Как определить на сколько вольт светодиод: Как определить напряжение питания светодиодов? Ответ

Содержание

Как определить напряжение питания светодиодов? Ответ

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.
Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Как определить на сколько вольт светодиод

Существует несколько методов как определить на сколько вольт светодиод. Один из них – довольно простой и не всегда срабатывает. Другой же – требует дополнительно аппаратуры и небольших познаний в электронике. В любом случае, они пользуются популярностью среди обладателей светодиодных лент, фонариков и других приспособлений.

Какими бывают светодиоды

Светодиод имеет массу обозначений (СД, СИД и LED). В основе такого устройства лежит небольшой полупроводниковый кристалл. Когда через него проходит электроток – происходит выброс фотонов, что приводит к свечению. Номинальное напряжение внутри такой конструкции позволяет определить, какой напряжение способен выдержать диод и какое необходимо для его нормальной работы. Используя эти значения, можно узнать на сколько вольт светодиоды в фонарике и в лампе.
Из неорганических полупроводниковых веществ создаются красные и желтые, зеленые и синие – на основе индия-галлия и нитрада. Различаются по сфере применения: для индикации и освещения. Вторые мощные и считаются отдельным осветительным прибором. Первые же используются в различных устройствах удаленного доступа: пульты, мобильные телефоны и другие.

Для освещения зачастую используются диоды, светящиеся белый светом. В зависимости от их мощности, подсветка может быть яркой или тусклой. Используются для домов и квартир, торговых центров и общественных заведений. По цвету их делят на: холодный, теплый и нейтральный оттенок. Классифицируются дополнительно по способу монтажа.
Светодиоды обладают различными параметрами мощности и напряжения. От этого зависит качество освещение, использование дополнительных блоков питания. Если неверно подобрать источник энергии – это может привести к малому эксплуатационному сроку полупроводников и быстрой поломке. Несколько указанных способов помогут определить напряжение в светодоиодах.

Первый метод: узнать теоретическим способом на сколько вольт рассчитан светодиод

Внешние признаки – отличная возможность, как узнать на сколько вольт бывают светодиоды. В этом случае Вам поможет цвет свечения, форма и размеры полупроводникового прибора. Примеси различных химических элементов дают определенное свечение: начиная от красного и заканчивая желтым. Также существуют прозрачные модели, в которых определить параметры вольтажа можно только с мультиметром. Для того, чтобы узнать нужный параметр, нужно выполнить такие действия:
— Тестер нужно выставить на «Проверка обрыва»;
— Используйте щупы, чтобы прикоснуться к выходу светодиода;
— Несильное свечение кристалла поможет понять напряжение, которое есть в диоде
Окрашены они в разный цвет не случайно – при помощи внешних значений, можно определить примерное значение тока.

Утверждать, что эти значения абсолютно верны – не стоит. Цвета стандартизированы и используются в условиях производства, вне зависимости от марки и производителя. Например, красный обладает напряжение до 2 В, а зеленый до четырех. Благодаря подобным обозначениям, можно не только узнать сколько вольт он потребляет, но и сколько вольт выдержит светодиод.
На некоторых моделях Вы сможете рассмотреть количество кристаллов, влияющих на тип самого полупроводникового устройства. В корпусе СМД расположено несколько полупрозрачных кристаллов, соединяясь – они выдают определенный свет. Часто используются в лампах на 220 В.
Последним, теоретическим способом сколько вольт потребляет светодиод, является программное обеспечение. Вы можете воспользоваться программами, которые содержат в себе целую базу данных. Введя уже известные параметры и цвет, Вы получите приблизительные данные. Далеко не всегда они верны, поэтому от теории переходим к практике.

Второй метод: практический

Это самый точный, но трудоемкий способ, как узнать на сколько вольт бывают светодиоды. Проведя тестирование, Вы сможете узнать параметры падения напряжения и значение силы тока. Воспользовавшись полученными данными, можно долгое время использовать полупроводник и подобрать для него нужное напряжение.
Для тестирования Вам понадобится:
— Вольтметр;
— Мультиметр;
— Двенадцати ватный блок питания;
— Резистор от 510 Ом
Принцип действия такой же, как и ранее – необходимо узнать номинальный ток. Соберите небольшую схему с резистором и вольтметром. Напряжение увеличивают до того момента, пока кристалл не загорится достаточно ярким светом. При достижении порогового значения – показания спадают и перестают расти. После этого необходимо снимать показания электрода.

В некоторых случаях свечения может не быть, например, до 2 В. Обнаружить инфракрасный диод можно: излучатель направляется на включенную камеру мобильного телефона. На экране может возникнуть белое пятно, которое и будет инфракрасным диодом.
Схему можно собрать и из подручных средств: вместо блока питания взять обыкновенную батарейку на 9 Вольт, вместо источников питания – стабилизатор сетевого напряжения. Подобная схема может не выдать номинального значения, но вполне способна показать достаточно примерные. Если характеристики неизвестны, нужно сразу же рассчитать значения светодиода, чтобы предупредить его выход из строя.

Как определить параметры светодиода ⋆ diodov.net

Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?

Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.

Электрические параметры светодиодов

Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):

1) падение напряжения, измеряемое в вольтах.

Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;

2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;

3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.

В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.

Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Стороны прямоугольника, мм: 3×2; 5×2.

Как определить параметры светодиода мультиметром?

Теперь, когда мы знаем, что номинальный ток многих светодиодов 20 мА, то достаточно просто определить их напряжение опытным путем. Для этого нам понадобится блок питания с регулировкой напряжения и мультиметр. Соединяем последовательно блок питания со светодиодом и мультиметром, предварительно установленным в режим измерения тока.

Блок питания изначально должен быть установлен на минимальное значение. Далее, изменяя величину подводимого к светодиоду напряжения, устанавливаем по показанию мультиметра ток 20 мА. После этого фиксируем значение величины подводимого напряжения либо по штатному вольтметру блока питания либо с помощью мультиметра, установленного в режим измерения напряжения.

Для страховки светодиода лучше последовательно к нему подсоединить резистор ом на 300. Но в этому случае напряжение необходимо фиксировать непосредственно на нем.

Поскольку не у всех есть блок питания с регулировкой напряжения, то можно определять параметры и исправность маломощных светодиодов с помощью следующих элементов:

  1. Крона (батарейка на 9 В).
  2. Резистор ом на 200.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.

Испытуемый светодиод соединяем последовательно с постоянным резисторов, потом с переменным, далее с кроной и щупами мультиметра, установленного в режим измерения постоянного тока.

Очередность соединения всех элементов не имеет никакого значения, поскольку цепь последовательная, а это значит, что через все компоненты протекает один и тот же ток.

Изначально переменным резистором следует установить минимальное напряжение, а потом постепенно увеличивать до тех пор, пока ток не достигнет 20 мА. После этого выполняется измерение напряжения.

С помощью рассмотренного способа не получится определить параметры мощного светодиода вследствие протекания значительного тока через резисторы. В результате чего последние могут перегреться. Однако определить исправность его вполне возможно.

Еще статьи по данной теме

Как измерить ток светодиода мультиметром

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов. Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора. Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?

Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.

Электрические параметры светодиодов

Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):

1) падение напряжения, измеряемое в вольтах. Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;

2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;

3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.

В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.

Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Стороны прямоугольника, мм: 3×2; 5×2.

Как определить параметры светодиода мультиметром?

Теперь, когда мы знаем, что номинальный ток многих светодиодов 20 мА, то достаточно просто определить их напряжение опытным путем. Для этого нам понадобится блок питания с регулировкой напряжения и мультиметр. Соединяем последовательно блок питания со светодиодом и мультиметром, предварительно установленным в режим измерения тока.

Блок питания изначально должен быть установлен на минимальное значение. Далее, изменяя величину подводимого к светодиоду напряжения, устанавливаем по показанию мультиметра ток 20 мА. После этого фиксируем значение величины подводимого напряжения либо по штатному вольтметру блока питания либо с помощью мультиметра, установленного в режим измерения напряжения.

Для страховки светодиода лучше последовательно к нему подсоединить резистор ом на 300. Но в этому случае напряжение необходимо фиксировать непосредственно на нем.

Поскольку не у всех есть блок питания с регулировкой напряжения, то можно определять параметры и исправность маломощных светодиодов с помощью следующих элементов:

  1. Крона (батарейка на 9 В).
  2. Резистор ом на 200.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.

Испытуемый светодиод соединяем последовательно с постоянным резисторов, потом с переменным, далее с кроной и щупами мультиметра, установленного в режим измерения постоянного тока.

Очередность соединения всех элементов не имеет никакого значения, поскольку цепь последовательная, а это значит, что через все компоненты протекает один и тот же ток.

Изначально переменным резистором следует установить минимальное напряжение, а потом постепенно увеличивать до тех пор, пока ток не достигнет 20 мА. После этого выполняется измерение напряжения.

С помощью рассмотренного способа не получится определить параметры мощного светодиода вследствие протекания значительного тока через резисторы. В результате чего последние могут перегреться. Однако определить исправность его вполне возможно.

Как определить мощность светодиода

С годами рынок предлагает все большее разнообразие светодиодов. Они отличаются цветом, напряжением, мощностью и т.д.
Если вам в руки попался светодиод и вы хотите его использовать, то непременно нужно разобраться какой мощности это устройство, иначе можно элементарно спалить его.
Как определить мощность светодиода? Об этом расскажем в данной статье.
Светодиод представляет собой полупроводниковый кристалл. Он может быть в корпусе или без него, но в любом случае у него будет два вывода: положительный и отрицательный. Мощностью светодиодов часто называют показатели в ваттах. Однако это не совсем верно. Это делается для простоты понимания. У светодиодов есть показатель максимума рабочего тока, при котором он может работать. А мощность зависит от количества тока, который вы ему дадите.

Содержание статьи

Светодиоды малой мощности

Так же их называют индикаторными. Их смело можно назвать самым распространенным видом светодиодов. Они небольшого размера (2-20 миллиметров в диаметре). Индикаторными их называют по самому частому применению – вы наверняка их видели практически во всей бытовой технике. Практически все белые маломощные светодиоды обладают параметрами 20МА 3,2 вольт. То есть его мощность – 0,06ватт.
Так же к этому виду светодиодов относят светодиоды поверхностного монтажа или SMD – светодиоды. Это светодиоды, которые подсвечивают экраны, кнопки и т.п. Так же из них делают светодиодные ленты, часто используемые для декорирования помещений.
Ленты бывают либо SMD 3528, либо 5050. SMD 3528 делается как раз из таких индикаторных светодиодов. А вот SMD 5050 сделаны из соединенных по трое светодиодов. Их мощность – в районе 0,2 ватта.

Мощные светодиоды

Условно можно поделить на:

  • Брендовые (фирмы CREE, Nichia, Osram и другие…)
  • Китайские

Что касается брендовых, они всем хороши, кроме, пожалуй, завышенной цены. Зато приобретая такие светодиоды, вы будете уверены в их качестве, к тому же все показатели, в том числе и мощность, указаны в инструкции. Так же нужно учитывать, что подобные компании выпускают светодиоды для заводской сборки. Вручную это тоже можно сделать, но будет гораздо сложнее.
Китайские светодиоды обладают гораздо большим ассортиментом. Но при всем многообразии китайские светодиоды грешат отклонениями от стандартов (точнее одних стандартов просто нет), и невысоким качеством.
Обычный светодиод китайского производства обладает мощностью примерно в 2,6 ватта.
Так же выпускают светодиоды с увеличенным кристаллом.

Какой ток даст максимальную мощность светодиода?

Если вам нужно добиться максимальной экономичности светильника – используйте светодиоды, которые дают около 120 Лм на ватт. Ток для них должен быть не более 300 мА. При хорошем отводе тепла такие светодиоды будут работать бесконечно долго.
Если главное яркость, то чипы 35-38 mil на токе в 600мА будут неплохим решением.

Как определить мощность светодиода?

Допустим, вы просто нашли у себя на столе светодиод. Никаких данных о нем нет. Как быть в таком случае?
Самый простой способ – включаете его на низковольтном питании последовательно с резистором на 1 – 1,5 кОМ. Практически любой светодиод будет работать. Но если нужны более точные показатели, делаем следующее: соотносим показатели по внешнему виду.
Маленькие (3-10 мм):

  • Инфракрасный (ток – менее 2 ватт, напряжение – около 20 мА)
  • Красный (ток – от1,7 до 2 ватт, напряжение – от 15 до 20 мА)
  • Оранжевый (ток –около 2 ватт, напряжение –20 мА)
  • Желтый (ток – 2,1-2,2 ватт, напряжение – 20 мА)
  • Зеленый (ток – 1,9-3,6 ватт, напряжение – 20 мА)
  • Голубой (ток — 2,5-3,6 ватт, напряжение – 20 мА)
  • Фиолетовый (ток – 2,7-4 ватт, напряжение –20 мА)

Большие:

  • Желтый (обычно на радиаторе) (ток – 2,1-2,2 ватт, напряжение –300 мА)
  • Белый, розовый (ток – 3,2-3,6 ватт, напряжение –20 мА)

Светодиодные ленты (ток – 12 или 24 ватт, напряжение – рассчитывается в зависимости от длины ленты).

Точное определение мощности

Вам понадобятся:

  • Мультиметр
  • Блок питания, в котором можно плавно повышать напряжение
  • Резистор на 500 Ом

К лазерным светодиодам эта техника неприменима!
Подключаете светодиод к резистору и блоку питания. Соблюдайте полярность! Ее тоже можно определить с помощью мультиметра.
Плавно увеличивайте напряжение на блоке питания, сравнивая показатели на нем и на светодиоде.
Удобнее будет использовать блок питания, который показывает рабочее напряжение, или использовать два вольтметра.
Что будет происходить? одинаковое изначально напряжение будет постепенно изменяться на блоке и светодиоде. Важно, чтобы светодиод светился с нормальной яркостью.

Почему он может не светится?

  • если он инфракрасный
  • если он сломан
  • если напряжение на двух точках пропорционально меняется от нуля до максимума, но светится он начинает с 3 воль, значит внутри светодиода находится резистор, ограничивающий подачу тока. В этом варианте ограничиваете тока на значении не больше 20 мА, смотря на то, как ярко светится светодиод.

Далее на блоке питания ставим 0 вольт, подключаем напрямую (или через резистор на 10Ом) светодиод. В цепь подключаем и миллиамперметр. Постепенно поднимаете напряжение до рассчитанного.

Совет
Не зная точных показателей светодиода, не давайте ему ток более 350 мА. Если все-таки необходимо больше – подготовьте сильный теплоотвод. Примерно при токе в 700мА светодиоду будет нужно около 80 кв. см радиатора. Оптимальная температура – 60 по Цельсию.

Напряжение светодиодных ламп | Te4h

Мы привыкли, что лампы накаливания работают от сети с переменным напряжением 220 вольт. Есть, конечно, и другие лампы накаливания, работающие от меньшего напряжения, но и свечение там тоже намного меньше. Здесь можно наблюдать зависимость — чем меньше напряжение светодиодного освещения, тем меньше света получаем от лампы. Но светодиодные лампы работают совсем по-другому. Для светодиода неважно напряжение, сила свечения зависит только от тока, проходящего через диод. В этой статье мы рассмотрим на каком напряжении могут работать светодиодные лампы, а также затронем ток светодиодных ламп.

Содержание статьи:

Напряжение светодиодных ламп

Я думаю что большинство людей давно закончивших школу и не имеющих дела с электричеством еще тогда забыли чем принципиально отличается ток от напряжения. А это желательно понимать.

Во многих книгах для пояснения разницы между током и напряжением проводится аналогия с водопроводной трубой. Но мне не очень нравится это сравнение. Любой предмет, брошенный из определенной высоты будет падать и в определенный момент достигнет поверхности земли. Его притягивает гравитация. Так вот напряжение — это сила, которая заставляет двигаться ток, как и гравитация притягивает предметы. А вот сила тока, если продолжить аналогию, это размер предмета, чем больше, тем сильнее ударит. Гравитация, как и напряжение не убьет если не будет предмета (тока).

А теперь вернемся к светодиодным лампам. Один светодиод или светодиодный чип, это вид полупроводника, который может пропускать ток только в одном направлении. Светодиоды могут работать от напряжения 4-12 Вольт. И даже больше, светодиодам нужно постоянное напряжение для нормальной работы. Но в стандартной электрической сети совсем другие условия.

В светодиодных лампах несколько светодиодов объединяются последовательно в один массив, и все они получают ток светодиодной лампы от общего блока питания. У многих светодиодных ламп, работающих от напряжения сети внутри есть специальное устройство, драйвер, который включает выпрямитель для преобразования переменного тока в постоянный, трансформатор, чтобы снизить очень высокое входящее напряжение, а также, возможно, стабилизационный компонент, чтобы уменьшить колебания тока.

Большинство современных светодиодных ламп, которые предназначены для домашнего использования и промышленности предназначены для напряжения питания 110-220 Вольт. Это достигается путем объединения нескольких чипов, как сказано выше. За остальное понижение напряжения и получение постоянного тока отвечает драйвер, встроенный в каждую лампу.

Но если у такой лампочки нет встроенного драйвера, а вы хотите запустить ее от обычной сети, вам потребуется внешнее устройство, которое будет выполнять те же функции, обеспечит нужное напряжение светодиодных ламп и выпрямит ток светодиодной лампы.

Стандартные настенные адаптеры, рассчитанные для другого оборудования, не подойдут, они не спалят светодиоды, но использовать их не рекомендуется. Они могут вызвать мерцание из-за неправильной светодиодной нагрузки, а также сокращают срок службы лампы. Поэтому нужно использовать драйверы, разработанные только для вашего вида ламп.

В последнее время появились светодиоды, работающие от переменного напряжения. Но так как светодиоды пропускают ток только в одну сторону, по своей природе они все равно остались устройствами, работающими на постоянном токе. В них одна честь диода светится при положительном токе, вторая при отрицательном цикле. Таким образом, мы получаем однородное свечение. Но для таких ламп тоже нужен драйвер, если они не приспособлены для работы от 220 вольт.

Ток светодиодных ламп

Яркость свечения светодиодных ламп зависит от тока, который будет проходить через сам диод. Это позволяет очень легко управлять яркостью таких ламп. Здесь подходит тот же принцип регулировки яркости что и для обычных ламп накаливания, изменяем силу тока — изменяется яркость. Но тут возникает одна проблема, в каждой лампе, которая будет работать от сети переменного напряжения встроен драйвер, который будет препятствовать изменению яркости. Поэтому если драйвер не поддерживает такую опцию регулировать яркость нельзя.

Потребление лампой электричества тоже зависит от тока и пропускаемого напряжения. Сила тока, с которой может работать лампа обычно указана на упаковке. Это может быть от 10-100 мА. Если же не указано и вам нужно знать этот параметр, его очень просто рассчитать по формуле:

I=(Р/U)*1000

Здесь I — это сила тока, P — потребляемая мощность и напряжение. Например, лампа на 220 вольт с потребляемой мощностью 12 Ватт будет иметь силу тока 54 мА. Рассчитанная сила тока может быть ниже, чем указанная на упаковке, потому что некоторые производители указывают на упаковке потребляемую мощность не самой лампы, а светодиода. Кроме светодиода, там есть еще резистор и другие компоненты, которым тоже нужно питание.

Выводы

В этой статье мы рассмотрели что такое напряжение светодиодных ламп, а также как влияет сила тока на их работу.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оцените статью:

Загрузка…
Об авторе

Администратор te4h.ru, интересуюсь новыми технологиями, криптовалютой, искусственным интеллектом, свободным программным обеспечением и Linux.

Как проверить светодиод при помощи мультиметра

Содержание:

  1. Введение
  2. Причины неисправностей светодиодов
  3. Как правильно проверить
    3.1. Проверка с помощью щупов
    3.2. Проверка с помощью гнезд для тестирования транзисторов
    3.3. Проверка инфракрасного светодиода
    3.4. Проверка SMD светодиодов
  4. Видео

Самый простой и многократно проверенный способ проверки светодиода – тестирование мультиметром. Что такое мультиметр? Это наиболее универсальный прибор для измерения напряжения, тока, сопротивления, а также проверки провода на обрыв. Подробно расскажем, как провести диагностику и прозвонить светодиод мультиметром. Для примера будем использовать модель тестера DT9208A. Однако прежде всего поговорим о причинах, которые могут привести светодиод к поломке.

Причины неисправностей светодиодов

Безусловно, за современным светодиодом – будущее, однако не существует механизмов, которые были бы исправны в 100% случаев. Да, хоть переход на светодиодное освещение и дорогое мероприятие, но окупается оно с лихвой, ведь светодиодные светильники служат более двадцати пяти или даже тридцати лет при правильной эксплуатации.

Почему же самые надежные устройства выходят из строя? Наиболее распространенные неисправностей следующие:

  1. Выход драйвера из строя.

    Наиболее распространенная причина – поломка источника питания светодиода. Драйвер – это посредник. Он проводит сигналы от электрической сети к самим диодам. Многое зависит от него: и качество света, и наличие и отсутствие пульсации, и ЭМ излучение. КПД светильника зависит от марки драйвера. К примеру, оригинальные образцы дают КПД 90-95%, тогда как китайские аналоги около 40% тратят только лишь на собственное обслуживание. Они дают больше ЭМ излучения, которое в свою очередь может привести к неисправности электромагнитного оборудования или создавать помехи для его работы, неизбежно ведет к поломке устройства.

    Специалисты компании LIGHT HOUSE рекомендуют использовать проверенные драйверы от известных производителей, которые обладают сертификатом электрической безопасности и ЭМ совместимости. Такие устройства будут иметь самый высокий КПД, защиту от скачков напряжения и прослужат долго.

  2. Выход из строя светодиода.

    Это, пожалуй, вторая по распространенности причина поломки.

    • Деградация активной области: светодиодная техника работает за счет перераспределения инжектированных носителей, расположенных в активной области. Со временем в ней появляются дислокации, нарушения и инжектированный ток становится достаточно плотным, повышает температуру устройства, что приводит к нарастанию неприятного эффекта и поломке.
    • Деградация электродов: в металлическом проводнике происходит диффузия материала, что приводит к неисправности электрода.
    • Катастрофический оптический эффект: при возрастании мощности световой энергии выше установленного уровня кромка начинает плавиться, что неизбежно приводит устройство к поломке.
    • Термическая деградация: если что-то мешает отводу тепла, то образуются горячие точки, которые провоцируют этот эффект и дальнейшую неисправность.
    • Электрическая перегрузка: Полупроводники остаются восприимчивыми к электростатическим разрядам, они могут вызвать неожиданный отказ и поломку светодиодной техники.
    • Термическая усталость: часто встречается, если производитель при создании светодиодных устройств использовал мягкий припой. При использовании твердого припоя техника более устойчива к таким процессам.

    Как избежать вышеперечисленных проблем? Выбирайте светодиоды проверенных производителей с КПД не меньше 130 лм/Вт и световой температурой не меньше 5000К. Самые надежные – те, что размещенны на алюминиевой основе, которая имеет лучшие показатели теплоотвода.

  3. Герметичность корпуса светильника

  4. Третья по распространённости причина поломки – нарушение герметичности корпуса светильников, особенно если вы используете их во влажных и пыльных комнатах или вне помещений. Влага будет помехой даже для самой качественной и надежной лампы.

С особой опаской следует отнестись к лампам с пластиковым корпусом. Он не выводит тепло наружу, что приводит к перегреву, деформации и опять же нарушению герметичности.

Несколько советов:

  • Скажите «нет» пластику в корпусе – да, он дешевле, но, вероятно, через полгода вам придётся вернуться к данному вопросу снова. Если у вас в приоритете надежность и долговечность – обращайте внимание на алюминий как основной материал корпуса.
  • Светильник должен иметь степень защиты IP54 и выше.
  • Если устройство расположено на улице, убедитесь, что в конструкции нет герметичных полостей, которые будут накапливать влагу.
  • Покупая партию светильников, советуем купить один образец и протестировать на прочность.

Как правильно проверить

Разберемся, как проверить светодиод мультиметром, не выпаивая его.

Проверка с помощью щупов

Проще всего проверить светоизлучающие диоды щупами. Применяться этот способ может для всех видов светодиодов, неважно какого типа и какое количество выводов он имеет.

Порядок действий:

  1. Прежде всего нужно поставить переключатель тестера в режим прозвонки, проверки на обрыв;
  2. Затем нужно определить полярность светодиода, после коснитесь щупами выводов и пронаблюдайте показания;
  3. После того, как вы замыкаете красный щуп на анод, а черный на катод, светодиод должен начать испускать свечение, если он исправен.
  4. Поменяйте полярность: на мультиметре будет оставаться число 1.

Не забывайте, что LED-элемент при тестировании излучает слабый свет. При ярком свете в помещении оно будет вовсе незаметно.

Если вам нужно тестировать многоцветный светодиод с несколькими выводами, важно знать их распиновку, чтобы в поисках общего анода и катода не перебирать выводы. Если диод имеет металлическую подложку, вы можете не бояться, что мультиметр выведет его из строя – мультиметр безопасен в режиме прозвонки.

Проверка с помощью гнезд для тестирования транзисторов

Возьмите прибор и в нижней части его вы увидите 8 гнезд – четыре гнезда расположены слева (для PNP транзисторов), остальные 4 расположены слева (для NPN транзисторов). Проверять можно на левой и правой части мультиметра.

Допустим, вы проверяете в гнездах для транзисторов PNP, тогда порядок действий будет таков:

  • Вставьте анод в гнездо с надписью «Е»;
  • Катод подсоедините к гнезду «С»;
  • Если светодиод работает верно, он начнет излучать свечение.

Если вы тестируете справа, в гнездах для транзисторов NPN, необходимо поменять полярность. Катод подсоедините к «Е» гнезду, анод – к гнезду «С».

Удобно использовать этот способ, чтобы проверить исправность светодиодов, которые имеют чистые и длинные контакты. Переключатель тестера может находиться в любом режиме.

Проверка инфракрасного светодиода

Здесь та же последовательность, однако существуют некоторые особенности – излучение будет невидимым. При проверке щупами в момент касания выводов, тестер будет показывать 1000 единиц, а после смены полярности – 1.

Чтобы проверить инфракрасный светодиод с гнездами транзисторов, используйте цифровую камеру в вашем смартфоне, планшет и т.д. Вставьте диод в гнезда и направьте камеру – если вы видите расплывчатое светящее пятно, значит, диод работает верно.

Проверка SMD светодиодов

Для проверки мощного SMD прожектора или светодиодной матрицы, вместе с тестером используйте токовый драйвер.

Порядок действий:

  1. Тестер нужно будет включить на несколько минут последовательно;
  2. Проследите за изменением тока в цепи;
  3. Низкокачественный, неисправный светодиод увеличит ток и температуру кристалла.
  4. Подключите мультиметр параллельно, измерьте прямое падение тока, чтобы узнать, на сколько вольт светодиод вы используете;
  5. Сопоставьте измеренные данные и данные в паспорте диода в графе воль-амперных характеристик – так вы можете понять, пригоден ли световой диод к дальнейшему использованию.

Видео

Для более наглядного понимания процесса, посмотрите представленную ниже видео-инструкцию.

Напряжение

— Простой способ определить напряжение тока светодиода, чтобы выбрать соответствующий резистор

Вы неправильно понимаете, как работает светодиод, поскольку Vf — это не напряжение, которое вы прикладываете к светодиоду для его работы, а напряжение, которое появляется (падает) на светодиоде, когда через него пропускается ток.

Если вы посмотрите на соответствующий лист данных, вы увидите Vf (min), Vf и Vf (max), указанные для определенного тока, и это означает, что если вы пропустите указанный ток через светодиод, вы можете ожидать Vf должен находиться в диапазоне от Vf (min) до Vf (max), при этом Vf является типичным значением.

Итак, ответ на ваш вопрос:

Источником питания является любой источник с регулируемым напряжением, R обеспечивает балласт для светодиода, уменьшая его чувствительность к колебаниям напряжения питания.

Это предотвратит испускание волшебного дыма светодиода, если вы непреднамеренно слишком сильно включите источник питания, а его значение [R] не критично, в разумных пределах.

Например, если вы используете резистор на 1000 Ом и пытаетесь протолкнуть 20 мА через светодиод, эти 20 мА также должны пройти через R, поэтому R будет падать:

$$ \ text {E = IR} = 0.02A \ times 1000 \ Omega = \ text {20 вольт,} $$

, и вам понадобится дополнительный запас для светодиода.

«A» — это амперметр, используемый для измерения тока через светодиод, а «V» — вольтметр, используемый для измерения напряжения на светодиоде.

При использовании то, что вы должны сделать, — это включить питание при нулевом напряжении, а затем провернуть его до тех пор, пока амперметр не покажет 20 миллиампер, затем напряжение, отображаемое на вольтметре, будет Vf для этого конкретного диода при этом конкретном токе и температура окружающей среды.

Возвращаясь к вашему вопросу, способ определить, какое значение последовательного сопротивления «подходит» для вашего светодиода, — это сначала определить его Vf при желаемом прямом токе (If), а затем использовать закон Ома для определения значения сопротивления. , вот так:

$$ \ text {R =} \ frac {Vs — Vf} {If} $$

Если предположить, что Vs (напряжение питания) равно 12 вольт, что Vf равно 2 вольту, а если равно 20 мА, у нас будет

$$ \ text {R =} \ frac {12В — 2В} {0,02A} = \ text {500 Ом} $$

Тогда, чтобы определить мощность, рассеиваемую резистором, мы можем написать:

$$ \ text {Pd = (Vs — Vf)} \ times \ text {If} \ = \ \ text {10V} \ times \ text {0.02A} = \ text {0,2 Вт} $$

510 Ом — это ближайшее значение E24 (+/- 5%), которое будет поддерживать, если на консервативной стороне 20 мА, и резистор на 1/4 Вт должен подойти.

Утиный суп, а? 😉

Как узнать, сколько светодиодов можно использовать при заданном напряжении

\ $ V = I \ cdot R \ $ «штуковина», как вы ее называете, — это Закон Ома . Очень важный.

Светодиоды

вызывают довольно постоянное падение напряжения, которое, как говорит Malife , в основном зависит от цвета светодиода, а также немного зависит от тока.Эта диаграмма показывает, что для всех светодиодов видимого света требуется не менее 1,8 В. Красный светодиод упадет примерно на 2,2 В, так что, как вы видели, он может питаться от батареи 3 В. Для двух последовательно соединенных светодиодов требуется не менее 4,4 В, поэтому он не будет работать с батареей 3 В, но 6 В в порядке.

Странные три светодиода. Вы говорите, что два слабо загораются, а третий нет. Яркость светодиода определяется током, и один и тот же ток проходит через все светодиоды, поэтому все три должны светиться равномерно. Единственное объяснение, которое я могу придумать, это то, что третий может быть неисправен, или это может быть ИК-светодиод.Хотя светодиод, который выходит из строя из-за слишком большого тока, обычно будет разомкнут, а не закорочен. Также закороченный светодиод не должен уменьшать яркость. Светодиоды
чрезвычайно чувствительны к электростатическому разряду , и это могло привести к потере светодиода. Если у вас нет других инструментов для защиты от электростатического разряда, прикоснитесь к большому металлическому предмету, прежде чем брать светодиоды.

Теперь в схеме Malife есть большая ошибка , и это отсутствие резистора. У вас будет разница в напряжении между светодиодами и аккумулятором.Для двух светодиодов это будет около 6 В — 4,4 В = 1,6 В. Вы должны что-то сделать с этим, если вы подключите три именно так, может протекать очень большой ток, который может разрушить ваши светодиоды. Таким образом, вы устанавливаете резистор, который выдержит напряжение 1,6 В. Поскольку вы знаете закон Ома, вы можете рассчитать номинал резистора, если знаете, что типичному светодиодному индикатору требуется 20 мА:

\ $ R = \ dfrac {V} {I} = \ dfrac {6V — 2 \ times 2.2V} {20 mA} = 80 \ Omega \ $

Для одиночного светодиода это будет

\ $ R = \ dfrac {V} {I} = \ dfrac {3V — 2.2 В} {20 мА} = 40 \ Omega \

$

Неважно, в каком порядке вы размещаете светодиоды и резистор.

Если вы не использовали резистор в своих экспериментах и ​​светодиоды не загорелись, это, вероятно, связано с тем, что батарея не может обеспечивать слишком большой ток.


редактировать (после вашего комментария)
Рядом с законом Ома есть также законы Кирхгофа: закон напряжения Кирхгофа (KVL) и закон Кирхгофа по току (KCL). KVL говорит, что сумма всех напряжений в контуре равна нулю.В нашем случае напряжение аккумулятора равно сумме напряжений на светодиодах и резисторе. (Напряжение на компоненте часто называют падением напряжения на нем.)
На схеме выше мы начинаем с 3 В наверху. Светодиод «падает» на 2,2 В, поэтому напряжение на катоде составляет 0,8 В. Остался только резистор, прежде чем мы дойдем до 0 В, так что 0,8 В — это падение напряжения на резисторе.
Для более чем одного светодиода начните с положительного контакта батареи и пройдитесь по контуру, вычитая напряжения при прохождении компонентов, пока вы не дойдете до 0 В, когда вернетесь к батарее.

led — Расчет прямого напряжения для гирлянды гирлянд: мультиметр показывает «1»

Как вы описали, эти волшебные огни работают параллельно. У них обычно есть один резистор на батарейном отсеке, если 3 батареи, или, возможно, нет резистора, если 2 батареи. Более умные со схемой таймера все равно будут похожи. Хотя ответ транзисторов является правильным для определения прямого напряжения одного светодиода, при предполагаемом прямом токе 20 мА он не отвечает на большинство ваших вопросов.

Чтобы найти напряжение и ток в цепочке, вы берете часть того, что сказал транзистор, но применяете его по-другому. Используйте набор новых хороших батареек. Вам нужно будет измерить их напряжение, пока светятся светодиоды. И вам нужно будет разобрать корпус, чтобы получить доступ к резистору внутри. Измерьте напряжение на резисторе. Это даст вам довольно точное прямое напряжение параллельной светодиодной цепочки (напряжение источника — напряжение резистора = напряжение нагрузки)

Теперь выньте батарейки и измерьте номинал резистора или прочтите цветовой код или код резистора smd, если таковой имеется.При этом у вас есть как напряжение на резисторе, так и сопротивление, поэтому вы можете найти ток через него. Напряжение / сопротивление = ток в амперах. В качестве альтернативы вы можете просто измерить ток в цепи с батареями. Маловероятно, что любая микросхема таймера потребляет достаточно энергии, чтобы измерить ток неточно.

Теперь, когда у вас есть общий ток, вы можете разделить его на количество светодиодов, чтобы получить довольно близкий прямой ток. Затем вы можете использовать эти числа, чтобы заменить резистор и батарейный блок на источник USB и резистор для напряжения USB 5 В.

Что касается вашего вопроса о подаче или потреблении тока, стандарт USB должен ограничивать до 100 мА без перечисления, но это редко обеспечивается аппаратным обеспечением. Вы можете предположить, что вы можете потреблять 500 мА или более в 99% источников питания. Источники питания USB, такие как настенные зарядные устройства, часто имеют ток 2,1 А. Ваша нагрузка, особенно простая схема светодиод + резистор, будет тянуть только то, что ей нужно.

Ваше предположение о 3 В — довольно хорошее предположение на практике, так как это меньше, чем Vf ваших типичных синих или белых светодиодов при рекомендуемом номинальном значении 20 мА If.Так они потребляли бы меньше энергии и прослужили бы дольше. Красные светодиоды следует считать более низкими.

Все, что было сказано, проще всего получить их на источнике питания USB — это использовать 1 или 2 диода, например 1n4001 со средним падением прямого напряжения 0,7 В, чтобы снизить напряжение питания 5 В через usb примерно до такого же уровня, как у аккумуляторов, которые фея свет использует. Подключите провода аккумулятора, соблюдая полярность, и все готово.

Вернуться в блог

Написано Эли в понедельник, 6 августа 2018 г.

 Этот пост был первоначально написан 8 ноября 2012 года. 

Запуск светодиода RGB на 12 В постоянного тока аналогичен запуску любого другого светодиода, за исключением того, что вам нужно 3 токоограничивающих резистора вместо 1.

Несмотря на то, что у светодиода RGB есть 4 вывода, это все еще «простой» вопрос использования закона Ома и некоторой информации из таблицы данных светодиода для расчета правильного значения и размера для токоограничивающих резисторов. Это может показаться не таким простым, если вы новичок в электронике или имеете ограниченный опыт работы со светодиодами, но не волнуйтесь — требуемые математические вычисления могут быть выполнены вашим сыном или дочерью 5 -го класса .

В этом примере я буду использовать сверхяркий светодиод RGB Vetco VUPN6563 (общий катод). — Поставляется в упаковке из 3-х светодиодов по очень доступной цене . Следующие шаги будут работать для светодиодов с общим катодом или общим анодом.

Зачем нужен резистор:

Светодиод потребляет больше тока по мере увеличения напряжения, используемого для его работы.

Ток вызывает нагрев светодиода; высокий ток приводит к слишком большому нагреву. Если вы потребляете больше тока, чем максимальный указанный в таблице данных «прямой ток», светодиод самоуничтожится при менее впечатляющей вспышке света с большим количеством дыма, чем вы хотите вдохнуть.Токоограничивающий резистор подходящего размера будет рассеивать дополнительный ток (в виде тепла), который обычно протекает через светодиод, когда напряжение превышает номинальное прямое напряжение.

Когда дело доходит до ограничения тока, рекомендуется предусмотреть запас прочности. Работа светодиода на максимальном заданном прямом токе может привести к сокращению срока службы и снижению светоотдачи с течением времени. Уменьшение тока до уровня чуть ниже максимального прямого тока дает светодиоду немного меньшую светоотдачу, но гораздо более длительный срок службы.

Как рассчитать номинал и размер резистора:

Чтобы выбрать правильный резистор, нужно выполнить 2 шага:

1) Рассчитайте номинал резистора (в омах)

2) Рассчитайте мощность, рассеиваемую резистором (в ваттах)

Шаг 1: Расчет номинала резистора (Ом)

Чтобы рассчитать номинал резистора (в омах) и размер (в ваттах), нам необходимо знать следующее:

  1. Прямой ток светодиода (мА)
  2. Прямое напряжение светодиода (вольт)
  3. Рабочее напряжение (В)

В техническом описании светодиода с общим катодом RGB указано, что прямое напряжение равно 2.0 вольт для красного сегмента, 3,0 вольт для зеленого сегмента и 3,0 вольт для синего сегмента. Прямой ток указан как 20 мА для всех 3 сегментов.

Обратите внимание, что перечислены 3 отдельных значения напряжения. Значит ли это, что нам нужно 3 отдельных резистора? Да — интересные вещи произойдут, если на катоде используется только один резистор, например, зеленый и синий будут иметь немного меньшую светоотдачу, а красный будет казаться ярче, чем если бы мы использовали 3 отдельных резистора. Если вы решите использовать только 1 резистор, выберите его для наименьшего значения напряжения и тока, но обязательно увеличьте размер резистора, чтобы он мог рассеивать достаточно тепла для всех 3 элементов (умножьте рассеиваемую мощность на 3).

В этом примере мы собираемся вычислить номинал резистора, необходимого для сегмента красного светодиода.

Вот данные, которые у нас есть сейчас:

  1. Прямой ток светодиода (если) (мА) = 20 мА (0,020 А)
  2. Светодиодное прямое напряжение (Vf) (Вольт) = 2,0 В
  3. Рабочее напряжение (Vs) (Вольт) = 12 Вольт

Это формула закона Ома, которую мы будем использовать для расчета номинала резистора:

Номинальное сопротивление резистора (Ом) = (Рабочее напряжение — Прямое напряжение светодиода) / Прямой ток светодиода
Номинальное сопротивление резистора (Ом) = (12-2.0) / 0,020

Номинал резистора нам нужен — 500 Ом. Поскольку резисторы на 500 Ом обычно не доступны, мы выберем следующее ближайшее значение: 560 Ом. Всегда выбирайте большее из двух значений замыкающего резистора. Это поможет гарантировать, что светодиодный индикатор будет оставаться ниже номинального значения If (максимального прямого тока).

Шаг 2: Расчет мощности резистора (Вт)

Теперь нам нужно выяснить, какой размер резистора использовать (1/8 Вт, 1/4 Вт, 1 Вт и т. Д.). Это тоже очень простая математика с использованием закона Ома:

  • Рассеиваемая мощность резистора (Вт) = напряжение (в квадрате) / номинал резистора

Мы знаем из шага 1, что напряжение составляет 10 Вольт (12 Вольт — 2.2/560 = 0,178

Резистор будет рассеивать 0,178 Вт или 178 мВт. Резистор на 1/4 Вт (250 мВт) справится с этим безопасно. Мы должны выбрать резистор 1/4 Вт, 560 Ом, номер детали Vetco NTE-QW156 — хороший выбор.

Затем мы выполняем те же вычисления в шагах 1 и 2 для зеленого и синего сегментов (Vf = 3,0, If = 20 мА). Значение резистора для зеленого и синего цветов: 470 Ом. Номер детали Vetco NTE-QW147 — резистор 470 Ом, 1/4 Вт.

В собранном виде наша схема светодиода RGB выглядит как на схеме ниже.Если вы подключите к источнику питания все 3 анода одновременно, светодиод будет светиться белым.

[Принципиальная схема светодиодов RGB + резисторы]

Альтернативы использованию токоограничивающих резисторов: Резисторы

— простой способ ограничить ток, но они неэффективны. Избыточная мощность тратится впустую в виде тепла. Лучшей альтернативой токоограничивающим резисторам является использование широтно-импульсной модуляции (ШИМ) для отправки на светодиод импульсов напряжения, рассчитанных по времени и определенной длительности.PWM позволит вам управлять яркостью отдельных светодиодных сегментов, создавая великолепный массив различных цветовых комбинаций. ШИМ-управление RGB-светодиодами с помощью микроконтроллера Arduino будет обсуждаться в одном из следующих постов блога.

PS: Не хотите делать математику самостоятельно? Попробуйте этот крутой калькулятор светодиодного резистора: http://ledcalc.com/

Вернуться в блог

Калькулятор светодиодных резисторов

Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.

Если вам интересно, «Какой резистор мне использовать с моим светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.

На схеме выше вы можете увидеть распиновку светодиода. Катод — отрицательный вывод. Это на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг.Вы только посмотрите на это, надеюсь, он утонет …


Калькулятор токоограничивающего резистора — Серия

прямое напряжение

Прямое падение напряжения обычно обозначается просто как прямое напряжение — это конкретное значение для каждого светодиода. Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого общедоступного светодиода по цвету.

Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.

Как измерить прямое напряжение Vf

Если у вас есть цифровой мультиметр, то вы также можете измерить прямое падение напряжения. У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!

Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом.Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.

Диаграмма по цвету

Цвет светодиода Прямое напряжение Vf Прямой ток, если
Белый от 3,2 В до 3,8 В от 20 мА до 30 мА
Тёплый белый от 3,2 В до 3,8 В от мА до 30 мА
Синий от 3,2 В до 3,8 В от 20 мА до 30 мА
Красный 1.От 8 В до 2,2 В от 20 мА до 30 мА
Зеленый от 3,2 В до 3,8 В от 20 мА до 30 мА
Желтый от 1,8 В до 2,2 В от 20 мА до 30 мА
Оранжевый от 1,8 В до 2,2 В от 20 мА до 30 мА
Розовый от 3,2 В до 3,8 В от 20 мА до 30 мА
UV от 3,2 В до 3,8 В от 20 мА до 30 мА

Вот диаграмма, показывающая прямое напряжение по цвету для широко доступных светодиодов на eBay.Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а длину анода — 19 мм.

Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.

Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2.2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.

Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.

Выбор резистора для использования со светодиодами

9025 9025 360 Ом
Напряжение питания Vs Vf = 1.8 В Vf = 3,2 В
3,3 В 75 Ом 5 Ом
5 В 160 Ом 90 Ом 290 Ом
12 В 510 Ом 440 Ом

Как видно из диаграммы выше, обычно используются два прямых напряжения. Красный, желтый и оранжевый светодиоды попадают в 1.Категория 8 В, а белый, синий, зеленый, розовый, УФ, попадают в категорию 3,2 В.

Таким образом, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями в своих проектах. Просто воспользуйтесь таблицей значений стандартных резисторов, чтобы найти ближайшее из возможных значений.

Пример 1: Синий светодиод имеет типичное прямое падение напряжения, равное 3.2 В, поэтому при напряжении питания 3,3 В требуется резистор 5 Ом. Однако, если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.

Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, значения резистора 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться, когда напряжение питания составляет 3,3. В, 5 В, 9 В и 12 В соответственно.

Формула для расчета номиналов резисторов

Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.

Учитывая прямое напряжение диода Vf, напряжение на резисторе равно Vs –Vf.

Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.

Схема с несколькими светодиодами — Серия

Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которые вы можете установить. Как видите, полное прямое напряжение — это сумма всех прямых напряжений, представленных каждым светодиодом.Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.


Схема с несколькими светодиодами — параллельная

Вот такой правильный способ подключения нескольких светодиодов параллельно. У каждого светодиода есть собственный резистор ограничения тока.

В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток — это сумма всех индивидуальных прямых токов каждого светодиода.

Понимание того, как работать со светодиодами 3 и 5 мм

Как сделать своими руками одиночные светодиодные источники света или кластер или массив для специального проекта. Это простое руководство о том, как создавать собственные светодиодные продукты, подобные тем, которые показаны ниже. Если это не то, что вы ищете, СВЯЗАТЬСЯ С НАМИ ДЛЯ ПОМОЩИ .

Возможно, вы видели на нашем веб-сайте одиночные светодиодные источники света или несколько светодиодных кластеров, и упаковка (корпус в виде чашки, втулки или пули) просто не подходит для ваших целей.У вас есть небольшая техническая смекалка или друг, который может вам помочь, и вы хотите создать свой собственный продукт, адаптированный к вашим конкретным потребностям.

Вот информация, которая вам понадобится для этого. Вам понадобится:

1. Технические данные конкретного светодиода, который вы будете использовать. Вот ссылка на образец таблицы данных. После того, как вы выбрали конкретный светодиод, который хотите использовать, убедитесь, что у вас есть его конкретная таблица данных, когда вы начнете работать.

2. Наш калькулятор сопротивления.Как только вы определите, какой резистор использовать, вы обнаружите, что их легко найти в вашем местном магазине электроники. У нас нет резисторов в наличии, так как их слишком много, чтобы сделать это практичным.

3. Информация ниже. Вот ссылка на файл .pdf, который легко распечатать.


Характеристики большинства светодиодов указаны при токе 20 мА. Если вам нужна действительно хорошая надежность и вы не уверены, что теплопроводность вашего монтажа ниже среднего, тепловыделение там, где вы их устанавливаете, колебания напряжения / тока и т. Д.тогда рассчитайте на 15 миллиампер.

Теперь о том, как заставить ток 15 миллиампер через светодиод:

  • Шаг 1. Сначала вам нужно узнать падение напряжения на светодиодах. Достаточно безопасно принять 1,7 В для красного цвета невысокой яркости, 1,9 В для красного цвета высокой яркости, высокой эффективности и низкого тока, 2 В для оранжевого и желтого и 2,1 В для зеленого. Предположим, 3,4 В для ярко-белого, ярко-желтовато-зеленого и большинства синих типов. Предположим, 4,6 В для ярко-синих типов 430 нм, таких как Everbright и Radio Shack.Конструкция на 12 миллиампер для типов 3,4 вольта и 10 миллиампер для 430 нм синего цвета.

    Вы можете сконструировать более высокий ток, если вы любите приключения или знаете, что у вас будет хороший недостаток тепловыделения. В таком случае рассчитайте на 25 мА для типов с напряжением около 2 В, 18 мА для типов 3,4 В и 15 мА для 430 NM синий

  • Шаг 2: Удовлетворение или превышение максимального номинального тока светодиода только при благоприятных условиях отсутствия тепловыделения. Некоторые номинальные значения тока светодиодов предполагают наличие действительно благоприятных условий тестирования, таких как окружение воздухом с температурой не выше 25 градусов Цельсия и некоторой приличной теплопроводностью от места установки проводов.Эксплуатация светодиода в указанных лабораторных условиях при максимальном номинальном токе приведет к потере половины его светоотдачи по истечении расчетного срока службы (от 20 000 до 100 000 часов) — оптимистично! Вы можете использовать несколько более высокие токи, если вы отводите тепло на проводах и / или можете выдержать гораздо меньший ожидаемый срок службы.
  • Шаг 3. Затем узнайте напряжение питания. Для надежной и стабильной работы светодиода оно должно быть намного выше напряжения светодиода. Используйте минимум 3 В для типов с более низким напряжением, 4,5 В для 3.Типы 4 вольт и 6 вольт для синего цвета 430 NM.

    Напряжение в большинстве автомобилей составляет 14 вольт, пока генератор успешно заряжает аккумулятор. Хорошо заряженный свинцово-кислотный аккумулятор на 12 В составляет 12,6 В при малой нагрузке, разряжающей его. Многие источники питания постоянного тока с «стенной бородавкой» обеспечивают гораздо более высокое напряжение, чем указано, при небольшой нагрузке, поэтому вам необходимо измерить их при небольшой нагрузке, которая потребляет, возможно, 10-20 мА.

  • Шаг 4: Следующий шаг — вычесть напряжение светодиода из напряжения питания.Это дает вам напряжение, которое должно падать на понижающем резисторе. Пример: светодиод 3,4 В при напряжении питания 6 В. Их вычитание дает 2,6 вольта, которые падают на понижающий резистор.
  • Шаг 5: Следующим шагом является разделение падающего напряжения на ток светодиода, чтобы получить значение падающего резистора. Если разделить вольт на амперы, вы получите номинал резистора в омах. Если разделить вольты на миллиамперы, вы получите номинал резистора в килоомах или к.

Пример: питание 6 В, 3.Светодиод на 4 вольта, 12 миллиампер. Разделите 2,6 на 0,012. Это дает 217 Ом. Ближайшее значение стандартного резистора составляет 220 Ом.

>> Если вы хотите управлять светодиодом 3,4 В от источника питания 6 В при «типичном» токе светодиода 20 мА, то 2,6, деленное на 0,02, дает сопротивление резистора 130 Ом. Следующее по величине стандартное значение — 150 Ом.

>> Если вы хотите использовать типичный светодиод на 3,4 В от источника 6 В при максимальном номинальном токе 30 мА, разделите 2.6 ноты на musicaneo Это указывает на 87 Ом. Следующее по величине стандартное сопротивление резистора составляет 100 Ом. Имейте в виду, что я считаю значение 30 мА для светодиодов 3,4–3,5 В оптимистичным.

Еще нужно проверить мощность резистора. Умножьте падение напряжения на ток светодиода, чтобы получить мощность, рассеиваемую резистором.

Пример: 2,6 В, умноженное на 0,03 А (30 мА), составляет 0,078 Вт.

Для хорошей надежности я рекомендую не превышать 60 процентов номинальной мощности резистора.Резистор на 1/4 Вт может легко справиться с 0,078 Вт. Если вам нужен более мощный резистор, широко доступны резисторы на 1/2 Вт в популярных номиналах.

Вы можете подключить светодиоды последовательно, используя только один резистор для всей последовательной цепочки. Сложите напряжения всех светодиодов в последовательной цепочке. Это не должно превышать 80 процентов напряжения питания, если вам нужна хорошая стабильность и предсказуемое потребление тока. Падение напряжения будет равняться напряжению питания за вычетом общего напряжения светодиодов в последовательной цепочке.

Не ставьте светодиоды параллельно друг другу. Хотя это обычно работает, это ненадежно. По мере нагрева светодиоды становятся более проводящими, что может привести к нестабильному распределению тока через подключенные параллельно светодиоды. Для параллельно включенных светодиодов требуются отдельные резисторы сброса напряжения. Последовательные струны можно подключать параллельно, если каждая струна имеет свой собственный резистор сброса напряжения.

Авторские права: Don Klipstein, Jr. 01/01/00 — Г-н Клипштейн не является сотрудником компании The LED Light
Заявление об ограничении ответственности: Информация, представленная здесь, является базовой для ознакомления с рабочими свойствами и пользовательскими характеристиками светодиодов.Мы не подразумеваем, что информация является точной или применимой ко всем аспектам использования светодиодов. Каждое приложение должно быть выполнено отдельно и с полным пониманием того, что за ущерб и травмы несет исключительную ответственность «застройщик». Мы не даем технических советов. Вам необходимо определить конкретные продукты, которые вам понадобятся для вашего конкретного применения.

Расчет значений резисторов, ограничивающих ток для светодиодных цепей


Светодиод — это один из тех компонентов продукта, который просто обязан работать.Если я смотрю на свой компьютер через комнату и не вижу, как его светодиодный индикатор мигает мне в ответ, я предполагаю, что он выключен; Никогда не ожидал, что светодиод мог перегореть. Для этого есть веская причина: при работе в соответствии со спецификациями срок службы светодиода составляет 100000 часов или более.

Ключом к увеличению срока службы светодиода является ограничение протекающего через него тока. Часто это делается с помощью простого резистора, значение которого рассчитывается по закону Ома. В этой статье рассматривается, как применить закон Ома к одиночным и кластерным схемам светодиодов.Я также предоставил электронную таблицу Excel, чтобы упростить и ускорить процесс.

Одиночные светодиоды

При вычислении значения резистора, ограничивающего ток для одного светодиода, основная форма закона Ома — V = IR — становится:

где:

  • V batt — напряжение между резистором и светодиодом.
  • V led — прямое напряжение светодиода.
  • I led — прямой ток светодиода.

На рисунке 1 (а) показан пример схемы с одним светодиодом. Между прочим, V batt — V led — это падение напряжения на резисторе, а (I led ) 2 R — мощность, рассеиваемая резистором. Расчет рассеиваемой мощности — это шаг, который многие люди — как любители, так и профессионалы — склонны пропускать. Итак, что вы называете резистором на 1/8 Вт, который должен рассеивать 1/2 Вт? Уголь.

светодиодов серии

Приведенное выше уравнение становится лишь немного сложнее, если вы соедините несколько светодиодов последовательно.Падение напряжения на светодиодах увеличивается, уменьшая падение напряжения на резисторе. Ток через резистор (и светодиоды) остается прежним:

, где n — количество последовательно включенных светодиодов. Рисунок 1 (b) показывает пример с тремя последовательно включенными светодиодами. Падение напряжения на светодиодах в три раза больше, чем у одного светодиода.

параллельных светодиодов

Если вы подключите несколько светодиодов параллельно, ток через резистор возрастет (хотя ток через каждый светодиод останется прежним).Падение напряжения на светодиодах не изменяется, как и падение напряжения на резисторе:

, где m — количество параллельно включенных светодиодов. Рисунок 1 (c) показывает пример с тремя светодиодами, подключенными параллельно. Ток в цепи в три раза превышает ток одного светодиода.

РИСУНОК 1. Простые светодиодные схемы. (а) Схема с одним светодиодом. (б) светодиоды последовательно. (c) параллельные светодиоды.


Светодиодные массивы

Если вы соединяете несколько светодиодов в массив, вам просто нужно объединить последовательную и параллельную формы уравнений:

Важно, чтобы в каждой из m параллельных ветвей цепи было n светодиодов (соединенных последовательно) и чтобы все светодиоды имели одинаковый светодиод V и светодиод I .В противном случае все ставки отменены. Рисунок 2 (a). На показаны четыре светодиода, подключенные таким образом, что предыдущее уравнение не применяется. Рисунок 2 (b) показывает один из нескольких «правильных» способов подключения четырех светодиодов.

РИСУНОК 2. Светодиодные матрицы .


Регулировка яркости

Регулировка яркости полезна для гаджетов, которые могут использоваться в различных условиях окружающего освещения (снаружи / внутри, ночью / днем ​​и т. Д.). Для этой функции требуется два резистора — один фиксированный (R f ) и один переменный (R v ).R f ограничивает ток, когда R v находится на минимальном значении (обычно 0 Ом), что позволяет максимальному току протекать через светодиод. Значение R f рассчитывается, когда R v = 0:

.

, где Iled (max) — это максимальный ток, который вы хотите через светодиод.

Увеличение значения R v увеличивает сопротивление цепи, уменьшая ток через светодиод. Когда R v установлен на максимальное значение, через светодиод проходит минимальный ток.Стоимость рэндов против определяется по формуле:

, где I led (min) — это минимальный ток, который вы хотите пройти через светодиод.

РИСУНОК 3. Регулировка яркости.


Этапы проектирования

Существует четыре шага для выбора подходящего номинала (значений) токоограничивающего резистора:

  • Используя желаемые рабочие характеристики и спецификации светодиода, решите соответствующие уравнения для «идеальных» номиналов резистора.
  • Выберите подходящие «реальные» значения резистора.Если в расчетах указан резистор 132,27 Ом, ближайшие «реальные» значения резистора составляют 130 Ом и 150 Ом (допуск 5%). Конечно, вы можете выбрать другие значения в зависимости от того, что у вас есть под рукой.
  • Вставьте значения резисторов, которые вы выбрали, снова в вычисления, чтобы увидеть, будут ли они удовлетворять желаемым рабочим характеристикам.
  • Выполните вычисления, используя выбранные значения резисторов с крайними допусками. Резистор 150 Ом с допуском 5% может иметь диапазон от 142 Ом.От 5 Ом до 157,5 Ом и редко бывает точно 150 Ом. Также рассчитайте ток, потребляемый схемой, и необходимую мощность, рассеиваемую резисторами.

Некоторые люди не выполняют ни одного из этих шагов и просто угадывают значение. Большинство из них проходят первые два шага, что обычно нормально, если вы не работаете слишком близко к пределам светодиода, где допуски могут подтолкнуть вас к краю. Выполнив все четыре шага, вы можете гарантировать, что ваши светодиоды, по крайней мере, работают безопасно и прослужат долгое время.

Множественные итерации — это перетаскивание

Подсчитать подходящие резисторы для светодиодных цепей довольно просто. Это займет всего несколько минут, даже если вы пройдете все четыре этапа проектирования. В этом нет ничего страшного, если вам нужно сделать это только один раз, но что, если вы хотите увидеть влияние различных резисторов в цепи? Что делать, если у вас есть набор светодиодов, и вы хотите определить, как лучше всего их подключить? ( На рис. 4 показаны четыре способа подключения шести светодиодов.) Расчеты по-прежнему просты; вам просто нужно повторить их еще несколько раз.Это утомительно, и именно тогда люди склонны совершать ошибки.

Чтобы избавиться от скуки и связанных с ней ошибок, я составил электронную таблицу Excel, в которой выполняются все необходимые вычисления, включая поиск «реальных» значений резисторов. Это реальная экономия времени!

РИСУНОК 4. Способы подключения шести светодиодов.


Использование электронной таблицы

Электронная таблица (доступна на веб-сайте Nuts & Volts по адресу www.nutvolts.com ) разбит на три раздела. В первом разделе «Характеристики цепи» вы вводите параметры цепи. Во втором разделе, «Расчетные значения I & R и предлагаемые резисторы», вычисляются необходимые номиналы резисторов и предлагаются «настоящие» резисторы для использования в схеме. Последний раздел, «Расчетная производительность с использованием выбранных резисторов», позволяет вам подключать значения резисторов (предлагаемые значения или значения по вашему выбору) и рассчитывать токи светодиодов, токи источника питания и рассеиваемую мощность резистора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *