для включения в сеть использования дополнительных устройств.

На фоне постоянного роста цен на электричество населению приходится экономить. Наиболее простой способ сделать это — установить люминесцентные лампы. Они потребляют в 3-4 раза меньше, чем классические, давая практически такой же световой поток. Давайте разберем, чем хорош есть ли смысл менять обычные лампочки накаливания на “энергосберегайки” и в чем их основные достоинства.

Светильники, работающие по принципу люминесцента, были изобретены в середине 30-х годов прошлого века. Их придумали в США. Распространяться по стране они начали в 50-е годы, в 60-е они появились в Европе и СССР. Сегодня люминесцентные светильники находятся на втором месте по распространенности (первое занимают лампы накаливания), но их процентное соотношение постоянно растет. И даже светодиодные лампы не вытесняют люминесцентные с рынка — они занимают нишу обычных ламп накаливания.

Классические люминесцентные линейные лампы старого типа

Использование этих светильников долгое время было ограничено из-за их больших размеров. Если в общественных заведениях их еще можно было разместить, то для дома они не очень подходили. Но в 90-е годы ученым удалось усовершенствовать конструкцию, уменьшить ширину трубки до 12 мм и скрутить ее в спираль, создав аналог обычной лампочки. Это придало люминесцентным лампам новую жизнь.

Устройство светильника

Теперь давайте разберем, (речь идет о компактных вариантах, или КЛЛ):

  1. Колба.
  2. Цоколь.

Колба представляет собой тонкую трубку, завитую в спираль. Внутри трубки расположены электроды из вольфрама, окрашенные оксидами стронция, бария и кальция. Трубка герметично закрыта, в ней находится инертный газ, смешанный с парами ртути. Именно эти пары ионизируются и испускают ультрафиолет. Принцип работы следующий: на вольфрамовые контакты подается напряжение, между ними возникает заряд и происходит запуск светильника. Пары ртути излучают свет в ультрафиолетовом спектре. Чтобы сделать его видимым, на стенки трубки наносят специальное вещество — люминофор. В результате облучения от ультрафиолета он тоже “зажигается” и светится в видимом спектре. При помощи толщины слоя люминофора и его состава можно менять цвет и насыщенность потока. По сути, именно от него зависит, насколько хорошо устройство будет светить.

Внимание: при производстве КЛЛ используются различные редкоземельные элементы, нанесенные в 3-5 слоев в качестве люминофора. Следите за тем, чтобы цоколь не разбился — в нем много вредных веществ. Именно за счет использования более дорогих люминофоров, нанесенных толстым слоем, ученым удалось добиться значительного сокращения длины трубки.

Современные люминесцентные лампы

Изучая следует рассказать про вторую часть конструкции — цоколь. Он не только удерживает светильник в патроне, но и содержит внутри ЭПРА (пуско-регулирующую аппаратуру или, в просторечии, стартер/балласт). Они выдают токи с высокими частотами, из-за чего у комнатных ламп полностью отсутствует эффект мерцания, который хорошо заметен у обычных линейных ламп накаливания. Высокочастотные токи образуются в результате работы инвертора, выпрямляющего их и преобразующего в импульсы. Современные ЭПРА также способны усиливать мощностные коэффициенты, что позволяет создавать активные нагрузки и не компенсировать при работе косинус фи.

Внимание: по сути, срок службы лампы зависит от качества балласта. Расчетное время свечения люминофора около 20 тысяч часов, но устройство обычно работает меньше и выходит из строя в результате поломки ЭПРА.

При выборе старайтесь не экономить — дешевые лампы собираются из недорогих комплектующих, которые служат максимум полтора года. Также они крайне чувствительны к скачкам напряжения — при просадке на 10-20% балласт может выйти из строя.

Типы ламп

Все устройства можно разделить на два типа:

  1. Имеющие встроенный ЭПРА.
  2. Имеющие внешний дроссель.

Встроенные ЭПРА, входящие в состав люминесцентной лампы, обычно подключаются к классическому цоколю E27 или E14 — они могут использоваться в любых люстрах и светильниках. Лампы под внешние ЭПРА представляют собой обычную трубку с цоколем под штырьковые крепления. Обычно их используют в настольных светильниках — дроссель находится внутри корпуса, а лампа является расходным материалом.

Цоколь у них может быть рассчитан на подключение к 2 или 4 штырькам. При замене лампы нужно учитывать тип цоколя, чтобы не перепутать — промышленность выпускает более 10 видов подобных устройств.

Некоторые нюансы

Раньше люминесцентные лампы не очень любили, поскольку они давали “больничный” безжизненный белый свет. Сегодня ситуация изменилась — промышленность выпускает устройства с диапазоном работы от 2700 до 6500 градусов Кельвина, что практически полностью перекрывает возможные диапазоны от “лампового” желтого до практически голубого.

Сгоревший ЭПРА в люминесцентной лампе

Мощность подобных светильников варьируется от 5 до 23 ватт, для жилых помещений используют 9-15 ваттные варианты. Выбирая себе качественную лампу, обязательно спрашивайте у продавца про устройство люминесцентного светильника. Чем качественнее ЭПРА, тем дольше она прослужит. Стандартный срок службы сертифицированных ламп — 10 00 часов, тогда как дешевые китайские подделки служат 1000-3000 часов. Изделия от лидеров рынка, таких как PHILIPS или OSRAM, легко выхаживают по 15 тысяч часов, особенно если в сети нет провалов напряжения.

Внимание: люминесцентные светильники не работают вместе с диммерами. Если вам важен процесс регулировки уровня освещения, то приобретайте классические лампы накаливания.

И еще один совет напоследок. Не гонитесь за дешевыми устройствами — они служат очень мало. Если хотите сэкономить, то покупайте комплекты из 2, 4, 8 светильников — они обходятся значительно дешевле, чем одиночные. Выбирайте лампы от проверенных производителей — они гарантировано проработают весь положенный им срок.

Люди часто спрашивают, какой газ в люминесцентных лампах используют и не вреден ли он. В большинстве устройств используют аргон с парами ртути. Ничего страшного не произойдет, если вы разобьете ее в доме, но лучше все же не допускать подобного и сдавать их в пункты утилизации.

Энергосберегающие лампы дневного света 🇩🇪 (люминесцентные / ENERGY SAVING)

Что такое энергосберегающие лампы (люминесцентные / ENERGY SAVING)?


Большинство наших квартир освещаются лампочками накаливания различной мощности. Кроме обычных ламп накаливания выпускают также криптоновые и биспиральные лампы. Криптоновые лампы, наполненные инертным газом криптоном, имеют повышенную световую отдачу при одинаковом, по сравнению с обычными лампами накаливания, потреблении электроэнергии.

Биспиральные лампы имеют более толстую на вид нить накаливания и являются более яркими, чем обычные лампочки. Однако наиболее совершенными источниками дневного света в настоящее время считаются энергосохраняющие лампы, которые состоят из электронного блока, цоколя и люминесцентной лампы – поэтому энергосберегающие лампы часто называют просто люминесцентными лампами.



Энергосберегающие лампы и лампы дневного света

Люминесцентные лампы подразделяются на лампочки теплого, холодного и дневного света. Чем ниже цветовая температура, тем изучаемый свет ближе к красному, чем выше — ближе к синему. К лампам дневного света относят те лампы, у которых цветовая температура составляет 4200 К.

Дизайнеры используют лампы дневного света в помещениях, в которых отсутствуют естественные источники света. Лампы дневного света позволяют подчеркнуть естественный цвет предметов в помещении.

Лампы дневного света часто используют в офисных и жилых помещениях, так как они потребляют в 5 раз меньше электроэнергии и продолжительность их работы в 8 раз больше, чем у ламп накаливания.

В ассортименте энергосберегающих ламп фирмы Pulmann значительная часть принадлежит к категории ламп дневного света.



Преимущества энергосберегающих ламп


  1. Световая отдача люминесцентной лампы в среднем в пять раз больше, чем у лампы накаливания. Для примера: световой поток люминесцентной лампы 20 Вт приблизительно равняется световому потоку лампочки накаливания 100 Вт. Соответственно энергосохраняющие лампы позволяют снизить потребление электроэнергии приблизительно на 80% без потери привычного для вас уровня освещенности комнаты.
  2. Чаще всего причиной выхода из строя обычной лампочки является перегорание нити накаливания. Строение и принцип работы люминесцентной лампы принципиально другие, поэтому срок ее работы в среднем в 6-15 раз выше, чем у лампы накаливания, и составляет от 6 до 12 тысяч часов (обычно ресурс работы энергосохраняющих ламп указывают на их упаковке). Поскольку энергосберегающие лампы нужно заменять значительно реже, их удобно использовать в светильниках, расположенных в труднодоступных местах. Например, в квартирах или офисах со слишком высоким потолком.
  3. Кроме меньшего потребления электроэнергии энергосберегающие лампы выделяют гораздо меньше тепла, чем лампы накаливание. Поэтому их можно смело использовать в светильниках и люстрах с ограничением уровня температуры – в таких светильниках от лампочек накаливания с высокой температурой нагрева могут плавиться пластмассовая часть патрона, провод или элементы отделки.
  4. Площадь поверхности энергосберегающие ламп больше, чем площадь поверхности спирали накаливания. Благодаря этому свет распределяется по помещению мягче и равномернее, чем от лампы накаливания, а это, в свою очередь, снижает утомляемость глаз.

Недостатки энергосберегающих (люминесцентных) ламп

Одним из недостатков энергосберегающих ламп является их достаточно высокая стоимость. Наилучшими и, соответственно, самыми дорогими считаются лампы производства Paulmann, OSRAM, PHILIPS, DeLux.

Однако потребителям стоит знать еще один момент. Люминесцентная лампа заполнена парами ртути (2-5мг), поэтому нужно избегать ее разбивания в помещении. Содержание ртути в одной лампе достаточно чтобы превысить допустимые нормы в помещении в 20 раз! Использование амальгамы(сплав ртути с другими металлами) решило-бы данную проблему, т.к. амальгама безвредна, но для этого необходим закон запрещающий ввоз и продажу ламп, которые используют пары ртути или стандартизация обозначения использования амальгамы, что-бы человеку не приходилось гадать, проводить демеркуриза?ция (удаление ртути) или нет. Поэтому, если у Вас разбилась энергосберегающая лампа, звоните в МЧС по номеру 01 (с мобильных МТС и TELE2 — 010, Билайн — 001, Мегафон — 112). Если нет возможности вызывть МЧС, то можно провести демеркуризацию (удаление ртути) самостоятельно. Для этого необходимо организовать активное проветривание помещения, стены и пол обработать 1 % раствором йода (на 1 л воды 100 мл 10 % раствора йода, который продается в аптеке). Через 30 минут площадь обработать таким раствором: медный купорос CuSO4 (на 1 л воды 30 г медного купороса), сульфит натрия Na2SO3·7h3O (180 г на 1 л воды) и гидрокарбонат натрия NaHCO3 (пищевая сода, 40 г на 1 л воды). Для приготовления раствора смешивают с водой медный купорос и сульфит натрия до полного растворения осадка, а потом добавляют пищевую соду.

Ртуть, содержащаяся в энергосберегающих лампах относится к первому классу опасности (ГОСТ 12.1.007-76, вещества чрезвычайно опасные), поэтому ни в коем случае данные лампы нельзя выбрасывать с обычным мусором. Выбрасывая такие лампы в мусоропровод Вы отравляете собственный дом и делаете его опасным для проживания. Энергосберегающие лампы необходимо специально утилизировать. Правила утилизации различаются для частных лиц и организаций.
1. Частные лица, использующие лампы в своей квартире или загородном доме должны перегоревшие лампы БЕСПЛАТНО сдатвать в ДЕЗ или РЭУ, где имеются специальные контейнеры согласно Распоряжению правительства Москвы № 1010­РЗП от 20 декабря 1999 года, которое обязывает жилищные организации районов и городские жилищные организации осуществлять сбор отработанных люминесцентных ламп.
2. Юридческие лица должны заключить договор со специализированными компаниями, занимающимися приемом и утилизацией энергосберегающих ламп. Список пунктов приема перегоревших люминесцентных ламп, действующих в разных городах России, размещен на сайте экологической организации Greenpeace.

Компания Paulmann активно сотрудничает с GreenPeace в программах по энергосбережению и безопасности. В рамках этой программы наша компания занимается самостоятельной доставкой вышедших из строя энергосберегающих ламп Paulmann от потребителя к пунктам утилизации. Заказать вывоз вышедших из строя ламп можно по телефону +7 (495) 786-38-20.

Между тем в Евросоюзе пришли к выводу, что, поторопились с запретом ламп накаливания. Председатель комитета по промышленности, исследованиям и вопросам энергетики Евросоюза заявил, что будет делать все возможное, чтобы отменить запрет на продажу ламп накаливания, а так-же будет инициировать законопроект запрещающий продажу энергосберегающих ламп!


При использовании выключателя с неоновой лампочкой, энергосберегающая лампа может мигать после выключения. Частота мигания зависит от скорости заряда конденсатора ESL лампы через лампочку подсветки.

Еще один важный момент — энергосберегающим лампам противопоказаны минусовые температуры. Они при них будут работать, но с большой потерей светоотдачи и быстрым сокращением срока службы.

И последнее из минусов — ввиду наличия в современных лампах электронного блока осуществляющего зажигание и горение лампы, а также регулирующего напряжение для устранения мерцания, данный тип ламп очень восприимчив к качеству электросети. Поэтому, не реккомендуется их использование в дачных поселках и деревнях без использования стабилизаторов напряжения. Некачественное напряжение приводит к быстрому (от нескольких минут до нескольких суток) выходу энергосберегающих ламп из строя.



Как выбрать энергосберегающую лампу

  • Размер. Как правило, энергосберегающие лампы больше по размеру, чем обычные. Поэтому обратите внимание, поместится ли выбранная вами люминесцентная лампочка в ваш светильник. Есть две основных формы энергосохраняющих ламп: U-подобная и в виде спирали. Форма лампочки не влияет на ее работу, однако спиралевидные лампы обычно несколько дороже, чем U-подобные, поскольку процесс их производства более сложный.
  • Мощность.Энергосохраняющие лампы бывают различной мощности: от 3 до 85 Вт. Учитывая то, что световая отдача энергосохраняющих ламп выше, чем у обычных приблизительно в 5 раз, выбирать необходимую мощность люминесцентной лампы нужно, исходя из соответствующей пропорции: там, где вы использовали лампочку накаливания мощностью 100 Вт, хватит энергосохраняющей лампы мощностью 20 Вт.
  • Тип цоколя. Перед покупкой лампы не забудьте проверить тип цоколя вашего светильника, которому подойдет только соответствующий цоколь лампы. Подавляющее большинство люстр, которые подвешиваются к потолку, имеют цоколь Е 27, в небольших светильниках и бра применяют немного меньший по размеру цоколь Е 14.
  • Цвет света. Еще одной уникальной характеристикой энергосохраняющих ламп является их цветовая температура, которая определяет цвет лампы: 2700 К – мягкий белый свет, 4200 К – дневной свет, 6400 К – холодный белый свет. Чем ниже цветовая температура лампочки, тем ближе цвет к красному, чем выше – к синему. Поэтому перед выбором определенной лампы представьте, какой цвет света устроит вас (или подойдет к цветовой гамме интерьера) лучше всего и выберите люминесцентную с соответствующей цветовой температурой.

Стоит также знать, что мощность, тип цоколя и цветовая температура энергосохраняющих ламп указывается на их упаковке. Например, спецификация энергосохраняющей лампы производства Paulmann: 883.21 20W E27 4200K означает, что перед нами лампочка с артикулом 883.21, мощностью 20 Вт, с стандартным цоколем (Е27), являющаяся лампой дневного света (4200К).


Условия эксплуатации энергосберегающих ламп

  • При замене лампочки обязательно отключите электроэнергию.
  • Вкручивать энергосберегающую лампу дневного света надо за пластиковый корпус, т.к. если вкручивать за стеклянную колбу, можно повредить соединение лампы с корпусом.
  • Нельзя использовать энергосберегающие лампочки в светильниках с неисправным патроном или без защиты от атмосферных осадков.
  • Энергосберегающие лампы, в основной своей массе, не работают с светорегуляторами (диммерами). В 2008 году несколько компаний представили энергосберегающие лампы с поддержкой диммера, но технология еще не отработанна.
  • В случаи, если энергосберегающая лампочка получила повреждение или разбилась, необходимо проветрить помещение и убрать осколки. Лампы европейского производства содержат небольшое количество паров ртути в виде амальгамы и безвредны для здоровья. В российских и китайских лампочках при производстве используется жидкая ртуть и при повреждении таких ламп необходимо произвести уборку используя средства защиты для рук и дыхания.
  • Срок службы люминисцентных ламп варьируется в пределах 3000 — 15000 часов, в зависимости от ее качества и качества электросети. К концу срока, световой поток энергосберегающей лампы сильно ослабевает, и она светит намного слабее новой.


  • Отказ от традиционных ламп накаливания

    Во всем развитом мире происходит отказ от традиционных лампочек накаливания. И не только (а может не столько) отказ, но и законодательное запрещение применения этих источников света. С 2009 по 2012 год по таким закнам традиционные лампы накаливания будут запрещены в Великобритании, Евросоюзе, Австралии и США.

  • 2009 Великобритания
  • Производство и использование традиционных лампочек накаливания будет запрещено в Великобритании уже в 2009 году. Согласно подготовленному правительством законопроекту, через три года на всех промышленных объектах, в офисах компаний и жилых домах для освещения должны использоваться исключительно лампочки нового поколения, сделанные на основе энергосберегающей технологии.
    Цель этой меры — сократить потребление нефти и природного газа, сообщает ИТАР-ТАСС.
    Одновременно Лондон добивается принятия Евросоюзом общеевропейского запрета на продажу в торговой сети классических ламп накаливания.

  • 2010 Евросоюз
  • Руководители стран Евросоюза договорились об обязательном развитии энергетики из возобновляемых источников и мер энергосбережения. Среди таких мер — запрет на использование ламп накаливания с 2010 года.

  • 2010 Австралия
  • Австралийские власти объявили о намерении запретить в стране использование лампочек накаливания. Жителям континента предлагается перейти на более экономичные лампы дневного света. Об этом сообщает BBC News.
    Полностью от ламп накаливания Австралия планирует отказаться к 2010 году.

  • 2012 США
  • В штате Калифорния, собираются объявить «вне закона» лампочки накаливания. Новый закон Light Bulb (закон о лампочках накаливания), предложенный членом ассамблеи штата от Лос-Анджелеса (округ Шерман-Оакс), демократом Ллойдом Левином (Lloyd Levine), должен вступить в силу в 2012 году. Как сообщает Associated Press, он предусматривает запрет на использование крайне неэффективных лампочек накаливания.

    У жителей этих стран в скором времени в светильниках не останется ни одной лампочки накаливания. И увидеть их можно будет только в музее, в зале, где сейчас выставлены лучины, факелы и керосиновые лампы.


  • 2013 Россия
  • С 1 января 2013 года для поэтапной реализации выдвинутых требований о сокращении использования электрических ламп накаливания со значительной вероятностью может быть введен запрет на оборот на территории России электрических лампочек накаливания мощностью от 75 ватт, используемых для освещения, а с 01.01.2014 года — мощностью от 25 ватт и более. Это планируется реализовать в связи с выдвинутыми президентом требованиями о снижении на 40% энергоемкости отечественной экономики до 2020 года. В связи с чем 23 октября 2009 года был принят федеральный закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации», направленный на поддержку энергосберегающих технологий.




    Как отличить качественные лампы от некачественных?


    Рынок светотехнической продукции сейчас переполнен некачественными подделками. Отличить фирменную продукцию от подделки зачастую непросто. Простейший способ определения качества «визуальный»: по маркировке на упаковке и самой колбе, где указываются фирма и страна-производитель (например, должно быть Made in Germany, а не Germany). Согласно правилам торговли, на упаковке даётся адрес производителя на русском языке. Продавец обязан иметь сертификат на каждый из товаров. Покупатель может потребовать такой сертификат и убедиться, что товар завезён легально и не является подделкой.

    Покупая энергосберегающие лампы фирмы Paulmann, вы можете быть уверены в их качестве, что подтверждается европейскими сертификатами безопасности.

    Будущее за лампами дневного света, все большее число людей их используют как дома, так и в офисе. Они создают естественную освещенность, а при желании их можно использовать для различных видов освещения при работе над дизайном помещения. Если у вас еще остались вопросы, позвоните нам, и мы постараемся вам помочь.




    Как утилизировать энергосберегающие лампы


    Важный недостаток энергосберегающих ламп — использование паров ртути в качестве наполнителя колбы из-за чего их нельзя выбрасывать в мусоропровод или мусорные контейнеры. 
    Для утилизации лампы воспользуйтесь одним из этих способов: 

    1. Энергосберегающие лампы нужно отнести в районный РЭУ или ДЕЗ, где должны быть установлены специальные контейнеры. Их должны принять бесплатно на основании распоряжение правительства Москвы «Об организации работ по сбору, транспортировке и переработке отработанных люминесцентных ламп» от 20 декабря 1999 г. № 1010-РЗП. 

    2. Если Вы утилизируете лампы в большом количестве (с офиса или предприятия), то необходимо заключить договор с организациями, занимающимися приемом и утилизацией ртуть содержащих отходов. Адреса пунктов приёма энергосберегающих ламп в городах России можно посмотреть на сайте GreenPeace. 

    Энергосберегающие лампы дневного света

     Вопрос рационального использования энергии, производимой с использованием углеводородов (нефти и газа), поднят в нашей стране на самом высоком уровне. Президент России Д.А.Медведев выдвинул программу модернизации страны, одним из пунктов которой является энергосбережение. В поддержку этого положения, Государственная Дума приняла Закон  № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности», в котором прописаны некоторые меры по повышению энергоэффективности. Одним из пунктов этого Закона, предписывается повсеместное применение энергосберегающих ламп. Без сомнения благое намерение, но пути его внедрения, как всегда, желают быть лучшими. 
     Нам не предлагается альтернатива, использовать лампы накаливания или энергосберегающие лампы. Нам в приказном порядке предписывается использовать энергосберегающие лампы, поскольку производство ламп накаливания прекращается, и через пару-тройку лет их невозможно будет найти в продаже. При этом в качестве замены ламп накаливания выбран далеко не самый безопасный вид энергосберегающих ламп, а именно лампы с использованием паров ртути. Другими словами, привычные нам лампы дневного света, но только в уменьшенном варианте. Поскольку закон есть закон, в этой статье мы расскажем об энергосберегающих лампах, их преимуществах и недостатках.

    Состав энергосберегающей лампы

    Как уже упоминалось, как в России, так и в странах Европы, основным конкурентом ламп накаливания выбраны компактные люминесцентные лампы (КЛЛ). Фактически КЛЛ состоит из трех частей. Это – цоколь, собственно люминесцентная лампа, и электронный пускорегулирующий аппарат (ЭПРА). Цоколь служит для подключения лампы к электрической сети. ЭПРА обеспечивает зажигание лампы и поддерживает ее горение без мерцания. Сама люминесцентная лампа наполнена парами ртути и инертным газом, чаще всего используется аргон. Стенки лампы покрыты люминофором, который начинает светиться под действием бомбандирующих его электронов.

    Характеристики энергосберегающих ламп

    Начнем с внешнего вида. КЛЛ могут быть выполнены не только в виде спирали или в виде дуги. Они могут быть выполнены и в привычной для нас форме груши, или шара, свечи, или цилиндра.  Основное отличие КЛЛ от ламп накаливания, это утолщение на цоколе, в котором расположен ЭПРА.

    Мощность  лампы и световой поток.

    Как правило, на упаковке КЛЛ указывается потребляемая мощность собственно КЛЛ, так и ее аналога лампы накаливания. Ниже привечены средние значения потребляемой мощности КЛЛ и соответствующей лампы накаливания, и создаваемый ими световой поток, измеряемый в люменах:
    • 5W —   25W  — 250 Lm;
    • 8W —   40W  — 400 Lm;
    • 12W —  60W  — 630 Lm;
    • 15W — 75W   — 900 Lm;
    • 20W — 100W — 1200 Lm;
    • 24W — 120W — 1500 Lm;
    • 30W — 150W — 1900 Lm;

    Температура света.

    Этот параметр характеризует спектр излучения лампы. Будет ли это теплый, как у лампы накаливания, свет, или мертвящий бледно-голубой свет, который так не нравиться большинству людей. Измеряется параметр в градусах Кельвина (К). Для лампы накаливания этот параметр составляет 2700 К. Производители КЛЛ выделяют следующие группы ламп.
    Теплый белый – 2700 К. Соответствует свету лампы накаливания.
    Холодный белый – 4000-4200 К. Свет с голубым оттенком.
    Дневной – 6000-6500 К.
    Эта характеристика также указывается на упаковке КЛЛ.

    Конечно, каждый человек индивидуален, поэтому подбор этого параметра необходимо производить «под себя». 

    Коэффициент цветопередачи.

     Коэффициент цветопередачи, по-английски этот параметр обозначается CRI, показывает насколько цвета от данного источника света передаются хуже, чем от некоего идеального источника (Максимальный коэффициент R у Солнца равен 100). Фактически лампой подсвечиваются определенные цвета вначале солнечным светом, потом светом от лампы, отклонения в цветовой гамме и характеризуются цветовым коэффициентом. При низком коэффициенте предметы, освещаемые лампой, меняют свои цвета, выглядят не естественно. Коэффициент R должен быть не хуже, чем R=82. Чем больше, тем лучше. 

    Срок службы энергосберегающей лампы дневного света

    Зарекомендовавшие себя производители гарантируют, что КЛЛ проработает 12000-15000 часов. Это очень хороший показатель, но на практике не часто достижимый. Более длительный срок у ламп с плавным пуском. Кроме того, КЛЛ плохо переносят частые включения и выключения. Поэтому перерыв межу включением и выключением должен быть не менее 5 минут.

    Достоинства и недостатки энергосберегающих ламп дневного света

    О достоинствах. Главное и основное достоинство этой лампы, это то, ради чего она создавалась, а, именно, экономия электроэнергии. По разным источникам, экономия может составлять от 80% до 300%. Но, надо иметь в виду, что существенная экономия получается только в том случае, если вы используете энергосберегающие лампы по всему дому, во всех комнатах, во всех люстрах, торшерах, бра и т.п. 
     А теперь о недостатках. Мы выделим только два. Хотя кто-то может найти в них и больше недостатков. Недостатки – это цена, и второе – это сложность утилизации и опасность вдыхания паров ртути при поломке лампы.
     Цена КЛЛ, по сравнению с лампой накаливания, может быть на порядок больше и даже выше, если это КЛЛ от таких производителей как Philips или General Electric. Конкретные цены мы приводить не будем, в разных городах они разные.
    Утилизация. В том  же законе об энергосбережении предписано построить заводы по переработке КЛЛ и выделить специальные контейнеры, в которые будут складываться вышедшие из строя КЛЛ. Но, увы. Заводы пока только строятся, а у коммунальных служб, как всегда, нет средств и возможностей для установки контейнеров. А ведь лампы уже очень активно используются. Так что покупать или нет энергосберегающие лампы, решайте сами.

    Разница между лампами накаливания и люминесцентными

    Почему стоило бы заменить «лампочку ильича» на люминесцентную лампу? Менять её пора потому, что в XXI веке она уже давно морально и экономически устарела. Теперь существует много альтернативных и более эффективных источников освещения. И первым в этом ряду стоит люминесцентная лампа.

    Этот источник света относится к поколению газоразрядных светильников. В них люминофор, находящийся на стенке лампы с внутренней стороны, от ультрафиолетового излучения начинает светиться. Излучение получается в результате электрического разряда, происходящего в газе. Для этого лампу наполняют газом аргоном, парами ртути.

    Преимущества люминесцентных ламп относительно ламп накаливания

    Лампы накаливания (особенности) Люминесцентные лампы (особенности)

    1

    Световая отдача ниже. Световая отдача выше в 7—8 раз.

    2

    Недолговечные. Служат долго. Срок измеряется несколькими тысяч часов.

    3

    Утомляют глаза. Глаза не утомляют и не слепят. Свет излучают мягкий и рассеянный.

    4

    При освещении вызывают искажение цветового восприятия предметов. Свет похож на дневной. Поэтому цвет предметов не искажается, а воспринимается также как при естественном освещении.

    5

    Травмоопасны. При случайной подаче в сеть вместо фазного напряжения (220 В) линейного (380 В) взрываются через несколько минут. Легко выдерживают высокое напряжение (380 В). При этом почти не нагреваются.

    Мощность, выпускаемых люминесцентных ламп, варьируется в широких пределах – от 5 до 150 Ватт.

    Состав люминофора, от которого зависит свечение, тоже может быть различным. Буквенные аббревиатуры в маркировке люминесцентных ламп показывают, какого свечения будут лампы:

    • лампы ЛД — светятся дневным светом,
    • лампы ЛБ — светятся белым светом,
    • лампы ЛХБ — светятся холодно-белым светом,
    • лампы ЛТБ — светятся тепло-белым светом.

    Цифры, стоящие после буквенного обозначения, сообщают о мощности лампы. Например, ЛХБ20 означает: лампа люминесцентная холодно-белого свечения мощностью 20 Ватт.

    Недостатки люминесцентных ламп

    На свете нет ничего совершенного, и в люминисцентных лампах тоже есть недостатки.

    • они имеют не всегда удобные для установки в светильники (габариты)
    • для их запуска требуется специальное пуско-регулирующее устройство
    • в холодных помещениях (а это уже ниже +10° С) может даже не включиться
    • без защитных конденсаторов создает помехи для электронной аппаратуры

    Несмотря на мелкие недочёты в их конструкции, они всё шире применяются. Их устанавливают в настольных и настенных светильниках, в люстрах. Наиболее востребованные в быту лампочки мощностью от 13 до 65  Ватт.

    Подводя итог, становится очевидным, что время лампочек из позапрошлого века уходит безвозвратно. Современность требует использования более экономичных, долговечных и безопасных источников освещения. Как говорится, можно ненадолго задержаться, но время не остановить 🙂

    ***

    Если нужно будет искать входные двери в Москве, не забудьте про возможность подсветки — есть и такие варианты по ссылке…

    в чём их отличия и как выбирать

    При выборе типа лампы, используемой в светильнике, надо руководствоваться как техническими характеристиками, так и дизайнерской задачей. С технической точки зрения учитываются несколько факторов.

    Чтобы помочь потребителю разобраться в данных вопросах, рассмотрим, как устроены лампы, их достоинства и недостатки.

    Энергосберегающая лампа

    Компактная люминесцентная лампа состоит из 3 основных компонентов: цоколя, люминесцентной лампы и электронного блока. Цоколь предназначен для подключения лампы к сети. Электронный блок (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает зажигание (пуск) и дальнейшее горение люминесцентной лампы. ЭПРА преобразует сетевое напряжение 220 В в напряжение, необходимое для работы люминесцентной лампы. Благодаря ЭПРА энергосберегающая лампа зажигается без мерцания и работает без мигания свойственного обычным люминесцентным лампам. Люминесцентная лампа наполнена парами ртути и инертным газом (аргоном), а её внутренние стенки покрыты люминофорным покрытием. Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет. Благодаря механизму действия энергосберегающих ламп удаётся добиться снижения потребления электроэнергии на 80% по сравнению с лампами накаливания при аналогичном световом потоке. Помимо пониженного потребления световой энергии энергосберегающие лампы выделяют меньше тепла, чем лампы накаливания. Незначительное тепловыделение позволяет использовать компактные люминесцентные лампы большой мощности в хрупких бра, светильниках и люстрах, в которых от ламп накаливания с высокой температурой нагрева может оплавляться пластмассовая часть патрона, либо сам провод. Из-за более равномерного распределение света энергосберегающие лампы снижают утомляемость человеческого глаза.

    Люминесцентные лампы

    Люминесцентная лампа – это газоразрядная лампа низкого давления. Ультрафиолетовое излучение, возникающее в результате газового разряда невидимо для человеческого глаза. Оно преобразуется люминофорным покрытием в видимый для нас свет. Принцип работы люминесцентной лампы похож на компактные энергосберегающие лампы (см. выше).

    Лампы накаливания

    Лампы накаливания традиционно используются на протяжении многих лет и по-прежнему являются наиболее широко применяемым источником света. Они дают приятный свет со спектром, сдвинутым в инфракрасную область. Цветные лампы прекрасно подходят для создания декоративных специальных эффектов, а зеркальные лампы, излучающие направленный свет, позволяют создать необходимый световой акцент. Несмотря на многообразие типоразмеров ламп накаливания, отличающихся номинальным напряжением, мощностью и родом тока, все они объединены единым физическим принципом получения видимого излучения (нагрев электрическим током вольфрамовой нити до температуры 2200-2800°С) и сходством применяемых во всех конструкциях основных составляющих элементов: стеклянная колба; вольфрамовая нить; электроды.

    Зеркальная лампа

    Верхняя часть колбы зеркальной лампы покрыта отражающим свет слоем. Зеркальное покрытие защищает конструкцию лампы от перегрева, и в то же время позволяет самой лампе светить ярче. При этом другая часть колбы остается матовой, а свет от нее равномерный, рассеянный. Срок службы такой лампы 600-1000 часов.

    Галогенные лампы

    Галогенные лампы излучают приятный белый свет с отличной цветопередачей. Основаны на том же принципе, что и лампы накаливания, но с применением «галогенного цикла». Вольфрамовая нить накаливания окружена инертным газом, содержащим галогениды. Благодаря специально созданным условиям вылетающие частички нити возвращаются обратно, что значительно продлевает срок службы лампочки и предотвращает почернение колбы. Если к галогенной лампе холодного света добавить отражатель, то освещаемые такой лампой объекты не будут нагреваться. Кроме того, галогенная лампа дает больше света, чем лампа накаливания при одинаковой мощности. При использовании галогенных ламп обратите внимание на одну особенность – эти лампы очень чувствительны к перепадам напряжения.

    Параметры люминис­центные лампы ком­пакт­ные энерго­сберегающие лампы металло­галогенные лампы зеркальная лампа галогенные лампы
    Срок службы, час* 3000-6000 6000-15000 1000 до 1000
    Световой поток, Лм** 110-7500 100-10000 1000-30000 70-18000 30-11000
    Световая отдача лм/Вт*** 25-104 25-80 50-95 7-18 до 30
    Цветовая температура указывается в градусах Кельвина**** 2700-6500 3000-6000 2500-2900 2700-4000
    Недостатки большие габариты, наличие ртути, необходимость специальной аппаратуры включения наличие ртути, необходимость специальной аппаратуры включения, пульсации светового потока низкая светоотдача, малый срок службы
    Достоинства высокая световая отдача, большой срок службы компактность, хорошая цветопередача идеальная цветопередача, простота включения, дешевизна
    Основные области применения лампы внутреннее освещение административных помещений, магазинов и т.д. архитектурное, художественное освещение, акцентир. освещение освещение жилых помещений архитектурное, художественное освещение, акцентир. освещение

    * Зависит от стабильности напряжения в сети, также повысить срок службы можно используя схемы для плавного включения ламп.
    ** Световым потоком называется вся мощность излучения источника света, оцениваемая по световому ощущению глаза человека и измеряется в люменах.
    *** Световая отдача показывает с какой экономичностью потребляемая электрическая мощность преобразуется в свет. Теоретически достигаемая максимальная величина при полном преобразовании энергии в видимый свет составляет 683 лм/Вт. Реально достижимые значения, разумеется, значительно ниже и находятся между 10 лм/Вт и 150 лм/Вт.
    **** Цветовая температура любого источника электромагнитных волн, в том числе световых, определяется путем сопоставления спектральных характеристик источника и абсолютно черного тела. Абсолютно черное тело (излучатель Планка) – тело, которое поглощает все падающие на него излучения, независимо от длины волны и направления излучения. Цветовая температура указывается в градусах Кельвина (обозначение К), отсчитываемых от абсолютного нуля. Шкала Кельвина отличается от шкалы Цельсия только положением нуля: положение нуля на шкале Кельвина на 273 градуса ниже нуля по Цельсию. Она, таким образом, выше на 273 градуса, чем та же температура, выраженная в градусах Цельсия.

    Радиосхемы. — Восстановление ламп дневного света

    материалы в категории

    Восстановление лампы дневного света с перегоревшей нитью накала

    Способов восстановить лампу дневного света в интернете и литературе описано немало (и мы не исключение- смотрите материал Вечная люминесцентная лампа ), но почти во всех этих случаях оживить лампу дневного света возможно лишь когда обе нити канала исправны.
    Здесь-же мы приводим пару вариантов как можно оживить лампу дневного света если одна из нитей накала оборвана.

    При повторении этих схем нужно иметь в виду, что нить накаливания ЛДС, которая остается «живой”, работает с перегрузкой, поскольку перегоревшая нить накаливания шунтирована “проволочной перемычкой”. Такой форсированный режим работы лампы из-за уменьшения сопротивления цепи нитей накаливания в два раза приводит к ее быстрому износу, и она выходит из строя. Кроме того, схема «реанимации», приведенная в [2], требует дополнительной установки пусковой кнопки, поэтому при управлении ЛДС с помощью настенного выключателя возникает проблема — где же разместить эту пусковую кнопку, чтобы включать лампу, установленную на потолке?


    В схеме “реанимации», которая показана на рис.1, этих недостатков нет. Как видно из рис.1, перегоревшая нить накала ЛДС шунтирована не перемычкой, а проволочным резистором, сопротивление которого равно холодному сопротивлению нити накала. Для ламп мощностью 20 и 30 Вт (ЛБК22, ЛБУЗО) это сопротивление составляет 2…3 Ом. Проволочный резистор R1 выполнен на резисторе типа ВС-0,25 10 кОм и состоит из 2-3 витков нихромового провода диаметром 0,15…0,2 мм.
    В качестве резистора R1 очень удобно использовать переменный проволочный резистор типа СП5-28А номиналом 33 Ом или подобные ему, подбирая при наладке величину его сопротивления так, чтобы нить накаливания ЛДС не перегружать (при пуске она должна быть красного или розового цвета при уверенном зажигании лампы). При наладке схемы необходимо также учитывать рекомендации [1], которые обеспечивают уверенное зажигание ЛДС.


    Чтобы больше приблизить работу ЛДС во время ее пуска к работе с целыми нитями накаливания, последовательно с «холодным» сопротивлением резистора R1 включают три параллельно соединенные лампочки накаливания типа МН 13,5-0,18 (с напряжением 13,5 В и током 0,18 А). Вольтамперная характеристика (ВАХ) их такая же, как и ВАХ нити накаливания ЛДС. Вместо этих трех лампочек можно использовать одну автомобильную лампу 12 В х 6 св.
    Однако при «реанимации” могут быть случаи, когда добиться нормальной работы ЛДС с помощью схемы рис.1 не удается. Лампа загорается тяжело и мигает с частотой 25 Гц, несмотря на все хитрости, указанные в [1]. Это мигание не устраняется и при вынутом стартере SF1 и сопровождается повышенным нагревом дросселя. Такая работа лампы объясняется тем, что она перешла в однополупериодный режим работы из-за потери эмиссии одним из электродов, т.е. лампа работает как диод, пропуская ток только в одном направлении, в результате через дроссель течет постоянная составляющая выпрямленного тока, что и вызывает его нагрев.
    В данном случае обеспечить нормальную работу ЛДС непосредственно от сети переменного тока не удается. Но оживить лампу можно и в этом случае, она может еще надежно поработать, если перевести ее на питание током одного направления, соединив ее с выходом однополупериодного выпрямителя. На рис.2 показана такая схема включения. Работа лампы по этой схеме подобна работе лампы по рис.1 за исключением того, что по ней течет однонаправленный ток с частотой 100 Гц, при этом целая нить накаливания выполняет функцию катода лампы, а поврежденная — анода.
    В качестве диодов моста VD1…VD4 можно использовать сборки типов КЦ402…КЦ405 на 600 В и ток 1 А для ЛДС мощностью 20, 30, 40 и 65 Вт. Очень удобна сборка типа КЦ404, которая имеет держатель предохранителя.


    Автор: К.В. Коломойцев. г. Ивано-Франковск

    Литература
    1. Ховайко В. Восстановление люминесцентных ламп//Радио. — 1997.
    — №7 -С.37
    2. Есеркенов К. Способ “реанимации”ламп дневного света//Радио.
    — 1998. — №2. — C.61.

    Обсудить на форуме

    Лампы люминесцентные.  Классификация и характеристики.

    В 21 веке, основным видом ламп для освещения стали люминесцентные устройства освещения. Среди немалого разнообразия, эти источники освещения распространены в большем количестве относительно других. При условии их невысокой энергоемкости эти световые устройства давали достаточно освещения для больших помещений, классов, высоких и длинных коридоров и др.

    Как следствие развитие технологии газоразрядных светильников не стояло на месте, особенности освещения ЛДС с каждым разом совершенствовались, начали появляться лампы дневного света меньшего размера, более ярких свечений, улучшалось качество отдаваемого света. Приблизительно в начале «нулевых» годов люминесцентная лампа начала появляться не только в производственных нуждах, но и дома. Так на смену «лампочке Ильича» пришли газоразрядные устройства освещения. При этом более экономичные люминесцентные лампы давали людям выбор освещения, от холодных до теплых оттенков белого и желтого цвета.

    Виды ламп и цоколя

    Как правило, в своих квартирах и частных домах люди используют компактные газоразрядные устройства освещения, которые вкручиваются в привычный для всех цоколь, эти светильники питаются от сети 220 Вт. Также имеет место в использовании небольших четырехштырьковых световых устройств, которые обычно используются в светильниках. За редким исключением эти источники света имеют дугообразный вид. В отличие от цокольных, таким светильникам необходимо устройство пуска «реле», поэтому в основном их использование приходится на промышленную или административную структуру помещений.

    Цоколи ламп.

    Необходимой деталью в конструкции любого светового устройства является цоколь. Цоколь, в каком бы из типов ламп он не стоял, обеспечивает за счет специального соединения, контакт люминесцентных ламп с электрической цепью. Итак, цоколи для световых устройств могут быть следующих видов:

    • Резьбовой (винтовой). Резьбовые постаменты отличаются элементарной и комфортной конструкцией, позволяющей вкручивать колбу максимально быстро. Электролампы по конструкции колб отличаются большим разнообразием, однако наиболее распространенными являются электролампы с цоколем типа e14 и e27.
    • Штыковой. Поначалу предназначался для газоразрядных светильников трубчатого типа. Позже стали использовать также для установки галогеновых и светодиодных конструкций. Он выполнен в виде штырьков. Постаменты светильников штырькового типа различаются по числу штырьков и расстоянию между ними. Так, например, если цоколь лампы g13, то это свидетельствует, что будут расстояние между его штырями, равняется 13 миллиметрам. К недостаткам такого постамента можно отнести сложность в определении его размера на глаз.
    • С утопленным контактом. Используется в трубчатых кварцевых и галогеновых светильниках, обладающих повышенной температурой нагревания и мощностью. Цифра в его маркировке означает длину металлического элемента.
    • Софитный. Раньше использовали только для освещения сцены. Его контакты могут располагаться как с одной стороны светильника, так и сразу с двух.
    • Штифтовой. По внешнему диаметру расположено два штифта, связывающих сам постамент и патрон. При помощи такой простой конструкции светильник без особого труда подключается к сети.
    • Фокусирующий вариант. Представляет собой конструкцию из линзы, способствующей фокусировке светового потока.
    • Телефонный вариант. Для него обязательно наличие маленькой лампочки.

    Область применения

    В наше время достаточно сильно развита экономика, что заставляет нас использовать энергосберегающие ресурсы. Так, люминесцентные лампы начали использоваться практически везде, будь то собственная квартира, дачный участок или какое-либо производственное помещение, или просто офис. Вместе с тем, газоразрядное производство используется и в плазменных телевизорах.

     

    Самым целесообразным использованием газоразрядного освещения является большое пространство (стадион, бассейн, школьные участки, на улицах городов и дачных участков). Там, где требуется большая отдача от осветительных элементов, включение происходит достаточно редко.

     Преимущества и недостатки

    В использовании газоразрядных световых устройств имеется широкий ряд преимуществ, благодаря чему на всемирном рынке светоизлучающих изделий они прочно держат позиции второго места, уступая лишь светодиодным изделиям.

    К преимуществам можно отнести:

    • показатели энергопотребления, в несколько раз ниже, чем у световых устройств накаливания;
    • высокое качество отдаваемого света;
    • широкий спектр предоставляемых разновидностей готовых изделий, как для общего, так и для специального назначения;
    • повышенный срок эксплуатации, превосходит в несколько раз даже галогенные источники света.

    К недостаткам можно отнести:

    • готовая продукция имеет повышенную ценовую категорию;
    • при длительном воздействии негативно сказывается на самочувствии и зрении человека;
    • прямая зависимость срока службы от частоты включения и выключения освещения;
    • очень чувствительны к перепадам нагрузки в электросетях, из-за чего требуется устанавливать средства от перепадов напряжения;
    • отсутствует возможность регулировки освещенности при использовании специальных для этого средств;
    • невозможно использовать в помещениях с повышенной влажностью и запыленностью;
    • низкое качество использования в низком температурном диапазоне;
    • опасность при разгерметизации корпуса, в светильнике находится ртуть;
    • запрещена утилизация с бытовыми отходами, необходимы контейнеры для специальной утилизации, которые зачастую отсутствует.

    Маркировки

    Как правило, маркировка состоит из 3-4 символов. На первом месте располагается буква «Л», которая означает это лампа типа люминесцентная. Следам за ней, идет определение оттенка свечения. Также имеется маркировка «УФ» означающая ультрафиолет. Далее можно увидеть букву «Ц» или двойную «ЦЦ» что информирует нас о высоком качестве изделия. Последними в списке находятся символы, которые означают тип конструкции изделия: «Б» — быстрого пуска, «У» — U образная, «Р» — рефлекторная, «К» — кольцевая. Цифры, указанные на упаковке, показывают мощность газоразрядного источника освещения «W».

     Классификация люминесцентных ламп

    По технологии производства виды энергосберегающих люминесцентных ламп подразделяются на:

    • светильники, имеющие от одного до пяти слоев люминофора, со стандартным 26 миллиметровым цоколем;
    • светильники небольшого размера трубчатого вида, также имеющие до пяти слоев люминофора;
    • световые устройства, предназначенные для узкоспециализированного использования, изготовленные по отдельному проекту.

    Анализируем технические характеристики разных видов люминесцентных ламп

    Технические характеристики энергосберегающих люминесцентных ламп разделяются по следующим параметрам:

    • по потребляемой энергии измеряется в «W»;

    Также стоит отметить, что показатель ламп накаливания определяет силу излучаемого света, а люминесцентных – энергоемкость.

    • по потоку света измеряется в «Лм»;

    Проведем аналогию с лампами накаливания, так 200W – соответствует 3040 «Лм», 100 «W» — 1340 «Лм» и 60 «W» — 710 «Лм» соответственно.

    • по температуре в зависимости от цвета;

    Диапазон варьируется от 7000 «К» (Бело-голубой) до 2000 «К» (Красный).

    • по индексу цветопередачи «Ra».

    Здесь идет разделение по шкале баллов максимальное количество 100 баллов. Чем выше показатель, там точнее будет выглядеть цвет предметов, на которые падает освещение.

    Наиболее распространенными газоразрядными устройствами являются лампы серии лб (белого света) и серии лд (дневного света).

    Все лампы различаются по техническим параметрам, так, к примеру, лампа мощностью 36 Вт будут иметь следующие технические характеристики:

    • лампы серии лб являются источниками освещения общего назначения;
    • создают имитацию естественного света, максимально приближают его цветовые и спектральные характеристики к естественному свету.
    • 36 Вт лампы лб являются полным аналогом источников освещения мощность, которых составляет 40 Вт, их характеристики практически идентичны. Отличие состоит в качестве материала и измененном технологическом процессе.

    Наибольшим спросом пользуются люминесцентные лампы с мощностью18 вт. Лампа лб 18 имеет такие технические характеристики как:

    • белая лампа с низким давлением;
    • мощность составляет 18 ватт;
    • тип цоколя в таком устройстве освещения g13;
    • высокая световая отдача;
    • низкое потребление электроэнергии;
    • срок службы лампы достаточно продолжительный.

    Лампа лб 20 имеет такие же технические характеристики, что и предыдущий световой источник. Различие между ними состоит только в мощности.

    Лампы ЛБ 40 предназначены для освещения закрытых помещений, а также для наружной установки, работают в электрических сетях переменного тока напряжением 220 В, частотой 50 Гц и включаются в сеть вместе с соответствующей пускорегулирующей аппаратурой, в схемах стартерного зажигания. Тип цоколя люминесцентной лампы G13.

    Лампа лб 80 значительно отличается от предыдущих ламп, поскольку ее технические характеристики значительно выше. Так, габаритный размер составляет D=38; L1=1514,2; L=1500 имея такие габариты, лампа лб 80 по своим техническим параметрам превосходит остальные газоразрядные источники серии лб.

    Для большей наглядности,  характеристики люминесцентных ламп серии лб отображает следующая таблица:

    Люминесцентные лампы, мощность которых составляет 58 вт, используются в местах, где требования к высокой цветопередаче минимальны.

    Люминесцентные лампы т8 могут иметь следующие технические характеристики: мощность варьируется от 18 ватт до 36 ватт, световой поток составляет 35 тысяч Лм, световая отдача – 89 Лм, индекс цветопередачи равен 65 Ra, цоколь — Е40, напряжение светового устройства должно быть 220 В. По техническим параметрам лампа т8 схожа со световым устройством т12. При необходимости может стать отличной ей заменой, с экономией энергии в 10 %.

    Люминесцентные лампы с коэффициентом т5 относят к новому светотехническому прогрессу. По своим техническим показателями этим источникам освещения очень быстро удалось вытеснить световые устройства т12 и т8.

    Люминесцентная лампа

    — обзор

    7.6.3 Сравнение с люминесцентными лампами

    В случае светодиодных «ламповых» ламп и люминесцентных ламп T8 (или T5) уравнение сложнее, но улучшается. В начале 2013 года поступали сообщения о лампах> 100 лм / Вт (светодиодные лампы Green Ray, например, www.greenrayled.com), однако замена лампы по-прежнему не рекомендуется, поскольку светильники разработаны с учетом флуоресцентных ламп и не являются оптимальными. для светодиодных (направленных). Хотя светодиодные чипы достигли эффективности> 200 лм / Вт, эти диоды еще не производятся серийно, а светодиодная лампа будет иметь все компоненты, упомянутые в предыдущих разделах, и « неэффективность » этих компонентов снизит общую эффективность светильника. (в данном случае светильник — светодиодная трубка).Светодиодные лампы улучшаются [19], и ожидается, что в ближайшие два года или около того, их замена станет возможной. Сегодня есть много предприятий, которые решили провести модернизацию светодиодных трубок и довольны результатами. При использовании современных светодиодных трубок оптимистическая экономия составляет 20%, а при довольно большой разнице в ценах окупаемость более длительная, чем приемлемая (если отсутствуют привлекательные местные стимулы). Кроме того, срок службы люминесцентных ламп хорошего качества может достигать 30 000 часов.

    Хотя замена ламп всегда будет предпочтительнее для предприятий, которые ограничены в средствах, лучший способ замены флуоресцентных трифонов (прямоугольных встраиваемых люминесцентных светильников) на светодиоды — это замена целого осветительного прибора на светодиодный. Это в основном связано с тем, что призматические линзы и параболические светильники оптимально разработаны для люминесцентных ламп и формируют световую диаграмму светильника в соответствии со световой диаграммой от ламп, которая является всенаправленной. Светодиоды однонаправлены (как объяснялось в предыдущих разделах), поэтому эти люминесцентные светильники плохо работают со светодиодами.Замена светодиодных светильников 2 фута x 4 фута (60 см x 120 см) или 2 фута x 2 фута (60 см x 60 см), которые подходят к потолочной плитке, имеют отличные характеристики (100 лм / Вт от Cree, например [20]), эстетичны, имеют индекс цветопередачи 92 (что отлично подходит для замены в розничной торговле), легко управляемы (с регулировкой яркости и с датчиком) и превосходят характеристики типичного люминесцентного светильника. Дополнительную экономию часто можно получить, используя элементы управления, встроенные в светодиодные светильники, которые сложнее для люминесцентных ламп.Экономическое уравнение остается немного сложным для проектов чистой модернизации, если кто-то хочет изменить приспособление, но для новых или реконструируемых проектов окупаемость может быть <3 лет по сравнению с эквивалентным приспособлением T8.

    Одна из основных экологических причин, по которым некоторые потребители могут отказаться от люминесцентных ламп (КЛЛ или ламп), заключается в том, что эти лампы содержат ртуть, и, хотя переработка рекомендуется, она, к сожалению, не так распространена, как хотелось бы. Вместо этого использование светодиодов устраняет эту проблему.

    Еще один побочный комментарий о лампах: применение, в котором замена светодиодов T8 была чрезвычайно успешной, — это холодильники (в продуктовых магазинах) и складские помещения, где из-за низких температур экономия значительна. Проникновение светодиодных «палочек для холодильников», как их еще называют, в США почти 100%. Если вы войдете в Walmart, Target, Walgreens, Whole Foods и многие другие крупные сети, вы увидите только светодиоды в их холодильниках. В Великобритании Tesco также оснастила все свои холодильники светодиодами.

    Хотя это не является основной темой данной главы, я хотел бы кратко остановиться на заменах галогенидов металлов, поскольку они становятся все более распространенными. Уличные фонари, прожекторы и настенные светильники, в которых используются металлогалогенные лампы, получают хорошую конкуренцию со стороны светодиодных светильников. В этом случае замена редко (если вообще когда-либо) выполняется на светодиодную лампу, так как мощность, необходимая для светодиодных ламп, высока (> 30 Вт для прожекторов и> 100 Вт для уличных фонарей), а радиатор должен быть хорошо спроектирован и должен получить достаточную циркуляцию воздуха, это светодиодный светильник.Есть несколько светодиодных светильников, которые могут поместиться в существующий MH (металлогалогенный) светильник (например, голова кобры), но только некоторые из них хорошо спроектированы. Обычно экономия составляет 50%. Несколько городов по всему миру проводят большие испытания светодиодного уличного освещения, чтобы определить, какие типы являются оптимальными, включая Лондон, Лос-Анджелес, Сан-Диего, Роли, Нью-Йорк и несколько крупных городов Китая. Самые большие проблемы возникают в местах с очень высокими температурами, например, в регионе Персидского залива на Ближнем Востоке или в Аризоне и Неваде в США.В этих регионах ночные температуры могут оставаться довольно высокими, и поэтому износ светодиодных светильников, вероятно, будет более быстрым, поэтому необходимо выбирать соответствующие светильники. Абу-Даби в ОАЭ (Объединенные Арабские Эмираты) планирует заменить свои традиционные уличные фонари на светодиодные и туннельные светильники после 18-месячного тестирования, которое дало очень удовлетворительные результаты.

    Основной момент, который следует понять из этой главы, заключается в том, что существует множество модернизированных светодиодов и светильников, которые являются отличной заменой для существующих галогенных ламп / ламп накаливания, а также других технологий, но, как указано в ссылке [19] и ранее в этом глава, покупатель, будьте осторожны! Убедитесь, что для светильника доступны данные LM-79, а также данные о сроке службы, если возможно, этикетка с фактическими данными об освещении или рейтинг Energy Star (в противном случае — еще один хороший вариант — Design Lights Consortium).

    Люминесцентные лампы — как работает люминесцентная лампа и ее применение

    Что такое люминесцентные лампы?

    Люминесцентные лампы — это лампы, в которых свет возникает в результате потока свободных электронов и ионов внутри газа. Типичная люминесцентная лампа состоит из стеклянной трубки, покрытой люминофором и содержащей пару электродов на каждом конце. Он заполнен инертным газом, обычно аргоном, который действует как проводник, а также состоит из жидкой ртути.

    Люминесцентная лампа

    Как работает люминесцентная лампа?

    Когда электричество подводится к трубке через электроды, ток проходит через газовый проводник в форме свободных электронов и ионов и испаряет ртуть.Когда электроны сталкиваются с газообразными атомами ртути, они испускают свободные электроны, которые переходят на более высокие уровни, а когда они возвращаются на свой исходный уровень, излучаются фотоны света. Эта излучаемая световая энергия находится в форме ультрафиолетового света, невидимого для человека. Когда этот свет попадает на люминофор, нанесенный на трубку, он возбуждает электроны люминофора на более высокий уровень, и когда эти электроны возвращаются к своему исходному уровню, излучаются фотоны, и эта световая энергия теперь находится в форме видимого света.


    Запуск люминесцентной лампы

    В люминесцентных лампах ток течет по газообразному проводнику, а не по твердотельному проводнику, где электроны просто текут от отрицательного конца к положительному. Должно быть много свободных электронов и ионов, чтобы позволить потоку заряда через газ. Обычно в газе очень мало свободных электронов и ионов. По этой причине необходим специальный пусковой механизм, чтобы ввести в газ больше свободных электронов.

    Два пусковых механизма для люминесцентной лампы

    1.Один из методов заключается в использовании выключателя стартера и магнитного балласта для обеспечения протекания переменного тока к лампе. Выключатель стартера требуется для предварительного нагрева лампы, так что требуется значительно меньшее количество напряжения для запуска образования электронов на электродах лампы. Балласт используется для ограничения силы тока, протекающего через лампу. Без выключателя стартера и балласта большое количество тока будет течь непосредственно к лампе, что уменьшит сопротивление лампы и, в конечном итоге, нагреет лампу и разрушит ее.

    Люминесцентная лампа с магнитным балластом и выключателем стартера

    Используемый выключатель стартера представляет собой обычную колбу, состоящую из двух электродов, так что между ними образуется электрическая дуга, когда через колбу протекает ток. В качестве балласта используется магнитный балласт, который состоит из катушки трансформатора. Когда через катушку проходит переменный ток, создается магнитное поле. По мере увеличения тока магнитное поле увеличивается, и это в конечном итоге препятствует прохождению тока. Таким образом ограничивается переменный ток.

    Первоначально для каждого полупериода сигнала переменного тока ток течет через балласт (катушку), создавая вокруг него магнитное поле. Этот ток, проходя через нити трубки, медленно нагревает их, вызывая образование свободных электронов. Когда ток проходит через нить накала к электродам колбы (используется в качестве выключателя стартера), между двумя электродами колбы образуется электрическая дуга. Поскольку один из электродов представляет собой биметаллическую полосу, он изгибается при нагревании, и в конечном итоге дуга полностью гаснет, а поскольку ток не течет через стартер, он действует как размыкающий выключатель.Это вызывает коллапс магнитного поля на катушке, и в результате возникает высокое напряжение, которое обеспечивает необходимое срабатывание для нагрева лампы, чтобы произвести необходимое количество свободных электронов через инертный газ, и в конечном итоге лампа загорится.

    6 причин, почему магнитный балласт не считается удобным?

    • Потребляемая мощность довольно высокая, порядка 55 Вт.
    • Они большие и тяжелые
    • Они вызывают мерцание, поскольку работают на более низких частотах.
    • Они не служат дольше.
    • Потери от 13 до 15 Вт.

    2. Использование электронного балласта для запуска люминесцентных ламп

    Электронные балласты, в отличие от магнитного балласта, подают переменный ток в лампу после увеличения частоты сети с 50 Гц до 20 кГц.

    Электронный балласт для запуска люминесцентной лампы

    Типичная схема электронного балласта состоит из преобразователя переменного тока в постоянный, состоящего из мостов и конденсаторов, которые преобразуют сигнал переменного тока в постоянный и фильтруют пульсации переменного тока для выработки постоянного тока.Это постоянное напряжение затем преобразуется в высокочастотное прямоугольное напряжение переменного тока с помощью набора переключателей. Это напряжение приводит в действие резонансный контур LC-резервуара, чтобы произвести отфильтрованный синусоидальный сигнал переменного тока, который подается на лампу. Когда ток проходит через лампу с высокой частотой, он действует как резистор, образуя параллельную RC-цепь с цепью резервуара. Первоначально частота переключения переключателей снижается с помощью схемы управления, что приводит к предварительному нагреву лампы, что приводит к увеличению напряжения на лампе.В конце концов, когда напряжение на лампе достаточно увеличивается, она загорается и начинает светиться. Имеется устройство для измерения тока, которое может определять величину тока, протекающего через лампу, и соответственно регулировать частоту переключения.

    6 причин, почему предпочтение отдается электронным пускорегулирующим аппаратам. Больше

    • Они имеют низкое энергопотребление, менее 40 Вт
    • Потери незначительны
    • Устранено мерцание
    • Они легче и больше подходят для разных мест
    • Они служат дольше

    Типичное применение люминесцентной лампы — автоматическое переключение света

    Вот полезная домашняя схема для вас.Эта автоматическая система освещения может быть установлена ​​в вашем доме для освещения помещения с помощью КЛЛ или люминесцентных ламп. Лампа автоматически включается около 18:00 и гаснет утром. Таким образом, эта схема без выключателя очень полезна для освещения помещений в доме, даже если заключенных нет дома. Обычно автоматические огни на основе LDR мерцают при изменении интенсивности света на рассвете или в сумерках. Поэтому КЛЛ нельзя использовать в таких схемах. В автоматических осветительных приборах с симисторным управлением возможна только лампа накаливания, поскольку мерцание может повредить цепь внутри КЛЛ.Эта схема преодолевает все подобные недостатки и мгновенно включается / выключается при изменении заданного уровня освещенности.

    Как это работает?

    IC1 (NE555) — это популярная микросхема таймера, которая используется в схеме в качестве триггера Шмитта для получения бистабильного действия. Действия установки и сброса IC используются для включения / выключения лампы. Внутри микросхемы два компаратора. Компаратор верхнего порога срабатывает при 2/3 В постоянного тока, а компаратор нижнего порога срабатывает при 1/3 В постоянного тока. Входы этих двух компараторов связаны вместе и соединены на стыке LDR и VR1.Таким образом, напряжение, подаваемое LDR на входы, зависит от интенсивности света.

    LDR — это разновидность переменного резистора, сопротивление которого меняется в зависимости от интенсивности падающего на него света. В темноте LDR предлагает очень высокое сопротивление, достигающее 10 Мегаом, но при ярком свете оно уменьшается до 100 Ом или меньше. Итак, LDR — идеальный датчик света для автоматических систем освещения.

    В дневное время LDR имеет меньшее сопротивление, и ток течет через него к пороговому (Pin6) и триггерному (pin2) входам IC.В результате напряжение на пороговом входе превышает 2/3 Vcc, что сбрасывает внутренний триггер, и выход остается низким. В то же время триггерный вход получает более 1/3 В постоянного тока. Оба условия поддерживают низкий уровень выходного сигнала IC1 в дневное время. Транзистор драйвера реле подключен к выходу IC1, так что реле остается обесточенным в дневное время.

    Схема автоматического переключения света

    На закате сопротивление LDR увеличивается, и ток, протекающий через него, прекращается.В результате напряжение на входе компаратора пороговых значений (вывод 6) падает ниже 2/3 В постоянного тока, а напряжение на входе компаратора триггера (вывод 2) — менее 1/3 В постоянного тока. Оба эти условия приводят к тому, что выходной сигнал компараторов становится высоким, что устанавливает триггер. Это изменяет выход IC1 на высокий уровень и запускает T1. Светодиод указывает на высокий выход IC1. Когда T1 проводит, реле активируется и замыкает цепь лампы через общий (Comm) и NO (нормально разомкнутый) контакты реле.Это состояние продолжается до утра, и IC сбрасывается, когда LDR снова подвергается воздействию света.

    Конденсатор C3 добавлен к базе T1 для чистого переключения реле. Диод D3 защищает T1 от обратного ЭДС при выключении T1.

    Как настроить?

    Соберите схему на общей печатной плате и поместите в противоударный корпус. Коробка адаптера вставного типа — хороший выбор для размещения трансформатора и цепи. Разместите блок в местах, где в дневное время доступен солнечный свет, предпочтительно вне дома.Перед подключением реле проверьте выход с помощью светодиодного индикатора. Настройте VR1, чтобы светодиод загорелся при определенном уровне освещенности, например, в 18:00. Если все в порядке, подключите реле и соединения переменного тока. Фаза и нейтраль могут быть отведены от первичной обмотки трансформатора. Возьмите фазный и нейтральный провода и подключите к патрону. Вы можете использовать любое количество ламп в зависимости от номинального тока контактов реле. Свет от лампы не должен попадать на LDR, поэтому установите лампу соответствующим образом.

    Осторожно : На контактах реле 230 В во время зарядки. Поэтому не прикасайтесь к цепи, когда она подключена к сети. Используйте хорошую оплетку для контактов реле, чтобы избежать удара.

    Фотография предоставлена:

    • Люминесцентная лампа от wikimedia
    • Запуск люминесцентной лампы с использованием магнитного балласта и выключателя стартера от wikimedia

    3. Как работают люминесцентные лампы?

    3.4. Физические характеристики ламп

    Принципы работы

    Люминесцентная лампа излучает свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке напольная лампа. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.

    Строительство

    Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредное воздействие на здоровье от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

    Электрические аспекты эксплуатации

    Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны разные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где схемотехника не подлежит замене перед люминесцентными лампами.Это уменьшило количество технических сбоев, вызывающих эффекты, как указано выше.

    EMF

    Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

    Мерцание

    Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.За лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

    Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.

    Световое излучение, УФ-излучение и синий свет

    Есть характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или «Холодный» или, более конкретно, по их цветовой температуре для профессиональные световые приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.Есть на международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, настроенными на защиту от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

    УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Немного КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).

    Компактные люминесцентные лампы — Chemistry LibreTexts

    1. Последнее обновление
    2. Сохранить как PDF
    1. Авторы и авторство

    Компактные люминесцентные лампы или КЛЛ — обманчиво простые устройства.По сравнению с принципами работы лампы накаливания, понимание того, как КЛЛ излучает свет, требует знания электронной структуры атомов, участвующих в испускании света. Работа с КЛЛ упрощена: как только электрический ток начинает течь через КЛЛ, внутренняя часть лампы начинает светиться и излучать видимый свет. Углубляясь глубже, КЛЛ содержит несколько ключевых компонентов, участвующих в этом излучении видимого света, включая присутствие паров элементарной ртути, благородного газа (аргона, ксенона, неона или криптона) и внутреннего покрытия, называемого люминофором, которое является фактически ответственным веществом. для получения видимого света из КЛЛ.

    Вспоминая электронную конфигурацию атома и его орбитальные подоболочки, каждый атом содержит некоторое различное количество орбитальных подоболочек, которые, соответственно, заполняются возрастающей энергией, начиная с орбитальной подоболочки с наименьшей энергией. Например, гелий содержит два электрона, оба расположены на орбитали 1s2, что делает эту орбиталь заполненной. Для сравнения, атом водорода содержит только один электрон на орбитали 1s 2 , что делает эту орбиталь частично заполненной.Этот принцип полностью или частично заполненных орбиталей жизненно важен для понимания работы КЛЛ.

    Газы, которые населяют полую внутреннюю часть КЛЛ, содержат полностью заполненные орбитальные подоболочки. Поскольку электронные конфигурации ртути и благородных газов находятся на минимально возможном уровне энергии, называемом основным состоянием, эти типы атомов сильно сопротивляются отказу от любых электронов из-за стабильности, которую они уже достигли благодаря заполненным орбитальным подоболочкам. Однако, когда энергия, передаваемая через электрический ток, проходит через CFL, избыточный поток электронов воздействует на атомы ртути и благородных газов.Это столкновение, называемое неупругим рассеянием между электроном и атомом, заставляет электрон из самой внешней подоболочки затронутого атома временно «прыгать» или переходить на следующий самый высокий энергетический уровень. Этот электрон сейчас находится в «возбужденном» состоянии, но желает вернуться в свое прежнее стабильное состояние, поэтому будет излучать фотон энергии, когда возбужденный электрон переходит обратно на более низкий энергетический уровень, высвобождая избыточную энергию в виде этого протона.

    Однако эти фотоны, испускаемые атомами газа, имеют длины волн в ультрафиолетовом спектре и должны быть сначала преобразованы в видимый свет для любого полезного использования.Здесь внутреннее покрытие CFL, называемое люминофором, работает по такому же механизму, что и ранее описанное возбуждение, и переходит из состояний с более высокой энергией в состояние с более низкой энергией. Люминофор будет поглощать ультрафиолетовые фотоны, вызывая временное возбуждение на следующий более высокий энергетический уровень с последующим излучением фотона более низкой энергии из-за свойств материала люминофора, состоящего из смеси металлических металлов, например: меди, цинка, сульфиды, оксиды, нитриды, алюминий, селениды, кремний или редкоземельные металлы.В зависимости от этого состава видимый свет, излучаемый КЛЛ, может различаться по длине волны и соответствующему видимому цвету.

    Из ChemPRIME: 5.15: Электронные конфигурации

    Авторы и авторство

    NEWMOA — Использование ртути в освещении

    «Использование ртути в освещении» обобщает использование ртути в осветительных приборах, таких как люминесцентные лампы, автомобильные фары и неоновые вывески. Этот информационный бюллетень охватывает все типы ламп, которые содержат ртуть в отдельных устройствах; общее количество ртути во всех устройствах, которые были проданы как новые в США.С. в 2001 и 2004 годах; переработка / утилизация ртутных ламп; и безртутные альтернативы.

    Информация в этом информационном бюллетене основана на данных, представленных государственным членам Межгосударственного информационного центра по вопросам образования и сокращения выбросов ртути (IMERC) 1 , включая Коннектикут, Луизиану, Мэн, Массачусетс, Нью-Гэмпшир, Нью-Йорк, Род-Айленд и Вермонт. . Эти данные доступны в Интернете через базу данных IMERC Mercury-Added Products. 2

    При рассмотрении данных, обобщенных в этом информационном бюллетене, необходимо учитывать ряд важных предостережений:

    • Информация может не отражать всю совокупность ртутьсодержащих ламп, продаваемых в США.S. Страны-члены IMERC постоянно получают новую информацию от производителей продуктов с добавлением ртути, и данные, представленные в этом Информационном бюллетене, могут занижать общее количество ртути, проданной в этой категории продуктов.
    • Информация обобщает использование ртути в освещении, продаваемом по всей стране с 2001 года. Она не включает лампы с добавлением ртути, проданные до 1 января 2001 года или экспортированные за пределы США.
    • Представленные данные включают только ртуть, которая используется в продукте, и не включает ртуть, выделяемую в процессе добычи, производства или других этапов жизненного цикла продуктов.

    Типы ртутных ламп

    Ртуть используется в различных лампах. Ртуть полезна в освещении, потому что она способствует эффективной работе лампочек и увеличению срока их службы. Флуоресцентные и другие лампы с добавлением ртути обычно более энергоэффективны и служат дольше, чем лампы накаливания и другие эквивалентные формы освещения. Пока лампы используются, ртуть в них не представляет опасности для здоровья.

    Люминесцентные лампы 3 работают при очень низком давлении газа.Они излучают свет, когда электрический ток проходит между двумя электродами (также называемыми катодами) в трубке, заполненной парами ртути низкого давления и инертными газами, такими как аргон и криптон. Электрический ток возбуждает пары ртути в трубке, генерируя лучистую энергию, в основном в ультрафиолетовом (УФ) диапазоне. Энергия заставляет люминофорное покрытие на внутренней стороне трубки «флуоресцировать», преобразовывая ультрафиолетовый свет в видимый свет. Изменение состава порошка люминофора внутри люминесцентных ламп изменяет спектр производимого света.Ртуть присутствует в лампе как в порошке люминофора, так и в парах.

    Рисунок 1: Иллюстрация компонентов люминесцентной лампы и их работы
    Источник фото: Northeast Lamp Recycling, Inc.

    Люминесцентным лампам требуется балласт, который представляет собой устройство, используемое для обеспечения и регулирования напряжения в лампе, а также стабилизации тока в цепи. Люминесцентные лампы более энергоэффективны, чем лампы накаливания эквивалентной яркости, потому что большая часть потребляемой энергии преобразуется в полезный свет, а меньшая — в тепло.У них также более длительный срок службы лампы.

    В зависимости от типа люминесцентной лампы они могут содержать ртуть в широком диапазоне от более 0 до 100 миллиграммов (мг). По данным Национальной ассоциации производителей электрооборудования (NEMA), около половины люминесцентных ламп, производимых их членами и продаваемых в США, содержат от 5 до 10 мг ртути; в то время как четверть содержат от 10 до 50 мг.

    Типичные типы люминесцентных ламп включают: линейные (прямые), U-образные (изогнутые) и круглые (круглые) люминесцентные лампы / лампы; запперы от насекомых; лампы для загара; черные огни; бактерицидные лампы; лампы повышенной мощности; люминесцентные лампы с холодным катодом; и компактные люминесцентные лампы, как описано ниже:

    Линейные люминесцентные, U-образные лампы и лампы Circline используются для общего освещения.Они широко используются в коммерческих зданиях, школах, промышленных предприятиях и больницах.

    Bug zappers содержат люминесцентную лампу, которая излучает ультрафиолетовый свет, привлекая нежелательных насекомых.

    U-образные и круглые лампы
    Источник фото: Northeast Lamp Recycling, Inc

    В лампах для загара используется люминофорная композиция, излучающая в основном ультрафиолетовый свет, тип A (невидимый свет, который может вызвать повреждение кожи), с небольшим количеством ультрафиолетового света, тип B.

    Черный свет использует состав люминофора, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет. Их часто используют в судебно-медицинских исследованиях.

    Лампы для загара
    Источник фото: Northeast Lamp Recycling, Inc.,
    Бактерицидные лампы не используют люминофорный порошок, а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового ультрафиолетового света.Излучаемый ультрафиолетовый свет убивает микробы и ионизирует кислород до озона. Эти лампы часто используются для стерилизации воздуха или воды.
    Бактерицидная лампа
    Источник фото: Northeast Lamp Recycling, Inc.,

    Люминесцентные лампы высокой мощности (HO) используются на складах, промышленных объектах и ​​складских помещениях, где необходимо яркое освещение. Лампы с высокой выходной мощностью также используются для наружного освещения из-за их более низкой начальной температуры и в качестве ламп для выращивания растений.Они работают так же, как люминесцентные лампы, но рассчитаны на дуги с гораздо большим током. Излучаемый свет намного ярче, чем у традиционных люминесцентных ламп. Однако они менее энергоэффективны, поскольку требуют более высокого электрического тока.

    Лампы с холодным катодом — это люминесцентные лампы небольшого диаметра, которые используются для подсветки жидкокристаллических дисплеев (ЖКД) на широком спектре электронного оборудования, включая компьютеры, телевизоры с плоским экраном, фотоаппараты, видеокамеры, кассовые аппараты, цифровые проекторы, копировальные аппараты и факсы.Они также используются для подсветки приборных панелей и развлекательных систем в автомобилях. Люминесцентные лампы с холодным катодом работают при гораздо более высоком напряжении, чем обычные люминесцентные лампы, что устраняет необходимость нагрева электродов и увеличивает эффективность лампы на 10–30 процентов. Они могут быть разных цветов, иметь высокую яркость и долговечность.

    Компактные люминесцентные лампы (CFL) используют ту же базовую технологию, что и линейные люминесцентные лампы, но складываются или скручиваются по спирали, чтобы приблизиться к физическому объему лампы накаливания.В КЛЛ с винтовым креплением обычно используются люминофоры «премиум» для получения хорошего цвета, они поставляются со встроенным балластом и могут быть установлены практически в любую настольную лампу или осветительную арматуру, в которую можно установить лампы накаливания. КЛЛ на штифтовой основе не используют интегральные балласты и предназначены для использования в светильниках с отдельным балластом. Как винтовые, так и штифтовые КЛЛ используются в коммерческих зданиях. Использование этих типов ламп в жилых помещениях растет из-за их энергоэффективности и длительного срока службы.

    Индивидуальные КЛЛ обычно содержат менее 10 мг ртути, при этом значительная часть (две трети) содержит менее 5 мг.Небольшой процент КЛЛ содержит от 10 до 50 мг ртути.

    Примеры ламп компактных люминесцентных ламп
    Источники фото: Osram Sylvania и GE Lighting

    Разряд высокой интенсивности (HID) 4 — термин, обычно используемый для нескольких типов ламп, включая металлогалогенные, натриевые лампы высокого давления и лампы на парах ртути.Лампы HID работают аналогично люминесцентным лампам. Между двумя электродами в газонаполненной трубке возникает дуга, в результате чего металлический пар производит лучистую энергию. Однако для HID-ламп не требуется люминофорный порошок, поскольку сочетание факторов смещает большую часть производимой энергии в видимый диапазон. Кроме того, электроды расположены гораздо ближе друг к другу, чем в большинстве люминесцентных ламп; а в рабочих условиях общее давление газа в лампе относительно высокое. Это вызывает чрезвычайно высокие температуры в трубке, в результате чего металлические элементы и другие химические вещества в лампе испаряются и генерируют видимую лучистую энергию.

    Лампы

    HID имеют очень долгий срок службы. Некоторые из них излучают намного больше люменов на прибор, чем обычные люминесцентные лампы. Как и люминесцентные лампы, источники HID работают от балластов, специально разработанных для используемых ламп и мощности. Кроме того, HID-лампам требуется период прогрева для достижения полной светоотдачи. Даже кратковременное отключение питания может привести к повторному срабатыванию системы и ее повторному прогреву — процесс, который может занять несколько минут.

    Названия ламп HID (т.(например, галогенид металла, натрий высокого давления и пары ртути) относятся к элементам, которые добавляются к газам, которые обычно представляют собой ксенон или аргон и ртуть в потоке дуги. Каждый тип элемента приводит к тому, что лампа имеет несколько разные цветовые характеристики и общую эффективность лампы, как описано ниже:

    Металлогалогенные лампы (MH) используют галогениды металлов, такие как иодид натрия, в дуговых трубках, которые излучают свет в большинстве областей спектра. Они обеспечивают высокую эффективность, отличную цветопередачу, длительный срок службы и хороший световой поток, и обычно используются на стадионах, складах и в любых промышленных помещениях, где важны отличительные цвета.Они также используются для ярких голубых автомобильных фар и для освещения аквариумов. Доступны маломощные лампы MH, которые стали популярными в универмагах, продуктовых магазинах и во многих других сферах, где важно качество света. Из всех ртутных ламп лампы MH следует рассматривать как полную систему, состоящую из лампы, балласта, воспламенителя, приспособления и органов управления.
    Металлогалогенная лампа
    Источник фото: Northeast Lamp Recycling, Inc.
    Количество ртути, используемой в отдельных лампах MH, колеблется от более 10 мг до 1000 мг, в зависимости от уровня мощности. Согласно NEMA, около одной трети этих ламп, продаваемых в США, содержат от 100 до 1000 мг ртути.

    Металлогалогенные керамические лампы (CMH) были недавно представлены как высококачественная, энергоэффективная альтернатива лампам накаливания и галогенным источникам света. Многие из них оптически эквивалентны источникам галогенов, для замены которых они были разработаны.Они используются для акцентного освещения, освещения магазинов и полезны в помещениях с большим объемом, с высотой потолка 14-30 футов. Дуговая трубка изготовлена ​​из керамики. Лампы CMH обеспечивают лучшее качество света, лучшее сохранение светового потока и лучшую однородность цвета, чем лампы MH, при более низкой стоимости.

    Лампы

    CMH содержат меньше ртути, чем лампы MH. Большинство из них содержат от более 5 до 50 мг ртути.

    Натриевые лампы высокого давления (HPS) — высокоэффективные источники света, но они имеют тенденцию выглядеть желтыми и плохо передают цвета.Лампы HPS были разработаны в 1968 году как энергоэффективные источники для наружного, охранного и промышленного освещения и особенно широко используются в уличном освещении. Стандартные лампы HPS при достижении полной яркости излучают золотой (желтый / оранжевый) белый свет. Из-за плохой цветопередачи их использование ограничено наружными и промышленными применениями, где приоритетом являются высокая эффективность и долгий срок службы.

    Лампы

    HPS обычно содержат от 10 до 50 мг ртути. Небольшой процент содержит более 50 мг ртути.

    Натриевые лампы высокого давления
    Источник фото: Osram Sylvania

    Освещение на ртутных парах — самая старая технология HID. Ртутная дуга дает голубоватый свет, который плохо передает цвета. Поэтому большинство ламп на парах ртути имеют люминофорное покрытие, которое изменяет цвет и в некоторой степени улучшает цветопередачу.Лампы на парах ртути имеют меньшую светоотдачу и являются наименее эффективными членами семейства HID. Они были разработаны для решения проблем с люминесцентными лампами для наружного использования, но менее энергоэффективны, чем люминесцентные. Лампы на ртутных парах в основном используются в промышленности и наружном освещении (например, оборудование для обеспечения безопасности, дороги и спортивные арены) из-за их низкой стоимости и длительного срока службы (от 16 000 до 24 000 часов).
    Ртутные лампы
    Источник фото: Osram Sylvania

    NEMA отмечает, что рынок этих ламп сокращается, и их использование будет продолжать сокращаться, поскольку их балласты запрещены в соответствии с Законом об энергетической политике 2005 года (EPACT).

    Согласно NEMA, ртутные лампы обычно содержат от 10 до 100 мг ртути. Небольшая часть содержит более 100 мг ртути.

    Ртутные лампы с короткой дугой — это кварцевые лампы сферической или слегка продолговатой формы с двумя электродами, глубоко проникающими в колбу, так что они находятся на расстоянии всего нескольких миллиметров друг от друга. Колба заполнена парами аргона и ртути при низком давлении. Мощность может составлять от сотни до нескольких киловатт.Благодаря небольшому размеру дуги и высокой мощности дуга получается чрезвычайно интенсивной. Ртутные лампы с короткой дугой используются для специальных применений, таких как прожекторы, специализированное медицинское оборудование, фотохимия, УФ-отверждение и спектроскопия.

    Ртутные лампы с короткой дугой содержат относительно большее количество ртути, обычно от 100 до 1000 мг. Почти четверть этих ламп содержит более 1000 мг ртути.

    Металлогалогенная лампа с короткой дугой ртутная
    Источник фото: Northeast Lamp Recycling, Inc.

    Ксеноновые ртутные лампы с короткой дугой работают аналогично ртутным лампам с короткой дугой, за исключением того, что они содержат смесь ксенона и паров ртути. Однако они не требуют такого длительного периода прогрева, как обычные ртутные лампы с короткой дугой, и имеют лучшую цветопередачу. Они используются в основном в промышленных приложениях.
    Ртутные ксеноновые лампы с короткой дугой
    Источник фото: Northeast Lamp Recycling, Inc.

    Ртутные ксеноновые лампы с короткой дугой могут содержать от 50 до 1000 мг ртути. Небольшой процент этих ламп содержит более 1000 мг ртути.

    Ртутные капиллярные лампы обеспечивают интенсивный источник лучистой энергии от ультрафиолета до ближнего инфракрасного диапазона. Эти лампы не требуют периода прогрева для запуска или повторного запуска и достигают почти полной яркости за секунды.Они бывают различной длины дуги, мощности излучения и способов монтажа и используются в промышленных условиях (например, для печатных плат), для УФ-отверждения и в полиграфии. УФ-отверждение широко используется в шелкографии, печати и тиражировании CD / DVD, производстве медицинских изделий, декорировании бутылок / чашек и обработке / нанесении покрытий.

    Эти специальные лампы содержат от 100 до 1000 мг ртути.

    Капиллярные лампы ртутные
    Источник фото: Northeast Lamp Recycling, Inc.

    Неоновые лампы — это газоразрядные лампы, которые обычно содержат газы неон, криптон и аргон (также называемые благородными газами) при низком давлении. Подобно люминесцентным лампам, каждый конец неонового света содержит металлические электроды. Электрический ток, проходящий через электроды, ионизирует неон и другие газы, заставляя их излучать видимый свет. Неон излучает красный свет; другие газы излучают другие цвета. Например, аргон излучает бледно-лиловый цвет, а гелий — оранжево-белый цвет.Цвет «неонового света» зависит от смеси газов, цвета стекла и других характеристик лампочек.

    Хотя термин «неоновый свет» относится ко всем газоразрядным лампам, использующим благородные газы, независимо от цвета лампы, только красные лампы являются настоящими неоновыми огнями (т.е. используют неон). Красные неоновые лампы не содержат ртути. Почти в каждом другом цвете «неонового света» помимо других благородных газов используются аргон, ртуть и люминофор.

    Неоновая легкая промышленность — это надомная промышленность. Каждую лампу мастера изготавливают индивидуально в небольших мастерских. Огромное количество производителей неонового света затрудняет их идентификацию IMERC. В результате страны-участницы IMERC до сих пор не получали Уведомлений от большинства производителей неонового света.

    Неоновые лампы содержат приблизительно от 250 до 600 мг ртути на лампу, в зависимости от предпочтений производителя.

    Количество ртути в отдельных лампах

    Таблица 1 суммирует диапазон количества ртути в ртутных лампах каждого типа, которые производятся и продаются как новые в США.S. Производители, импортеры и дистрибьюторы продуктов с добавлением ртути указывают количество использованной ртути в виде точного числа или диапазона. Эти данные были переданы странам-членам IMERC компаниями-членами Национальной ассоциации производителей электрооборудования (NEMA) за 2004 календарный год.

    Таблица 1: Использование ртути в лампах, проданных компаниями NEMA в 2004 г.
    Тип лампы Количество ртути в лампе (мг) Процент ламп с указанным количеством ртути
    Флуоресцентный 0–5
    > 5–10
    > 10–50
    > 50–100
    12
    48.5
    27
    12,5
    CFL 0–5
    > 5–10
    > 10–50
    66
    30
    4
    Металлогалогенид (MH) > 10–50
    > 50–100
    > 100–1000
    24
    40
    35
    Металлогалогенид керамический 0–5
    > 5–10
    > 10–50
    17.6
    46,8
    35,6
    Натрий высокого давления > 10–50 97
    Пар ртути > 10–50
    > 50–100
    > 100–1000
    58
    29
    12
    Ртуть с короткой дугой > 100–1000
    > 1 000
    65
    23
    Капилляр ртути > 100–1000 100

    По данным производителей ламп, примерно 60 процентов всех типов люминесцентных ламп, продаваемых в США.С. в 2004 г. содержал 10 мг ртути и менее. Остальные 40 процентов содержали более 10 мг и до 100 мг ртути. Лампы, используемые в оборудовании для загара, содержат в среднем 17 мг ртути на лампу, при высоком уровне 20 мг и низком уровне 5,5 мг. Сообщалось, что бактерицидные лампы содержат в среднем 7,6 мг ртути на лампу, при этом максимальное значение составляет 70 мг, а минимальное — 5,5 мг. По сообщениям, все четырехфутовые линейные люминесцентные лампы содержали в среднем 13,3 мг, максимальное — 70 мг, минимальное — 2.5 мг. Четырехфутовые люминесцентные лампы, прошедшие испытание на определение характеристики токсичности выщелачивания (TCLP) 5 , содержали в среднем 5,3 мг ртути, при высоком уровне 20 мг и минимальном значении 1,4 мг.

    Компактные люминесцентные лампы содержали наименьшее количество ртути на лампу в 2004 году. Две трети этих ламп содержали 5 мг или меньше ртути, а 96 процентов содержали 10 мг или меньше.

    Лампы

    HID как класс содержали относительно большее количество ртути в отдельных лампах, проданных в 2004 году.Из всех ламп HID лампы MH содержат наибольшее количество ртути. Почти три четверти ламп MH, проданных в 2004 году компаниями-членами NEMA, содержали от более 50 до 1000 мг ртути.

    Ртутные короткодуговые и ртутные капиллярные лампы содержат относительно большое количество ртути. Две трети ртутных ламп с короткой дугой содержат от 100 до 1000 мг ртути, а еще 23 процента содержат более 1000 мг ртути. Все ртутные капиллярные лампы содержат от более 100 до 1000 мг ртути.

    Общее использование ртути в лампах

    В таблице 2 представлено общее количество ртути в лампах, проданных в США в 2001 и 2004 календарных годах для всех производителей ламп, подотчетных IMERC, и только для компаний, представленных NEMA.

    Производители ламп, входящие в NEMA, включают General Electric, Osram Sylvania, Philips, Eye Lighting, Halco, Light Sources, Panasonic, Ruud Lighting, SLI, Ushio, Venture Lighting и Westinghouse. Полный список всех производителей ламп, отчитывающихся перед государствами-членами IMERC, доступен в отчете Тенденции использования ртути в продуктах: сводка базы данных IMERC по продуктам с добавлением ртути , июнь 2008 г. 6

    Таблица 2: Общее количество ртути в лампах, продаваемых в США (фунты)
    Тип лампы 2001 Всего Меркурия
    (Все компании)
    2001 Всего ртути
    (NEMA)
    2004 Всего ртути
    (все компании)
    2004 Всего ртути
    (NEMA)
    Флуоресцентный 16 657 12,207 14 372 12,207
    КЛЛ 877 600 1,479 651
    Скрытый *
    — галогенид металла
    — Керамический галогенид металла
    — Натрий высокого давления
    — Пар ртути

    Всего скрытых ламп


    — 2 145 90 227 — НЕТ
    — 401
    — 203

    2,749


    2,139
    N / A
    399
    188

    2 727


    2,426
    31
    453
    213

    3 156


    2,420
    31
    452
    213

    3 085

    Ртуть с короткой дугой 10 НЕТ 17 13
    Неон 1,103 НЕТ 1,070 НЕТ
    Разное ** 42 НЕТ 24 НЕТ
    ИТОГО 21 438 15,534 20,118 15 956

    * Данные за 2001 год не разбивают лампы HID по конкретным типам; несколько производителей предоставили эту информацию.
    ** В эту категорию входят некоторые лампы HID. Невозможно было отделить их от других ламп в категории.

    N / A = не применимо

    В 2001 году все производители ламп, подотчетные государствам-членам IMERC, продали около 21 438 фунтов или около 10,7 тонны ртути в ртутных лампах. В 2004 году этот показатель снизился на 0,6 тонны, или на 6 процентов. Использование ртути в люминесцентных лампах снизилось на 14 процентов, тогда как использование ртути в лампах HID увеличилось примерно на 15 процентов.Уменьшение общего содержания ртути в люминесцентных лампах, вероятно, связано с усилиями производителей по сокращению дозировки ртути на лампу, в то время как более высокие продажи, вероятно, объясняют увеличение общего содержания ртути в лампах HID.

    Наибольшее изменение между двумя отчетными годами произошло в общем количестве ртути, используемом в компактных люминесцентных лампах, увеличившись почти на 70 процентов, что связано с увеличением продаж. Хотя ртутные лампы с короткой дугой содержат больше ртути в каждом блоке, чем люминесцентные лампы, общее количество для всех блоков было низким, поскольку в США было продано лишь несколько штук.С.

    Из общего количества ртути в 2001 году, показанного в таблице 2, 72 процента было продано в лампах, произведенных компаниями-членами NEMA. Ртуть в лампах, продаваемых членами NEMA, немного увеличилась в 2004 году до 79 процентов от общего объема ртути, проданной в лампах.

    С 2004 года значительно увеличилось количество электроники, в которой используются люминесцентные лампы с холодным катодом, часто в серии, используемой для освещения дисплеев. Автономные ЖК-мониторы теперь входят в стандартную комплектацию многих новых компьютеров, а в большом разнообразии домашнего и офисного оборудования теперь используются ЖК-экраны, включая телевизоры, устройства глобальной системы позиционирования (GPS), портативные системы связи и развлечения, а также цифровые камеры.Использование ламп с добавлением ртути в автомобилях и транспортных средствах для отдыха также значительно увеличилось за последние несколько лет. В дополнение к HID-фарам многие автомобили теперь оснащены развлекательными системами, навигационными системами и приборными панелями, в которых используются ЖК-экраны или подсветка с ртутными лампами. Многие автомобили для отдыха также предлагают пакеты опций, которые включают плоские телевизоры с люминесцентными лампами и линейные люминесцентные лампы.

    В последние годы государственные учреждения, компании и экологические организации активно продвигали использование энергоэффективных лайнеров и компактных люминесцентных ламп.Стоимость КЛЛ резко снизилась, поэтому они стали более доступными для потребителей. Эти усилия и рост продаж продукции с ЖК-экранами, вероятно, увеличат общее использование ртути в лампах в трехлетнем отчетном 2007 году.

    Переработка и утилизация ртутных ламп

    Согласно EPA, люминесцентные и другие ртутные лампы должны обрабатываться как опасные отходы в соответствии с Правилом об универсальных отходах 7 , если только лампа не соответствует требованиям TCLP. Все государства-члены IMERC, Калифорния, Коннектикут, Иллинойс, Луизиана, Мэн, Массачусетс, Миннесота, Нью-Гэмпшир, Нью-Джерси, Нью-Йорк, Северная Каролина, Род-Айленд, Вермонт и Вашингтон приняли Правило универсальных отходов.Эти государства требуют, чтобы предприятия и другие нежилые организации перерабатывали ртутьсодержащие лампы или утилизировали их как универсальные или опасные отходы. В большинстве случаев эти правила не распространяются на жилые домохозяйства. Однако в некоторых штатах, включая Мэн, Массачусетс, Миннесоту и Вермонт, домашние хозяйства должны надлежащим образом утилизировать или утилизировать все ртутьсодержащие лампы, включая КЛЛ.

    Существует значительное количество компаний, государственных программ и неправительственных организаций, занимающихся сбором и переработкой отработанных ламп с добавлением ртути. 8 Штаты Нью-Гэмпшир и Вермонт успешно работают с местными хозяйственными магазинами по сбору и переработке отработанных люминесцентных ламп. Недавно Home Depot запустила национальную кампанию по сбору и переработке КЛЛ у потребителей. 9 Бесплатная программа позволяет потребителям сдавать отработанные люминесцентные лампы на переработку почти в 2 000 магазинов. Другие независимые хозяйственные магазины и сети хозяйственных магазинов, включая Ace и TrueValue, могут принимать КЛЛ и / или другие люминесцентные лампы для сбора и переработки в некоторых магазинах.Программы по обращению с опасными бытовыми отходами (HHW) также будут принимать и перерабатывать КЛЛ и другие люминесцентные лампы во многих сообществах.

    Sylvania предлагает потребителям удобную программу возврата использованных КЛЛ на переработку. 10 Потребители могут заказать «Mini RecyclePak» за 15 долларов США через Интернет. Комплект предварительно промаркирован и поставляется со всеми необходимыми упаковочными материалами, поэтому потребители просто возвращают комплект с использованными лампами в любое почтовое отделение США или центр сбора почты.Компания Sylvania также предлагает комплекты для переработки для предприятий и дистрибьюторов, которые подходят для люминесцентных ламп других размеров.

    Для получения дополнительной информации о государственных требованиях к переработке и утилизации ламп посетите следующие веб-сайты: http://www.newmoa.org/prevention/mercury/lamprecycle/requirements.cfm и / или http://www.almr.org/ . Домовладельцы и предприятия могут также позвонить в бюро по обращению с опасными отходами своих государственных агентств по охране окружающей среды для получения дополнительной информации.

    Департамент охраны окружающей среды штата Мэн (Maine DEP) недавно завершил исследование выбросов ртути при разрыве КЛЛ. 11 Исследование показало, что концентрация ртути в сломанной лампе может быть выше безопасного уровня в воздухе в помещении. В результате Департамент окружающей среды штата Мэн пересмотрел свои рекомендации по очистке неисправных КЛЛ. Агентство по охране окружающей среды США (EPA) и многие государственные природоохранные агентства рассмотрели отчет штата Мэн и обновили свои рекомендации по очистке сломанных КЛЛ. EPA постоянно обновляет это руководство для потребителей и планирует провести дополнительные исследования по надлежащей очистке сломанных КЛЛ.

    Для получения дополнительной информации о ликвидации разливов ртути из люминесцентной лампы посетите: http://www.epa.gov/mercury/spills/index.htm#fluorescent

    Перечислены дополнительные ссылки на руководство по очистке CFL стран-членов IMERC:

    Как указано выше, ртуть содержится в порошковой форме и в виде пара в люминесцентных лампах, и со временем она прилипает к стеклянным стенкам ламп. Для получения дополнительной информации о возможных выбросах ртути из ламп в окружающую среду посетите: http: // www.newmoa.org/prevention/mercury/landfillfactsheet.cfm.

    Альтернативы без ртути

    В настоящее время недоступна технология для производства энергосберегающих ламп общего назначения без содержания ртути, хотя лампы без содержания ртути были недавно разработаны для конкретных целей, таких как автомобильные фары или освещение витрин. Поэтому лампы с добавлением ртути будут по-прежнему использоваться, но с ними следует обращаться как с опасными отходами и утилизировать по истечении срока их полезного использования.Как указано выше, в каждом штате есть особые правила для предприятий и домовладельцев в отношении переработки или утилизации ламп с добавлением ртути.

    Технология светоизлучающих диодов (LED) — это один из вариантов, который, как ожидается, при расширении исследований и разработок станет жизнеспособной альтернативой ртутьсодержащим лампам в будущем. 12 Светодиод — это полупроводниковый диод, который излучает свет, когда электрический ток проходит в прямом направлении устройства через цепь светодиода. Свет, излучаемый светодиодными лампами, зависит от используемого полупроводникового материала и может иметь синий (более холодный) или белый (теплый) цвет.

    Светодиоды

    используются в коммерческих целях с 1960-х годов и предлагают энергоэффективность, экономию на обслуживании, ударопрочность, долговечность и другие преимущества. Они значительно более энергоэффективны, чем лампы накаливания и люминесцентные лампы. Сегодняшние светодиоды обычно используются в коммерческих осветительных приборах, таких как дисплеи стадионов, рекламные щиты, светофоры, уличные фонари и, в последнее время, в качестве световых индикаторов в автомобилях и авианосцах. Однако для большинства целей общего освещения светодиоды еще не могут конкурировать с люминесцентными лампами из-за их стоимости — особенно по сравнению с компактными люминесцентными лампами, представленными сегодня на рынке.Необходимы дополнительные исследования для повышения энергоэффективности и снижения стоимости светодиодных технологий.


    1 IMERC: http://www.newmoa.org/prevention/mercury/imerc/about.cfm
    2 База данных продуктов с добавлением ртути: http://www.newmoa.org/prevention/mercury/imerc/ notification / index.cfm
    3 Fluorescent Technology, Osram Sylvania: http://www.sylvania.com/LearnLighting/LightAndColor/FluorescentTechnology
    4 HID Technology, Osram Sylvania: http: // www.sylvania.com/LearnLighting/LightAndColor/HIDTechnology/
    5 Характеристический потенциал выщелачивания токсичности (TCLP) — это метод испытаний Федерального агентства по охране окружающей среды, который используется для определения опасных или неопасных отходов с целью обращения с ними и их утилизации. Тест TCLP измеряет вероятность просачивания или «выщелачивания» ртути в грунтовые воды из отходов, которые могут быть захоронены на свалке. В тесте TCLP лампы измельчаются на мелкие кусочки и смешиваются с кислотным раствором. Затем кислотный раствор отфильтровывают от ламп.Если на литр кислотного контрольного раствора обнаруживается менее 0,2 мг ртути, в соответствии с федеральным законом отходы считаются неопасными. Для получения дополнительной информации: http://www.epa.gov/SW-846/faqs_tclp.htm
    6 Тенденции использования ртути в продуктах: сводка базы данных IMERC по продуктам с добавлением ртути: http: //www.newmoa. org /vention / mercury / imerc / pubs / reports.cfm
    7 Правило универсальных отходов (UWR) — это постановление Агентства по охране окружающей среды, направленное на оптимизацию требований по сбору некоторых опасных отходов следующих категорий: батареи, пестициды, ртутьсодержащее оборудование (е.ж., термостаты) и лампы (например, люминесцентные лампы). Правило разработано для уменьшения количества опасных отходов в потоке твердых бытовых отходов (ТБО), облегчая сборщиком универсальных отходов их сбор и отправку на переработку или надлежащую утилизацию. Для получения дополнительной информации: http://www.epa.gov/epawaste/hazard/wastetypes/universal/
    8 Проект по переработке ламп в Нью-Гэмпшире: http://des.nh.gov/organization/commissioner/p2au/pps/ мс / mrpptp / lamp.htm
    Проект по переработке ламп в Вермонте: http: // www.mercvt.org/dispose/lamprecycleproject.htm
    9 Национальная кампания CFL Home Depot: http://www6.homedepot.com/ecooptions/stage/pdf/cfl_recycle.pdf [PDF]
    10 Программа утилизации ламп Sylvania: http://www.sylvania.com/Recycle/CFLandHouseholdlightBulbrecycling/
    11 Отчет об исследовании поломки компактных люминесцентных ламп DEP в штате Мэн, февраль 2008 г .: http://maine.gov/dep/rwm/homeowner/cflreport.htm
    12 Твердотельное освещение: часто задаваемые вопросы по светодиодной технологии, U.С., Министерство энергетики: http://www.netl.doe.gov/ssl/faqs.htm

    Как работают люминесцентные лампы?

    Люминесцентные лампы — это трудолюбивые незамеченные герои осветительной индустрии, обеспечивающие эффективное и надежное освещение офисов, розничных магазинов, складов и множества других объектов. Но задумывались ли вы, как работают люминесцентные лампы? Читайте дальше, чтобы узнать о науке, лежащей в основе этих распространенных источников освещения.

    Конструкция люминесцентных ламп

    Герметичная стеклянная трубка — это основной компонент люминесцентной лампы.Трубка обычно содержит аргон, инертный газ, который находится под низким давлением. Трубка также содержит следы ртути и покрытие из порошка люминофора. На каждом конце трубки есть электрод для проведения электричества, и оба электрода подключаются к электрической цепи.

    Как они работают

    Итак, теперь вы знаете, что внутри люминесцентных ламп, но, вероятно, все еще задаетесь вопросом: «Как же работают люминесцентные лампы?»

    1. При включении света электрический ток течет через электроды
    2. Напряжение заставляет электроны перемещаться через газообразный аргон к другой стороне трубки
    3. Энергия этого перехода заставляет ртуть превращаться из жидкости в газ
    4. Электроны и заряженные атомы сталкиваются с атомами газообразной ртути
    5. Столкновения увеличивают уровни энергии электронов
    6. Когда электроны возвращаются к своему нормальному уровню энергии, энергия выделяется в виде фотонов, создавая свет невидимого спектра, который человеческий глаз не видит.
    7. Порошок люминофора в стеклянной трубке взаимодействует со светом невидимого спектра, производя белый свет, который может видеть человеческий глаз

    Экономьте на качественном люминесцентном освещении

    Как видите, это просто вопрос возбуждения электронов для производства энергии, а затем эта энергия выделяется в виде фотонов, которые преобразуются в видимый свет порошком люминофора.Этот метод более эффективен, чем лампы накаливания, поскольку энергия преобразуется в свет, а не в тепло (по большей части).

    Atlanta Light Bulbs предлагает широкий ассортимент люминесцентных ламп для жилых, коммерческих и промышленных помещений. Если вам нужны линейные люминесцентные лампы T8 или компактные люминесцентные лампы (КЛЛ), вы найдете лучшие люминесцентные осветительные приборы с меньшими затратами.

    Если вы хотите узнать больше о том, как работают люминесцентные лампы, или если у вас есть какие-либо вопросы, связанные с освещением, мы рекомендуем вам связаться с нашими штатными специалистами по освещению.Вы можете позвонить по телефону 1-888-988-2852, написать по электронной почте [адрес электронной почты защищен], заполнить нашу контактную форму или нажать кнопку живого чата ниже. Экономьте на фирменных световых решениях уже сегодня!

    Часто задаваемые вопросы о флуоресцентных лампах | McAfee Electric

    Часто задаваемые вопросы о флуоресцентных лампах

    Как работает люминесцентная лампа?
    Люминесцентная лампа состоит из стеклянной трубки, наполненной парами ртути под низким давлением. Внутренняя часть стеклянной трубки покрыта фосфором. Две вольфрамовые нити находятся на противоположных концах трубки, и когда между двумя нитями прикладывается напряжение, электроны перемещаются от одного конца к другому.Двигаясь по трубке, электроны врезаются в атомы ртути, которые выделяют свою энергию в виде ультрафиолетового (УФ) света.

    УФ-свет не попадает в видимый спектр человеческого глаза, поэтому сам по себе бесполезен. Однако, когда УФ-свет попадает на фосфор внутри стекла, он флуоресцирует и излучает белый свет, который освещает комнату. Преобразование света из одного типа в другой называется флуоресценцией, что и дало люминесцентной лампе свое название.

    Опасны ли люминесцентные лампы?
    Все люминесцентные лампы содержат ртуть, нейротоксин, который может вызвать повреждение почек и головного мозга. Флуоресцентное освещение, включая обычные лампы, компактные лампы или лампы (КЛЛ), балласты, газоразрядные лампы высокой интенсивности (HID), УФ-лампы и ртутьсодержащие устройства, содержат ртуть. Следовательно, с ними необходимо обращаться и утилизировать должным образом, и их нельзя выбрасывать вместе с мусором.

    Что произойдет, если я сломаю лампу?
    Согласно EPA, следует соблюдать подробную одиннадцатиступенчатую процедуру.Вот основные сведения: проветрите комнату в течение получаса, прежде чем приступить к уборке. Собирая мусор, надевайте перчатки. Не пылесосить! Это только распространит токсины. Сложите мусор в два мешка и используйте сложенную изоленту, чтобы приподнять остатки с ковра.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *