Как сделать светодиод: Самодельный светодиод из карбида кремния / Хабр

Содержание

Самодельный светодиод из карбида кремния / Хабр

Эта статья описывает процесс создания работающего самодельного светодиода. Долгое время я думал, что создание активных электронных компонентов самому c нуля — неосуществимая задумка. Как же я ошибался. Галеновый (из сульфида свинца PbS. —

Прим. перев.

) диодный детектор относится к эпохе зарождения радио. Светодиод появился примерно в то же время. Это моя первая (на самом деле вторая, после галена) попытка создания полупроводника.



Все, что вам нужно, это немного деталей, которые есть в каждом доме, а также несколько кусочков карбида кремния (SiC). Карбид кремния можно купить задешево на Ebay. Маленького кусочка хватит на десяток светодиодов.

Прежде всего нужно выбрать правильный кристалл SiC для ваших светодиодов. Возьмите карбид кремния и аккуратно разломите его на кусочки, настолько мелкие, чтобы брать их можно было только пинцетом. Найдите металлическую поверхность и положите на нее несколько таких кусочков.

Соедините металл с положительным полюсом источника постоянного напряжения 10-15 В. К отрицательному полюсу источника подключите иглу. Придержите кусочек карбида кремния пинцетом и убедитесь, что он имеет хороший контакт с металлом. Затем дотроньтесь до кристалла иглой и найдите место, которое достаточно хорошо светится.

После того, как вы найдете годный кристалл, его нужно где-то зафиксировать неподвижно. Для этой цели я взял гвоздь с широкой шляпкой. Также он служит хорошим теплоотводом.

Положите на шляпку гвоздя припоя и расплавьте его паяльником. Пока припой жидкий, положите в него пинцетом кристаллик SiC, убедившись, что сторона кристалла, которая будет излучать свет, находилась сверху. Можно слегка утопить кристалл, чтобы припой обхватил его со всех сторон. После того, как вы уберете паяльник, и припой застынет, кристалл будет надежно зафиксирован. Если не получилось, можно повторить процесс еще и еще раз, карбид кремния не реагирует с припоем.

Теперь нужно сделать точечный контакт. Возьмите булавку и обмотайте вокруг нее проволоку. Я взял ногу от 0,25-ваттного резистора. Припаяйте проволоку к булавке и откусите лишнее, как показано на рисунке.

Cделайте на проволоке петлю, чтобы она пружинила, и припаяйте ее конец к второму гвоздю, закрепленному рядом с первым, на котором находится кристалл. Вся конструкция должна быть расположена так, как показано на рисунке ниже:

У меня два гвоздя просто впаяны в макетную плату, но я рекомендую укрепить конструкцию еще парой отрезков металла.

И наконец, нужно осторожно подогнуть пружину так, чтобы острие упиралось в ту область кристалла, которая излучает свет.

Лучшая рабочая точка для этого светодиода лежит в районе 9 вольт. При этом светодиод потребляет примерно 25 мА. При таких параметрах свечение достаточно яркое, а светодиод не перегревается. Чтобы убедиться, что получился именно диод, я инвертировал полярность источника питания, и никакого свечения, естественно, не получил.

Чтобы показать, что процесс можно повторить много раз с тем же результатом, я сделал второй светодиод. Результат получился в точности такой же. Второй светодиод я собрал всего за 10 минут.

Изготовление светодиодов описанным способом действительно простое и дешевое. Тем не менее, если вы предложите более надежный и простой способ, я буду рад его попробовать.

Как сделать огромный светодиод LED


А вы когда-нибудь держали в руках огромный светодиод, размером с человеческий кулак? Конечно же нет, потому что таких не существует. Я покажу как сделать такую оригинальную вещицу своими руками. Это LED светодиод будет точно похож на своего мелкого брата, за исключением того, что яркость свечения у него будет в разы больше.

Понадобится


  • Пластиковая бутылка.
  • Плата текстолитовая, фольгированная.
  • Толстая проволока.
  • Кусок светодиодной ленты.
  • Резистор 5-10 Ом.
  • Эпоксидная смола с отвердителем.


Изготовление большого светодиода


Итак, разберемся для начала из чего же состоит светодиод. Первое — это два вывода, которые заходят в тело светодиода. Далее видно две площадки, одна поменьше — это анод, а другая побольше — это катод. На катоде расположена площадка с рефлектором и полупроводниковым кристаллом. Над всем этим имеется линза, которая является монолитом с телом светодиода.

Для начала изготовим имитацию большого полупроводникового кристалла с рефлектором. Берем светодиодную ленту и отпаиваем от неё чип элементы. Если фена нет, подогреваем паяльником.

Из куска фольгированного текстолита вырежем такую плату.

Лудим ее и припаиваем на нее чип светодиоды.

Так же припаиваем контакт и токогасящий резистор.

Проверим подав питание. Кристалл готов.

Для большего визуального сходство из текстолита вырежем катод и анод.

Элементы располагаются у нижней части корпуса.

Берем толстую проволоку и делаем из нее контакты. Припаиваем их к площадкам.

Далее световой модуль мажем горячим клеем и приклеиваем перпендикулярно на самую большую площадку — катод.


Припаиваем вывода к плате.

Далее нам необходимо подготовить форму для заливки эпоксидной смолы. Для этой цели нам послужит пластиковая бутылка.

Разрежем ее посередине и верхнюю часть поставим на нижнюю.

В области крышки есть пустая область, в которую будет заливаться эпоксидка. Чтобы не тратить лишний материал, забьем пустоты горлышка фольгой.

Строго по инструкции смешиваем отвердитель со смолой и хорошо перемешиваем.

Внутренности фиксируем канцелярскими зажимами, чтобы они парили в воздухе. Заливаем состав в форму.

Ждем 24 часа. После высыхания, скальпелем разрезаем бутылку и удаляем части бутылки с поверхности.

Получилось вот что:

Механическим инструментом срезаем фольгу и шлифуем неровности поверхности.



Шлифуем мелкой наждачной бумагой, промакивая ее в воде. Это уберет все мельчайшие царапинки.


Настало время полировки. Полировочную пасту можно взять у автомобилистов. На крайний случай подойдет зубная паста.

Наносим пасту и мягкой ветошью полируем до прозрачности.


Очень похож на оригинал.

Проверяем


Подаем питание.

Светит здорово!



Светит в полной темноте.

Теперь можете удивить своих друзей.

Смотрите видео


8 способов сделать так, чтобы LED-индикаторы бытовой техники не бесили

Индикаторы работы есть во многих бытовых приборах. И если днём они не мешают, то вечером превращаются в орудия пыток, которые пытаются ослепить своим ярким свечением.

Излучение зелёных и красных светодиодов обычно довольно мягкое, а вот голубые сильно бьют по глазам и освещают комнату не хуже ночника. К счастью, существует достаточно способов сделать их менее яркими или даже полностью нейтрализовать.

1. Уберите устройства из поля зрения

Самый простой способ — развернуть устройство к стене. Или убрать куда-нибудь подальше, где оно не будет попадаться на глаза. Можно просто поставить перед ним другой предмет, который как щит закроет от ненавистного свечения.

2. Отключите индикаторы в настройках

Функция есть не везде, но на сложной современной технике она, как правило, доступна. Например, так можно отключить светодиоды на передней панели роутера или ТВ-приставки.

3. Залепите светодиоды

Да, это первое, что приходит на ум. Способ не сложнее предыдущих, при этом более гибкий. Если правильно подобрать материал для заклеивания глазков индикаторов, можно приглушить или полностью скрыть их свечение.

Вариантов масса. Выбирать стоит исходя из желаемого результата и цвета корпуса техники:

  • Чёрная изолента полностью блокирует огни, синяя и белая приглушают, оставляя индикатор функциональным.
  • Малярная лента обеспечивает самый слабый эффект. При необходимости его легко усилить, добавив дополнительные слои.
  • Скотч можно закрасить маркером и достичь необходимой степени затемнения, а то и полностью скрыть индикатор.
  • Тонировочная плёнка для авто отлично приглушает свет, в то же время оставляя его различимым.

4. Используйте специальные стикеры

Более продвинутая вариация предыдущего метода для ленивых. Купите готовые стикеры различной формы и размера с эффектом затемнения вплоть до полного. Они не оставляют липких следов после отклеивания.

5. Закрасьте индикаторы лаком

Обычный лак для ногтей позволяет бороться с ослепляющими светодиодами не хуже всевозможных наклеек. Подберите цвет, наложите необходимое количество слоёв, и получите аккуратный тюнинг индикаторов с желаемым эффектом затемнения.

6. Зашлифуйте поверхность индикатора

Можно приглушить свечение индикаторов, сделав их поверхность матовой. Возьмите мелкую наждачную бумагу и аккуратно зашкурьте светодиод или его стёклышко. После этого свет станет рассеянным, а не направленным и не будет слепить.

7. Физически отключите светодиоды

Если гарантия на электронику давно закончилась, а вы умеете держать в руках отвёртку и не боитесь сломать устройство, можно полностью отключить индикаторы, разорвав цепи питания. Для этого достаточно перекусить одну из ножек светодиода или перерезать дорожку на плате.

8. Добавьте в цепь индикатора сопротивление

Вариант для тех, кто дружит с паяльником. Суть метода в том, чтобы снизить напряжение питания индикатора, тем самым уменьшив его яркость. Необходимо подобрать резистор с нужным номиналом и впаять его перед светодиодом.

Читайте также 🧐

КАК СДЕЛАТЬ МАТРИЦУ ИЗ СВЕТОДИОДОВ


Светодиодные дисплеи-матрицы 8х8 бывают различных размеров и с ними интересно работать. Большие промышленные сборки имеют размер около 60 х 60 мм. Однако, если вы ищете намного большие LED матрицы, их найти трудно.

В этом проекте мы будем строить реально большую светодиодную матрицу LED дисплея, который составлен из нескольких крупных 8х8 светодиодных модулей, последовательно соединенных друг с другом. Каждый из этих модулей по размеру около 144 х 144 мм.

Особенность этого дисплея заключается в том, что при необходимости можно смотреть на фон позади него. Это дает свободу в творческом использовании этих дисплеев, например размещение их спереди от стеклянных панелей, чтоб была возможность увидеть происходящее позади дисплея.

Для этого проекта мы будем использовать 10 мм светодиоды. Вы можете использовать и другие размеры. Обычно доступны размеры 3 мм, 5 мм, 8 мм, и 10 мм.

Хотя дисплей не предназначен для работы с любым микроконтроллером, мы будем использовать популярные платы Arduino и подключать его через SPI используя только 3 сигнальных провода.

Чтобы построить этот проект, требуются базовые знания электроники и пайки компонентов, а также некоторые знания по использованию Arduino.

Прошивка есть тут.

Здесь нужно спаять светодиоды вместе, используя длинные ножки светодиодов. Вы можете использовать любой размер и цвет LED, но длина ноги (более 23 мм) должна быть достаточной, чтобы согнуть и спаять их между собой. Светодиоды расположены в виде матрицы 8х8, где катоды спаяны между собой для строк, а для столбцов — аноды.

Драйвер MAX7219 управляет динамической индикацией светодиодной матрицы. При проектировании, каждая светодиодная матрица 8х8 будет опираться на схему, используя следующие компоненты:

  • 1 х MAX7219
  • 1 х 10 мкф 16В электролитический конденсатор
  • 1 х 0.1 UF керамический конденсатор
  • 1 х 12 кОм резистор (0,25 ВТ)
  • 1 х 24-контактное гнездо DIP IC

Обратите внимание, что вам может понадобиться выбрать другое значение резистора для работы с LED, что будете использовать. Этот резистор ограничивает максимальный ток на MAX7219, который на выходе будет подаваться на светодиоды.

А это видео показывает наглядно, как происходит монтаж светодиодной матрицы, электронной платы управления и простой тест, чтобы запустить её с помощью популярной платы Ардуино UNO/Nano.


Поделитесь полезными схемами

ИНСТРУМЕНТ ЭЛЕКТРИКА
   Инструмент электрика — все необходимые инструменты, необходимые профессиональному электрику для монтажных и ремонтных работ.

САМОДЕЛЬНЫЙ ТРАНСФОРМАТОР И ПРЕОБРАЗОВАТЕЛЬ

   Для проекта самодельный преобразователь, взял готовый трансформатор 220-20 вольт из радиоприемника. Далее разобрал рамку трансформатора. Потом снял вторичную обмотку, с которой выходило 20 В. Намотал проволоку виток к витку со вторичной обмотки трансформатора ТВС (трансформатор выходной строчный). Проволока была толщиной 0,01 мм. Рамка и первичная обмотка остались заводскими. По расчетам у меня получилось 1200 витков.


ПАЯЛЬНИК ИЗ ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

    По сути, жало паяльника закаляется из-за короткого замыкания. Вторичная обмотка содержит пол витка, напряжение прядка 1 вольта, но сила тока доходит до 15 Ампер! Именно из-за пониженного напряжения, нагрузка не столь велика, в ходе работы детали почти холодные.



ИНВЕРТОР С 12В НА 220В

   Применение современных мощных полевых транзисторов позволяет упростить схему инвертора. Всего одна микросхема 561ИЕ8 и два полевых транзистора IRFZ044 позволяют создать отличный преобразователь.


Как сделать плавно мигающий светодиод. Мигалки из светодиодов

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.

Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Мигающий светодиод как сигнализация

Купить моргающий диод для авто – избавить себя от кропотливого просиживания над обработкой платы. Это не всегда верно, но в данном случае очень подходит. Важно разобраться, почему почему мигает светодиод.

На вид такой моргающий -индикатор невозможно отличить от обычного светодиода, который светится постоянно. При подаче напряжения он начинает мигать пару раз в секунду. Наличие мультиметра также поможет различить полупроводниковые приборы. В прямом направлении моргающий диод демонстрирует небольшое сопротивление, а в обратном – светодиод с обычным показателем падения напряжения.

Немного о самих мигающих светодиодах

Основой мигания светодиода служит небольших размеров чип, который состоит из высокочастотного задающего генератора. Последний работает совместно с делителем на логических элементах, давая возможность получать вместо высоких значений частоты требуемые 1-3 Гц.

Чтобы реализовать низкочастотный генератор, необходимо использовать конденсатор с большой ёмкостью. Решив собрать схему своими руками, весьма проблематично было бы использовать полупроводник с большой площадью. Почему – да он просто не уместится в корпусе светодиода.

На полупроводниковой подножке размещены не только генератор и делитель, но также электронный ключ и диод-протектор. Мигающие светодиоды с напряжением питания 3-12В оборудуются также ограничительным резистором, а низковольтным он не требуется.

Основное назначение диода-протектора заключается в предотвращении поломки микросхемы в случае переплюсовки её питания.

При подаче напряжения автомобильной сети номинал токоограничивающего резистора должен выбираться из диапазона 3-5кОм. Подключив светодиод своими руками можно отметить, что он потребляет ток не только при мерцании, но и в пазах.

Сборка сигнализации своими руками

Определившись с тем, как устроены мигающие светодиоды, как они работают, и почему мигают, можно приступить непосредственно к монтажу.

Для сборки потребуется 2 гибких многожильных проводка небольшого диаметра. Предпочтительнее выбирать кабели разного цвета, чтобы иметь возможность отличать их при подключении к автомобильной проводке.

Когда резистор и оба провода закреплены, можно поместить схему в толстую полимерную трубку. Окончательный этап монтажа сигнализации своими руками – подключение проводов к «+» и «-» цепи питания автомобиля. Если все мигает как надо, мигалку на светодиодах можно считать удачной.

Сборка схем своими руками на базе светодиодов пользуется огромной популярностью среди автолюбителей. Почему? Диоды дают огромные возможности для тюнинга. Замена любого освещения, внутренней подсветки и многое другое.

На уроках физики в некоторых школах проходят тему о создании , изучают их виды, принципы работы и пробуют самостоятельно создать прибор в лабораторных условиях. В современном мире люди очень часто сталкиваются со светодиодами в повседневной жизни, самым простым примером являются LED-лампочки. Так что же это такое и как сделать светодиод, чтобы он мигал, читайте в нашей статье.

Светодиод – это довольно простой механизм, преобразующий электрический ток в световое излучение. Всего существует два типа:
— Индикаторные – разработаны для декоративного светового эффекта, являются украшениями, используются в разработке гирлянд, баннеров с освещением, в вывесках, электронных игрушках со светящимися элементами.
— Осветительные – используются для увеличения освещения в помещении, то есть это люстры и светильники с LED-цоколями.

Также бывают мигающие и моргающие светодиоды, их можно приобрести в специализированном или же изготовить самостоятельно, у каждого хозяина найдутся необходимые элементы для их создания.

Самый простой способ создания мигающего светодиода

При помощи этого метода получится создать конструкцию при напряжении от 3 до 12 вольт. Как сделать самому мигающий светодиод, рассказано ниже. Для сборки потребуются следующие компоненты:
— Резистор 6.8 – 15 Ом (2 шт).
— Резисторы с сопротивлением 470 – 680 Ом (2 шт).
— Маломощные транзисторы со структурой «n-p-n» (2 шт).
— Электроконденсаторы с ёмкостью 47 – 100 мкФ (2 шт).
— Маломощный светодиод, цвет не имеет значение (1 шт).
— Паяльник, припой и флюс.

Напомним, перед началом работы рекомендуется зачистить выводы всех радиодеталей, а после залудить их. Не забываем о полярности включения электролитических конденсаторов. Ниже приведена схема подключения всех вышеуказанных компонентов. Создав правильную конструкцию напряжение на R2 перестанет доходить до Т2, в это время открытым останется Т3 и R1, именно через них пройдёт ток и дойдёт до светодиода. За счёт того, что подача тока осуществляется циклично, светодиод будет мигающий.

Метод создания моргающего светодиода на 5 вольт

Для создания данной модели понадобиться все вышеуказанные компоненты, а также одна обычная пальчиковая батарейка. Ниже предоставлена элементарная схема сборки.

В данной системе подключения имеются несколько цепочек заряда конденсаторов – это R1C1R2 и R3C2R2. После того, как С1 и С2 имеют необходимый заряд они открываются, второй конденсатор соединён с батарейкой. Их суммарное напряжение проходит через Т2 и проникает в светодиод, за счёт этого он начинает светиться, как только напряжение исчезает он тухнет, а С1 и С2 теряют энергию. Как только напряжение к ним возвращается, происходит новый круг подачи тока в светодиод, и он снова начинает светиться. Таким образом, за счёт батарейки и небольших познаний физики, можно в домашних условиях создать моргающий светодиод.

Мигалка на светодиоде

Взглянув на эту схему, любой человек хоть не много понимающий в механике найдёт сразу две ошибки. Первая заключается в том, что эмиттер и коллектор подключены не правильно, а вот вторая это «висящая» база. Несмотря на две технические особенности светодиод будет работать. Точка соединения КТ315 служит динистором, за счёт того, что в нём накапливается много напряжения, он отдаёт её транзистору, а тот, в свою очередь, открывается. Затем ток направляется к светодиоду и происходит свечение. По мере отступления напряжения он угасает. Далее всё происходит циклично.

В данной статье указаны сразу несколько методов создания мигающих светодиодов. Благодаря этому, можно легко починить игрушку ребёнка, освещение в доме и новогоднюю гирлянду. Углубив свои познания в технике, создание светодиодов можно применить в других механизмах, например в разработке светового сигнала при открытии или не полном закрытии дверцы холодильника, если в подъезде темно, то подобная мигающая конструкция поможет гостям найти звонок или выключатель.

Продвинутые техники могут создать сигнальный поворотник для велосипеда, это поможет пешеходам узнать, в каком направлении будет двигаться транспортное средство. В общем, мест для применения моргающих светодиодов огромное количество. Для их применения нужны элементарные познания, необходимые материалы и умелые руки!

Зачастую случается так, что спустя некоторое время эксплуатации, светодиодная лента начинает моргать, мерцать как ”стробоскоп”, частично тускнеть или гореть не в полную силу.

Не стоит впадать в панику, такие проблемы можно выявить быстро и устранить их самостоятельно, не прибегая к помощи специалистов.

Блок питания

Если такие дефекты возникают не сразу после подключения, а через несколько минут или секунд, возможно неправильно подобран блок питания. Ему элементарно не хватает мощности и начинается падение напряжения.

По правилам, при выборе источника питания необходимо покупать его с запасом мощности минимум в 30%.


Обычно, как происходит — в магазине ленту вам подключают и все светится нормально, и только дома через некоторое время, после нагрева микросхем и других элементов, начинаются проблемы. Почему такое случается?

Да потому что многие китайские блоки питания не соответствуют своим паспортным данным. На табличке написано, что он 200Вт, а по факту не выдает и 150Вт!

При включении через такой блок на полную мощность, лента может «вспыхнуть» и тут же погаснуть. Так как блок питания уходит в защиту от перегрузки.


Когда у вас протяженная подсветка длиной 15-20 метров и более, старайтесь монтировать ее лентой одной марки. Иначе в RGB варианте при разноцветном моргании, какой-то из участков будет отставать или вообще пропускать отдельные цвета.

Также такое возможно при подключении лент от разных блоков питания. За счет разницы на них выходного напряжения, отрезок подсоединенный к блоку с одним Uвых., может чуть позже менять цвета RGB, чем другой, или грубо говоря отставать.

Еще распространенной причиной мерцания светодиодной ленты, даже в выключенном состоянии является ситуация, когда блок питания подключают через комнатный выключатель света с подсветкой.

Общеизвестно, что подсветка выключателя заставляет светиться светодиодные лампочки. То же самое относится и к светодиодной ленте.

Так что подключайте блок напрямую через автомат в эл.щитке, либо через выключатели, но без подсветки.

Ну и конечно не нужно забывать про сроки эксплуатации. При длительной исправной работе в течение нескольких лет, в блоках могут элементарно высохнуть конденсаторы стабилизации и потерять свою изначальную емкость.

Либо они просто выйдут из строя. Иногда это можно определить даже визуально по вздутию бочонка.

Также слабое, тусклое свечение ленты по истечении длительного периода времени происходит от естественной деградации кристаллов в светодиодах.

И процесс этот ускоряется при отсутствии нормального охлаждения в виде алюминиевого профиля.

Даже дорогие и качественные экземпляры будут перегреваться, если вы их приклеите на деревянное или пластиковое основание.

Некачественная пайка

Светодиодную ленту запрещено паять активными (кислотными) флюсами. В противном случае кислота остается на контактной площадке и постепенно будет разъедать место соединения.

Начинается непонятное моргание во включенном состоянии ленты, с последующей не работоспособностью всего участка после пайки. Поэтому для такого соединения используйте только рекомендуемые материалы и соблюдайте правила пайки.

Если же контакт уже разъело, придется вырезать один модуль ленты и впаивать на его место другой.

А еще возможен перегрев контакта не правильно выбранным паяльником (более 60Вт). В итоге медная площадка отслаивается от дорожки и появляется неустойчивое место соединения.

Прижмешь его пальцем – свет есть, отпускаешь – исчезает. Отсюда и проблемы с мерцанием, морганием.


Окисление контакта на коннекторах

Не все любят и умеют паять ленту, поэтому соединяют ее другим, более доступным способом – коннекторами.

Однако они имеют один существенный недостаток – окисление контактов. Чаще всего такое происходит в помещениях, где недавно покрасили, побелили стены или заливали стяжку.

То есть там, где наблюдался переизбыток влаги. Сила тока протекающего через коннектор, не редко превышает 10А:

  • для участка в 5м и мощностью 75Вт – 6,5А
  • для лент мощность 30Вт на метр – 12,5А

Если контакт окислен, то при большом токе он будет нагреваться и выгорать, пока не исчезнет полностью.

Такое же может произойти из-за недостаточного пятна соприкосновения контактных площадок, что не редко наблюдается в подобных соединителях.

1 of 2



Поэтому рекомендуется тщательно подходить к выбору коннекторов. Какие виды из них наиболее распространены и как выбрать лучший, можно ознакомиться в статье » «.

Неисправный светодиод

Вышеуказанные дефекты относятся в первую очередь к низковольтным лентам 12-24В. А есть еще ленты 220 вольт.

В них подключение светодиодов выполняется последовательно на более протяженных участках. Например, в 1 метре у вас будет 60 диодов.

И стоит одному из них выйти из строя или заморгать, это сразу же отразится на всех остальных, по всей длине.

В подсветке 12В вы от этого более-менее избавлены. Они состоят из коротких модулей по 3-6 диодов. Мерцание или затухание одного из них, приведет к такому же эффекту только на этом коротком модуле.

Выявляется это легко и устраняется либо перепайкой неисправного диода, либо заменой одного модуля или кластера.

Иногда мигание ленты начинается только спустя час или два после ее запуска и подачи питания. Это тоже может быть связано с неисправностью одного диода.

Он со временем нагревается и разрывает контакт. Лента тухнет, остывает, светодиод вновь запускается, свечение возобновляется. И так далее по новому кругу.

Контроллер и пульт

Если подсветка спустя продолжительный период времени вообще не запускается или включается “через раз”, не спешите ругать китайских товарищей. Возможно это происходит из-за банальной причины – сели батарейки в пульте дистанционного управления.

Поэтому такую вещь нужно проверять в первую очередь. Чаще всего пульты идут для управления контроллерами RGB.

И если разноцветная лента вдруг начнет сама собой переключаться и менять цвета, проверяйте не пульт, а сам контроллер.


Исправный пульт, не должен производить никаких самостоятельных переключений. Чтобы удостовериться, что он здесь не причем, просто извлеките батарейки.

Еще один способ выявить неисправный контроллер на RGB подсветке, это исключить его из схемы и подавать на ленту по отдельности питание на каждый цвет.

Если по отдельности все цвета работают исправно, а вместе ничего не горит, или моргнет один раз и сразу тухнет, то причина в повреждении RGB контроллера. Меняйте именно его.

Как найти неисправность

Когда разобрались с основными причинами, стоит понять, как же их лучше выявить и диагностировать. Что для этого понадобится и с чего начинать?

Всю светодиодную подсветку можно разбить на отдельные функциональные части:






Основной прибор необходимый для диагностики – мультиметр для замеров постоянного и переменного напряжения.

Перво-наперво замеряете переменное напряжение, которое поступает на блок питания. Вдруг там и нет необходимых 220В («+» «-» 10%).

Далее проверяете выход. Здесь уже должно быть 12В или 24В («+»/»-» 10%), смотря какой источник вы используете. Если выходное напряжение ниже или выше, не забывайте, что его можно немного подрегулировать при помощи резистора.

Находите разъем ADJ и подкручиваете винт отверткой. Когда с этим все в норме, идете по цепочке дальше.

Проверяете, поступает ли питание на вход RGB контроллера или диммера. Оно должно быть таким же, как на выходе блока питания.

Постепенно доходите до самой ленты. Подносите измерительные щупы к контактным площадкам и делаете замер. На них может быть напряжение от 7 до 12 вольт.

Если тускло светится какой-то один участок, а не вся лента, то измерения нужно проводить именно на нем.

При ненормальном снижении напряжения или его полном отсутствии, как раз таки и выявляется неисправный участок или элемент подсветки, отвечающий за работоспособность ленты.

В случае, когда все замеры показали, что напряжение на контактах в норме или в его пределах, нужно переходить к поиску неисправных светодиодов.

Нельзя исключить и заводского брака, когда один из диодов плохо припаян.

Нажимаешь на него с усилием, и весь участок начинает светиться. Отпускаешь – потухает.

Тут спасает только повторная пайка.

Устройство и параметры мигающих светодиодов

М игающий светодиод (МСД ) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 – 3 Гц. Многие, наверное, видели такие светодиоды на прилавках магазинов радиодеталей.

Есть мнение, что с практической точки зрения, мигающие светодиоды бесполезны и могут быть заменены более дешёвой альтернативой – обычными индикаторными светодиодами, которые стоят дешевле.

Возможно, такой взгляд на мигающие светодиоды имеет право на жизнь, но хотелось бы сказать несколько слов в защиту мигающего светодиода.

М игающий светодиод , по сути, представляет завершенное функциональное устройство, которое выполняет функцию световой сигнализации (привлечения внимания). Отметим то, что мигающий светодиод по размерам не отличается от рядовых индикаторных светодиодов.

Несмотря на компактность в мигающий светодиод входит полупроводниковый чип-генератора и некоторые дополнительные элементы. Если выполнить генератор импульсов на стандартных элементах с использованием обычного индикаторного светодиода, то конструктивно такое устройство имело бы куда большие размеры. Также стоит отметить то, что мигающий светодиод довольно универсален – напряжение питания такого светодиода может лежать в пределах от 3 до 14 вольт – для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Перечислим отличительные качества мигающих светодиодов.

    Малые размеры.

    Компактное устройство световой сигнализации

    Широкий диапазон питающего напряжения (вплоть до 14 вольт)

    Различный цвет излучения. В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно – 3) разноцветных светодиода с разной периодичностью вспышек.

Применение мигающих светодиодов оправдано в компактных устройствах, где предъявляются высокие требования к габаритам радиоэлементов и электропитанию – мигающие светодиоды очень экономичны, т.к электронная схема МСД выполнена на МОП структурах.
Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок – пунктирные и символизируют мигающие свойства светодиода.

Разберёмся подробнее в конструкции мигающего светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.

Чип генератора размещён на основании анодного вывода.

Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Чип генератора состоит из высокочастотного задающего генератора – он работает постоянно — частота его по разным оценкам колеблется около 100 кГц . Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5 3 Гц .
Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

В микроэлектронике для создания конденсатора ёмкостью несколько микрофарад потребовалось бы использование большей площади полупроводника для создания обкладок конденсатора , что с экономической стороны нецелесообразно.

Чтобы не расходовать площадь подложки полупроводника на создание конденсатора большой ёмкости инженеры пошли на хитрость. Высокочастотный генератор требует небольшой ёмкости конденсатора во времязадающей цепи, поэтому и площадь обкладок минимальна.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.

Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод . У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор . У низковольтных МСД ограничительный резистор отсутствует. Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

На примере мигающего светодиода L-816BID фирмы Kingbright рассмотрим основные параметры мигающих светодиодов.

Частота вспышек светодиода L-816BID непостоянна и изменяется в зависимости от напряжения питания .

Как видно из графика с увеличением питающего напряжения (forward voltage ) частота вспышек светодиода L-816BID уменьшается c 3 Гц (Hz) при напряжении питания 3,5 вольт, до 1,5 Гц при 14.

Зависимость прямого тока (forward current ), протекающего через светодиод L-816BID , от приложенного постоянного прямого напряжения (forward voltage ) показана на графике. Из графика видно, что максимальный потребляемый ток – 44 mA (0,044 A). Минимальный потребляемый ток составляет 8 mA.

Безопасно проверить исправность мигающего светодиода, например, при покупке, можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Цоколёвка выводов мигающих светодиодов аналогична цоколёвке обычных светодиодов. Длинный вывод – анод (+), более короткий – катод (-).

Начинать изучение основ электроники рекомендуется со сборки простых и наглядных схем, поэтому схема мигалки в различных исполнениях и вариантах, как нельзя лучше подойдет начинающем радиолюбителям в их нелегком пути. Кроме того эти конструкции могут пригодится и в повседневном использование. Например в роли праздничных световых украшений или в качестве муляжа сигнализации.

Элементарная схема мигалки на шести светодиодах, особенностью которой является простота и отсутствие активных управляющих элементов, такие как, транзисторы, тиристоры или микросхемы.

С третьим мигающим светодиодом красного цвета последовательно включено два обычных красных светодиода 1 и 2. Когда вспыхивает мигающий 3, вместе с ним светяться 1 и 2. При этом открывающийся диод шунтирует зеленые светодиоды 4-6, которые при этом тухнут. Когда мигающий гаснет, вместе с ним тухнут 1 и 2 светодиоды, при этом загорается группа зеленых светодиодов 4-6.

Эта схема управления миганием светодиодов позволяет создать эффект хаотичных вспышек. Принцип работы основан на лавинном пробое перехода .

При включении через сопротивление R1 начинает заряжаться емкость С1 и поэтому на нем начинает расти напряжение. Пока конденсатор заряжается, не что не меняется. Как только напряжение достигнет 12 вольт, произойдет лавинный пробой p-n перехода полупроводникового прибора, проводимость его увеличивается и поэтому, светодиод начинает гореть за счет энергии разряжающегося C1.

Когда напряжение на емкости снизится ниже 9 вольт, транзистор закрывается, и весь процесс повторяется с самого начала. Другие пять блоков схемы работают по аналогичному принципу.

Номиналы сопротивлений и конденсаторов задают частоту работы каждого отдельно взятого генератора. Сопротивления, кроме того, защищают транзисторы от выхода из строя во время лавинного пробоя.

Самым простой способ собрать мигающую конструкцию, это использовать специализированную микросхему LM3909, которую достаточно легко достать.

К микросборке достаточно подсоединить частотозадающую цепь, подать питание ну и, конечно, сам светодиод. Вот вам и готовое устройство имитации сигнализации в автомобиле.

При указанных номиналах частота мигания будет около 2,5 Герц

Отличительной чертой этой конструкции является возможность регулировать частоту мигания с помощью подстроечных сопротивлений R1 и R3.

Напряжение можно подавать от любого или от батареек, область использования на всю ширину вашей фантазии.

В данной конструкции используется в качестве генератора и периодически открывает и запирает полевой транзистор. Ну а транзистор включает цепочки уже обычных светодиодов.

Первая и вторая цепочки светодиодов соединены между собой параллельно и получают питание через сопротивление R4 и канал полевого транзистора.

Третья и четвертая цепочки подсоединены через диод VD1. Когда транзистор заперт, горят третья и четвертая цепочка. Если он открыт, то светят, первый и второй участок.

Мигающий светодиод подсоединен через сопротивления R1, R2, R3. Во время его вспышки осуществляется открытие полевого транзистора. Все детали, кроме батарейки, устанавливают на печатной плате.

Достаточно простые радиолюбительские конструкции получатся если использовать обычные . Правда, следует помнить об их особенностях работы, а именно о том, что они открываются при поступлении на управляющий электрод определенного уровня напряжения, а для их запирания нужно уменьшить ток анода до значения меньше тока удержания.

Конструкция состоит из генератора коротких импульсов на полевом транзисторе VT1 и двух каскадов на тиристорах. В анодную цепь одного из них подсоединена лампа накаливания EL1.

В начальный момент времени после включения питания оба тиристора закрыты и лампа не светится. Генератор создает короткие импульсы с интервалом, зависящим от цепочки R1C1. Первый импульс поступая на управляющие электроды, открывает их, зажигая лампу.

Через лампу потечет ток, VS2 останется открытым, а VS1 закроется, потому что его анодный ток, установленный сопротивлением R2, слишком мал. Емкость С2 начинает заряжаться через R2 и к моменту формирования второго импульса окажется уже заряженной. Этот импульс осуществит отпирание VS1, а вывод конденсатора С2 кратковременно подсоединится к катоду VS2 и закроет его, лампа потухнет. Как только С2 разрядится оба тиристора будут запертыми. Очередной импульс генератора приведет к повторению процесса повторится. Таким образом лампочка накаливания вспыхивает с частотой, вдвое меньшей заданной частоты генератора.

Основа конструкции простой мультивибратор на двух транзисторах. Они могут быть почти любые, необходимой проводимости.

Питание подключаю от габарита через сопротивление, второй провод — масса. Светодиоды закрепил в панельки от спидометра и тахометра.

Делаем простой светодиод своими руками. Светодиодный экран своими руками — реализуема ли эта задача? Как собрать светодиодный модуль своими руками


А вы когда-нибудь держали в руках огромный светодиод, размером с человеческий кулак? Конечно же нет, потому что таких не существует. Я покажу как сделать такую оригинальную вещицу своими руками. Это LED светодиод будет точно похож на своего мелкого брата, за исключением того, что яркость свечения у него будет в разы больше.

Понадобится

  • Пластиковая бутылка.
  • Плата текстолитовая, фольгированная.
  • Толстая проволока.
  • Кусок светодиодной ленты.
  • Резистор 5-10 Ом.
  • Эпоксидная смола с отвердителем.

Изготовление большого светодиода

Итак, разберемся для начала из чего же состоит светодиод. Первое — это два вывода, которые заходят в тело светодиода. Далее видно две площадки, одна поменьше — это анод, а другая побольше — это катод. На катоде расположена площадка с рефлектором и полупроводниковым кристаллом. Над всем этим имеется линза, которая является монолитом с телом светодиода.


Для начала изготовим имитацию большого полупроводникового кристалла с рефлектором. Берем светодиодную ленту и отпаиваем от неё чип элементы. Если фена нет, подогреваем паяльником.


Из куска фольгированного текстолита вырежем такую плату.


Лудим ее и припаиваем на нее чип светодиоды.


Так же припаиваем контакт и токогасящий резистор.


Проверим подав питание. Кристалл готов.


Для большего визуального сходство из текстолита вырежем катод и анод.


Элементы располагаются у нижней части корпуса.


Берем толстую проволоку и делаем из нее контакты. Припаиваем их к площадкам.


Далее световой модуль мажем горячим клеем и приклеиваем перпендикулярно на самую большую площадку — катод.


Припаиваем вывода к плате.


Далее нам необходимо подготовить форму для заливки эпоксидной смолы. Для этой цели нам послужит пластиковая бутылка.


Разрежем ее посередине и верхнюю часть поставим на нижнюю.


В области крышки есть пустая область, в которую будет заливаться эпоксидка. Чтобы не тратить лишний материал, забьем пустоты горлышка фольгой.


Строго по инструкции смешиваем отвердитель со смолой и хорошо перемешиваем.


Внутренности фиксируем канцелярскими зажимами, чтобы они парили в воздухе. Заливаем состав в форму.


Ждем 24 часа. После высыхания, скальпелем разрезаем бутылку и удаляем части бутылки с поверхности.


Получилось вот что:


Механическим инструментом срезаем фольгу и шлифуем неровности поверхности.


Шлифуем мелкой наждачной бумагой, промакивая ее в воде. Это уберет все мельчайшие царапинки.


Настало время полировки. Полировочную пасту можно взять у автомобилистов. На крайний случай подойдет зубная паста.

Светодиодные или LED-экраны широко применяются в бытовой и не только сфере на протяжении последних двадцати лет. Современный светодиодный экран – это и дисплей ноутбука или телевизора, и рекламная установка на улице, и большой экран на концертной площадке. Если первый вариант крайне сложен для самостоятельного конструирования, то крупный экран из светодиодов для рекламы или трансляций можно собрать самому.

Из чего делают экран?

Модульная сборка светодиодного экрана представляет собой создание крупного полотна из множества отдельных модулей. Это блоки стандартного размера, которые состоят из нескольких десятков светодиодов, выполняющих роль пикселей, и электронной схемы управления. Управляющая плата контролирует совместное свечение модуля, а также имеет шлейфы и разъёмы для соединения с другими модулями. Такое подобие пазла потенциально даёт возможность для сборки экрана любого размера.

Купить модули для сборки сегодня можно в магазинах электроники, в специализированных отделах на рынке или заказать на международных интернет-площадках вроде AliExpress. Во всех трёх случаях блок, скорее всего, будет сделан в Китае, но это не говорит о низком качестве по умолчанию. Из страны драконов приходит хорошая продукция. Чтобы её выбрать, следует посоветоваться со специалистами, ознакомиться с отзывами о тех или иных марках.

Базовые функциональные характеристики модулей P10:

  • размер: длина – 320 мм, ширина – 160 мм, толщина – 20 мм;
  • масса – от 600 до 700 г;
  • шаг пикселя – 10 мм;
  • число пикселей на м 2 (разрешение) – от 256 ˟ 192;
  • яркость экрана – от 6000 до 7000 кд/м 2 ;
  • рабочий ресурс – до 50 000 часов;
  • угол половинной яркости – 120˚;
  • дистанция комфортного просмотра – 7 метров и больше;
  • предельная мощность потребления при уличной эксплуатации – 500 Вт/м 2 .

В базовом исполнении светодиодные блоки для сборки экранов имеют защиту от пыли, влаги, механического повреждения.

Альтернативой электронным LED-блокам служит светодиодная лента. Её также можно уложить в виде экрана для трансляции изображений. Однако у этого материала есть характерные недостатки. Во-первых, монтаж большого количества лент в виде экрана более сложен, поскольку они изначально не разрабатываются для этих целей. Во-вторых, LED-лента не обладают достаточной устойчивостью к разрушительным факторам внешней среды: температурным перепадам, контакту с грязью, влагой и пылью, ультрафиолетовому излучению.

Монтаж светодиодного экрана из блоков

Процесс изготовления начинается со сборки металлического каркаса для размещения светодиодных блоков рядом друг с другом. Несущая металлоконструкция представляет собой нечто вроде стенки с ячейками. Как правило, её изготавливаются из квадратной профильной трубы или перфорированного металлического профиля. Учитывая особенности среды использования, материал должен иметь антикоррозионное покрытие. Пример традиционной конструкции для размещения модулей, источников питания, контроллеров, драйверов и других компонентов схемы представлен на следующем фото.

Далее, чтобы собрать светодиодный экран, электронные модули P10 размещаются в своих ячейках и соединяются между собой посредством стандартного соединения шлейф-разъём типа «папа-мама». Чаще всего, крепление самих блоков к металлическому основанию осуществляется магнитами, поэтому не вызывает проблем. Благодаря этому процесс монтажа, демонтажа и ремонта мобильных светодиодных экранов заметно упрощается.

На обратной стороне конструкции располагаются блоки питания и электронные элементы, принимающие информацию о транслируемом изображении, и распределяющие её частями: общая схема – по модулям, а модули – по пикселям.

Чаще всегда задняя стенка собирается из композитной алюминиевой панели или листа металла. Общая схема сборки и размещения функциональных элементов экрана показана в следующем изображении.

Сборка экрана из ленты

Для светодиодной ленты, в отличие от модулей P10, доступна возможность сгибания и складывания, что обуславливает одно из преимуществ – с её помощью можно создавать гибкие и складываемые экраны. Для их создания необходимы диодные ленты, держатели для них с прижимной головкой, алюминиевые панели для размещения светодиодов, крепёжные элементы, блоки питания и микроконтроллер.

Как собрать светодиодный экраниз LED-ленты:

  1. Оклеить рабочую поверхность цветной плёнкой с помощью жидкого клея (цвет должен быть чёрным, потому что при его отображении светодиоды не светятся). Поверхность должна быть идеально ровной.
  2. Обрезать излишки плёнки по краям.
  3. Закрепить ленты рядами. Располагать их нужно так, чтобы расстояние между светодиодами было одинаково, как вдоль, так и поперёк. Светодиоды должны идти ровными рядами и вдоль, и поперёк основы, чтобы изображение не было перекошенным. Для крепления используются скобы. Расстояние между ними определяется так, чтобы не было провисаний и смещений.
  4. Соединить светодиодные ленты между собой спайкой или через стандартные разъёмы. Ко входу первой ленты в цепи подключается DMX-контроллер. Если одного устройства недостаточно для работы, устанавливаются субконтроллеры. Между собой они соединяются сетевым кабелем.
  5. Подключить блоки питания. Здесь есть несколько важных нюансов: питание подаётся с обоих концов, максимальное потребление ленты с 72 светодиодами равно 20W, модульные блоки питания практически всегда подключаются попарно, а не параллелятся на выходе.

Схемы питания LED-лент для тех, кто собирает светодиодный экран своими руками:

Последним шагом сборки экрана является герметизация блоков питания, контроллеров и соединений для защиты от влаги. Хорошим вариантом является алюминиевый кабель-канал, в который заводятся и заливаются герметиком концы лент, а также прячутся блоки питания.

Как выводится картинка?

Выбор видеоряда и его замена для трансляции на светодиодный экран осуществляется через Wi-Fi или USB. В первом случае информация принимается через сетевую карту контроллера, а во втором – через кабель от подключённого к системе компьютера. Преобразование видеоролика в цифровой поток и распределение напряжения по отдельным светодиодам выполняет контроллер. Качество и порядок отображения зависит от типа системы управления:

  • синхронное управление подразумевает одновременное отображение одной картинки на экране и устройстве-источнике, то есть прямой эфир. Оно часто используется во время спортивных трансляций и концертов. Для работы на устройстве-источнике работает карта-передатчик, а на экране – одна или несколько карт-приёмников, соединённых между собой;
  • асинхронный вывод информации на экран связан с предварительной загрузкой информации в памяти микроконтроллера. Загрузка осуществляется с компьютера через кабель или с flash-накопителя. Асинхронная система работает независимо от управляющего компьютера и оснащается несколькими микроконтроллерами (в зависимости от размеров дисплея).

Популярным средством программирования и управления светодиодными экранами является аппаратно-вычислительная платформа Arduino . Она имеет разъёмы и порты, по которым можно подключать самые разные приборы для создания простых и сложных автоматизированных систем, в том числе – экранов из светодиодов. Arduino программируется на языках C/C++.

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением. Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА. При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Читайте так же

Столкнувшись с потребностью обзавестись светодиодным экраном, многим может прийти в голову собрать его самому. Весомыми аргументами для этого решения могут стать низкое качество предлагаемого оборудования, частые поломки и неполадки в работе.

В результате мы надеемся получить высококачественный экран в совокупности с низкой себестоимостью. К тому же появляется возможность создать собственный дизайн изделия, подходящий для конкретных целей.

Воодушевившись предполагаемыми выгодами от проделанной работы, мы начинаем вдаваться в детали, собирать комплектующие. На определенном этапе могут возникнуть трудности, связанные с отсутствием знаний в этой области.

Стоит ли самому браться за сборку экрана?

Чтобы это понять, нужно рассмотреть основные моменты, которые могут возникнуть, когда нужно собрать светодиодный экран своими руками:

  • Может понадобиться приглашать помощников, ведь одному работать неудобно и долго. Из-за низкого уровня квалификации работников часть комплектующих могут быть повреждены, разбиты и т. д.
  • Работая без проекта, всегда остается риск приобрести комплектующие детали, которые могут не подойти. Продать их может оказаться проблемой.
  • Электрическую часть оборудование лучше доверить опытному специалисту, т. к. при неправильной сборке можно получить замыкание и весь труд пройдет даром.
  • Для работы понадобиться специально оборудованное помещение должного размера, чтобы можно было разместить все комплектующие.
  • Необходимо подумать об инструментах, которые понадобятся для сборки (шуруповерт, крепежные элементы и др.).

Внимательно проанализировав все пункты, сделайте правильный выбор. Только при полном удовлетворении данным требованиям можно сделать светодиодный экран своими руками.

Важные моменты

Если ваше решение приступить к самостоятельной сборке неоспоримо, остановимся на важных рекомендациях, которые могут пригодиться в процессе работы:

  • Перед сборкой определитесь с мощностью конструкции, ведь при недостаточном питании, экран может работать некорректно.
  • Определитесь с внешним видом готового изделия.
  • Убедитесь, что используемое оборудование безопасно и исправно.
  • Понадобится схема подключения ламп, блока питания и управляющей платы.
  • При монтаже старайтесь крепить блоки питания таким образом, чтобы их можно легко поменять на новые, в случае поломки (используйте жидкий клей).
  • Продумайте, каким способом будет подаваться информация на монитор. Есть два варианта – с использованием микроконтроллера или компьютера. В любом случае нужны хотя бы минимальные знания программирования.
  • Помимо самого экрана, нужно подготовить каркас или крепления. Нужно рассчитать так, чтобы конструкция была устойчивой.

Если вы неуверены в своих силах, начните с простой конструкции, например, смонтируйте бегущую строку.

При положительном результате, можно начать делать светодиодный экран своими руками.

Плюсы и минусы самостоятельной сборки

К плюсам можно отнести:

  • Опыт, полученный во время работы с электронным оборудованием.
  • Возможность создать устройство по индивидуальной конструкции.
  • Возможность получить готовое оборудование с наименьшими затратами.

А теперь рассмотрим минусы:

  • Самостоятельное изготовление сужает круг применения такого экрана, самодельный светодиодный экран скорее не подойдет для уличного использования .
  • Отсутствует гарантийное обслуживание .
  • Не имея определенных знаний, трудно добиться нужных параметров изображения.
  • Сборка может затянуться на неопределенное время из-за отсутствия каких-либо деталей, что влечет за собой потерю прибыли.
  • Нет гарантии, что он прослужит долго.
  • Трудно собрать крупногабаритное устройство.

Сделать светодиодный экран своими руками возможно, если вы относитесь к специалисту в этой области и у вас подготовлен подробный проект по изготовлению изделия с описанием метода монтажа, количества светодиодов, размера и т.д.

Многие считают, что наиболее оптимальным вариантом изготовления будут светодиодные полоски и микроконтроллер.

Приступите ли вы к изготовлению самостоятельно или воспользуетесь услугами опытных специалистов, в любом случае ваше решение иметь светодиодный экран будет оправдана его многочисленными преимуществами :

  • Привлечение внимания большого количества людей;
  • Эффектное и яркое оформление различных мероприятий;
  • Возможность передавать информацию различного рода;
  • Минимальные затраты на обслуживание;
  • Возможность выделиться среди конкурентов.

This entry was posted in . Bookmark the .

Светодиодные экраны или, как их еще часто называют, ЛЕД-дисплеи, стали доступны для массового применения сравнительно недавно. Более правильным будет вместо русской аббревиатуры именовать это электронное устройство LED-дисплеем (light emitting diode). Наряду с этими названиями часто используется термин «светодиодный экран».

Первые видеоэкраны появились более 20 лет назад, но их яркость (отдельные пиксели были на газоразрядных лампах) была недостаточной для воспроизведения качественного изображения, особенно в солнечные дни. Кроме этого техническое обслуживание этих устройств было очень сложным и дорогим.

Стремительный прогресс в технологии производства ярких, качественных и в то же время недорогих светодиодов основных цветов (красного, зеленого и голубого) позволил совершить стремительный шаг вперед индустрии производства светодиодных экранов. Огромный спектр возможностей по созданию видеоизображений, управлению цветовыми, яркостными и динамическими изображениями произвел настоящую революцию на рынке наружной и интерьерной рекламы (экраны небольшого размера – от 1,0 х 1,0 м, где требуется демонстрация изображений большого масштаба).

В крупных российских городах, захламленных повсеместно за последние 20 лет безликими билбордами 3 х 6 м, началось постепенное внедрение этой современной технологии. Модульные принципы сборки и аппаратно-программное обеспечение Arduino позволяют собрать LED-экран своими руками.

Модули для сборки

Экран нужных габаритов собирается из готовых электронных блоков (модулей) стандартных размеров, укомплектованных пикселями из светодиодов или сборок RGB, соединенными на общей плате и имеющими необходимые разъемы и шлейфы для объединения с соседними блоками. Модули, как правило, китайского производства, имеющие более низкую цену, приобретаются в специализированных фирмах и магазинах. Набором типичных параметров обладают модули Р10:

  • размер, мм – 320 х 160 х 20;
  • вес модуля, г – 600–700;
  • шаг пикселя, мм – 10;
  • разрешение (количество пикселей на 1 м 2) – не менее 256 х 192;
  • яркость светодиодного экрана, кд/м 2 – 6 000–7 000;
  • угол половинной яркости, градус – 120;
  • срок службы, час – до 50 000;
  • максимальная потребляемая мощность (для уличных экранов), Вт/м 2 – 500;
  • расстояние комфортной видимости изображений, м – от 7;
  • все световые и электронные компоненты защищены от воздействия влаги, пыли, механических воздействий.

При отсутствии модулей можно собрать светодиодный экран на базе светодиодной ленты. Но этот вариант более трудоемок в сборке и не обладает необходимой надежностью при наборе жестких условий уличной эксплуатации: большой диапазон температур, влажность, УФ-воздействие, пыль, грязь и т. п.

Как собирается LED-дисплей

На первом этапе изготовления самодельного видео экрана необходимо изготовить надежную несущую металлоконструкцию для размещения на ней большого количества электронных блоков (модулей, контроллеров, источников питания – драйверов, преобразующих сетевое переменное напряжение 220 В в постоянное – 12 В). Конструкция представляет собой каркас из квадратной профильной трубы. Типичный вариант каркаса представлен ниже на фото.


На втором этапе собирают модули Р10, крепят к каркасу вплотную друг к другу и соединяют с помощью шлейфов, имеющих качественные разъемы «папа-мама». Крепеж модулей зачастую осуществляется с помощью надежных магнитов, что очень упрощает стадию сборки и особенно разборки при производстве ремонтных работ.

Далее с обратной стороны каркаса размещаются блоки питания и контроллеры, отвечающие за обработку видеоинформации и распределение ее на конкретные модули и малые пиксели. Задняя стенка видеоэкрана изготавливается из металлического листа или алюминиевой композитной панели. Как сделать монтаж LED-экрана, показано ниже.


Как управлять работой LED-дисплея

Понятно, что сегодня собрать светодиодный экран своими руками может практически любой человек, владеющий элементарными знаниями электротехники и навыками обращения с инструментами типа отверток и шуруповерта. Однако для того, чтобы «вдохнуть жизнь» в собранное железо, надо понимать, каким образом видеофайлы поступают на светодиоды и как создается программа для работы видеоэкрана.

Управление и замена файлов с видеороликами производится через USB-порт (через flash-карту) или с помощью Wi-Fi-роутера через интернет-соединение. Видеоролик, созданный предварительно с помощью специализированного программного обеспечения, переводится в формат * .avi или * .mpeg. Затем он преобразуется микроконтроллером или компьютером в цифровой поток, поступающий на микросхемы драйверов постоянного тока, подающих напряжение в соответствии с алгоритмом, заложенным в программу, на светодиоды дисплея.

Качество сделанного экрана определяется возможностями системы управления LED-экрана, которая может быть синхронной или асинхронной. На рисунке ниже представлена схема управления LED-экраном.


Схема управления светодиодным LED-экраном

Синхронная система управления подразумевает, что на экране отображается та же информация, что и на компьютере, то есть идет прямой эфир. Например, можно транслировать изображение с телекамеры, установленной на стадионе или концерте. Такая система состоит из карты-передатчика и нескольких карт-приемников. В компьютере, который управляет экраном, находится карта-передатчик, а на экране – карты-приемники, соединенные UTP-кабелем (витая пара).

Асинхронный способ вывода информации на экран подразумевает предварительную загрузку в память микроконтроллера. Для этого используют flash-карту или кабель. Асинхронная система требует присутствия нескольких микроконтроллеров, количество которых зависит от геометрических размеров LED-дисплея. Эта система позволяет осуществлять работу самостоятельно по заданной программе без внешнего компьютера.

Аппаратная платформа Arduino

Для создания программы управления светодиодными видеоустройствами (экраны, бегущие строки) на рынке существует большой выбор различных продуктов. Одним из самых популярных является аппаратно-вычислительная платформа Arduino (Ардуино), в состав которой входят плата ввода-вывода и средства разработки.

Arduino используется как для разработки автономных интерактивных объектов, так и для подключения к программным продуктам, выполняемым на компьютере. Платы имеют аналоговые и цифровые порты, к которым могут подключаться разные устройства автоматики: датчики (температуры, влажности, давления и т. п.), кнопки, моторы, двигатели, видеоэкраны, бегущие строки.

Можно сказать, что Arduino – это инструмент проектирования различных электронных устройств. Программная платформа сделана с открытым программным кодом на базе языка программирования С/С ++ . Проекты, реализованные с помощью Arduino, могут функционировать как самостоятельно, так и взаимодействовать с компьютерным программным обеспечением (MaxMSP, Flash, Processing).


Как сделать светодиодную ленту | Ledcountry.ru

Сегодня системы освещения на основе световых диодов на пике популярности. Это не только очень красиво, но и экономно. Диодные светильники потребляют ничтожное количество электроэнергии, при этом безотказно служат долгие годы. Однако готовые схемы, хоть и продаются повсеместно, но стоят не дешево.

Гораздо выгоднее и интереснее собрать светодиодную ленту своими руками, получив не только экономический эффект, но и эксклюзивное изделие. Из изготовленных LED-полос можно создать интересную подсветку любой конфигурации, соорудить люстру. настольный или настенный оригинальный светильник.

Что нужно приготовить для создания светодиодной ленты

В домашних условиях воспроизвести производство фабричных LED лент вряд ли получится, но максимально приблизиться к нему можно. Для начала неплохо разработать схему и рассчитать мощность будущей конструкции, чтобы не ошибиться с покупкой блока питания. Это можно сделать при помощи онлайн-калькулятора. Для работы следует подготовить:

  1. Вместо настоящей печатной платы можно использовать текстолит или фольгированный гетинакс толщиной не более 1 мм, так как сделать светодиодную ленту своими руками без хорошей гибкой основы невозможно.
  2. Одно- или разноцветные светодиоды под напряжение 12 В либо 24 В и элементы сопротивления на ножках. Они могут быть обычными, если нет возможности приобрести изделия из серии SMD.
  3. Адаптер и другие устройства, необходимые для хорошей работы создаваемой системы.
  4. Инструменты для раскроя текстолита (ножницы или ножовка), дрель с тонким сверлом (на крайний случай подойдет и прочное шило), паяльник с маленьким жалом, канифоль и припой (оловянная проволока самого малого диаметра).

Еще понадобятся отрезки проводов для присоединения ленты к источнику питания, а также изолирующая пленка либо полоски от непрозрачной пластиковой бутылки. Для лучшей защиты ленты от влаги нужно подготовить термоусадочную трубку.

Как собрать светодиодную ленту своими руками

Процесс изготовления LED ленты складывается из нескольких этапов. Об одном из них уже сказано выше – должна быть составлена схема, на которой указаны точки расположения диодов, резисторов. Они могут устанавливаться в одну либо две линии, допустима расстановка в шахматном порядке, так как сделать светодиодную ленту можно по разному. От количества диодов, размещенных на 1 погонном метре платы, будет зависеть мощность всего изделия. Далее:

  • Необходимо отрезать полоску текстолита или фольгированного гетинакса такого размера, чтобы на ней разместились светодиоды и резисторы с соответствии с разработанной схемой.
  • Выполнить разметку и просверлить отверстия для установки деталей.
  • Разместить все элементы системы по своим местам, чередуя светящиеся диоды и резисторы.
  • При помощи паяльника и тонкой проволоки все элементы нужно соединить согласно чертежу, а также припаять проволочные кусочки для подсоединения схемы к адаптеру или батарее.

 

Готовую ленту с обратной стороны следует защитить пластиковой полоской, закрепив ее на силиконовый герметик. Всю конструкцию поместить внутрь термоусадочной трубки, обжать которую вокруг LED-ленты удобно с помощью строительного или бытового фена.

Мы постарались разобрать, как сделать светодиодную ленту самостоятельно. Но домашние мастера на этом не останавливаются. Многие создают очень сложные системы с использованием многоцветных световых сценариев. В этом случае в схему встраивается контроллер. А чтобы еще была возможность менять силу свечения нужно дополнительно установить специальное устройство – диммер.

Как сделать светодиод или светоизлучающий диод «Хаки, Модификации и Схемы :: Гаджет Хаки

Совершите путешествие по миру светодиодов. Узнайте — кто изобрел это, как использовать и как сделать свой собственный.

Светоизлучающий диод (LED) (произносится / ?? li? ‘Di? /), [1] — это полупроводниковый диод, который излучает свет, когда электрический ток подается в прямом направлении к устройству, как в простая светодиодная схема. Эффект представляет собой форму электролюминесценции, при которой некогерентный свет с узким спектром излучается из p-n-перехода.

Согласно Википедии, светодиоды широко используются в качестве индикаторов на электронных устройствах и все чаще в приложениях с более высокой мощностью, таких как фонарики и освещение территорий. Светодиод обычно представляет собой источник света с небольшой площадью (менее 1 мм2), часто с оптикой, добавленной к микросхеме, чтобы формировать диаграмму направленности и способствовать отражению. Цвет излучаемого света зависит от состава и состояния используемого полупроводникового материала и может быть инфракрасным, видимым или ультрафиолетовым. Помимо освещения, к интересным применениям относятся использование УФ-светодиодов для стерилизации воды и дезинфекции устройств, а также в качестве источника света для усиления фотосинтеза у растений.

Пожалуйста, включите JavaScript, чтобы посмотреть это видео.

Защитите свое соединение без ежемесячного счета . Получите пожизненную подписку на VPN Unlimited для всех своих устройств, сделав разовую покупку в новом магазине Gadget Hacks Shop, и смотрите Hulu или Netflix без региональных ограничений, повышайте безопасность при просмотре в общедоступных сетях и многое другое.

Купить сейчас (80% скидка)>

Другие выгодные предложения, которые стоит проверить:

Как сделать светодиодные фонари из медного провода?

Если вы покупаете товар по ссылкам на этой странице, мы можем получать комиссию.На содержание нашей редакции комиссии не влияют. Прочтите полное раскрытие.

Светодиодные светильники из медной проволоки — отличное украшение для вашего дома, особенно во время праздников. Вот руководство, как сделать светодиодные фонари из медной проволоки.

Скорее всего, сезон отпусков подойдет, если вы уже думаете украсить свой дом огнями. Однако приобретенные в магазине праздничные огни могут быть немного дорогими во время сезон. Вот почему многие люди выбирают другой путь, чтобы сделать вместо этого их собственные огни.

Как именно вы это делаете?

Просто научившись делать светодиодные фонари из медной проволоки. Вы можете подумать, что это звучит немного сложно, особенно если у вас мало опыта работы с электрикой. Однако на самом деле это довольно просто.

Эти шаги покажут вам, как это сделать легко:

Светодиодные фонари с медным проводом — популярный выбор в праздничные дни.

Что такое светодиодные фонари из медного провода?

Для тех, кто не знает, что такое медный провод. Светодиод есть, давайте сначала обсудим это.

Светодиодный светильник из медной проволоки, как следует из названия, является цепочка светодиодных фонарей, соединенных медным проводом. Они часто используется в декоративных целях, особенно во время праздников и во время мероприятий.

Можно ли резать светильники из медной проволоки?

Можно ли перерезать огни из медной проволоки, если вам кажется, что они слишком длинные?

Ответ да, вы можете их разрезать. Поскольку медные провода изначально не такие уж сильные, вы можете использовать кусачки в любом месте, где хотите вырезать.

Как сделать светодиодные фонари из медной проволоки

Разобравшись с этим, мы можем перейти к руководству. Прежде чем мы начнем, давайте обсудим некоторые вещи, которые вам понадобятся. Вот список:

  • Светодиодные фонари
  • Светодиодные колпачки
  • Медный провод
  • Припой
  • Резак для кабеля / проволоки

Вы покупаете любой из них в Home Depot или почти в любом другом местный хозяйственный магазин. Когда у вас будет все необходимое, следуйте инструкциям ниже:

1.Нарежьте провода одинаковой длины

Используйте кусачки, чтобы разрезать провода на равные отрезки. вашего предпочтения. Мы рекомендуем вам разрезать их на 13 дюймов, но это действительно до вас. Кроме того, от количества отрезанных проводов будет зависеть длина ваши светодиодные фонари из медной проволоки станут. Чем больше проводов вы отрежете, тем длиннее Ваш светодиодный светильник из медной проволоки станет.

2. Припаяйте светодиоды

Достаньте свои светодиодные фонари и сначала проверьте их с помощью вольтметр.Это скажет вам, работают они или нет. Как только вы проверите, если они работают, припаиваем светодиод зажигаем провод. Обратите внимание, что есть два провода выходят из светодиода. Припаяйте к этим двум отрезкам медных проводов. Светодиодные световые провода. Вставьте колпачок светодиода в провода, чтобы светодиод не загорелся. место. Повторите процесс со всеми остальными светодиодами.

3. Подключите все светодиоды

Теперь, когда у вас есть несколько светодиодов, припаянных к проводам, соедините каждый светодиод друг с другом, соединив их провода вместе (вы делаете это скручивая провода вместе).Вы можете получить дополнительный медный провод, чтобы обернуть соединительные провода. Это помогает удерживать их на месте.

После всего этого следующее, что нужно сделать, это подключаем светодиоды к ДК. Итак, для этого вам нужно будет купить DC, 0,47 мкФ. конденсатор, резистор 10 Ом и четыре диода.

Припаиваем конденсатор и резистор по краям ДК. и 4 диода на мосту.

Включите постоянный ток и отключите линии переменного тока. Припаяйте две линии переменного тока на той стороне постоянного тока.

На той же стороне, что и линии переменного тока, припаяйте два провода на конце ваших медных струнных светильников к постоянному току.

  • Подключите линию переменного тока к батарее

Наконец, убедитесь, что линия переменного тока подключена к разъем аккумулятора (можно купить в строительном магазине) и разместить Аккумулятор есть на 9в.

Заключение

Хотя есть возможность просто купить медные светодиодные светильники, их дешевле и интереснее изготовить дома.Конечно, вам потребуются некоторые знания о том, как подключать светильники из медных проводов и как паять металлы, но это лишь некоторые базовые вещи. Если вы знаете, как это сделать, и можете следовать приведенным выше инструкциям, научиться делать дома светодиодные фонари из медной проволоки будет несложно.

Чего вы ждете? Приступите к изготовлению светодиодных светильников из медной проволоки своими руками уже сегодня.

Рекомендуемая литература:

Светодиодное кольцо

Make A Secret Light Up

МАТЕРИАЛЫ:
Светодиод 3 мм (1)
Оберточная проволока, с покрытием, 30 г, (около 3 футов)
Эпоксидная смола
Форма для силиконового кольца (1)

ИНСТРУМЕНТЫ:
Паяльник / припой
Беспроводное зарядное устройство, планшет Chi или телефон с устройством чтения и считывателем NFC для проверки светодиодного кольца

КОРПУС:
Это кольцо содержит светодиод, подключенный к проволочной катушке.Когда катушка с проволокой правильно выровнена с электромагнитным полем, загорится светодиод. Это явление называется индукцией. Электрический ток в первичной катушке, содержащейся в считывающем устройстве NFC или беспроводном зарядном устройстве, создает магнитное поле, которое, в свою очередь, создает электрический ток в катушке, отлитой внутри кольца, зажигая светодиод. Это та же технология, которая позволяет использовать карту, чтобы сесть в общественный транспорт, или нажать кнопку, чтобы заплатить. Сделайте это кольцо и возьмите его с собой по городу, чтобы узнать, как действуют электромагнитные поля!

Обратите внимание, что калибр вашего провода, окружность кольца и цвет светодиода, а также покрытие вашего провода влияют на количество витков, необходимое для питания светодиода.С рекомендуемым проводом и кольцевой формой размера 11 15 витков удобно поместятся в кольцевой форме и произведут яркий светодиод. Также знайте, что разные зарядные устройства (первичная катушка) будут давать вам разное количество энергии, поэтому кольцо может не работать с каждым зарядным устройством одинаково. Как правило, чем больше витков, тем ярче светодиоды. Если ваш светодиод не работает, попробуйте еще раз, увеличив количество витков. Я бы сделал не меньше 15. Если вы хотите перестраховаться, сделайте максимальное количество витков с более низким светодиодом, например желтым или красным.

ШАГИ:
Сначала сделайте катушку. Оберните проволоку по кругу 15-30 раз, убедившись, что она подходит для формы. Заправьте проволоку в форму, чтобы она не распуталась.

Обрежьте ножки светодиода так, чтобы они удобно помещались в форму, припаяйте одну ножку светодиода к одному свободному концу провода и повторите то же самое с концами.


Сейчас хорошее время для проверки вашего светодиода, чтобы убедиться, что все работает должным образом. Протестируйте с помощью планшета Adafruit chi pad, или любой беспроводной зарядной панели, или телефона с NFC.Все они содержат первичную индукционную катушку. Держите катушку и светодиодный блок над зарядным устройством (первичной катушкой). Светодиод должен загореться. Светодиод требует, чтобы ток протекал в определенном направлении (он имеет полярность), поэтому, если светодиод не загорается, переверните его, чтобы изменить полярность и совместить с первичной катушкой.


Подготовьте смолу в соответствии с прилагаемыми инструкциями. Пришло время добавить в смолу блеск или цвет. Залейте смолу в форму, стараясь обойти провода и осторожно постукивая по мере необходимости, чтобы в модели не было пузырьков воздуха.


Дайте смоле застыть в соответствии с указаниями. После полного высыхания очистите поверхность наждачной бумагой.


Проверьте свое кольцо!

ЗАКЛЮЧЕНИЕ:

Возьмите новое кольцо и посмотрите, что вы можете использовать для его активации!
Нравится:
Двери гостиницы!


Автобусные остановки!


Нажмите, чтобы оплатить станцию!

Или просто наслаждайтесь этим, как ничего не подозревающим, но модным кольцом!

Как создать светодиодную панель, эквивалентную 1000 Вт

Узнайте, как создать светодиодную панель своими руками из этого обширного видеоурока.

Когда мы сталкиваемся с видеоуроком, посвященным созданию оборудования для кинопроизводства, мы обычно относимся к нему немного скептически. Насколько сложно творить? Это практично? Будет ли на самом деле ? Следующее руководство по освещению своими руками отлично подходит на всех уровнях.

Светодиоды

становятся все более популярными — и в следующем видеоуроке от DIY Perks вы узнаете, как создать самодельную версию с регулируемой яркостью 1000 Вт с недорогими деталями.

Детали, необходимые для светодиодной лампы DIY

5 м «Natural White» 5050 светодиодных лент (x3) $ 60
Понижающий регулятор напряжения $ 5
1 лист МДФ 6 мм $ 20
1 лист МДФ 18 мм $ 32
Удлинитель холодного башмака $ 20
Алюминиевая трубка или деревянный дюбель (2 шт.) $ 2
Потенциометр 22k и ручка $ 6
Переключатель $ 2
Магнитный провод $ 16
6.Резистор 8кОм 0,18 долл. США
Набор разъемов XT 60 $ 4,49
Малые и средние шурупы по дереву $ 5
Лист оргстекла $ 19
Провод 12 AWG $ 7
Маленький вентилятор $ 5

ИТОГО

$ 203

Теперь я знаю, о чем вы думаете: « 200 долларов, это большие деньги для самостоятельного проекта.«Учитывая, что дешевая светодиодная панель стоит около 600 долларов, у вас действительно есть возможность сэкономить много денег.

Этот урок был впервые опубликован компанией DIY Perks на своем канале YouTube. Спасибо, что поделились, ребята!

Хотите увидеть больше уроков по созданию фильмов своими руками? Загляните в раздел DIY в блоге PremiumBeat.

У вас есть какие-нибудь уроки DIY, которыми вы хотели бы поделиться?
Сообщите нам об этом в комментариях ниже.

Как сделать индивидуальную светодиодную лампу с помощью насадки для гравировки Cricut Maker

Узнайте, как гравировать и вырезать крафт-пластик для изготовления светодиодных фонарей на заказ.Изменяя дизайн, они могут делать красивый декор для дома в течение всего года.

Вы видите много разных светодиодных ламп, сделанных из круглого, квадратного или прямоугольного акрила, на которых выгравированы супер красивые рисунки, часто персонализированные.

Это не совсем то, что я вам покажу, потому что я не буду использовать акрил. Но конечный результат будет практически идентичным.

А почему бы просто не использовать эти акрилы? Ну, потому что здесь, в Канаде, их очень сложно найти.И когда мы их находим, они такие дорогие !!!

Помимо того факта, что мне нравится поддерживать низкие затраты на мои проекты, я также нахожу круг, прямоугольник и т. Д. Очень скучными !!! 😉

Итак, я собираюсь показать вам, что можно сделать индивидуальную светодиодную лампу с гравировкой Maker по разумной цене, даже если акрил для цоколей лампы недоступен или по завышенной цене.

Перед тем, как начать, предложение!

Сначала я хотел бы сказать: практически всем, чему я научился, я обязан группе в Facebook «Cricut Engraving with Clever Someday».Я очень рекомендую это!

Люди в этой группе настолько щедры и преданны решению любой вашей проблемы с гравировкой. Не говоря уже обо всех их вдохновляющих проектах !!! 😍

То, что я собираюсь показать вам в этом уроке, не взято напрямую из их группы (я бы никогда не осмелился буквально копировать их материал !!).

Это немного сочетание техник, которые я собрал и объединил, чтобы создать законченный проект. Этот пост содержит ссылки на партнерские продукты для вашего удобства и без каких-либо дополнительных затрат с вашей стороны.Щелкните здесь, чтобы прочитать мою политику раскрытия полной информации.

Как выгравировать индивидуальный светодиодный светильник с помощью Cricut Maker

Поскольку акрил для светодиодных ламп трудно найти в Канаде, я использовал крафтовый пластик 0,020 дюйма (500 микрон) для своих проектов.

Преимущество этого пластика в том, что его можно разрезать лезвием ножа Maker. Обратной стороной является то, что вам нужно добавить толщину внизу конструкции, чтобы она не двигалась в основании.

Как усилить эффект гравировки

Гравировку можно улучшить, добавив штриховку (очень близкие линии) внутри текста и / или рисунков.

Из этого туториала Вы узнаете два способа улучшить эффект гравировки.

Добавьте штриховки с помощью Cricut Design Space

В видео я покажу вам, как импортировать файл штриховки, который я сделал специально для этого проекта. Затем вы увидите, как я использую его для улучшения гравировки.

Этот файл доступен в библиотеке NeliDesign. Все, что вам нужно сделать, это подписаться на мою рассылку, чтобы получить к ней доступ.

Добавьте штриховки с помощью Silhouette Studio Business Edition

Эта техника действительно моя любимая.Да, Silhouette Studio — это программное обеспечение, используемое на машинах марки Silhouette. Но если вы получаете версию «Business», вы можете затем экспортировать свои файлы SVG, чтобы импортировать их обратно в пространство дизайна.

(Обновление: если у вас есть бесплатная версия Silhouette Studio, вы также можете использовать этот бесплатный конвертер для преобразования вашего студийного файла в SVG. Но я все же настоятельно рекомендую вам покупать настоящую вещь, если вы можете. Компании действительно много работают над своими продукты!)

Существует также аналогичная программа «Sure Cut A Lot».Однако с точки зрения штриховки Silhouette Studio Business Edition действительно «на голову выше»!

На видео вы увидите, как легко изменить дизайн, а также все доступные параметры.

Сделать гравировку на светодиодных лампах очень много !!!

На самом деле метод, который я собираюсь вам показать, требует нескольких шагов, но дает очень хороший результат!

Вот почему я сделал «Шаг за шагом», чтобы помочь вам с гравировкой вашей первой светодиодной лампы.(И я вам скажу, даже я использую, потому что ступеньки еще не хорошо выгравированы в моей голове !! 🙈)

Так что подпишитесь на мою рассылку новостей ниже, и я пришлю вам файл для печати. Если вы уже зарегистрированы, вы найдете его в библиотеке со всеми другими практическими файлами и бесплатными SVG!

Использовано файлов SVG

Вы можете найти все файлы, использованные в учебнике, в «Рождественском пакете ремесла, том 4». Однако последний доступен примерно до середины декабря 2020 года.Итак, вот также список отдельных файлов:

Необходимые инструменты

Необходимые материалы

Сделайте гравировку для светодиодной лампы, шаг за шагом

Это не самый простой проект, но он так хорош! Надеюсь, вы попробуете. Приходите, покажите мне свои достижения в моей группе в Facebook!

Не забудьте закрепить!

Основы Arduino: регулировка яркости светодиода

Первоначально опубликовано 5 февраля 2020 г.

Содержание

  1. Введение
  2. Яркость не регулируется цифровым способом
  3. Изменение яркости светодиода с помощью цифрового выхода
  4. Регулировка яркости с ШИМ
  5. Постепенно мигает светодиодный индикатор
  6. Статьи по теме

Введение

Эта статья была переведена на английский и изначально была опубликована для deviceplus.jp.

Device Plus представил множество приложений и примеров Arduino, но базовые знания по-прежнему важны, независимо от того, что вы делаете!
В этой статье мы познакомим вас с «ключевыми» основами электроники Arduino, позволив Arduino регулировать яркость светодиода.

Вы можете легко включать и выключать светодиод между ВЫСОКИМ (5 В) и НИЗКИМ (0 В) состояниями, подключив его к цифровым выходным клеммам Arduino. Однако, поскольку цифровой выход может выводиться только в одном из двух состояний, вы не можете настраивать такие элементы управления, как яркость.
Вместо этого можно использовать выход «ШИМ». ШИМ можно использовать для регулировки яркости светодиода путем многократного переключения между ВЫСОКИМ и НИЗКИМ состояниями.
В этой статье мы узнаем, как использовать ШИМ для регулировки яркости светодиода. Мы также узнаем, как написать программу, которая использует выход ШИМ для постепенного включения светодиода.

Яркость не может быть изменена цифровым способом

Как мы объяснили в прошлый раз, яркость светодиода изменяется в зависимости от протекающего тока.Сравнивая резистор 330 Ом с резистором 10 кОм, подключенным для регулировки величины тока, подключенного к светодиоду, например, больше тока проходит через 330 Ом с меньшим сопротивлением, что заставляет светодиод светиться ярче. В качестве альтернативы, протекающий ток также изменится, если вы измените напряжение источника питания, подключенного к светодиоду.

При подаче 5В и 3,3В 5В делает светодиоды ярче. Если вы хотите осветить светодиод еще ярче, вы либо «уменьшите сопротивление», либо «увеличите напряжение», как объяснено в предыдущей формуле для отношения между током, протекающим через светодиод, и сопротивлением.

Однако цифровой выход Arduino имеет только два состояния: ВЫСОКИЙ (5 В) или НИЗКИЙ (0 В), что означает, что значения напряжения и сопротивления не могут быть изменены, даже если схема подключена как есть. Таким образом, яркость светодиода не регулируется. Хотя есть только два состояния выхода, HIGH и LOW, яркость светодиода можно изменить с некоторой изобретательностью.

Изменение яркости светодиода с помощью цифрового выхода

Давайте изменим яркость светодиода, используя только цифровой выход.Яркость можно регулировать, заставляя светодиод мигать. На самом деле управляйте светодиодом шаг за шагом, чтобы увидеть, как меняется яркость. Подключите светодиод к контакту 5 Arduino, как показано ниже:

Затем создайте программу, как показано ниже, и запишите ее в Arduino. Светодиод должен мигать с интервалом в одну секунду.

В программе светодиод загорается в «digitalWrite (LED_PIN, HIGH)» (строка 11) с выходом HIGH, а затем ожидает в течение времени, указанного параметром «delay (ON_TIME)» (строка 12).Продолжительность указывается в миллисекундах; если вы укажете 1000, светодиод будет гореть в течение одной секунды.

Затем светодиод выключается в «digitalWrite (LED_PIN, LOW)» (строка 14) с выходом LOW, а затем отключается на время, указанное в «delay (OFF_TIME)» (строка 15). Светодиод мигает при повторении этой программы.

Теперь давайте сократим время включения и выключения. Продолжительность включения может быть изменена с помощью «const int ON_TIME» (строка 3), а продолжительность выключения может быть изменена с помощью «const int OFF_TIME» (строка 4).Измените оба значения на «500» и напишите программу для проверки состояния светодиода. Скорость мигания должна увеличиться. По мере уменьшения значений до «250», «100», «75», «50» и т. Д. Мигание должно становиться быстрее. При значении около «10» светодиод горит постоянно. Если он мигает слишком быстро, человеческий глаз не успевает за ним, из-за чего кажется, что свет постоянно горит.

Теперь давайте изменим продолжительность включения и выключения. Установите для «ON_TIME» и «OFF_TIME» значение «10».Затем последовательно измените значение «ON_TIME» на «9», «8», «7»… «1» и проверьте состояние свечения светодиода. По мере уменьшения значения вы можете видеть, что светодиод становится темнее.

Светодиод выглядит темнее, потому что продолжительность освещения сокращается, а количество свечения уменьшается. Другими словами, вы можете регулировать яркость светодиода, изменяя «продолжительность свечения». Этот метод позволяет вам управлять яркостью светодиода с помощью цифрового выхода Arduino, оснащенного только функциями включения и выключения.

Регулировка яркости с ШИМ

Как описано выше, вы можете регулировать яркость, регулируя соотношение ВЫСОКИЙ и НИЗКИЙ, заставляя светодиод мигать короткими циклами. Однако создавать свою собственную программу для управления продолжительностью мигания нецелесообразно. Если для обработки других программ требуется время, интервал мигания сместится, изменяя яркость.

Arduino обеспечивает PWM (широтно-импульсную модуляцию), которая может периодически выводить HIGH и LOW. Функцию ШИМ, периодически переключающуюся между ВЫСОКИМ и НИЗКИМ с заданной скоростью, можно использовать для регулировки яркости светодиода, как описано ранее.

Однако контакты, которые можно использовать для ШИМ, фиксированы в Arduino. Выход PWM доступен только для контактов, у которых есть знак «~» рядом с номером (то есть 3, 5, 6, 9, 10 и 11). Обратите внимание, что другие контакты не поддерживают вывод ШИМ.

PWM имеет преимущество стабильного вывода, не влияя на работу программы, поскольку PWM генерируется на микрокомпьютере Arduino.
Теперь подключите светодиод к контакту 5, чтобы попробовать операцию. Заранее подключите светодиод, как в схеме, показанной ранее.
Затем напишите программу, как показано ниже, и перенесите ее в Arduino. Светодиод должен загореться немного темнее.

Для вывода с ШИМ установите целевой вывод в режим вывода с помощью «pinMode ()» (строка 6). Фактический вывод происходит с помощью «analogWrite ()» (строка 10). Укажите целевой номер вывода, а затем установите соотношение HIGH в диапазоне от 0 до 255. «0» всегда выводит LOW, а «255» всегда выводит HIGH. «127» одинаково выводит как HIGH, так и LOW.

В этой программе вы можете указать коэффициент ШИМ в «const int DUTY» (строка 3).Измените значение, чтобы увидеть, как меняется яркость.

Постепенное мигание светодиода

Выход с использованием ШИМ расширяет способ свечения светодиода. Теперь давайте постепенно изменим ШИМ, чтобы получить эффект постепенного увеличения яркости светодиода.

Напишите программу, как показано ниже

Вышеупомянутая программа сохраняет коэффициент ШИМ в переменной «i», используемой в функции loop (), чтобы она могла увеличивать значение, чтобы светодиод постепенно становился ярче.

Обработка while (строка 14) увеличивает значение с шагом, указанным в STEP, пока i не достигнет 255.Увеличенное значение выводится функцией analogWrite () (строка 15) для изменения яркости светодиода. Кроме того, ему предписывается ждать в течение времени, указанного параметром WAITTIME, каждый раз, когда изменяется выход ШИМ (строка 16).

Когда коэффициент ШИМ достигает 255, он уменьшается до 0 для постепенного затемнения светодиода (строки с 21 по 25). Вы можете изменить скорость мигания, изменив значение WAITTIME (строка 3) или STEP (строка 4).

На этот раз мы научились управлять яркостью светодиода.Увидимся в другой статье!

Статьи по теме

Об Arduino всегда можно узнать больше! Взгляните на некоторые из наших других статей:

  1. Как создать генератор кода Морзе с помощью Arduino
  2. Как управлять светом с помощью датчика внешней освещенности
  3. USB-регулятор громкости с Arduino

Наука для детей: магнитные светодиодные фонари своими руками

Создайте свои собственные магнитные светодиодные фонари в этом увлекательном научном мероприятии для детей .Этот проект STEM / STEAM — очень увлекательный способ исследовать магнетизм и схемы !

Следите за нашей доской Pinterest «Наука для детей»!

Вы слышали о светодиодных бросках? Это маленькие магнитные светодиодные фонари, созданные Graffiti Research Lab. Их называют бросками, потому что их можно бросить на магнитную поверхность, и они прилипнут.

Мне нравится, как весело они доставляют детям удовольствие, и они могут вдохновлять на всевозможные научные знания, творчество и игры! Этот пост содержит партнерские ссылки.

Указание по безопасности

Неодимовые магниты чрезвычайно опасны при проглатывании. Если проглотить несколько магнитов, они могут застрять в кишечнике и вызвать опасные осложнения. НЕ используйте их рядом с маленькими детьми! Во время этого мероприятия наблюдение взрослых обязательно! Неодимовые магниты также могут мешать работе электроники — держите их подальше от компьютеров, телефонов и т. Д. Обязательно прочтите этот паспорт безопасности, прежде чем выполнять это действие.

Плоские батарейки также могут быть очень опасными при проглатывании. При выполнении этой деятельности требуется наблюдение взрослых.

Когда я впервые увидел светодиодные пледы, я знал, что нам придется изготавливать их самим. Они вдохновили так много науки на обучение детей творчеству и просто потрясающие!

Материалы для светодиодных фонарей

Инструкции по изготовлению светодиодных метателей

1.Начните с зажатия выводов светодиода над батареей типа «таблетка». Если он не загорается, переверните аккумулятор так, чтобы провода касались правильных сторон.

2. Отрежьте небольшой кусок изоленты и надежно оберните им выводы светодиодов и аккумулятор. (Выводы светодиода могут быть плоскими, поэтому обязательно закрепите их лентой.)

3. Добавьте сильный магнит на аккумулятор с лентой. Надежно закрепите его скотчем. Вот и все!

Они будут гореть около 1-2 недель.

Когда светодиодный светильник умирает, вы можете удалить изоленту, заменить батарею и снова склеить ее.

(Вы также можете закрепить кусок картона между одним проводом вашего броска и поверхностью ленты. Когда вы хотите выключить его, вставьте отдельный крошечный кусочек картона в это пространство между проводом и картоном, прикрепленным к ленте.)

Использование светодиодов

  • Используйте магнитные светодиодные фонари для создания рисунков на магнитной поверхности.
  • Посмотрите, как мы использовали светодиодные фонари, чтобы узнать о созвездиях.
  • Используйте их, чтобы узнать, что привлекает, а что нет в вашем доме или классе. Дети были так взволнованы, обнаружив, что их игровая структура на открытом воздухе притягивает!

Не забудьте заглянуть в книгу и электронную книгу по STEAM Kids, чтобы получить еще больше творческих идей STEM и STEAM!

.

Добавить комментарий

Ваш адрес email не будет опубликован.