Ограничительный резистор для светодиода: Расчет токоограничивающего резистора для светодиода

Содержание

Схемы включения светодиодов

Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Светодиод является прибором токовым, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. – напряжение питания, Uпад. – падение напряжение на светодиоде, R – сопротивление ограничивающего резистора, I – ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство – деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза.

Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться.

То же можно сказать и о светодиодах – двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно.

Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от стабилизированного источника постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 — Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок 14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Ранее ЭлектроВести писали, что в городе Эссен (Германия) возле городской филармонии и театра Аалто установили 15 интеллектуальных уличных фонарей, которые позволят подзарядить автомобиль, а также предоставлять данные о качестве окружающего воздуха и доступ в Интернет.

По материалам: electrik.info.

Зачем нужен резистор параллельно светодиоду | Дмитрий Компанец

Схемы соединения резисторов со светодиодами.

Схемы соединения резисторов со светодиодами.

Стандартные Схемы соединения резисторов со светодиодами

Резисторы всегда последовательно со светодиодами

Резисторы всегда последовательно со светодиодами

выглядят обычно — светодиоды защищаю резисторами от тока который их может повредить в случае повысившегося напряжения.

На некоторых платах от фонариков,где применяется светодиод или на платах импульсных блоков питания, где находится оптопара,можно увидеть,что параллельно светодиоду установлен резистор.

В китайском фонарике 自学成才, с мощным светодиодом, параллельно диоду установлен резистор на 3кОм.

Импульсная схема питания светодиода

Импульсная схема питания светодиода

Транзистор не является идеальным ключом, да же в закрытом состоянии есть токи утечки. А так как диод сверхяркий, — ему только дай понюхать, микротоков вполне хватит что бы он чутка светился, вот его резистор и шунтирует — именно так думают специалисты по электронике.

Вот и еще один пример, где параллельно светодиоду в оптопаре стоит резистор номиналом

Резистор паралельно светодиоду

Резистор паралельно светодиоду

В этом случае шунтируется не сверх яркий , а мощный ИК диод способный выдерживать в пике до 1 ампера . (Так сказано в описаниях светодиодов оптопар)

Если внимательно присмотреться, то видно что ограничительный резистор в 100 Ом и «параллельный» в 430 Ом имеют суммарно не такое уж и большое сопротивление и так называемое «ветвление тока» будет весьма значительно нагружать схему питания ИК диода и управления.

В данной схеме говорить о том, что светодиод будет слегка светить из за недостатков ключа управления — транзистора глупо!

Достаточно привести пример пульта дистанционного управления — там как раз и используется ИК мощный светодиод и к нему прилагается транзисторный ключ управляемый импульсами от модулятора — микросхемы в которую вшиты коды пуска всех кнопок управления.

Ради интереса я решил взглянуть на токи сопротивления и напряжения светодиодов в стандартном включении

Не смотрите на сопротивления на этой картинке

Не смотрите на сопротивления на этой картинке

ВНИМАНИЕ! То что автор картинки пытался подсчитать сопротивление светодиодов по формуле Ома это его фантазии.
Светодиоды как и диоды — элементы нелинейные и законы Ома им не писаны, там «все сложно»

Экспериментально можно убедиться, что одинаковые по функционалу светодиоды, в реалии очень сильно отличаются поведением по отношению к току и напряжению.
Аналогией могу привести Лампочки — светодиодные, газоразрядные, люминисцентные и накаливания. Вроде все это лампочки, но все они разные.

Так и с разноцветными светодиодами — хотя кристаллы и проволока в них похожи, но поведение полупроводника сильно различается.

ДУМАЕТСЯ МНЕ, ЧТО СХЕМА ТАКОГО ПОДКЛЮЧЕНИЯ ПРИШЛА ВОТ ОТСЮДА

Схема и способы подключения светодиодов для автомобиля

Схема и способы подключения светодиодов для автомобиля

Конструкция кластера включает в себя диодный элементы и резистор, который, кстати, является важной составляющей любого кластера. Резисторное устройство, использующееся для погашения лишнего напряжения, ставится из расчета одна штука на три диодных элемента.

Это описание с рекомендациями по подключению светодиодов в автомобиле. Вот тут резисторы «Резисторное устройство»( как выразился автор статьи) служат вполне разумно.

Цель установки таких резисторов в данной цепи — продление срока службы светильника в случае перегорания одного из светодиодов.
За счет резисторов цепь остается замкнутой и светильник продолжает светить. Цена за такую надежность — излишние потери тока расходуемого аккумулятором автомобиля.

По моему мнению , СТАРАЯ КЛАССИКА куда проще и надежнее

Классическая схема включения светодиодов

Классическая схема включения светодиодов

Резисторов в такой схеме столько же, а вот ток от АКБ автомобиля расходуется только на свечение и при выгорании одного звена, остальные продолжают светить как положено.

Остается только удивляться тому Зачем авторы таких схем с вычурным включением «Резисторных устройств» придумывают то что работает хуже и не может заменить старых проверенных схем.

Хотя, почитывая на досуге статьи в Дзен от популярных Блогеров, я вполне осознаю, что вакцину от вируса или хорошие дороги нам придумают именно такие «гении пера и чернил».

Пока я не докопался до истинного предназначения резистора устанавливаемого параллельно светодиоду (слишком много мусора в сети интернет), но эта тема мне интересна и будьте уверены (а мои давние зрители и читатели знают это) я докопаюсь до
РЕАЛЬНОЙ ПРИЧИНЫ СОЗДАНИЯ ТАКИХ СХЕМ

Если Алгоритм Дзен не станет прессовать эту статью и удалять Ваши комментарии, я смогу услышать ваши мнения и советы и вместе мы скорее докопаемся до реальности!

Искренний ваш
Д. К.

Расчет сопротивления резистора для блока питания. Калькулятор расчета сопротивления для светодиодов

Светодиод – это полупроводниковый элемент , который применяется для освещения. Применяется в фонарях, лампах, светильниках и других осветительных приборах. Принцип его работы заключается в том, что при протекании тока через светоизлучающий диод происходит высвобождение фотонов с поверхности материала полупроводника, и диод начинает светиться.

Надежная работа светодиода зависит от тока , протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Для работы радиоэлемента на него нужно подать питание. По закону Ома , чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p — n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку. Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике.

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный — до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I ,

где, U (R) — падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led)

где, U (Led) — падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Пример расчета

Имеем напряжение питания 12В, зеленый светодиод. Нужно рассчитать сопротивление и мощность токоограничивающего резистора. Падение напряжения на нужном нам зеленом светодиоде равно 2,4 В, номинальный ток 20 мА. Отсюда вычисляем напряжение, падающее на балластном резисторе.

U (R) = E – U (Led) = 12В – 2,4В = 9,6В.

Значение сопротивления:

R = U (R)/ I = 9,6В/0,02А = 480 Ом.

Значение мощности:

P = U (R) ⋅ I = 9,6В ⋅ 0,02А = 0,192 Вт

Из ряда стандартных сопротивлений выбираем 487 Ом (ряд Е96), а мощность можно выбрать 0,25 Вт. Такой резистор нужно заказать.

В том случае, если нужно подключить несколько светодиодов последовательно, подключать их к источнику питания можно также с помощью только одного резистора, который будет гасить избыточное напряжение. Его расчет производится по указанным выше формулам, однако, вместо одного прямого напряжения U (Led) нужно взять сумму прямых напряжений нужных светодиодов.

Если требуется подключить несколько светоизлучающих элементов параллельно, то для каждого из них требуется рассчитать свой резистор, так как у каждого из полупроводников может быть свое прямое напряжение. Вычисления для каждой цепи в таком случае аналогичны расчету одного резистора, так как все они подключаются параллельно к одному источнику питания, и его значение для расчета каждой цепи одно и то же.

Этапы вычисления

Чтобы сделать правильные вычисления, необходимо выполнить следующее:

  1. Выяснение прямого напряжения и тока светодиода.
  2. Расчет падения напряжения на нужном резисторе.
  3. Расчет сопротивления резистора.
  4. Подбор сопротивления из стандартного ряда.
  5. Вычисление и подбор мощности.

Этот несложный расчет можно сделать самому, но проще и эффективнее по времени воспользоваться калькулятором для расчета резистора для светодиода. Если ввести такой запрос в поисковик, найдется множество сайтов, предлагающих автоматизированный подсчет. Все необходимые формулы в этот инструмент уже встроены и работают мгновенно. Некоторые сервисы сразу предлагают также и подбор элементов. Нужно будет только выбрать наиболее подходящий калькулятор для расчета светодиодов, и, таким образом, сэкономить свое время.

Калькулятор светодиодов онлайн – не единственное средство для экономии времени в вычислениях. Расчет транзисторов, конденсаторов и других элементов для различных схем уже давно автоматизирован в интернете. Остается только грамотно воспользоваться поисковиком для решения этих задач.

Светодиоды – оптимальное решение для многих задач освещения дома, офиса и производства. Обратите внимание на светильники Ledz. Это лучшее соотношение цены и качества осветительной продукции, используя их, вам не придется самим делать расчеты и собирать светотехнику.

#s3gt_translate_tooltip_mini { display: none !important; }

В схемах со светодиодами обязательно используются для ограничения. Они защищают от перегорания и преждевременного выхода из строя светодиодных элементов. Основная проблема заключается в точном подборе необходимых параметров, поэтому у специалистов широкой популярностью пользуется калькулятор расчета сопротивления для светодиодов. Для получения максимально точных результатов потребуются данные о напряжении источника питания, о прямом напряжении самого светодиода и его расчетном токе, а также схема подключения и количество элементов.

Как рассчитать сопротивление токоограничивающих резисторов

В самом простом случае, когда отсутствуют необходимые исходные данные, величину прямого напряжения светодиодов можно с высокой точностью установить по цвету свечения. Типовые данные об этом физическом явлении сведены в таблицу.

Многие светодиоды имеют расчетный ток 20 мА. Существуют и другие виды элементов, у которых этот параметр может достигать значения 150 мА и выше. Поэтому для того чтобы точно определить номинальный ток, понадобятся данные о технических характеристиках светодиода. Если же нужная информация полностью отсутствует, номинальный ток элемента условно принимается за 10 мА, а прямое напряжение — 1,5-2 вольта.

Количество токоограничивающих резисторов напрямую зависит от схемы подключения полупроводниковых элементов. Например, если используется , можно вполне обойтись одним резистором, поскольку сила тока во всех точках будет одинаковой.

В случае параллельного соединения одного гасящего резистора будет уже недостаточно. Это связано с тем, что характеристики светодиодов не могут быть абсолютно одинаковыми. Все они обладают собственными сопротивлениями и такими же разными потребляемыми токами. То есть, элемент с минимальным сопротивлением потребляет большее количество тока и может преждевременно выйти из строя.

Следовательно, если выйдет из строя хотя-бы один светодиод из подключенных параллельно, это приведет к возникновению повышенного напряжения, на которое остальные элементы не рассчитаны. В результате, они тоже перестанут работать. Поэтому при параллельном соединении для каждого светодиода предусматривается собственный резистор.

Все эти особенности учтены в онлайн-калькуляторе. В основе расчетов лежит формула определения сопротивления: R = Uгасящее/Iсветодиода. В свою очередь Uгасящее = Uпитания — Uсветодиода.

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор. Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих . Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы .

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Основным параметром, влияющим на долговечность светодиода, является электрический ток, величина которого строго нормируется для каждого типа LED-элемента. Одним из распространенных способов ограничения максимального тока является использование ограничительного резистора. Резистор для светодиода можно рассчитать без применения сложных вычислений на основании закона Ома, используя технические значения параметров диода и напряжение в цепи включения.

Особенности включения светодиода

Работая по одинаковому принципу с выпрямительными диодами, светоизлучающие элементы, тем не менее, имеют отличительные особенности. Наиболее важные из них:

  1. Крайне отрицательная чувствительность к напряжению обратной полярности. Светодиод, включенный в цепь с нарушением правильной полярности, выходит из строя практически мгновенно.
  2. Узкий диапазон допустимого рабочего тока через p-n переход.
  3. Зависимость сопротивления перехода от температуры, что свойственно большинству полупроводниковых элементов.

На последнем пункте следует остановиться подробнее, поскольку он является основным для расчета гасящего резистора. В документации на излучающие элементы указывается допустимый диапазон номинального тока, при котором они сохраняют работоспособность и обеспечивают заданные характеристики излучения. Занижение величины не является фатальным, но приводит к некоторому снижению яркости. Начиная с некоторого предельного значения, прохождение тока через переход прекращается, и свечение будет отсутствовать.

Превышение тока сначала приводит к увеличению яркости свечения, но срок службы при этом резко сокращается. Дальнейшее повышение приводит к выходу элемента из строя. Таким образом, подбор резистора для светодиода преследует цель ограничить максимально допустимый ток в наихудших условиях.

Напряжение на полупроводниковом переходе ограничено физическими процессами на нем и находится в узком диапазоне около 1-2 В. Светоизлучающие диоды на 12 Вольт, часто устанавливаемые на автомобили, могут содержать цепочку последовательно соединенных элементов или ограничительную схему, включенную в конструкцию.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом – умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство – большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.


Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Существенный недостаток – выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.


Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

Формулы расчета резистора

Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:

  • напряжение цепи;
  • рабочий ток светодиода;
  • падение напряжения на излучающем диоде (напряжение питания светодиода).

Величина сопротивления определяется из выражения:

где U – падение напряжения на резисторе, а I – прямой ток через светодиод.

Падение напряжения светодиода определяют из выражения:

U = Uпит – Uсв,

где Uпит – напряжение цепи, а Uсв – паспортное падение напряжения на излучающем диоде.

Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).

Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:

(R – Rст)R 100%

Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.

Не менее важный параметр, сказывающийся на надежности работы – рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:

Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.

Имеется светодиод с падением напряжения на нем 1.7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.

Падение напряжения на ограничительном резисторе составляет:

U = 12 – 1.7 = 10.3 В

Сопротивление резистора:

R = 10.3/0.02 = 515 Ом.

Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.

Рассеиваемая мощность в ваттах:

P = 10.3 10.3/560 = 0.19 Вт

Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0. 25 Вт.

Подключение светодиодной ленты

Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.

Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.

Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.


Вот так светодиод выглядит в жизни:
А так обозначается на схеме:

Для чего служит светодиод?
Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

Подключение и пайка
Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности — катод имеет электрод большего размера (но это не официальные метод).


Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

Проверка светодиодов
Никогда не подключайте светодиодов непосредственно батарее или источнику питания!
Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор. Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Расчет светодиодного резистора
Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно. ..
Резистор R определяется по формуле:
R = (V S — V L ) / I

V S = напряжение питания
V L = прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)
I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода
Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно.
Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,
R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

Вычисление светодиодного резистора с использованием Закон Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где:
V = напряжение через резистор (V = S — V L в данном случае)
I = ток через резистор
Итак R = (V S — V L ) / I

Последовательное подключение светодиодов.
Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.
Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.


Пример расчета:
Красный, желтый и зеленый диоды — при последовательном соединении необходимо напряжение питания — не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.
V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).
Если напряжение питания V S 9 В и ток диода = 0.015A,
Резистором R = (V S — V L ) / I = (9 — 6) /0,015 = 200 Ом
Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!
Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…


Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый. ., что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

Цифробуквенные светодиодные индикаторы
Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны:)

Токоограничивающий резистор

— Build Electronic Circuits

Токоограничивающий резистор — это резистор, который используется для уменьшения тока в цепи.

Простой пример — резистор, включенный последовательно со светодиодом.

Обычно вам нужно установить токоограничивающий резистор последовательно со светодиодом, чтобы вы могли контролировать количество тока, протекающего через светодиод.

Если через светодиод проходит слишком большой ток, он перегорает слишком быстро. Если через него проходит слишком малый ток, этого может быть недостаточно для включения светодиода.

Расчет необходимого номинала резистора

Проверьте техническое описание вашего компонента, чтобы найти падение напряжения и соответствующий ток для вашего светодиода.

Если вы не можете найти таблицу, попробуйте ее.

Подключите последовательно светодиод и резистор к источнику переменного напряжения. Начните с 0 вольт и постепенно увеличивайте напряжение, пока не загорится светодиод.

Измерьте напряжение на светодиоде и ток, проходящий через него.

Допустим, светодиоду требуется 15 мА, а падение напряжения составляет 2 вольта. У вас есть источник питания 5 В, которым вы хотели бы его запитать. Какой номинал резистора вам нужен?

Чтобы найти номинал резистора, мы начинаем с определения падения напряжения на резисторе. Так как на светодиоде падение напряжения составляет 2 В, на резисторе будет падение напряжения на 3 В.

Хорошо, у нас есть 3 В, и мы хотим, чтобы через резистор и светодиод проходил ток 15 мА.

Чтобы найти необходимое сопротивление резистора, воспользуемся законом Ома.

это дает нам

Итак, необходимое значение резистора ограничения тока составляет 200 Ом.

Выбор подходящего резистора

Итак, вы знаете, что вам нужен резистор на 200 Ом.

Но если вы посмотрите на компоненты, вы обнаружите, что существует несколько различных типов резисторов.

Что ж, единственное, о чем вам нужно знать, — это номинальная мощность компонента. Какой эффект может выдержать резистор?

Итак, вам нужно выяснить, какой эффект будет рассеиваться на вашем резисторе.

Чтобы найти это, воспользуйтесь следующей формулой для расчета мощности

В нем указано, что мощность равна току, умноженному на напряжение.Получаем

Это означает, что ваш резистор должен выдерживать не менее 45 мВт.

Обычно большинство резисторов рассчитаны на мощность от 250 мВт и выше, поэтому будет легко найти подходящий резистор.

Возврат от токоограничивающего резистора к электронной схеме

Определение номиналов светодиодных резисторов — ProtoSupplies

Определение номиналов светодиодных резисторов

Комбинированный светодиод 5 мм, 20 шт. В упаковке

Светодиоды

работают, пропуская через них ток, который заставляет их излучать свет.Чем больше тока проходит через светодиод, тем ярче он будет. Светодиоды обычно не ограничивают количество тока сами по себе, поэтому, если вы подключите светодиод до 5 В и заземлите, вы обычно получите очень яркий светодиод на секунду или две, прежде чем он выйдет из строя.

Чтобы избежать повреждения светодиода или, возможно, схемы возбуждения, которая управляет светодиодом, для большинства светодиодов потребуется резистор ограничения тока (также иногда называемый резистором падения напряжения), соединенный последовательно с выводом возбуждения светодиода, чтобы ограничить ток до безопасного уровня. уровень.Есть светодиоды со встроенными токоограничивающими резисторами, но они встречаются редко.

Если светодиод состоит из нескольких светодиодов в одном корпусе с несколькими выводами привода, например, с RGB или 7-сегментными светодиодами, для каждого из выводов привода потребуется собственный резистор, ограничивающий ток. Возможно использование одного резистора на общем выводе, который подключается либо к Vcc, либо к земле, но тогда яркость светодиода будет варьироваться в зависимости от того, какие выводы управляются, и эта стратегия обычно дает неудовлетворительные результаты.

Расчет правильного номинала резистора для использования довольно просто по следующей формуле.

R = номинал резистора в омах
Vcc = рабочее напряжение цепи, которое обычно составляет 5 В или 3,3 В
Vled = падение напряжения на светодиоде
Iled = желаемый ток через светодиод в амперах

В качестве примера, если цепь работает при 5 В, падение напряжения на светодиодах составляет 2 В и требуется ток возбуждения 20 мА, формула выглядит следующим образом:

В данном случае правильное значение резистора составляет 150 Ом.

Иногда значения могут быть неизвестны, но они могут быть определены или оценены экспериментально достаточно хорошо, чтобы избежать повреждений.

Если максимальный ток светодиода неизвестен, можно с уверенностью предположить, что большинство светодиодов будут работать с током не менее 20 мА. 20 мА также является максимальным потребляемым током, который можно с уверенностью предположить, что выходные контакты микроконтроллеров могут поддерживать, поэтому, если есть сомнения, снизьте уровень около 20 мА или меньше. Многие светодиоды будут иметь хорошую яркость примерно на 10 мА, а работа при более низком токе снижает нагрузку на все и снижает общее энергопотребление.Это может быть особенно важно для оборудования с батарейным питанием.

Если падение напряжения светодиода неизвестно, просто подключите светодиод к напряжению 5 В и заземлите его, используя более мощный токоограничивающий резистор с сопротивлением не менее 330 или 470 Ом, чтобы гарантировать, что токи поддерживаются на безопасном уровне. Затем измерьте падение напряжения на 2 выводах светодиода с помощью вольтметра. Обратите внимание, что точное падение напряжения будет немного отличаться в зависимости от силы тока, протекающего через светодиод.

Есть некоторые светодиоды, для которых может потребоваться более сильный ток, чем 20 мА, например, некоторые ИК-светодиоды или светодиоды высокой мощности, но они, как правило, снабжены необходимой информацией для их правильного управления.Из-за более строгих требований к приводу эти светодиоды обычно управляются специализированными схемами драйверов, а не напрямую от контактов микроконтроллера.

Полезные ссылки:

Калькулятор светодиодного резистора

Что такое токоограничивающий резистор и его функция?

Введение

В схеме резистор включен последовательно с другими компонентами, и выходной сигнал в серии отсутствует.Следовательно, при коротком замыкании последовательных компонентов напряжение, приложенное к резистору, не сожжет резистор. Такой резистор является резистором-ограничителем тока. В противном случае он называется не токоограничивающим резистором, а защитным резистором или нагрузочным резистором.

Каталог

I Что такое резистор ограничения тока?

Токоограничивающий резистор — это защитный резистор, подключенный последовательно, чтобы избежать перегорания прибора из-за чрезмерного тока.Принцип заключается в уменьшении тока за счет увеличения общего сопротивления нагрузки. Как правило, он также может играть роль парциального давления. Обычно в локальной цепи резистор, который не выполняет других функций последовательно с потребителем, можно рассматривать как ограничивающий ток резистор для ограничения величины тока.

Многие компоненты имеют ограничение на максимальный входной ток. Если входной ток слишком велик, компоненты не будут работать должным образом или даже перегорят.Чтобы контролировать ток, добавьте резистор на входе, чтобы уменьшить силу тока и избежать ненужных рисков.

Светодиоды и резисторы ограничения тока Простое объяснение

II Как работает резистор ограничения тока?

Резистор RL — это нагрузочный резистор, R — резистор регулятора напряжения (также называемый токоограничивающим резистором), а D — стабилитрон. Согласно принципу конструкции схемы регулятора напряжения, когда входное напряжение практически постоянно, RL становится меньше, ток, протекающий через RL, увеличивается, но ток, протекающий через D, уменьшается.

Токоограничивающий резистор используется для уменьшения тока на стороне нагрузки. Например, добавление токоограничивающего резистора на одном конце светодиода может уменьшить ток, протекающий через светодиод, и предотвратить повреждение светодиодной лампы.

III Роль токоограничивающего резистора

С точки зрения основного процесса выпрямления и фильтрации низкое и высокое напряжение одинаковы. Нарисуйте схему выпрямления и фильтрации, как показано на рисунке 1, а затем скажите: «Ключ к проблеме в том, что на конденсаторе нет заряда до включения питания.Напряжение равно 0 В, и напряжение на конденсаторе не может быть изменено. То есть в момент замыкания концы выпрямительного моста (между P и N) соответствуют короткому замыканию. Поэтому при включении питания возникают две проблемы:

Первая проблема заключается в большом пусковом токе, как показано кривой 1 на рисунке, что может привести к повреждению выпрямителя. Вторая проблема заключается в том, что напряжение на входящей линии мгновенно упадет до 0 В, как показано кривой 2 на рисунке.Эти две функции, схемы выпрямителя высокого и низкого напряжения абсолютно одинаковы. «

Рис. 2. Далее: «Схема низковольтного выпрямителя должна быть понижена с помощью трансформатора. Обмотка трансформатора представляет собой большую катушку индуктивности. Она действует как барьер и может ограничивать пусковой ток во время включения, как показано на кривая 1 на рисунке (а). В выпрямительной цепи инвертора такого барьера нет, и пусковой ток намного более серьезен, как показано кривой 1 на рисунке (b).

Что касается формы волны напряжения на входной стороне, фактически в схеме низковольтного выпрямителя вторичное напряжение трансформатора также мгновенно падает до 0 В, как показано на кривой 2 на рисунке (a). Но отражение от исходной стороны трансформатора, такое мгновенное понижение, буферизуется, как показано на кривой 3 в (a), не мешает другим устройствам в той же сети.

В схеме выпрямителя инвертора такого буфера нет, и его входящее напряжение является напряжением сети.Следовательно, в момент закрытия напряжение в сети должно упасть до 0 В, что повлияет на нормальную работу другого оборудования в той же сети, что обычно называется помехой. Следовательно, между выпрямительным мостом и конденсатором фильтра необходимо подключить токоограничивающий резистор RL.

Когда подключен токоограничивающий резистор, пусковой ток во время включения будет уменьшен. В то же время мгновенное падение напряжения снижается на токоограничивающем резисторе, который решает форму волны напряжения на стороне источника питания.Подождите, пока напряжение на конденсаторе не поднимется до определенного уровня, а затем замкните накоротко токоограничивающий резистор.

Размер закорачивающего устройства (тиристора или контактора) зависит от мощности инвертора, но сопротивление и емкость токоограничивающего резистора не сильно отличаются. Что здесь происходит?

IV Конкретные примеры работы токоограничивающего резистора

Поговорим об этом отдельно.Сначала посмотрите на токоограничивающий резистор RL. Собственно говоря, в инверторе большой емкости допустимый ток выпрямителя тоже очень велик. Емкость конденсатора фильтра также должна быть большой, сопротивление токоограничивающего резистора должно быть небольшим, а емкость (мощность) — большой. Но давайте посмотрим на пример. Предполагая, что значение сопротивления выбранного токоограничивающего резистора составляет RL = 50 Ом, каков максимальный пусковой ток, даже если напряжение источника питания равно значению амплитуды ULM = 1.41 & ВРЕМЯ; 380 = 537В? ”

Только чуть больше 10А.

И, если предположить, что емкость конденсатора фильтра составляет 5000 мкФ, сколько времени занимает зарядка?

T = RLC = 50 & TImes; 5000 = 250000 мкс = 250 мс = 0,25 с

Это постоянная времени зарядки, и время зарядки должно быть от 3 до 5 раз. То есть время зарядки составляет от 0,75 до 1,25 с. Единая точка клетки составляет около 1 с.

Такой зарядный ток и такое время зарядки приемлемы для инверторов большинства размеров? Поэтому, чтобы уменьшить количество типов других компонентов, производитель принял практику выбора токоограничивающих резисторов одной и той же спецификации для инверторов с различными характеристиками.

Что касается мощности (мощности) резистора, поскольку время прохождения тока в RL очень короткое, всего 1 с, время, чтобы фактически достичь 10A, короче. Поэтому в целом мощность не менее 20Вт. Посмотрите на байпасный контактор КМ. Тем не менее используйте конкретные примеры, чтобы проиллюстрировать это.

Предположим, что мощность двигателя составляет 7,5 кВт, 15,4 А. Мощность инвертора 13кВА, 18А.

Вообще говоря, емкость промежуточного контура и входная мощность инвертора должны быть равны.Когда напряжение источника питания составляет 380 В, среднее значение постоянного напряжения составляет 513 В. Итак, насколько большим должен быть постоянный ток? ”

Три контакта контактора могут использоваться параллельно, если контактора на 10 А достаточно.

Однако, если вы используете тиристор, вам все равно нужно использовать 30А.

Тогда, если мощность двигателя 75кВт, 139,7А. Мощность инвертора 114кВА, 150А. Каков размер подрядчика?

Следует выбирать контакторы с номинальным током 80 А.

В Причина возгорания токоограничивающего резистора

Почему токоограничивающий резистор дымит и дует? Возможны три причины перегорания токоограничивающего резистора.

Первая возможность состоит в том, что емкость токоограничивающего резистора выбрана небольшой. Поскольку ток, протекающий в токоограничивающем резисторе, экспоненциально затухает, а продолжительность очень мала, как показано на рисунке 4.Поэтому его емкость можно выбрать меньшей. Чтобы снизить стоимость компонентов, некоторые производители инверторов часто принимают меньшие значения при определении емкости токоограничивающего резистора. Однако на практике ток IR, протекающий через токоограничивающий резистор, связан с сопротивлением RL токоограничивающего резистора и емкостью CF сглаживающего конденсатора. Сравнивая графики (а) и (б), RL большой: начальное значение тока небольшое, но длительность тока большая.

Сравнивая рисунок (b) с рисунком (c), известно, что CF велик и продолжительность тока будет увеличиваться. Поэтому, строго говоря, емкость RL также должна быть отрегулирована соответствующим образом. Однако, как упоминалось ранее, нет строгих требований к процессу зарядки конденсатора фильтра. Следовательно, нет четкого регулирования сопротивления и емкости RL. В общем, если RL ≥ 50 Ом, PR ≥ 50 Вт не проблема.

(а) RL = 80 Ом, CF = 1000 мкФ (б) RL = 40 Ом, CF = 1000 мкФ (в) RL = 40 Ом, CF = 2000 мкФ

Вторая возможность состоит в том, что конденсатор фильтра вышел из строя.У каждого устройства с электролитами есть особенность: им всегда пользуешься, его непросто сломать. Если вы не используете его часто, он сломается. Если инвертор хранится на складе более года, вы должны сначала открыть крышку и осмотреть конденсатор фильтра, чтобы убедиться, что это «барабан»? Есть ли утечка электролита? Характерным признаком износа электролитических конденсаторов является, во-первых, увеличение тока утечки.

Инвертор, который долгое время не использовался, внезапно добавляет высокое напряжение, и ток утечки электролитического конденсатора может быть довольно большим.При первом включении питания изнутри инвертора идет дым. Вполне вероятно, что электролитический конденсатор серьезно протекает или даже закорочен. Напряжение постоянного тока выше 450В сложно зарядить, закорачивающее устройство не работает, а токоограничивающий резистор включен в цепь на длительное время. Конечно, он должен дымить и дуть.

Когда электролитический конденсатор в это время не используется, сначала необходимо добавить около 50% номинального напряжения, а время прессования должно составлять более получаса, как показано на рисунке 5.Его ток утечки упадет, и он будет использоваться в обычном режиме.

Сначала используйте мультиметр, чтобы измерить, не закорочен ли конденсатор. Если короткого замыкания нет, то внешне нет ничего необычного. Как показано на рисунке, через полчаса включения конденсатор можно восстановить.

Третья возможность заключается в том, что байпасный контактор KM или тиристор не работают. В результате токоограничивающий резистор подключается к цепи на длительное время.

Устройство байпаса должно срабатывать, когда конденсатор фильтра заряжен до определенной степени (например, напряжение превысило 450 В). Следовательно, при подтверждении того, что конденсатор фильтра не поврежден при включении питания, наблюдайте, работает ли байпасное устройство, когда напряжение постоянного тока UD достаточно увеличивается.

Одним из специальных методов является подключение вольтметра PV1 параллельно токоограничивающему резистору, а также подключение вольтметра PV2 к обоим концам конденсатора фильтра, а затем подключение двух последовательно соединенных лампочек к обоим концам конденсатора фильтра. как груз.Как показано на рисунке 6. Если после включения питания PV2 показывает, что UD достаточно велик, но показание PV1 не равно 0 В, байпасное устройство не работает.

Подключите нагрузку к цепи постоянного тока. Если нет нагрузки, в токоограничивающем резисторе не будет тока, даже если закорачивающее устройство не сработает, токоограничивающий резистор не сможет измерить напряжение.

Поскольку электролитический конденсатор обладает определенными индуктивными свойствами, он не может поглотить напряжение помех за короткое время, что легко приводит к неисправности «срабатывания защиты от перенапряжения».Конденсатор C0 используется для поглощения напряжения помех.

VI Расчет токоограничивающего резистора

Токоограничивающий резистор (RS):

(1) Обеспечьте рабочий ток ВЗ.

(2) Защитите VZ от повреждений при перегрузке по току.

Два крайних случая:

1. (Входное напряжение VS)

VS = VS (мин.), IL = IL (макс.) (IL — рабочий ток нагрузки) Когда VS = VS (макс.), IL = IL (мин.)

VII Как выбрать резистор ограничения тока

Как выбрать резистор ограничения тока?

Во-первых, вы должны знать рабочий ток и рабочее напряжение выбранного вами светодиода.Обычно рабочий ток светодиода 0805 составляет около 5 мА, а напряжение зависит от цвета светодиода; рабочие напряжения красного, зеленого, синего и белого светодиодов не соответствуют друг другу. Для получения подробной информации, пожалуйста, перейдите по этой ссылке: SMD 0805 Ток питания светодиода, токоограничивающий резистор и яркость

На примере красного светодиода рабочее напряжение составляет 2 В, а рабочий ток установлен на 5 мА.

R = U / I = (4,2-2) / 5 = 440 Ом. Учтите, что у вас двигатель 4.Батарея 2 В, токоограничивающий резистор может быть немного меньше, и вы можете выбрать 330 Ом.

Обратите внимание, что рабочий ток не должен быть слишком большим, иначе это повлияет на срок службы светодиода.


7.1 Как выбрать резистор ограничения тока светодиода?

Расчет относительно прост, но рекомендуется освоить метод расчета: метод следующий:

1, по формуле: U / I = R

2, в соответствии с типичным напряжением в спецификации светодиодного общего белого света, синий свет составляет 3.2 В при 20 мА желтый, красный 2,0 В при 20 мА

3. По электрическому току возбуждения светодиода. Обычная пиранья 20 мАч может достигать 50 мА, высокая мощность может достигать 350 мА или выше

4. Начало расчета. В качестве примера взята обычная белая светоизлучающая трубка: R = U (падение напряжения на резисторе) / I (ток через резистор) устанавливает напряжение возбуждения равным 12 В; тогда R = (12-3,2 В) / 0,02 А = 8,8 В / 0,02 А = 440

Опыт

Ом: Чтобы продлить срок службы продукта, общий ток привода меньше, чем типичное значение тока привода.Такие как обычные диоды около 15мА.


7.2 Как выбрать токоограничивающий резистор стабилитрона?

Стабилитроны могут быть подключены последовательно для использования при более высоких напряжениях, а более стабильные напряжения могут быть получены путем последовательного подключения.

Стабилитрон действует как регулятор напряжения. Когда ток нагрузки уменьшается, падение напряжения на токоограничивающем резисторе уменьшается, а выходное напряжение увеличивается, то есть обратное напряжение стабилитрона относительно увеличивается, а ток стабилитрона IZ увеличивается, в результате чего IRS также возрастает, Падение напряжения на трубке токоограничивающего резистора RS возрастает, выходное напряжение падает, а выходное напряжение остается неизменным.Недостатком является невозможность получения большого выходного тока.

Процентное соотношение регулирования напряжения:% V.R

Стабильность напряжения, чем ниже коэффициент, тем лучше. При изменении входного напряжения постоянного тока VS или тока нагрузки IL выходной сигнал Vo может оставаться в определенном диапазоне.

VNL: Выходное напряжение без нагрузки VFL: Выходное напряжение при полной нагрузке

Пример: Показанный выше регулятор имеет выходное напряжение 7,5 В при отсутствии нагрузки и 7.4 В при номинальном токе на выходе, и достигается стабильность напряжения регулятора.

Ⅷ FAQ

1. Что такое токоограничивающий резистор?

Токоограничивающий резистор регулирует и снижает ток в цепи. Это уравнение и калькулятор помогают определить значение резистора, добавляемого к светоизлучающему диоду (LED) , чтобы он мог ограничивать ток, проходящий через светодиод. Расчет также определяет, сколько энергии потребляет светодиод.

2. Как найти токоограничивающий резистор?

Одиночные светодиоды

При вычислении значения резистора, ограничивающего ток для одиночного светодиода, основная форма закона Ома — V = IR — принимает следующий вид: где: Vbatt — напряжение между резистором и светодиодом. Vled — прямое напряжение светодиода.

3. Какова формула тока резистора?

Ток резистора I в амперах (A) равен напряжению резистора V в вольтах (V), деленному на сопротивление R в омах (Ω): V — падение напряжения на резисторе, измеренное в вольтах (V).

4. Зачем светодиодам нужны токоограничивающие резисторы?

В случае светодиодных лент или коммерческого освещения устанавливаются токоограничивающие резисторы, чтобы минимизировать влияние колебаний источника напряжения. Эти светодиодные фонари часто указывают напряжение, при котором они работают, и что для них требуются драйверы светодиодов постоянного напряжения. Подберите источник питания, подходящий для вашей светодиодной конфигурации.

5. Как найти токоограничивающий резистор для светодиода?

Вы должны быть уверены, что номинальная мощность (мощность) вашего резистора достаточна для используемой мощности.Уравнение мощности: предположим, вы используете приведенный выше светодиод с напряжением питания 12 В, прямым напряжением светодиода 3,9 В и общим прямым током 1400 мА.

6. Уменьшает ли резистор ток или напряжение?

Вкратце: резисторы ограничивают поток электронов, уменьшая ток. Напряжение возникает из-за разницы потенциальной энергии на резисторе.

7. Влияет ли резистор на напряжение?

Чем больше резистор, тем больше энергии используется этим резистором и тем больше падение напряжения на этом резисторе…. Кроме того, законы Кирхгофа для цепей гласят, что в любой цепи постоянного тока сумма падений напряжения на каждом компоненте цепи равна напряжению питания.

8. Какой резистор используется в качестве токоограничивающего устройства?

Токоограничивающий резистор — это резистор, который используется для уменьшения тока в цепи. Простой пример — резистор, включенный последовательно со светодиодом. Обычно вам нужно установить резистор, ограничивающий ток, последовательно со светодиодом, чтобы вы могли контролировать количество тока через светодиод.

9. В чем разница между текущим напряжением и сопротивлением?

Напряжение — это разница зарядов между двумя точками. Ток — это скорость, с которой течет заряд. Сопротивление — это способность материала сопротивляться потоку заряда (тока).

10. Какое ограничение по току на блоке питания?

Ограничение тока — это защита чувствительных устройств от больших токов, которые могут возникнуть при нормальной работе или из-за неисправностей.Самая простая форма устройства ограничения тока — предохранитель.


Вас также могут заинтересовать :

Классификация сопротивления и ее параметры

Что такое термистор и как он работает?

Что такое измеритель сопротивления изоляции и как его проверить?

Что такое резистор и его функции?

Альтернативные модели

Часть Сравнить Производителей Категория Описание
ПроизводительЧасть #: KA7909TU Сравнить: Текущая часть Производитель: Fairchild Категория: Регуляторы напряжения Описание: FAIRCHILD SEMICONDUCTOR KA7909TU Линейный регулятор напряжения, 7909, фиксированный, от -35В до -10В на входе, -9В и 1А на выходе, TO-220AB-3
ПроизводительЧасть #: KA7909 Сравнить: КА7909ТУ VS КА7909 Производитель: Fairchild Категория: Описание: 3-контактный регулятор отрицательного напряжения на 1 А
ПроизводительНомер детали: TS7909CZ Сравнить: KA7909TU VS TS7909CZ Производитель: Taiwan Semiconductor Категория: Линейные регуляторы Описание: В РЕГ -9В, 7909, ТО-220-3; Тип регулятора напряжения: фиксированный отрицательный; Напряжение, макс. Вход: -11 В; Напряжение, макс. Выход: -9….
Номер детали: KA7909 Сравнить: КА7909ТУ VS КА7909 Производитель: Samsung Категория: Описание: Стандартный стабилизатор с фиксированным отрицательным сопротивлением, 9 В, PSFM3
Светодиод

с ограничителем тока — Введение в Arduino

Объектив

Безопасное зажигание светодиода с помощью цепи токоограничивающего балластного резистора.

Светодиод — это светоизлучающий диод , тип полупроводникового компонента. который излучает свет прямо из тока. Свет получается из заряженные электроны движутся между квантовыми состояниями, и поэтому свет излучаемый имеет узкие спектральные полосы, цвет которых зависит от конкретного химический состав. Белые светодиоды на самом деле представляют собой составную структуру из несколько светодиодов разного цвета. Белый светодиод по-прежнему узкополосный, в отличие от белого света с широким спектром черного тела, излучаемого лампы накаливания.

Диод — это двухконтактный полупроводниковый прибор, который только проводит ток в одном направлении. По этой причине светодиоды поляризованы, , а не загорится при обратном подключении ( с обратным смещением ).

Однако диоды не являются резисторами: при увеличении напряжения на них они будет темным, пока напряжение не станет выше, чем прямое напряжение , затем ток и яркость резко увеличиваются по мере того, как напряжение продолжает расти.Однако это создает проблему, поскольку светодиод, подключенный напрямую к источнику питания с напряжением выше, чем прямое напряжение войдет в очень низкое сопротивление состоянии, проводят много тока и часто перегорают или плавятся.

Мы часто решаем эту проблему, используя балластный резистор последовательно с ВЕЛ. Это образует делитель напряжения, который действует как очень простой регулятор тока. В показанной испытательной схеме R1 и R2 действуют вместе последовательно как балласт. В для большинства применений достаточно одного балластного резистора; переменный резистор включен сюда только в демонстрационных целях.

Типичный красный светодиод имеет прямое напряжение 1,6 В и полный рабочий ток. 20 мА. Расчет для выбора правильного балластного резистора выполняется следующим образом. рассуждение:

  1. ток, протекающий через резистор и светодиод, должен составлять 20 мА для полная яркость
  2. падение напряжения на резисторе должно привести к включению светодиода. напряжение примерно до прямого напряжения
  3. при напряжении питания 5 В падение напряжения на резисторе 3,4 В приводит к Напряжение светодиода до 1.6В
  4. для резистора \ (R = V / i \), поэтому R может быть приблизительно 170 Ом (т. Е. 3,4 В / 0,020 А).

Расчет номинала резистора ограничения тока для светодиодов

При расчете значения сопротивления для вашего токоограничивающего резистора необходимо учитывать несколько переменных. Во-первых, что такое напряжение питания, которое будет подаваться на светодиод? Во-вторых, что такое прямое напряжение выбранного вами светодиода? В-третьих, каково количество ток, который вы хотите протекать через светодиод? Отвечая на эти вопросы, вы сможете рассчитать номинал резистора.Чтобы начать процесса, вы должны знать, какое напряжение питания вы будете подавать на светодиод. Независимо от того, 12 В, 5 В или 3,3 В, это значение важно для расчета. сопротивления. Следующая необходимая информация — это прямое напряжение для конкретного используемого светодиода. Чтобы найти это информацию, вы должны ссылаться на техническое описание детали. Нападающий напряжение можно найти в разделе «Электрические характеристики» техническая спецификация. Ниже показано изображение прямого напряжения для Osram. Светодиод:

Как видно из рисунка, максимальное прямое напряжение светодиода равно 3.2В. Следующая необходимая информация — это текущий который должен проходить через светодиод. Чтобы найти эту информацию, на лист данных необходимо еще раз сослаться. Обычно эта информация показан в виде графика, показывающего прямой ток в зависимости от светового интенсивность. Ниже показан пример пары графиков из одного и того же Osram LED как раньше:

Эти графики показывают полезную информацию, необходимую для расчета нашего номинал резистора. График справа показывает относительный световой поток. против.прямой ток. Первый шаг — выбрать желаемую яркость. для вашего приложения. В этом примере мы будем использовать 1.0 для нашего значения. Из графика мы можем понять, что при относительной интенсивности 1,0 ток 350 мА прямой ток необходим. Теперь информация из графика на left необходимо указать. Из графика видно, что для форварда ток 350 мА, на светодиодах будет прямое напряжение 2,8 В. После обнаружив это, у нас есть вся информация, необходимая для расчета значение резистора ограничения тока.Уравнение показано ниже:

RCL = VIN − VfIf

Где RCL — сопротивление токоограничивающего резистора, VIN — напряжение питания, Vf — прямое напряжение светодиода, а If — прямой ток в амперах. Для выбранного примера уравнение будет выглядеть так:

RCL = 5−2.8.350

Из этого уравнения мы можем рассчитать сопротивление как 6,28 Ом. (при напряжении питания 5В). Хотя для большинства светодиодов этого не требуется количество тока для работы (в большинстве таблиц указано 20 мА), это все еще может показать, как найти и использовать информацию в таблице данных найти номинал токоограничивающего резистора.

светодиод без резистора

светодиод без резистора

Никогда не подключайте светодиод без резистора, в основном

<Дом Ника - Ник Парланте 8/2012

При подключении светодиода всегда должен использовать токоограничивающий резистор для защиты светодиода от полного напряжения. Если подключить светодиод напрямую к 5 В без резистора, светодиод будет перегружен, некоторое время будет очень ярким, а затем перегорит. Вот что они говорят.

Сегодняшний эксперимент: светодиоды без резисторов

Но предположим, что мы подключаем светодиод напрямую к 5 вольтам — точно так, как вы не должны этого делать — но затем очень быстро включаем и выключаем напряжение, например включается на 1 миллисекунду, затем выключается на 9 миллисекунд (примерно в 10% случаев). Это называется широтно-импульсной модуляцией, ШИМ. С ШИМ светодиод имеет разумную яркость, но остается вопрос: короткие периоды прямого 5-вольтового подключения разрушают светодиод, или все в порядке? Отсюда сегодняшний эксперимент.Верхний светодиод управляется обычным способом с помощью ограничивающего ток резистора, так что это управление. Ниже расположены 4 светодиода в ряд. Светодиоды управляются через ШИМ с различным процентом, чтобы увидеть, как их яркость сохраняется с течением времени.

  • Крайний правый, наименее яркий светодиод управляется ШИМ, чтобы он был включен 0,4% времени (1 из 256)
  • Второй справа светодиод управляется ШИМ и горит 6,3% времени (16 из 256). Когда эксперимент начался, яркость этого светодиода была примерно такой же, как у контрольной.Я полагаю, что для того, чтобы использовать эту технику в проекте, это правильный уровень для использования.
  • Третий справа светодиод управляется ШИМ, чтобы он был включен 50% времени (128 из 256)
  • Последний «пульсирующий» светодиод постоянно изменяется в пределах от 0% до 50% PWM, просто для удовольствия.

Я запустил его 3 августа 2012 г., так что посмотрим, как они справятся (эксперимент в настоящее время можно увидеть в моем офисе Gates). В начале эксперимента светодиоды PWM показывают три уровня яркости, как и следовало ожидать.Я подозреваю, что светодиод 50% действительно перегружается и, в конце концов, тускнеет или перегорает или что-то в этом роде. Посмотрим. Этот эксперимент был построен на плате Arduino с открытым исходным кодом, которая представляет собой симпатичный маленький компьютер за 25 долларов для подобных художественных и хобби-проектов.

Но зачем вам это делать?

Я был мотивирован взглянуть на это, потому что самый необычный тайник в мире, The Dragon Puzzle, сжигает слишком много мощных светодиодов. Оказывается, если вы управляете своими светодиодами через ШИМ, они потребляют примерно на 50% меньше энергии, чем при использовании старого резистора.Это также немного мотивирует просто из-за лени. Зачем возиться с подключением резистора, если вместо этого можно просто использовать ШИМ. Большинство современных микросхем имеют большую мощность ШИМ. Резистор — своего рода грубое решение, мешающее всем этим плохим электронам. С PWM мы решаем эту проблему программно, модным способом. Ну бедра, если не перегорел светодиод.

Передача: SMD 0805 Светодиодный резистор ограничения тока питания и яркости

SMD 0805 Светодиодный резистор ограничения тока и яркости

SMD 0805 светодиода таблица тока, напряжения, яркости:

  Vf If (Operator) Яркость

 1.74v 0.46mA не слепить свет в самый раз (рекомендуется)

 1,81 В 1,7 мА Там же.

 1,86 В 4,14 мА также можно оценить ночью, чтобы увидеть ослепительный

 1.89v 8mA хорошие блики (можно поместить в полупрозрачный материал, когда индикатор)

 Supra 1.91v 14mA (сопротивление и нажатие)

 1,90 В 18,1 мА выше, высокая температура

 1.90v 20mA выше, высокая температура, кратковременное ускорение светового распада   

в заключении:

Если: 20 мА или меньше может работать, но чем больше ток нагрева, тем короче срок службы.0,1 мА может видеть свет, т.е. при использовании светодиодов рекомендуется примерно 1 мА;

Вф: диапазона напряжения 0,2В не будет.

Обычно достаточно 2–5 мА. Требуемый расчет ограничивающего резистора, вы — светодиодное падение рабочего напряжения (обычно красный — 2 В, зеленый синий — 3 В, в зависимости от обстоятельств) / ток, который вам нужен, это сопротивление ограничивающего резистора.

Например: рабочее напряжение 5 В, падение напряжения на красном диоде 2 В, расчетный ток 2 мА, резистор = (5-2) / 0.002 = 1500, потребовалось сопротивление 1,5К.

Протестируйте немного, результаты следующие:

СИНИЙ, ЗЕЛЕНЫЙ, БЕЛЫЙ три основных светодиода падение напряжения на 3В и более, кажется на 3В;

КРАСНЫЙ, ЖЕЛТЫЙ оба немного меньше падения напряжения 2В.

Облегчает расчет резистора ограничения тока.

Предлагает параметры яркого светодиода:

Красная капля: 1.Ток 82-1,88 В: 5-8 мА

Зеленая капля: 1,75-1,82 В Ток: 3-5 мА

Оранжевая капля: 1,7-1,8 В Ток: 3-5 мА

Синяя капля: 3,1-3,3 В Ток: 8-10 мА

Белая капля: 3,0-3,2 В Ток: 10-15 мА

5 мм выше — это параметры, их измерение, напряжение источника питания: 5 В, только для справки.

Q: длительная запись мощности допускает нормальный ток 25 мА, мгновенный ток 0.1 мс / 100 мА по спецификации.

Я сейчас разрабатываю импульс шириной 2 мс, ток 40 мА, не знаю, есть ли у меня проблема.

Фактическое использование там примерно 1 Вт зерна, старение 2 часа не имело проблем, но это не значит, что он не будет поврежден.

Обратился к технику производителя, сказал, что таких параметров нет, они не проверялись.

LED Срок службы светодиода и тепловыделение не имеют отношения только к мощности?

A: ширина импульса 2 мс, ток 40 мА, нет проблем, зависит от рабочего цикла.Если рабочий цикл составляет 100%, максимальный длительный непрерывный рабочий ток не превышает 20 мА. Если рабочий цикл равен 50% импульсного тока, 40 мА не должно быть большой проблемой. Вы можете быть эквивалентным с точки зрения потребляемой мощности при растущей потребности в продолжении работы, потому что влияние потраченных впустую усилий (лихорадка) напрямую влияет на срок службы светодиода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *