Как подобрать драйвер для светодиодной ленты – что это такое, как выбрать и подключить

Содержание

Как подобрать драйвер для светодиодов? Ответ эксперта

Светодиоды продолжают форсировать очередные рубежи в мире искусственного освещения, подтверждая своё превосходство целым рядом преимуществ. Большая заслуга в успешном развитии LED-технологий принадлежит источникам питания. Работая в тандеме, драйвер и светодиод открывают новые горизонты, гарантируя потребителю стабильную яркость и заявленный срок службы.

Что собой представляет светодиодный драйвер, и какая функциональная нагрузка на него возложена? На что обратить внимание при выборе и есть ли альтернатива? Попробуем разобраться.

Что такое драйвер для светодиода и для чего он нужен?

Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток. Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.

Главный электрический параметр драйвера для светодиода – выходной ток, который он может длительно обеспечивать при подключении соответствующей нагрузки. В роли нагрузки выступают отдельные светодиоды или сборки на их основе. Для стабильного свечения необходимо, чтобы через кристалл светодиода протекал ток, указанный в паспортных данных. В свою очередь, напряжение на нём упадёт ровно столько, сколько потребуется p-n переходу при данном значении тока. Точные значения протекающего тока и прямого падения напряжения можно определить из вольта-мперной характеристики (ВАХ) полупроводникового прибора. Питание драйвер получает, как правило, от постоянной сети 12 В или переменной сети 220 В. Его выходное напряжение указывается в виде двух крайних значений, между которыми гарантируется стабильная работа. Как правило, рабочий диапазон может быть от трёх вольт до нескольких десятков вольт. Например, драйвер с U
вых
=9-12 В, Iвых=350 мА, как правило, предназначен для последовательного подключения трёх белых светодиодов мощностью 1 Вт. На каждом элементе упадёт примерно 3,3 В, что в сумме составит 9,9 В, а значит это попадает в указанный диапазон.

К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.

Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.

Электронная часть драйвера для светодиода зависит от многих факторов:

  • входных и выходных параметров;
  • класса защиты;
  • применяемой элементной базы;
  • производителя.

Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.

Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в данной статье.

Критерии выбора

Сразу хочется отметить, что резистор – это не альтернатива драйверу для светодиода. Он никогда не защитит от импульсных помех и перепадов в питающей сети. Любое изменение входного напряжения пройдёт через резистор и приведет к скачкообразному изменению тока из-за нелинейности ВАХ светодиода. Драйвер, собранный на базе линейного стабилизатора – тоже не лучший вариант. Низкая эффективность сильно ограничивает его возможности.

Выбирать LED-драйвер нужно только после того, как будет точно известно количество и мощность подключаемых светодиодов.

Помните! Чипы одного типоразмера могут иметь различную мощность потребления ввиду большого количества подделок. Поэтому старайтесь приобретать светодиоды только в проверенных магазинах.

Касаемо технических параметров, то на корпусе LED-драйвера обязательно должно быть указано:

  • мощность;
  • рабочий диапазон входного напряжения;
  • рабочий диапазон выходного напряжения;
  • номинальный стабилизированный ток;
  • степень защиты от влаги и пыли.

Очень привлекательны бескорпусные драйверы с питанием от 12 В и 220 В. Среди них существуют разные модификации, в которых можно подключать как один, так и несколько мощных светодиодов. Такие устройства удобны для проведения лабораторных исследований и экспериментов. Для домашнего использования всё равно придётся поместить изделие в корпус. В итоге денежная экономия на плате драйвера открытого типа достигается в ущерб надежности и эстетики.

Кроме подбора драйвера для светодиода по электрическим параметрам, потенциальный покупатель должен четко представлять условия его будущей эксплуатации (место размещения, температура, влажность). Ведь оттого, где и как будет установлен драйвер, зависит надёжность всей системы.

Читайте так же

ledjournal.info

Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

  • незамысловатость конструкции
  • относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

  • во-первых это большой вес и приличные габариты
  • как следствие первого недостатка — большой расход металла на сборку всей конструкции
  • ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

  • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
  • напряжение питания можно подавать в большом разбросе
  • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

  • усложненность сборочной схемы
  • сложная конструкция
  • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования
Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер — это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды «питаются» электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику — вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная. 

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут «кушать» разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково — выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Недостатки драйверов

Безусловно и у драйверов есть свои неоспоримые недостатки:

  • во-первых они рассчитаны только на определенный ток и мощность 

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

  • узкоспециализированность на светодиодах 

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов — это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства — эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

svetosmotr.ru

Как правильно подобрать блок питания (LED драйвер) для светодиода и светодиодных лент?

Светодиодное освещение является новым и перспективным направлением в сфере искусственного освещения, где в качестве источника света используются светодиоды. Однако, немаловажную роль в таком типе освещения играет электроника, которая питает светодиоды. Именно грамотно подобранная электроника позволяет добиться от светодиодов качественного света.

 

Светодиоды работают только от постоянного источника питания, поэтому для их подключения требуется понизить переменное напряжение общегородской сети (220В). Для этого применяются специальные устройства — блоки питания (LED драйверы). У каждой конкретной цепи светодиодов существуют такие параметры как мощность, номинальные сила тока и напряжение. Эти параметры очень важны при выборе светодиодного драйвера. В данной статье мы подробно опишем, как правильно выбрать блок питания для светодиодов. Зачастую возникает такая ситуация, когда уже куплены светодиоды, спроектирована схема подключения, а подобрать подходящий драйвер к получившейся цепи невозможно. Поэтому очень важно заранее ознакомиться с различными вариантами блоков питания и составлять схему цепи, зная возможности по обеспечению электропитанием.

Блок питания для светодиодов — это компактный электронный прибор, дающий на выходе определенное напряжение или ток. Выбор блока питания зависит от нескольких параметров, которые мы сейчас с вами рассмотрим подробнее.

 

Тип источника питания. Существует две большие группы источников питания. В первую группу входят источники стабилизированного  напряжения, которые больше знакомы нам в качестве адаптеров для ноутбуков или зарядных устройств для мобильных телефонов. У таких источников выходное напряжение всегда остается одинаковым, а выходной ток возрастает с подключением нагрузки. Такое питание требуется для работы светодиодных лент, модулей и линеек. Во вторую группу входят источники стабилизированного тока, также часто называемые “драйверами” или “LED драйверами”. У LED драйверов выходной ток остается постоянным, а выходное напряжение меняется в зависимости от нагрузки, что требуется для подключения мощных светодиодов и некоторых типов линеек.

Мощность. У каждого источника питания, как и у каждой цепи, есть такой важный параметр, как мощность. Она зависит от количества элементов и их параметров. Максимальная мощность светодиодного драйвера указывается производителем на маркировке и показывает, какую максимальную нагрузку можно подключить. Самое главное в этом вопросе, чтобы мощность источника была выше мощности цепи, иначе возможен перегрев блока.

Номинальные параметры тока и напряжения. На всех светодиодах заводом- изготовителем указывается номинальная сила тока, следовательно, драйверы светодиодов нужно подбирать исходя из этого. Чаще всего встречаются LED драйверы с номинальным значением тока – это 350 и 700 миллиампер. Светодиодные ленты, как правило, выпускаются в двух стандартах напряжений – 12 и 24 Вольта. Блоки питания маркируются значениями напряжения и мощности.

Класс герметичности и влагозащищенности. На сегодняшний день светодиоды используются практически везде, даже в бассейнах, поэтому питание светодиодов должно быть бесперебойным, выдерживать воздействие различных внешних факторов и изготавливаться в специальных негерметичных, полугерметичных и герметичных корпусах, которые не только защищают от влаги, но и прекрасно отводят тепло. Существует класс защиты, который определяется двумя цифрами, указанными после аббревиатуры IP (IP = Ingress Protection англ. = защита от проникновения). IP применимо к электрооборудованию. Первая цифра обозначает класс защиты от проникновения твёрдых инородных тел в прибор (пыль). Вторая же обозначает класс защиты от проникновения жидких инородных тел (вода). Следует отметить, класс защиты IP ничего не говорит о температуре окружающей среды, при которой прибор можно использовать.

1-я цифра

Обозначение

2-я цифра

Обозначение

IP0X

Защита отсутствует.

IPX0

Защита отсутствует.

IP1X

Защита от крупноразмерных инородных тел D>50mm. Отсутствие защиты при намеренном вторжении.

IPX1

Защита от вертикально падающих капель воды.

IP2X

Защита от среднеразмерных инородных тел D>12mm. Держать пальцы подальше.

IPX2

Защита от диагонально падающих капель воды, 15° по отношению к нормальному размещению объекта.

IP3X

Защита от малоразмерных инородных тел D>2,5mm. Держать иаганструмент и кабель подальше.

IPX3

Защита от мелких водяных брызг до 60° по отношению к нормальному размещению объекта.

IP4X

Защита от пескообразных загрязнителей D>1mm. Держать инструмент и кабель подальше.

IPX4

Защита от большого количества водяных брызг со всех сторон.

IP5X

Защита от отложения пыли

IPX5

Защита от сильных струй воды со всех сторон.

IP6X

Защита от попадания пыли

IPX6

Защита от временного затопления (сильная струя воды).

IPX7

Защита от временного погружения под воду.

IPX8

Защита от погружения на глубину.

IPX9

Защита от воды под давленим.

 

Например, прибор имеет класс защиты IP65, то есть он защищён от проникновения пыли и сильных струй воды. Такой прибор можно легко использовать на «открытом воздухе».

При выборе блока питания следует помнить основное требование для его правильной работы — это расчет точного количества светодиодов, которое вы планируете подключить. Также стоит учесть условия эксплуатации: при сильных перепадах температуры эффективная мощность может снизиться и это приведет к поломке оборудования.  Поэтому очень важно, чтобы источник питания был качественным и гарантировал длительную работу.


Если у вас возникли вопросы по подбору блока питания для светодиодов, или просто в целях экономии времени, вам лучше обратиться к специалистам нашей компании для получения консультаций. Мы с радостью поможем Вам!

 

Звоните нам по телефону +7 (499) 705-92-12 или оставьте заявку в форме ниже, и мы Вам обязательно ответим!

 

 

www.ledbay.ru

Расчёт комплекта для светодиодного освещения (подсветки) на примере светодиодной ленты.

Расчёт комплекта для светодиодного освещения (подсветки) на примере светодиодной ленты.

Для начала необходимо определиться с типом и количеством светодиодной ленты (иными источниками светодиодного света), чтобы рассчитать требуемую мощность для всех составляющих электрической схемы.

Основные типы светодиодных лент:

  • Светодиодная лента SMD 3528 60LED 4,8W 12V – потребляемая мощность  4,8W Ватт на 1 метр, ток 0,4 Ампера на 1 метр.
  • Светодиодная лента SMD 3528 120LED 9,6W 12V — потребляемая мощность  9,6W Ватт на 1 метр, ток 0,8 Ампера на 1 метр.
  • Светодиодная лента SMD 5050 30LED 7,2W 12V — потребляемая мощность  7,2W Ватт на 1 метр, ток 0,6 Ампера на 1 метр.
  • Светодиодная лента SMD 5050 60LED 14,4W 12V — потребляемая мощность  14,4W Ватт на 1 метр, ток 1,2 Ампера на 1 метр.

Сравнение источников света в фотографиях.

Расшифровка обозначения светодиодной ленты на нашем сайте*:

Светодиодная лента SMD 3528 60LED 4,8W 12V

SMD 3528 – тип светодиода

60LED – количество светодиодов на 1 метр ленты

4,8W – потребляемая мощность 1 метра светодиодной ленты

12V – напряжение питания светодиодной ленты

*- некоторые источники указывают характеристики для 3-5 метров ленты…

К примеру, нам необходимо 10 метров светодиодной ленты SMD 5050 60LED 14,4W 12V.

Необходимая нам информация – это мощность.

10 метров Х 14,4 Ватт = 144 Ватт – общая мощность ленты.

Для ленты 144 Ватт подходит блок питания 150 Ватт, но практика показывает, что этого недостаточно для надежной работы комплекта и поэтому принято увеличивать мощность блока питания минимум на 20% (в определённых условиях рекомендуют запас мощности 50%)

Если в схеме предусмотрен диммер или RGB контроллер, то расчет аналогичен подбору блока питания.

Мощность, потребляемая самим RGB контроллером или диммером, незначительна и в расчёт блока питания для светодиодной ленты не принимается.

Как правило, RGB контроллеры и диммеры имеют небольшую мощность, до 288 Ватт – в зависимости от модели, а если мощность светодиодной ленты превышает допустимую мощность RGB контроллера или диммера, тогда используют усилитель.

Расчет усилителя для  RGB контроллера или диммера:

((полная длина ленты)  —  (длина ленты подключаемая к контроллеру*)) метров  Х  (мощность 1 метра ленты) Ватт  +  20%  =  (мощность усилителя) Ватт

*— часть ленты подключается к контроллеру (согласно мощности), оставшаяся часть к усилителю

 

Если у вас возникают сложности с расчётом комплекта, позвоните нам, и мы поможем рассчитать и подобрать светодиодный комплект под ваши условия

 Vel +375 (29) 611-07-05, MTS +375 (29) 899-07-05

solled.by

5 основных критериев для правильного выбора драйвера для светодиодных лент и светильников.

Многие модели LED-светильников, присутствующие на рынке, оборудованы встроенным драйвером и питаются напрямую от сети. Однако нередко при подборе светового решения для очередного объекта нам приходится самостоятельно подбирать внешний драйвер для тех случаев, где он не входит в комплект. На какие же его характеристики важно обратить внимание? 

1. Электрические параметры 
В первую очередь нужно выяснить, требуют ли светодиоды запитки постоянным напряжением или постоянным током – драйверы этих двух видов принципиально разные! Затем нужно определить требуемую величину рабочего тока или напряжения, которая у светодиода и драйвера обязательно должна совпадать. Наконец, номинальная мощность драйвера должна быть не меньше суммарной мощности всех подключённых к нему светодиодов. 

2. Возможность диммирования 
«Стандартные» светодиодные драйверы не поддерживают регулирование яркости. Если эта функция нужна, нужно искать модель, для которой она заявлена производителем. 

3. Безопасность 
В зависимости от условий применения драйвер должен относиться к одному из классов электробезопасности (I, II или III), а также обладать определённой степень защиты IP. 

4. Экономичность 
Типичный уровень КПД LED-драйвера находится в пределах 80-85%. Драйверы, рассчитанные на подключение большего количества светодиодов, как правило являются более эффективными. 

5. Коэффициент мощности 
Данный параметр характеризует, насколько эффективно наша осветительная система будет использовать ресурсы электросети. Чем ближе его значение к единице, тем загрузка проводов ближе к оптимальной. 

 Полезны ли вам подобные посты о светотехнике? Если хотите, чтобы мы более подробно раскрыли тему. напишите, что вам интересно в комментариях.

www.mastergrad.com

Как выбрать драйвер? — SpecLED

 

     Основные критерии для выбора драйвера заключаются в том, какие мощные светодиоды будем подключать 1W, 3W, 5W или светодиодную матрицу, сколько светодиодов будет в одной цепи, требования к уровню защиты драйвера от внешних воздействий.  

     Предположим, что необходимо подключить цепь из 8шт мощных светодиодов 1W белого свечения к переменной сети согласно ГОСТ 29322-92, 220В, 50Гц:

     Падение напряжения на одном белом светодиоде составляет 3.1-3.6V, как правило, можно брать для расчета усредненное значение 3.4V. Ток, протекающий в цепи, должен быть стабилизирован в пределах 300-350мА (для светодиодов 1W). Далее складываем падения напряжений всех светодиодов в цепи VD1+VD2+VD3+VD4+VD5+VD6+VD7+VD8 или просто умножаем 3.4Vх8шт=27.2V.  После проведенных расчетов можно сделать вывод, что необходим драйвер светодиода у которого диапазон выходного напряжения охватывает значение 27.2V, а выходной ток  находится в пределах 300-350мА. 

     На данном этапе хорошо было бы задуматься, где и при каких условия будет работать светильник? Подумали и решили, нужно осветить гараж и/или погреб. В большинстве случаев это не отапливаемые сырые помещения с высоким уровнем влажности круглый год. Конечно же нужно подбирать драйвер в корпусе, желательно герметичном. Для жилых помещений можно использовать без корпусные драйверы, с учетом мер безопасности. Не стоит забывать, на открытом драйвере высокое напряжение опасное для жизни! 

     И так, наши значения V=27.2, I=350мА. Наиболее подходящий драйвер в герметичном корпусе IP67 это драйвер мощностью 9W с выходными характеристиками: 

Выходной ток (I) — 350mA±5%;

Выходное напряжение (V) — 12-32V;

Немного больше информации можно найти тут:

http://specled.blogspot.com/2017/06/1-3-5-led-driver.html

 

     Если Ваш калькулятор не сбоил и с пайкой тоже все в порядке, схема заработает сразу после включения в розетку. Удачной практики!

 

P.S. Вопросы связанные с монтажом и охлаждением мощных светодиодов смотрите в разделе «Монтаж и охлаждение мощных светодиодов». 

 

P.P.S. Основные вопросы, связанные с возможными неисправностями и их симптомами, смотрите в разделе «Собрал, включил – не работает».  

specled.com.ua

Как подобрать блок питания для светодиодной ленты – База знаний Novolampa.

В данной статье рассматриваются основные моменты, на которые следует обращать внимание при выборе блока питания для светодиодной ленты, а также кратко освещаются вопросы о том, что такое PFC и как вычислить диаметр токопроводящей жилы.

Блок питания — это источник напряжения(трансформатор), который преобразует 220В в 12В, 24В или другое необходимое значение рабочего напряжения. Для питания светодиодных лент и модулей чаще всего используются импульсные блоки питания, где в качестве ограничителей тока работают резисторы, в отличие от драйверов, которые представляют собой источники тока, используемые для светодиодов, модулей и ламп, которые не имеют ограничителей тока.

Чтобы подобрать блок питания к выбранной светодиодной ленте нужно обратить внимание на следующие факторы:

  1. Рабочее напряжение светодиодной ленты.
  2. Суммарная мощность светодиодной ленты.
  3. Необходимость защиты корпуса блока питания от воды и пыли.
  4. Габаритные размеры блока питания.

Рассмотрим подробнее каждый фактор.

1. Рабочее напряжение (U)

Рабочее напряжение светодиодной ленты может быть 12 В, 24 В, иногда 36 В, управляемые ленты SPI обычно 5 В. Соответственно оно должно соответствовать выходному напряжению блока питания.

Существуют также блоки питания с возможностью плавной регулировки выходного напряжения, например источники напряжения Arlight серии JTS, такие можно применять в специальных проектах, где требуется нестандартное значение выходного напряжения, а также там, где необходимо скомпенсировать падение напряжения на длинных проводах.

Еще из нестандартных решений можно отметить блоки питания с несколькими каналами, в которых разное выходное напряжение, это может быть полезно, если нужно запитать ленты с разным рабочим напряжением на один источник напряжения.

2. Мощность светодиодной ленты (PСД)

Подбор блока питания по мощности осуществляется по следующему принципу: мощность должна быть равна суммарной мощности светодиодной ленты, умноженной на коэффициент запаса КЗ, равный 25÷30%, если пренебрегать коэффициентом запаса и использовать блок питания на пределе, то он не проработает долго из-за постоянного перегрева элементов.

Суммарная мощность светодиодной ленты вычисляется путем умножения мощности ленты на 1 метр длины PСД на общую длину L.

Таким образом, получаем следующую формулу:

PБП = L*PСД*Kз, где

L — длина ленты (м)

PСД — удельная мощность светодиодной ленты на 1 метр (W/м)>

Kз — коэффициент запаса (ед.)

3. Степень защиты корпуса блока питания от проникновения жидкости и пыли (класс защиты IP)

При выборе блока питания следует учитывать условия, в которых он будет находиться, если это обычное сухое жилое помещение, то подойдет блок питания в защитном кожухе с IP20 (защита от проникновения твердых предметов >12,5 мм, защиты от влаги нет).

Зачастую в блоках питания мощность более 250Вт в исполнении «Защитный кожух» IP20-IP40 используется активное охлаждение в виде кулера(вентилятора). Если Вы планируете рассматривать данные блоки питания, необходимо выбрать конструктив, когда кулер расположен перпендикулярно элементам платы в изделии, следовательно обдув воздуха будет более равномерный (воздух идет вдоль платы), и элементы будут меньше греться. На неудачных моделях вентиляторы расположены над платой и обдув платы источника напряжения происходит неравномерно.

Блоки питания и комплектующие для лент рекомендуется устанавливать в щитовые.

Установка светодиодной ленты в ванную комнату или помещение с повышенной влажностью требует класса защиты не менее IP65 (пылезащищен, защита от струй воды).

А. Б.

(А) Герметичный алюминиевый блок питания IP67 и (Б) блок питания в защитном кожухе IP20.

В условии использования на улице нужно предусматривать степень защиты IP67, такая степень обеспечивает защиту от струй воды под давлением во всех направлениях, возможно даже кратковременное погружение в воду до 1 м. Если необходима работа в погруженном режиме, то тогда используется максимальная защита IP68 или IP69 (при большом давлении воды).

При подборе мощный источников напряжения для светодиодных лент необходимо учитывать, что на блоках питания без защиты от влаги и пыли стоят вентиляторы. Данные вентиляторы сильно шумят при работе и могут создавать дискомфорт. Поэтому в дорогих проектах мы рекомендуем использовать источники напряжения в алюминиевом корпусе с пассивным охлаждением.


4. Габаритные размеры

Также следует обращать внимание на габаритные размеры блоков, в зависимости от того, куда Вы хотите его установить, мощные блоки питания могут достигать достаточно больших размеров, и спрятать такие будет затруднительно, к тому же часто они имеют вентилятор. Поэтому если требуется подключить длинный участок ленты, то можно пересмотреть схему подключения ленты и использовать несколько меньших по мощности блоков.

Также при выборе места установки следует учитывать то, что чем мощнее блок питания, тем больше он нагревается, поэтому рекомендуется обеспечивать достаточно места для теплоотвода, чтобы блок не перегревался.

Пример подбора источника напряжения для светодиодной ленты:

Рассмотрим следующий пример: нужно сделать декоративную светодиодную подсветку в ванной комнате по периметру потолка общей длиной 8 м.

Выбираем подходящую светодиодную ленту с защитой IP65, например, лента Arlight RTW 2-5000SE 24V White 2X (5060,300 LED,LUX), мощность 72 Вт на 5 м.

Основные параметры ленты:

  1. UСД = 24V
  2. PСД = 14,4 W/m

Подбираем мощность блока питания:

PБП = 8m*14,4W/m*1,3 = 149,8 W

Округляем в большую сторону и получаем, что нужно взять блок питания мощностью 150 Вт, его выходное напряжение 24 В, защитане менее IP65, например, блок питания ARPV-SS24150 (24V, 6.3A, 150W).

Что такое PFC в характеристиках трансформаторов(блоков питания)?

Иногда в маркировке блока питания можно увидеть буквы PFC, это аббревиатура PowerFactorCorrection или коррекция коэффициента мощности (коррекция реактивной мощности).

Не углубляясь в технические особенности, это означает, что блок питания выполнен в определенном схемотехническом решении, которое позволяет уменьшить потребление реактивной мощности (мощность имеет активную и реактивную составляющие, на показания счетчика обычно влияет только активная составляющая, но на общее потребление энергоресурсов влияют обе составляющие).

Такие блоки питания имеют высокое значение коэффициента эффективной мощности (Λ)>0,9, что позволяет отнести их к блокам питания высокого класса, низкий пусковой ток, они позволяют сократить нагрузки на токопередающие линии, уменьшить требования к толщине подающего питание провода. При большом количестве используемых блоков не требуется применять специальные пусковые автоматы.

Блоки питания с корректором мощности более экологичны, т.к. эффективнее расходуют электроэнергию.

Как вычислить и подобрать диаметр(или сечение) кабеля между светодиодной лентой и блоком питания?

Расчет сечения и диаметра кабеля для исключения падения напряжения(вольтажа):

При использовании светодиодной ленты важно, чтобы свечение было равномерным по всей длине, для этого падения напряжения на конце линии обычно не должно превышать 0.5 В, при условии, что длинные участки ленты запрещается подключать последовательно.

При расположении блока питания в непосредственной близости от ленты, проблемы, как правило, не возникает, но при удаленном расположении блока необходимо увеличивать толщину жилы для компенсации падения напряжения.

Ниже представлен алгоритм вычисления для блока питания(источника напряжения для светодиодных изделий) максимальной выдаваемой мощностью 150 Вт, выдаваемому напряжению 24 В, падение напряжения не более 0.5 В, расстояние от блока до ленты 10м:

  • Общее сопротивление линии R.

Допустимое падение напряжение делим на максимальный ток, ток вычисляется как мощность/напряжение:

Общее сопротивление линии R = 0,5V / (150W/24V) = 0,08 Om.

  • Сечение жилы S.

Длину линии умножаем на удельное сопротивление материала (для меди 0,018 Ом*мм2/м), делим на сопротивление R.

Сечение жилы S = (10m*0,018 Om*mm2/m )/ 0,08 Om = 2,25 mm2.

  • Диаметр жилы D.

Используем формулу площади круга: радиус равен корню из частного площади и Πи.

Диаметр жилы: D= 2 х √(2,25 mm2/ 3,14) = 1,75 mm.

Таким образом, получаем, что для 10 метрового кабеля от блока питания до истока света (led ленты) падение напряжения составит 0,5В при использовании провода сечением 2,25mm2 (что соответствует диаметру 1,7 мм).

Также из приведенных вычислений видно, что компенсировать падение напряжения можно, используя ленту с большим рабочим напряжением, 24 В или 36 В.

Выбор сечения и диаметра кабеля для исключения потерь мощности при нагревании кабеля:

Если подключать блок питания и светодиодную ленты на большом расстоянии друг от друга, то необходимо не только исключать падение напряжения питания на соединяющем кабеле, но закладывать потери мощности, которые может создавать данный кабель. 

Важно: чем больше сечение кабеля, тем меньше потерь мощности при этом сопровождается. При сложным проектах — необходимо довериться профессионалам для расчета потерь мощности на кабелях. При больших расстояниях подбор максимальной выдаваемой мощности блока питания будет сопровождаться с большим запасом и кабель с большим сечением жилы.



Возврат к списку

novolampa.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *