Параллельное подключение светодиодной ленты: Схема подключения монохромной светодиодной ленты длиной 5-10м с использованием диммера

Содержание

Параллельное подключение блоков питания светодиодной ленты

Параллельное соединение светодиодных лент

Светодиодная лента

Благодаря самоклеящейся основе, монтаж светодиодных лент прост и удобен дальше некуда. Для надежного приклеивания, монтаж светодиодных лент необходимо начинать с подготовки основания, о которой уже было сказано предостаточно в предыдущих советах. В общем, поверхность, на которую будет наклеиваться светодиодная лента, необходимо очистить от грязи и пыли, если необходимо, то еще и обезжирить. Плюс стараться избегать острых углов, чтобы лента надежно приклеилась, хотя светодиодные ленты можно клеить практически под любым углом за счет их большой эластичности. Рекомендуется также окрашивать поверхность ниши, куда монтируется светодиодная лента, в белый или серебристый цвет, чтобы отдача света была максимальной. Об этом также уже писалось ранее. Есть предложение напоследок рассмотреть вопрос схем подключения светодиодных лент, потому что у многих могут возникнуть некоторые вопросы на эту тему. Рассмотрим наиболее часто задаваемые вопросы.

Почему стоит уделить внимание схемам подключения светодиодных лент? Почему светодиодные ленты нельзя подключать, как попало?

Дело в том, что сегменты светодиодной ленты соединены между собой параллельно, и весь суммарный ток проходит по дорожкам, которые рассчитаны на мощность определенного количества светодиодов, расположенных на ленте. Ленты выпускаются в бобинах по 5 метров. Так вот именно на такую длину ленты (соответственно и количество светодиодов на ней) и рассчитаны её токопроводящие дорожки. В силу этих обстоятельств есть одно очень важное условие, которое необходимо соблюдать, собирая схему подключения светодиодной подсветки. Нельзя подключать последовательно* участки светодиодных лент так, чтобы их общая длина превышала 5 метров. Иначе токоведущие дорожки ленты просто не выдержат токовой нагрузки, перегреются и перегорят – лента выйдет из строя.

*Последовательное подключение (в контексте этой статьи) означает подключение к концу одной ленты начала другой и так далее.

Вот так подключать светодиодные ленты, если их суммарная длина более 5 метров, нельзя:

(схема последовательного подключения светодиодных лент – так лучше не делать)

Как же правильно подключить светодиодную подсветку, если длина подключаемой ленты больше 5 метров?

Если требуется выполнить подсветку участка длиной более 5 метров, придется отрезки светодиодной ленты подключить *параллельно, для этого, возможно, придется протянуть длинный соединительный провод, длиной 5 метров и более. Теперь ток ко второй ленте побежит по этому длинному проводу, а не по дорожкам первой ленты. Единственное, надо учесть, что длинный провод обладает большим сопротивлением. Поэтому, чтобы в нем не так ощутимо падало напряжение, этот удлиняющий провод лучше взять двойного сечения. Приблизительно 1,5 мм.кв. Помните, в предыдущем совете — Подготовка светодиодной ленты к монтажу, мы рассматривали вопрос, какие провода подойдут для соединения светодиодных лент.

*Параллельное подключение (в контексте этой статьи) означает подключение начала одной, начала второй и начала всех других лент в одной общей точке. Например, так, как показано на рисунке ниже:

(схема параллельного подключения светодиодных лент – это правильное решение)

Как вариант, можно расположить блок питания посредине двух длинных отрезков ленты. Соединительные провода на стороне 12 В при этом будут иметь минимальную длину, поэтому подойдут провода сечением 0,75 мм.кв. Схема будет выглядеть, например, вот так:

(схема параллельного подключения светодиодных лент с расположением блока питания посредине)

Если мощности одного блока питания не достаточно, чтобы запитать всю светодиодную ленту сразу, то можно применить схему подключения с использованием нескольких блоков питания:

(схема подключения светодиодных лент с двумя и более блоками питания)

Такая схема также может пригодиться, если один блок для питания всей подсветки слишком габаритный из-за большой мощности и не помещается в специальную нишу. При такой схеме, каждый из двух и более блоков питания будут иметь меньшие габариты и легко смогут спрятаться. Однако стоимость реализации такой схемы может возрасти. Два блока питания будут стоить дороже, чем один, даже если их общая мощность не превышает мощность одного блока питания.

Тут также стоит отметить, что провода на стороне 220 В достаточно также применить сечением не более 0,75 мм.кв. (но и не меньше для механической прочности), даже если это длинные провода, соединяющие все блоки питания между собой. Дело в том, что по стороне более высокого напряжения будут идти гораздо меньшие токи, чем по стороне низкого напряжения. Примерно в 18 раз меньше. Ведь потребляемая и выдаваемая мощности блока питания примерно одинаковы, а напряжение на входе в 18 раз больше (220 В / 12 В). Электрическая мощность рассчитывается произведением тока на напряжение, следовательно, если напряжение меньше, то ток больше на этот же коэффициент. Этот коэффициент называют коэффициентом трансформации. Для чего я это все тут пишу? Да, в общем-то, для общего развития 🙂 Может быть кому-то будет интересно или даже полезно.

А чем отличается схема подключения многоцветной RGB светодиодной ленты от схемы подключения обычной одноцветной светодиодной ленты?

Единственное отличие, это то, что при подключении многоцветной RGB светодиодной ленты в схеме подключения между блоком питания и лентой устанавливается RGB-контроллер. Схема подключения подсветки будет выглядеть примерно следующим образом:

(схема подключения многоцветной RGB светодиодной ленты)

Однако опять же эта схема будет работать нормально, если общая длина подсветки не превышает 5 метров.

А как быть, если суммарная длина светодиодной RGB-ленты превышает 5 метров? Какую схему подключения применить?

Можно применить схему с параллельным подключением отдельных участков и использованием удлиняющих проводов, наподобие той схемы, что используется при подключении от одного блока питания нескольких отрезков одноцветной светодиодной ленты с общей длиной больше 5 метров:

(схема подключения нескольких RGB светодиодных лент от одного блока питания)

Можно также, если получится конструктивно, применить схему, когда блок питания вместе с контроллером размещены посредине двух светодиодных лент, это позволит не применять длинные соединительные провода:

(схема параллельного подключения двух RGB-светодиодных лент с расположением блока питания и контроллера посредине – не нужны длинные соединительные провода, сечение провода можно применить не такое большое)

Однако в данном случае к недостаткам схемы (большая мощность и габариты блока питания, длинные соединительные провода) добавляется фактор загрузки RGB-контроллера (на выше приведенных рисунках — загадочное изображение разряженной батарейки). Ведь в данном случае через RGB-контроллер побегут суммарные токи всех отрезков светодиодных лент. А многоцветные ленты обычно имеют приличную мощность, как ни как три цветовых канала и каждый светодиод имеет по три кристалла. Лучшим решением в данной ситуации будет использование схемы с несколькими блоками питания. Но ведь посредником между блоком питания и RGB-лентой должен быть RGB-контроллер. А как же заставить отрезки многоцветной светодиодной ленты, подключенные к разным контроллерам, синхронно следовать сценарию подсветки, задаваемому пультом управления? — Никак. В данном случае каждая многоцветная светодиодная лента будет жить своей собственной жизнью, подчиняясь командам лишь своего контроллера. Выход из ситуации: использование двух и более блоков питания, применение одного RGB-контроллера совместно с RGB-усилителем (или несколькими усилителями, если блоков питания больше 2-х). Чтобы было проще представить то, о чем тут написано, предлагаю рассмотреть пример схемы подключения двух и более участков многоцветной светодиодной ленты, имеющих общую длину более 5 метров, с использованием нескольких блоков питания, одного RGB-контроллера и одного или больше RGB-усилителей.

Схема будет иметь следующий вид:

(схема подключения нескольких участков RGB-лент, общей длиной более 5 метров, с использованием RGB-усилителей)

В принципе, на картинке и так всё понятно, и лучше один раз увидеть, чем сто раз услышать, а тем более прочитать. Но, чтобы не было недопонимания и лишних вопросов, хочется всё-таки на всякий случай сделать акцент на контактах RGB-усилителя. А именно, что куда подключать. Усилитель для многоцветной светодиодной ленты имеет две клеммные колодки: «Вход» – «Input» (4 контакта) и «Выход» – «Output» (6 контактов). К входу усилителя подключаются четыре провода от предыдущей светодиодной ленты, по этим проводам передаётся сигнал управления от контроллера, но вход усилителя потребляет незначительный ток управления цветовыми каналами. К выходу также подключаются четыре провода уже следующей светодиодной ленты, а также два провода от еще одного блока питания, за счет которого собственно и усиливается управляющий сигнал. То есть через первую ленту протекает номинальный её ток, а подпитка энергии для второй и последующих лент осуществляются от второго и последующих блоков питания соответственно, усиливая управляющий сигнал, который поступает с одного общего контроллера.

Контроллер при этом не перегружается и все синхронно управляется с одного пульта. Единственное, надо постараться не перепутать провода и контакты. «Input(+)», «Input-R», «Input-G», «Input-B» – соответственно контакты для общего вывода («массы»), красного, зеленого и синего цветовых каналов первой ленты, которая подключена непосредственно к RGB-контроллеру. «Power(+)» и «Power(–)» — это «плюс» и «минус», поступающие от второго (или последующего) блока питания, за счет которого выполняется усиление управляющего тока для каждого цветового канала. «Output(+)», «Output-R», «Output-G», «Output-B» – соответственно контакты для общего вывода, красного, зеленого и синего цветовых каналов второй (или последующей ленты), для которой усилитель усиливает сигнал управления. Вот и вся премудрость. На самом деле все намного проще, чем казалось бы. Конечно же, последовательность расположения и обозначения разъемов на клеммных колодках усилителя в зависимости от его модели могут немного отличаться от описанных выше.
Но обычно производители все обозначения делают интуитивно понятными. Главное внимательно присмотреться и ничего не перепутать.

(клеммыне колодки RGB-усилилтеля)

Вместе с этим советом заканчивается цикл советов, посвященный вопросам, которые могут возникнуть при работе со светодиодными лентами. Автор постарался рассмотреть все самые интересные темы. Но даже если какой-то из вопросов остался без внимания, не стесняйтесь задавать вопросы в комментариях. Будем разбираться вместе. Всем удачи!!! И спасибо за внимание.

Источник: http://stinpo.com/advice/montazh-i-shemy-podklyucheniya-svetodiodnyh-lent=23

Есть две основные причины выхода из строя светодиодной подсветки:

  • не качественные светодиоды и блоки питания
  • не правильный монтаж и подключение с ошибками

Вот основные три правила и ошибки, на которые нужно обращать внимание в первую очередь.

1 правило

Светодиодная лента подключается параллельно, отрезками не более чем по 5 метров каждый.

Она даже продается катушками этого метража. А что если вам нужно подключить 10 или 15м? Казалось бы, подсоединил конец первого куска с началом второго и готово. Однако такое подключение запрещается. Почему так принято?

Потому что пять метров – это расчетная длина, которую могут выдержать токоведущие дорожки ленты. При большей длине, нагрузка будет превышать допустимую и лента обязательно выйдет из строя. Кроме того, будет наблюдаться неравномерность свечения. В начале ленты светодиоды будут светить ярко, а в конце гораздо тусклее.

Вот так будет выглядеть схема параллельного подключения светодиодных лент длиной превышающих допустимую:

При этом подключать ленту можно как с двух сторон, так и с одной. Подключение с двух сторон позволяет уменьшить нагрузку на токовые дорожки, а также помогает избежать неравномерности свечения в начале и конце ленты.

Особенно это важно на мощной ленте – свыше 9,6Вт/метр. Именно так советуют подключать профессионалы, которые занимаются установкой светодиодной продукцией долгие годы. Единственный жирный минус – приходится тащить дополнительные провода вдоль всего освещения.

Монтаж питания 220В

Если у вас не выполнены эл.монтажные работы, то предварительно необходимо подвести напряжение 220В к месту подключения ленты. Для этого штробите стену, либо укладываете кабельный канал и протягиваете по нему трехжильный кабель ВВГнг-Ls 3*1,5. Ведете его непосредственно до той распредкоробки, где будет подключаться питание светодиодной ленты.

Можно использовать существующую распаечную коробку, где подключено основное освещение. Главное чтобы место позволяло свободно подключить дополнительные провода и клеммники.

Выключатель на светодиодную ленту желательно устанавливать именно на провода 220 Вольт, а не перед лентой на отходящие 12-24В. В этом случае блок не будет работать постоянно. Тем более, импульсным блокам работать без нагрузки противопоказано. К тому же так будет выше уровень безопасности.

Предварительно проверьте и не перепутайте фазу, ноль и землю. Чаще всего, ноль бывает синего цвета, заземляющая жила – желто-зеленого, а фазная — любых других расцветок.
Но доверять только цветовой маркировке нельзя! Более подробно как без ошибок отличить ноль и фазу можно ознакомиться в статье «Как определить фазу и ноль в электропроводке».

Далее нужно от этой распредкоробки в штробе, гофрорукаве или в кабельном канале проложить кабель к будущему месту установки блока питания. Для его размещения монтируете удобную полочку. Изготовить ее можно из кусков фанеры или гипсокартона. Рядом размещаете и диммер.

Подключение диммера

Теперь необходимо подключить диммер. Здесь применяйте гибкий монтажный провод ПуГВ 1,5мм2 разных цветов. Например черный (для минусовых контактов) и красный (для плюсовых).

  • отмеряете и отрезаете необходимого размера провода
  • зачищаете концы и опрессовываете их наконечниками НШВИ

В первую очередь подключаете концы со стороны блока питания. Минусовой провод (черного цвета) соединяете с клеммой имеющей маркировку –V. Плюсовой провод (красного цвета) с клеммой промаркированной как +V.

Оба провода должны подключаться к диммеру со стороны Power IN (входное питание). Провод красного цвета подключаете на диммере к плюсовой клемме DC+, а другой провод к клемме минус DC-

Далее опять идут монтажные работы по прокладке провода. Протягиваете его в гофре от диммера, до места подключения к светодиодной ленте. Используйте тот же самый ПуГВ. При превышении общей длины светодиодной ленты и подсветки более 5 метров, ленты подключаются параллельно. Причем к каждой из них подводится отдельное питание.

Приступаете к подключению проводов к клеммам диммера. Они обычно имеют надпись и обозначаются как Output Led. Для надежного контакта зачищенные концы жил лучше обжать наконечниками.

  • на клеммы V- заводятся жилы черного цвета
  • на клеммы V+ красного

С обратного конца с этих же проводов снимается изоляция, они также обжимаются и при необходимости маркируются аналогичным образом.

Монтаж и пайка проводов на светодиодной ленте

Можно переходить к монтажу самой ленты. Для этого ее нужно отмерить и разрезать на нужные куски. Сделать это можно не в любом месте, а только там, где нанесен пунктир или нарисованы ножницы.

После резки, провода можно припаять к специальным контактам на ленте. Для этих же целей, а также для соединения отдельных кусков ленты друг с другом можно применить и коннекторы.

Ищите минусовой контакт и подсоединяете туда провода черного цвета. К контакту плюс идет соответственно другой провод – красный. Не разогревайте паяльник до максимума, иначе легко пережжете подложку. Рекомендуемое время пайки — до 10 сек.

Противоположные концы также зачищаются и на них устанавливаются наконечники НШВИ.

Еще раз запомните, что для лучшего охлаждения укладывать светодиодную ленту нужно только на профиль из алюминия. Монтируется он заранее.

После всех этих работ все жилы проводов выводятся в одно место и подключаются к соответствующим питающим проводам, с соблюдением фазировки (плюсовых и минусовых контактов).

Подключение лучше всего выполнять через клеммы Wago.

На этом монтаж можно считать законченным и закрыть всю конструкцию потолочным багетом.

Источник: https://domikelectrica.ru/montazh-i-podklyuchenie-svetodiodnoj-lenty/

Как подключить светодиодную ленту: схемы и способы подключения

Современный город украшают световые короба и вывески, изготовление которых предусматривает использование светодиодных лент и, соответственно, требует определенных знаний специфики подключения.

Как известно из общей физики, существует 2 способа соединения элементов электрической цепи: параллельное и последовательное.

Параллельное подключение это соединение, при котором резисторы соединяются между собой обоими контактами. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.


Последовательное подключениеэто соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Как правило, светодиодная лента подключается к блоку питания последовательно только до 5 метров.

Основные правила подключения светодиодной ленты

  • соблюдать полярность
  • не использовать блоки питания с другим напряжением
  • во влажные помещения следует делать герметичные соединения
  • не делать последовательное подключение длиной более 5 метров
  • отрезки длиной более 5 м следует подключать только параллельно

Чтобы правильно подключить светодиодную ленту в первую очередь необходимо знать:

  1. Мощность светодиодной ленты, т.е. потребления тока на 1 метр. Лента может потреблять от 4,8 до 36 Вт/м.п.
  2. Напряжение питания 12 В или 24 В.
  3. Количество ленты (в метрах погонных), необходимое для засветки изделия.
Используя данную информацию можно подобрать мощность и количество блоков питания (трансформаторов) необходимых для засветки изделия.

Пример расчета

Давайте рассмотрим на примере:

Допустим, что для засветки изделия потребуется 15 м.п. светодиодной ленты с напряжением 12 вольт и мощностью 9,6 Вт/м.п. (Данные параметры всегда заявлены компанией-производителем). Для расчета требуемой мощности блоков питания воспользуемся простым расчетом: 9,6 Вт/мп х 15 мп = 144 Вт.
Рассчитав мощность блоков, необходимых для засветки данного количества ленты, следует добавить 20% запаса мощности: 144 Вт + 20% = 172,8 Вт.
По итогу всех расчетов получается 173 Вт.

В зависимости от того, где расположено изделие можно использовать:
  • один блок мощностью 150 Вт и второй блок мощностью 20 Вт;
  • три блока мощностью 60 Вт каждый;
  • один блок мощностью 200 Вт.

Общая мощность блоков может быть выше 173 Вт, ниже − не желательно.

Для того, что бы лента светила равномерно и от противоположной стороны от блока питания не было затухания ленты, её необходимо подключать не более 5 метров в одну линию, далее подключение должно быть параллельным либо от другого блока питания.

Схема подключения светодиодной ленты

Очевидно, что с подключением светодиодной ленты справиться не сложно: достаточно обладать базовыми знаниями и не забывать основные правила подключения.

Если Вам требуется консультация в подборе светодиодной ленты и трансформаторов, а также расчете необходимого их количества, обращайтесь к любому из менеджеров в Вашем регионе. Мы с удовольствием Вам поможем!

Параллельное соединение светодиодной ленты — Морской флот

Сегодня светодиодные красивые ленты мы можем увидеть во многих местах: на фасадах зданий, магазинов, бутиков, супермаркетов и т. д. Они мигают разноцветными или одноцветными яркими огнями, подсвечивая рекламные щиты и билборды. Такие LED-ленты могут быть самых различных размеров и принимать различные формы, а также создавать заданные световые эффекты. Как можно соединить отрезки светодиодных лент между собой для того, чтобы получить длинное полотно, если они выпускаются всего лишь по 5 метров в мотке мы сейчас и рассмотрим.

Для чего необходимо соединять светодиодные ленты?

В основе LED-ленты лежит гибкая полоска, по всей длине которой через определённые равные промежутки размещены световые диоды. Соединяются они специальной последовательной цепью, идущей по электрическим гибким дорожкам. Они позволяют ленту разрезать на одинаковые куски, кратные трём по числу диодов. На каждой диодной ленте есть разметка для разреза, а рядом расположены небольшие площадки «пятачки» для подсоединения проводов.

Красивая светодиодная лента в катушке

С обратной стороны диодной ленты приклеена липкая лента с защитной плёнкой, с помощью которой можно фиксировать её практически на любую поверхность.

На сегодняшний день существует большое количество различных видов светодиодных лент, которые отличаются по типу свечения, цветовым характеристикам, а также по числу светодиодов, находящихся на 1 метре ленты.

Но так как LED-ленты продаются по 5 метров в одной катушке, то зачастую этой длины бывает недостаточно для того, чтобы создать необходимую фигуру из ленты, разместить её непрерывным украшением фасада магазина или другого объекта. Поэтому приходится её наращивать, то есть удлинять на необходимое количество метров или даже сантиметров. С помощью ленты из светодиодов можно украшать подвесные потолки, аквариумы, арки и т. д. Светодиоды могут быть расположены ленте в один или в два ряда, покрываются они специальным покрытием для защиты от влаги, но могут быть и без неё.

Светодиодная лента с двумя рядами диодов

Питаются LED-ленты от сети в 12 или 24 В, поэтому при их покупке необходимо обзавестись трансформатором, понижающим напряжение.

Способы соединения: паечный и коннекторный

Соединение осуществляется двумя известными нам способами: пайкой и пластиковыми съёмными коннекторами.

    Пайка ленты дешевле и надёжнее, чем любой другой метод. На подготовленной заранее ленте, разрезанной в определённом для этого месте и зачищенной в местах припоя, обнажаются два контакта, к которым и будут припаиваться провода или соединяться непосредственно две ленты.

Линия разреза светодиодной ленты для спайки

Если это разноцветная лента RGB, то здесь будет 4 контакта. Для пайки рекомендуют брать многожильные разноцветные гибкие провода около 0,75–0,8 мм в диаметре. Для каждого цвета необходимо брать провод с таким же цветом изоляции, а для общего вывода выбирается любой невостребованный цвет.

Для бесцветной LED-ленты берутся провода 2-х цветов, но для плюса и минуса предполагается свой цвет. Это необходимо делать для того, чтобы случайно не перепутать полюса (+ и -).

Платы LED-лент очень компактны, поэтому всё расположено рядом друг с другом. Сами светодиоды и дорожки имеют большую степень чувствительности к высокой температуре: дорожки могут просто отслоиться, а диоды потерять большую часть своей «жизненной энергии». При высоких паечных температурах происходит нарушение кристаллической структуры диодов, в результате чего светодиоды будут быстро выходить из строя. Поэтому пайка должна осуществляться только тонким паяльником с мощностью от 25 до 60 Вт и не больше пары секунд. Для пайки требуется убрать всего 5 мм оболочки на кончиках проводов, а чтобы они крепче припаивались к контактам на ленте, надо обязательно эти кончики хорошо залудить. Также нам нужна будет ещё и канифоль с тонким припоем.

Сращивать ленту рекомендуется только до 5 метров, так как сечение дорожек на ней достаточно маленькое, и если лента будет длиннее, то произойдёт снижение напряжения на них. В принципе, ничего страшного не будет, но светодиоды на самом конце светодиодной ленты не смогут светиться на 100% яркости.

    Соединение коннекторами LED-лент также является одним из способов, при котором нет необходимости паять контакты. Коннекторы представляют собой небольшие пластиковые зажимы и бывают для обычных и для разноцветных лент на два и четыре контакта.

Пластиковые коннекторы для быстрого соединения светодиодных лент

Иногда бывают случаи, когда LED-ленту приходится соединять в неудобных положениях, когда спаять её просто невозможно и тогда на помощь приходят именно коннекторы. С помощью защёлки на корпусе контакты надёжно зажимаются, и происходит соединение ленты механическим способом. Он является наиболее доступным, простым и лёгким. Но для такого типа соединения, так же как и для всех подобных соединений, предполагается переходное сопротивление, а также не исключается и вероятность процесса окисления. Таким образом, можно сказать, что пайка является самым лучшим типом соединения, хотя и более сложным, а также требует от человека определённого опыта работы с миниатюрными элементами.

Инструкция по соединению пайкой LED-ленты

Существует несколько способов соединения ленты, которые мы сейчас и рассмотрим более подробно.

Соединение паяльником ленты без проводов

  1. Подготавливаем паяльник с регулируемым температурным режимом от 250 до 350°С. При использовании мощного паяльника необходимо контролировать температуру, так как слишком высокая температура может повредить элементы ленты. Советуем использовать тонкий припой с канифолью. Перед работой тонкое «жало» паяльника очищаем металлической щёткой от лишних элементов и протираем мокрой губкой.

Маломощный паяльник с тонким жалом для светодиодной ленты

Подготавливаем два отрезка соединяемой ленты

Разрезанная лента с зачищенными контактами

Разрезанная светодиодная лента с нанесенным на контакты припоем

Спаянная светодиодная лента

Такая некачественная спайка происходит в том случае, если прогревается, как положено только одна лента.

После того как ленты просушатся, подсоединяем их к сети с необходим напряжением. Светодиоды должны хорошо гореть на спаянных лентах с двух сторон. Если происходит искрение или идёт дым, то это означает что произошло перекрёстное или неправильное дуговое соединение.

Спаянная 20 метровая светодиодная лента

Соединение с проводами

  1. Для того чтобы пайка была качественной необходимо разрезать аккуратно ленту также как мы и рассказывали выше и подготовить поверхности к пайке, покрыв их небольшим слоем тонкого припоя.

Правильно разрезаем светодиодную ленту

Провода двух цветов для спайки отрезков светодиодных лент

Сгибаем провода для пайки под углом

Припаянные к светодиодной ленте провода

Термоусадочная трубка для места спайки провода и светодиодной ленты

Два отрезка светодиодной ленты, соединенные пайкой с помощью двух проводов

Видео: Как спаять светодиодную ленту

Соединение LED-ленты пластиковыми коннекторами

Коннекторы из пластмассы или пластика являются наиболее быстрым и удобным способом соединения LED-лент и помогают в тех случаях, когда спаять паяльником контакты нет возможности.

Виды соединительных коннекторов

Коннектор — это небольшое пластиковое или пластмассовое устройство, которое имеет контакты, обеспечивающие простое и быстрое совмещение LED-лент. Бывают таких видов:

  • Без изгиба. Такие устройства предназначены для быстрого соединения диодных лент любых типов на прямолинейных участках. Позволяют сделать места соединения практически незаметными.
  • С изгибом. Это коннекторы, которые состоят из 2 элементов с проводами. Они предназначены для соединения лент с диодами в различных направлениях. Благодаря такой особенности строения коннектора из LED-лент можно создавать любые формы.
  • Угловые коннекторы. Они позволяют соединять ленты только под прямым углом в 90°.

Пошаговая инструкция по соединению

  1. Соединение коннекторами ленты не требует наличия никаких инструментов, кроме острых ножниц.

Разрезаем светодиодную ленту на две части

Отрезок светодиодной ленты с 6 диодами

Приготовленные для соединения два отрезка ленты и коннектор

Соединяем два отрезка светодиодной ленты

Два отрезка светодиодной ленты, соединенные обычным прямым коннектором без изгиба

Светящиеся светодиодные ленты, соединённые коннекторами

Коннектор для соединения разноцветной RGB ленты

Две разноцветные ленты, соединённые специальным многожильным коннектором

Установка диодной ленты в быстрый проводной коннектор

Также есть быстрые коннекторы с проводами для соединения диодных лент.

    Мы берём две ленты, которые будем соединять, а также коннектор с проводами и переворачиваем его широкой полосой белого цвета вверх.

Как правильно держать коннектор при соединении лент

Коннектор для светодиодной ленты с проводами

Соединение коннектором с проводами

Две соединённые светодиодные ленты одноцветные

Советы по использованию и монтажу ленты

  • Так как лента со световыми диодами — не совсем надёжное устройство, то рекомендуют производить монтаж с учётом последующего возможного демонтажа в случае её полного выхода из строя и невозможности ремонта.
  • С обратной стороны лента имеет липкий слой со съёмной защитной плёнкой. Для того чтобы закрепить ленту на выбранном участке, необходимо просто снять эту плёнку и сильно прижать ленту к месту её крепления. Если поверхность будет иметь шероховатости, то лента прилипнет плохо и через некоторое время может отпасть. Поэтому для надёжности можно просто на место установки ленты заранее приклеить полоску двухстороннего скотча, а затем уже на него прикреплять саму ленту.
  • Также есть специальные профили из алюминия, которые прикрепляются к поверхности саморезами, а затем уже ленту приклеивают к нему. К таким профилям прилагается рассеиватель из пластика, который позволяет скрыть светодиоды и создать более равномерный поток света. Такие профили могут стоить намного дороже самой ленты, поэтому можно воспользоваться недорогим пластиковым уголком, который крепится к поверхности обычными жидкими гвоздями.

Профили для крепления светодиодной ленты

Крепление светодиодной одноцветной ленты под потолком

Светодиодные ленты в интерьере бара

Блок питания для подключения светодиодных лент

Плюсы и минусы различных соединений

Давайте рассмотрим некоторые преимущества и недостатки соединения диодных лент двумя вышеуказанными способами, для того чтобы посмотреть, каким способом всё-таки лучше всего осуществлять соединение этих осветительных устройств.

Соединение коннекторами

ПреимуществаНедостатки
Легко монтируются и демонтируютсяБоязнь помещений с высоким уровнем влажности
Имеют множество различных типовБыстрое окисление контактов
Ленты могут соединять в различные формыНекачественные соединители (если купить плохие соединители, то контакта просто не будет и лента даже не засветится)
Не нуждаются в дополнительной изоляцииВидно место соединения двух отрезков ленты
Доступны в продаже
Недорогие по стоимости

Соединение пайкой

ПреимуществаНедостатки
Пайка позволяет делать ленты, которые затем могут изгибаться в любом направленииСложность пайки без опыта
Надёжность соединенияБоязнь ленты высоких температур
Не окисляются контактыНадо иметь в наличии паяльник с тонким жалом, канифоль и припой тонкий
Бесплатное соединение
Невидимое место соединения лент

Видео: Соединение светодиодных лент пайкой

Видео: Что такое светодиодная лента

Видео: Как соединить светодиодную ленту коннекторами

Светодиодные ленты — одноцветные и разноцветные, очень красивые и эффектные, поэтому их можно часто увидеть во многих местах. При выборе способа соединения необходимо в первую очередь руководствоваться факторам, при которых будет использоваться светодиодная лента, а также понять, что вы хотите получить в итоге. Если вам необходимо хорошее и качественное соединение на долгое время, то необходимо постараться использовать способ пайки, так как он более надёжный и прочный. Но если такой возможности нет, то коннекторы всегда придут вам на помощь и также смогут качественно соединить отрезки лент.

Для подключения одноцветной светодиодной ленты длиной от 5 до 10 м понадобятся только блок питания для ленты и 2 катушки светодиодной ленты.

Если требуется подключить более 5 м ленты к одному блоку питания, то каждая лента подключается к выходу блоку непосредственно или при помощи дополнительных проводов. Не допускается подсоединение ленты друг за другом, когда начало следующей ленты подключается к концу предыдущей. Это связано с тем, что через первую ленту будет протекать слишком большой ток, что вызовет перегрев ленты и приведет к преждевременному выходу её из строя. Провод ко всем следующим лентам ведется параллельно предыдущим лентам.

  • Плюсовые и минусовые провода лент (обычно красные и черные соответственно) подключаются к плюсовому и минусовому проводам (или разъемам) выхода постоянного тока блока питания с соблюдением полярности.
  • Вход блок питания подключается к сети переменного тока напряжением 220V, например, к розетке или выводам освещения. Обычно в блоках питания используется следующая цветовая маркировка проводов: коричневый – фаза, синий – ноль, желтый/зелёный – защитное заземление. Если вы не уверены, что заземление сети выполнено правильно, то подключать его не стоит. В пластиковых блоках питания провод защитного заземления отсутствует.

С появлением светодиодных ламп появилась возможность сделать световое оформления квартир и домов разнообразнее. А когда придумали гибкие ленты с закрепленными на них небольшими светодиодами, которые могут светиться разными цветами и даже плавно изменять цвет, требуется только фантазия: подключение светодиодной ленты — дело несложное. Один раз проделав операцию вы без труда ее повторите.

Светодиодные ленты бывают одноцветными и универсальными — меняющими свой цвет при помощи пульта управления

Типы и виды

Перед подключением светодиодной ленты стоит разобраться в их видах и маркировке. Так вы не ошибетесь с выбором блока питания и точно рассчитаете требуемую интенсивность свечения, длину ленты и другие параметры.

Цвета и типы свечения

Вы, наверное, заметили, что светодиодные ленты различаются по типу свечения. Они бывают:

  • Монохромными. Собираются из элементов типа SMD, выдают определенный цвет. В маркировке указывается начальная буква английского написания цвета:
  • LED-W-SMD — белый (может быть с оттенком голубым или желтым, еще называют теплым или холодным светом),
  • LED-R-SMD — красный,
  • LED-B-SMD — синий,
  • LED-G-SMD — зеленый.
  • Универсальными. Маркируются RGB — дают различные оттенки в зависимости от команды с пульта управления. РАботают в паре с контроллером и пультом управления.
  • Наиболее востребованы в подсветке интерьеров ленты из однотонных — монохромных — кристаллов. Постоянная смена цветов слишком напрягает, не дает расслабиться. Это — иллюминация, а не освещение. Потому используются универсальные ленты для создания рекламы, подсветки автомобилей — там, где необходимо привлечь внимание. При оформлении интерьеров применяют в основном SMD ленты.

    Степень защиты

    Так как область применения LED лент обширна, то и степень защиты бывает разной. Для сухих помещений выпускаются обычные открытые — без защитного покрытия. Есть влагозащищенные — их можно использовать во влажных помещениях — в ванных например. Они залиты слоем лака. Есть еще один вариант — влагостойкие. Они запаяны в герметичный корпус и могут быть смонтированы прямо в воде — в аквариуме, в пруду или бассейне. Их же можно использовать для подсветки на улице.

    Герметичные ленты для подсветки аквариумов, бассейнов или декоративных прудов

    Для наружного стайлинга автомобилей чаще всего используют светодиодные ленты, помещенные в прозрачную полимерную трубку. Она защищает не только от попадания влаги, но и от механических повреждений, но и стоимость их выше.

    Размеры светодиодов, их яркость и плотность

    Разберемся с размерами. Если взять несколько лент, можно увидеть, что сделаны они из светодиодов разного размера. Кроме того располагаются они иногда плотно один возле другого, в некоторых — на довольно приличном расстоянии, а еще есть ленты со светодиодами в две линии.

    Самые популярные размеры светодиодов

    Размеры элементов внешне отличить несложно, но как понять это по маркировке. Размеры отображены в цифрах, которые стоят после букв, обозначающих тип светодиода. Например, LED-R-SMD3528 (красный) и LED-RGB3528 (универсальный) собраны из элементов размерами 3,5*2,8 мм, LED-G-SMD5050 (зеленый) и LED-RGB5050 (универсальный) — 5,0*5.0 мм.

    Это — два самых распространенных типа, хотя есть и более крупные- 56*30 мм, а также встречаются более мелкие — 20*20 мм.

    Чем больше размер кристалла, тем большую интенсивность света они выдают. Для монохромных кристаллов показатели такие:

    • размером 3,2*2,8 мм выдает световой поток от 0,6 до 2,2 лм;
    • размером 5,0*5,0 мм — от 2 до 8 лм.

    Универсальные светодиоды при одинаковых размерах имеют меньшую интенсивность: в одном корпусе запаяны три мелких кристалла разных цветов, потому и интенсивность свечения RGB ниже:

    • 3,2*2,8 мм выдает 0,3 до 1,6 лм;
    • размером 5,0*5,0 мм — от 0,6 до 2,5 лм.

    Все значения даны для кристаллов без защитного покрытия. Любое из них снижает интенсивность свечения и это необходимо учитывать при расчете яркости свечения.

    Расчет длины

    Выше речь шла о каждом отдельном светодиоде на ленте, а на ленте их много и они располагаются с разной плотностью, соответственно выдавать могут поток света разной интенсивности. Минимальное количество кристаллов на одном метре — 30 шт, самая высокая плотность в один ряд — 120 шт/м, в два ряда — 240 шт/м.

    В зависимости от количества кристаллов меняется и суммарная интенсивность свечения и электрическая потребляемая мощность. Для удобства расчета требуемой интенсивности освещения и электрических параметров, технические данные сведены в таблицу.

    Таблица мощности светодиодных лент с разной плотностью установки светодиодов

    По этой таблице можно определить, какой длины необходима лента для подсветки. Например, хотите сделать подсветку в комнате, свечение средней интенсивности. Заменить необходимо две лампы накаливания по 80 Вт. Необходимо организовать световой поток порядка 140 Вт (две лампы по 80 Вт никогда не дадут 160 Вт).

    Если для этих целей взять SMD3528 с количеством светодиодов 120 шт/м необходимо будет около 5 метров ленты (берем с с запасом 20%), SMD5050 с плотностью установки 60 шт/м потребуется 4-4,5 метров.

    Вообще светодиодную ленту продают на метры. С завода она приходит бобинами по 5 м и далеко не всегда необходим кусок такой длины. Потому имеется возможность отрезать необходимое количество: по нанесенным пунктирным линиям с изображением ножниц. Строго по этим линиям и можно резать.

    Разрезают светодиодную ленту ножницами строго по разметке

    Если ножницы не нарисованы, то обязательно есть пунктир. Также линию реза можно определить по наличию контактных площадок с обеих сторон от линии.

    Подключение светодиодной ленты

    Большая часть светодиодных лент работает от напряжения 12 В или 24 в. Если линейка кристаллов одна, питание требуется 12 В, если их две — 24 в. Подходит любой источник постоянного тока, выдающий такое напряжение: аккумулятор, блок питания, батарея и т.д.

    Схема подключения светодиодной ленты к сети 220 В через блок питания

    Чтобы подключить ленту к бытовой сети 220 В требуется преобразователь или адаптер (еще называют блоками или источниками питания, адаптерами).

    Недавно появились ленты, которые сразу можно подключать к сети в 220 В. Все они запаяны в пластиковые трубки — 220 Вольт это уже не шутки. Режутся тоже по намеченным линиям, соединяются при помощи специального коннектора, который вставляется в проводники. К коннектору подключается шнур со встроенным выпрямителем (это диодный мост и конденсатор).

    Подключение специальной светодиодной ленты к сети 220В

    Отличается эта лента от обычной тем, что в ней небольшие участки (20 шт) со светодиодами подключены не последовательно, а параллельно, еще и так, что диоды направлены навстречу друг другу. За счет этого получаем требуемое напряжение в 220 Вольт или около того. Переменный ток преобразуется в постоянный при помощи диодного моста, а пульсация гасится конденсатором.

    Схема подключения светодиодной ленты без блока питания

    В принципе, такую ленту можно собрать из обычной, но нужно будет позаботиться об изоляции: прикосновение к элементу, подключенному к бытовой сети без переходника чревато серьезными последствиями.

    Как подключить несколько светодиодных лент

    Каждая из лент, в зависимости от используемых модулей и количества элементов на одном метре, потребляет различное количество тока. Средние параметры приведены в таблице. Зная, какой длины вы хотите смонтировать подсветку, можно выбрать адаптер, который будет выдать требуемый ток.

    Таблица потребляемого тока светодиодными лентами, питающимися от 12 В

    Иногда требуемая длина ленты превышает 5 метров — когда необходимо подсветить комнату по периметру. Даже если блок питания может выдать требуемый ток, соединять последовательно две или больше пятиметровые ленты нельзя. Максимально допустимая длина одной ветки — вот те 5 метров, которые приходят в бобине. Если дорастить ее, подключив вторую последовательно, по дорожкам первой ленты будет проходить ток, многократно превышающий расчетный. Это приведет к быстрому выходу элементов из строя. Может даже расплавится дорожка.

    Если мощность блока питания такова, что к нему можно подключить несколько лент, к каждой из них тянут отдельные проводники: схема подключения параллельная.

    Как подключить несколько светодиодных лент к одному блоку питания

    В таком случае удобно блок питания располагать посредине, например, в углу, а от него — две ленты по обе стороны. Но часто дешевле купить несколько менее адаптеров, чем один более мощный.

    Подключение RGB ленты через контроллер

    Последовательно подключаются сначала блок питания, потом контролер. Между собой они подключаются двумя проводами. Из контроллера выходят уже 4 проводника, которые разводятся по соответствующим контактным площадкам ленты RGB.

    Подключение светодиодной ленты RGB через контроллер

    Точно также, как и в монохромных лентах, и в этом случае максимально допустимая длина одной линии — 5 метров. Если необходимо большая длина, то от контроллера отходят два пучка проводов по 4 штуки в каждом, то есть соединяются они параллельно. Длинна проводников может быть разной, но более рационально, чтобы блок питания и контроллер находился посередине, а в стороны уходят две ветки подсветки.

    Способы соединения

    Подключение светодиодной ленты к блоку питания последовательное. Потому обращаем внимание на полярность: соединяем «+» только к такому же полюсу, а «-» — к минусу.

    На конце ленты, которая приходит на бобине припаяны проводники. Если свечение монохромное, проводников два — «+» и «-«, у многоцветных 4, — один общий «плюсовой» (+V) и три цветных (R — красный, G — зеленый, B — синий).

    Бобины в чистом виде

    Но не всегда нужен 5-метровый кусок. часто требуются более короткие отрезки. Разрезают ленту по нанесенным линиям.

    Линии разреза на светодиодных лентах

    На фото вы видите по обе стороны от линии разреза контактные площадки. На каждой ленте они подписаны, так что запутаться при подключении довольно сложно. Чтобы было еще проще, используйте проводники разных цветов. Так будет нагляднее и вы точно не запутаетесь.

    Коннекторы

    Соединить светодиодную ленту можно без пайки. Для этого есть специальные коннекторы. Это специально разработанные устройства — пластиковые корпуса, которые обеспечивают должный контакт. Есть коннекторы:

    • для подключения к ленте проводников;
    • соединение двух лент.

    Разные типы коннекторов

    Все очень просто: открывается крышка, вставляется лента или проводники с оголенными концами. Крышка закрывается. Соединение готово.

    Способ очень простой, но не очень надежный. Контакт обеспечивается только давлением, и если немного крышка ослабляется, начинаются проблемы.

    Пайка

    Если есть хоть какие-то навыки пайки, лучше использовать этот способ. Для работы потребуется паяльник средней мощности, с тонким или заточенным жалом. Нужна канифоль или флюс, а также олово или припой.

    Зачищаем от изоляции концы проводников, скручиваем их в плотный жгут. Берем разогретый паяльник, укладываем проводник на канифоль, прогреваем его. Берем на жало паяльника немного припоя, снова прогреваем провода. Жилы должны затянутся оловом — залудиться. В таком виде проводники легко паять.

    Как подсоединить диодную ленту

    Аналогичным образом пролудить желательно и контактные площадки: окуните паяльник в канифоль, прогрейте площадку. Следите, чтобы олово не вытекало за пределы площадок. Возьмите подготовленный проводник, уложите его на площадку, прогрейте паяльником. Олово должно расплавиться и затянуть проводник. Секунд 10-20 удерживайте проводник на месте (иногда проще держать тонкогубцами или пинцетом — проводник греется), подергайте. Он должен крепко держаться. Аналогичным образом паяем все необходимые проводники.

    НА RGB лентах с 4-мя проводами следите, чтобы площадки не соединились во время пайки. Расстояние меду контактами очень маленькое, малейшие потеки могут испортить все дело. Действуйте аккуратно.

    Посмотрите процесс пайки диодной ленты в видео. Вам нужно будет повторить все.

    Можно ли светодиодную ленту подключать параллельно

    Монтаж и схемы подключения светодиодных лент

    Благодаря самоклеящейся основе, монтаж светодиодных лент прост и удобен дальше некуда. Для надежного приклеивания, монтаж светодиодных лент необходимо начинать с подготовки основания, о которой уже было сказано предостаточно в предыдущих советах. В общем, поверхность, на которую будет наклеиваться светодиодная лента, необходимо очистить от грязи и пыли, если необходимо, то еще и обезжирить. Плюс стараться избегать острых углов, чтобы лента надежно приклеилась, хотя светодиодные ленты можно клеить практически под любым углом за счет их большой эластичности. Рекомендуется также окрашивать поверхность ниши, куда монтируется светодиодная лента, в белый или серебристый цвет, чтобы отдача света была максимальной. Об этом также уже писалось ранее. Есть предложение напоследок рассмотреть вопрос схем подключения светодиодных лент, потому что у многих могут возникнуть некоторые вопросы на эту тему. Рассмотрим наиболее часто задаваемые вопросы.

    Почему стоит уделить внимание схемам подключения светодиодных лент? Почему светодиодные ленты нельзя подключать, как попало?

    Дело в том, что сегменты светодиодной ленты соединены между собой параллельно, и весь суммарный ток проходит по дорожкам, которые рассчитаны на мощность определенного количества светодиодов, расположенных на ленте. Ленты выпускаются в бобинах по 5 метров. Так вот именно на такую длину ленты (соответственно и количество светодиодов на ней) и рассчитаны её токопроводящие дорожки. В силу этих обстоятельств есть одно очень важное условие, которое необходимо соблюдать, собирая схему подключения светодиодной подсветки. Нельзя подключать последовательно* участки светодиодных лент так, чтобы их общая длина превышала 5 метров. Иначе токоведущие дорожки ленты просто не выдержат токовой нагрузки, перегреются и перегорят – лента выйдет из строя.

    *Последовательное подключение (в контексте этой статьи) означает подключение к концу одной ленты начала другой и так далее. Вот так подключать светодиодные ленты, если их суммарная длина более 5 метров, нельзя:

    (схема последовательного подключения светодиодных лент – так лучше не делать)

    Как же правильно подключить светодиодную подсветку, если длина подключаемой ленты больше 5 метров?

    Если требуется выполнить подсветку участка длиной более 5 метров, придется отрезки светодиодной ленты подключить *параллельно, для этого, возможно, придется протянуть длинный соединительный провод, длиной 5 метров и более. Теперь ток ко второй ленте побежит по этому длинному проводу, а не по дорожкам первой ленты. Единственное, надо учесть, что длинный провод обладает большим сопротивлением. Поэтому, чтобы в нем не так ощутимо падало напряжение, этот удлиняющий провод лучше взять двойного сечения. Приблизительно 1,5 мм.кв. Помните, в предыдущем совете — Подготовка светодиодной ленты к монтажу, мы рассматривали вопрос, какие провода подойдут для соединения светодиодных лент.

    *Параллельное подключение (в контексте этой статьи) означает подключение начала одной, начала второй и начала всех других лент в одной общей точке. Например, так, как показано на рисунке ниже:

    (схема параллельного подключения светодиодных лент – это правильное решение)

    Как вариант, можно расположить блок питания посредине двух длинных отрезков ленты. Соединительные провода на стороне 12 В при этом будут иметь минимальную длину, поэтому подойдут провода сечением 0,75 мм.кв. Схема будет выглядеть, например, вот так:

    (схема параллельного подключения светодиодных лент с расположением блока питания посредине)

    Если мощности одного блока питания не достаточно, чтобы запитать всю светодиодную ленту сразу, то можно применить схему подключения с использованием нескольких блоков питания:

    (схема подключения светодиодных лент с двумя и более блоками питания)

    Такая схема также может пригодиться, если один блок для питания всей подсветки слишком габаритный из-за большой мощности и не помещается в специальную нишу. При такой схеме, каждый из двух и более блоков питания будут иметь меньшие габариты и легко смогут спрятаться. Однако стоимость реализации такой схемы может возрасти. Два блока питания будут стоить дороже, чем один, даже если их общая мощность не превышает мощность одного блока питания.

    Тут также стоит отметить, что провода на стороне 220 В достаточно также применить сечением не более 0,75 мм.кв. (но и не меньше для механической прочности), даже если это длинные провода, соединяющие все блоки питания между собой. Дело в том, что по стороне более высокого напряжения будут идти гораздо меньшие токи, чем по стороне низкого напряжения. Примерно в 18 раз меньше. Ведь потребляемая и выдаваемая мощности блока питания примерно одинаковы, а напряжение на входе в 18 раз больше (220 В / 12 В). Электрическая мощность рассчитывается произведением тока на напряжение, следовательно, если напряжение меньше, то ток больше на этот же коэффициент. Этот коэффициент называют коэффициентом трансформации. Для чего я это все тут пишу? Да, в общем-то, для общего развития 🙂 Может быть кому-то будет интересно или даже полезно.

    А чем отличается схема подключения многоцветной RGB светодиодной ленты от схемы подключения обычной одноцветной светодиодной ленты?

    Единственное отличие, это то, что при подключении многоцветной RGB светодиодной ленты в схеме подключения между блоком питания и лентой устанавливается RGB-контроллер. Схема подключения подсветки будет выглядеть примерно следующим образом:

    (схема подключения многоцветной RGB светодиодной ленты)

    Однако опять же эта схема будет работать нормально, если общая длина подсветки не превышает 5 метров.

    А как быть, если суммарная длина светодиодной RGB-ленты превышает 5 метров? Какую схему подключения применить?

    Можно применить схему с параллельным подключением отдельных участков и использованием удлиняющих проводов, наподобие той схемы, что используется при подключении от одного блока питания нескольких отрезков одноцветной светодиодной ленты с общей длиной больше 5 метров:

    (схема подключения нескольких RGB светодиодных лент от одного блока питания)

    Можно также, если получится конструктивно, применить схему, когда блок питания вместе с контроллером размещены посредине двух светодиодных лент, это позволит не применять длинные соединительные провода:

    (схема параллельного подключения двух RGB-светодиодных лент с расположением блока питания и контроллера посредине – не нужны длинные соединительные провода, сечение провода можно применить не такое большое)

    Однако в данном случае к недостаткам схемы (большая мощность и габариты блока питания, длинные соединительные провода) добавляется фактор загрузки RGB-контроллера (на выше приведенных рисунках — загадочное изображение разряженной батарейки). Ведь в данном случае через RGB-контроллер побегут суммарные токи всех отрезков светодиодных лент. А многоцветные ленты обычно имеют приличную мощность, как ни как три цветовых канала и каждый светодиод имеет по три кристалла. Лучшим решением в данной ситуации будет использование схемы с несколькими блоками питания. Но ведь посредником между блоком питания и RGB-лентой должен быть RGB-контроллер. А как же заставить отрезки многоцветной светодиодной ленты, подключенные к разным контроллерам, синхронно следовать сценарию подсветки, задаваемому пультом управления? — Никак. В данном случае каждая многоцветная светодиодная лента будет жить своей собственной жизнью, подчиняясь командам лишь своего контроллера. Выход из ситуации: использование двух и более блоков питания, применение одного RGB-контроллера совместно с RGB-усилителем (или несколькими усилителями, если блоков питания больше 2-х). Чтобы было проще представить то, о чем тут написано, предлагаю рассмотреть пример схемы подключения двух и более участков многоцветной светодиодной ленты, имеющих общую длину более 5 метров, с использованием нескольких блоков питания, одного RGB-контроллера и одного или больше RGB-усилителей. Схема будет иметь следующий вид:

    (схема подключения нескольких участков RGB-лент, общей длиной более 5 метров, с использованием RGB-усилителей)

    В принципе, на картинке и так всё понятно, и лучше один раз увидеть, чем сто раз услышать, а тем более прочитать. Но, чтобы не было недопонимания и лишних вопросов, хочется всё-таки на всякий случай сделать акцент на контактах RGB-усилителя. А именно, что куда подключать. Усилитель для многоцветной светодиодной ленты имеет две клеммные колодки: «Вход» – «Input» (4 контакта) и «Выход» – «Output» (6 контактов). К входу усилителя подключаются четыре провода от предыдущей светодиодной ленты, по этим проводам передаётся сигнал управления от контроллера, но вход усилителя потребляет незначительный ток управления цветовыми каналами. К выходу также подключаются четыре провода уже следующей светодиодной ленты, а также два провода от еще одного блока питания, за счет которого собственно и усиливается управляющий сигнал. То есть через первую ленту протекает номинальный её ток, а подпитка энергии для второй и последующих лент осуществляются от второго и последующих блоков питания соответственно, усиливая управляющий сигнал, который поступает с одного общего контроллера. Контроллер при этом не перегружается и все синхронно управляется с одного пульта. Единственное, надо постараться не перепутать провода и контакты. «Input(+)», «Input-R», «Input-G», «Input-B» – соответственно контакты для общего вывода («массы»), красного, зеленого и синего цветовых каналов первой ленты, которая подключена непосредственно к RGB-контроллеру. «Power(+)» и «Power(–)» — это «плюс» и «минус», поступающие от второго (или последующего) блока питания, за счет которого выполняется усиление управляющего тока для каждого цветового канала. «Output(+)», «Output-R», «Output-G», «Output-B» – соответственно контакты для общего вывода, красного, зеленого и синего цветовых каналов второй (или последующей ленты), для которой усилитель усиливает сигнал управления. Вот и вся премудрость. На самом деле все намного проще, чем казалось бы. Конечно же, последовательность расположения и обозначения разъемов на клеммных колодках усилителя в зависимости от его модели могут немного отличаться от описанных выше. Но обычно производители все обозначения делают интуитивно понятными. Главное внимательно присмотреться и ничего не перепутать.

    (клеммыне колодки RGB-усилилтеля)

    Вместе с этим советом заканчивается цикл советов, посвященный вопросам, которые могут возникнуть при работе со светодиодными лентами. Автор постарался рассмотреть все самые интересные темы. Но даже если какой-то из вопросов остался без внимания, не стесняйтесь задавать вопросы в комментариях. Будем разбираться вместе. Всем удачи. И спасибо за внимание.

    Автор: Вячеслав Радзиковский ©
    Опубликовано: 28-10-2013
    Просмотров: 50426 |

    Монтаж и подключение светодиодной ленты через блок питания 12-24 Вольт.

    Есть две основные причины выхода из строя светодиодной подсветки:
    • не качественные светодиоды и блоки питания
    • не правильный монтаж и подключение с ошибками

    Вот основные три правила и ошибки, на которые нужно обращать внимание в первую очередь.

    Светодиодная лента подключается параллельно, отрезками не более чем по 5 метров каждый.

    Она даже продается катушками этого метража. А что если вам нужно подключить 10 или 15м? Казалось бы, подсоединил конец первого куска с началом второго и готово. Однако такое подключение запрещается. Почему так принято?

    Потому что пять метров – это расчетная длина, которую могут выдержать токоведущие дорожки ленты. При большей длине, нагрузка будет превышать допустимую и лента обязательно выйдет из строя. Кроме того, будет наблюдаться неравномерность свечения. В начале ленты светодиоды будут светить ярко, а в конце гораздо тусклее.

    Вот так будет выглядеть схема параллельного подключения светодиодных лент длиной превышающих допустимую:

    При этом подключать ленту можно как с двух сторон, так и с одной. Подключение с двух сторон позволяет уменьшить нагрузку на токовые дорожки, а также помогает избежать неравномерности свечения в начале и конце ленты.

    Особенно это важно на мощной ленте – свыше 9,6Вт/метр. Именно так советуют подключать профессионалы, которые занимаются установкой светодиодной продукцией долгие годы. Единственный жирный минус – приходится тащить дополнительные провода вдоль всего освещения.

    Светодиодная лента должна обязательно монтироваться на алюминиевый профиль, который выполняет роль теплоотвода.

    Во время работы лента нагревается, и эта температура отрицательно влияет на сами светодиоды. Они попросту перегреваются и начинают терять яркость, постепенно деградируя и разрушаясь.

    Таким образом лента, которая могла бы спокойно проработать 5-10 лет, без профиля перегорит у вас через год, а может даже и раньше. Поэтому использование алюминиевого профиля в светодиодной подсветке обязательно.

    Единственная лента, где можно обойтись без него – это SMD 3528. Она маломощная, всего 4,8Вт на 1м и не столь требовательна к теплоотводу.

    Особенно нуждаются в теплоотводе ленты залитые сверху силиконом. В них теплоотдача происходит только через подложку, снизу. А этого бывает иногда недостаточно. Если вы еще наклеите ее на какой-нибудь пластик или дерево, то здесь вообще никакого охлаждения не будет.

    Правильный выбор блока питания это гарантия долговременной и безопасной работы всей подсветки.

    Блок питания должен быть мощнее чем светодиодная лента на 30%.

    Только в этом случае он будет работать нормально. Если вы подберете его впритык, ровно по мощности всех светодиодов, то блок будет постоянно трудиться на своем пределе. Естественно такая работа скажется на продолжительности эксплуатации. Поэтому всегда давайте ему запас.

    Для монтажа освещения с помощью светодиодной ленты вам понадобится:

    • бухта светодиодной ленты. Необходимую длину отрежете в процессе монтажа.
    • трехжильный кабель ВВГнг-Ls сечением 1,5мм2
    • блок питания
    • диммер и пульт управления
    • монтажный провод ПуГВ. Лучше всего взять с разноцветной изоляцией красного и черного цветов. Сечение также 1,5мм2

    Если у вас не выполнены эл.монтажные работы, то предварительно необходимо подвести напряжение 220В к месту подключения ленты. Для этого штробите стену, либо укладываете кабельный канал и протягиваете по нему трехжильный кабель ВВГнг-Ls 3*1,5. Ведете его непосредственно до той распредкоробки, где будет подключаться питание светодиодной ленты.

    Можно использовать существующую распаечную коробку, где подключено основное освещение. Главное чтобы место позволяло свободно подключить дополнительные провода и клеммники.

    Выключатель на светодиодную ленту желательно устанавливать именно на провода 220 Вольт, а не перед лентой на отходящие 12-24В. В этом случае блок не будет работать постоянно. Тем более, импульсным блокам работать без нагрузки противопоказано. К тому же так будет выше уровень безопасности.

    Предварительно проверьте и не перепутайте фазу, ноль и землю. Чаще всего, ноль бывает синего цвета, заземляющая жила – желто-зеленого, а фазная — любых других расцветок.
    Но доверять только цветовой маркировке нельзя! Более подробно как без ошибок отличить ноль и фазу можно ознакомиться в статье «Как определить фазу и ноль в электропроводке».

    Далее нужно от этой распредкоробки в штробе, гофрорукаве или в кабельном канале проложить кабель к будущему месту установки блока питания. Для его размещения монтируете удобную полочку. Изготовить ее можно из кусков фанеры или гипсокартона. Рядом размещаете и диммер.

    Протянув кабель до блока, можно приступать непосредственно к подключению проводов.

    Как подключить светодиод или светодиодную ленту. Схемы подключения

    Понятия, сокращения, глоссарий.

    • БП — блок питания.
    • SMD — устройство, излучающее свет, монтируемое на резиновой, бумажной, самоклеющейся поверхности ленты. С нанесёнными проводящими ток дорожками и миниатюрными полупроводниковыми элементами, расположенными в один или несколько рядов. А также могут быть установлены ограничивающие резисторы и конденсаторные сглаживающие фильтры. Длину ленты разрезают по специально нанесённому пунктиром месту.
    • Чип — полупроводниковый кристалл.
    • Подложка — гибкая плата с припаянными элементами.
    • СД — диод, излучатель света.
    • Клеящаяся основа — фиксирует на поверхности СД.
    • Люминофор — материал, испускающий фотоны под воздействием энергии полупроводника.
    • RGB-контроллер — прибор, с функцией инфракрасного или радиоуправляемого цвета, режимом свечения. Регулируют дистанционным пультом.
    • Samsung, Philips, LG. Брендовые производители СД.
    • Диммер — это устройство для расширения функциональных возможностей светодиодных источников. Регулирует интенсивность потока освещения, его цвет, экономит электроэнергию. Составная часть обычного выключателя.
    • Дистанционный пульт — прибор для управления одним или несколькими узлами.
    • Усилитель контроллера — устройство для передачи сигнала к диодам, обеспечивающее одинаковые цвета и яркость излучения.
    • Световой поток, обозначенный единицей люмен (лм).
    • ИК — инфракрасный контроллер.

    Подключение, ошибки

    Светодиод обладает многими преимуществами перед другими источниками излучения. Он экономичный, с большим эксплуатационным сроком, виброустойчивый и к тому же имеющий невеликие габариты. Однако, эти положительные качества не всегда полностью реализуются на практике. И прежде всего, из-за недостаточного понимания работы нелинейного полупроводникового прибора. Чтобы избежать этого и достичь эффективного использования, необходимо придерживаться правил.

    Нельзя подсоединять светодиод напрямую к источнику.

    Он подключается последовательно через резистор либо через драйвер питания, регулирующий величину тока. Неуправляемая подача быстро выведет его из строя.

    Не рекомендуется параллельное подключение между собой нескольких диодов к одному источнику питания. Рис. 2. Самый безобидный вариант от такого подсоединения проявится в том, что излучение света будет разной яркостью. При повреждении первого диода возрастает ток на второй, резко сокращающий сроки его эксплуатации вплоть до разрушения.
    Не допускается последовательное подключение светодиода с разными параметрами тока. При этом слабо излучающий свет быстро выйдет из строя. Рис. 2

    Подключение элемента неправильного сопротивления. Рис 3. Протекающий через него ток, может оказаться большим или недостаточным для оптимальной работы диода. Это приведёт к перегреву кристалла и сокращение сроков службы

    Применение ограничивающего резистора недостаточной мощности, следствием которой будет его полное разрушение. Рисунок. 3.
    При подключении светодиода к сети необходимо ограничить обратное напряжение. Увеличенный ток может, перегреть полупроводниковый переход, вызывающий тепловой пробой и повреждение светодиода.

    Соблюдая правильность подсоединения элементов, достигают максимальной эффективности приборов в освещении и конструировании различных устройств.

    Подключение лент

    На схеме провода БП обозначены двумя цветами. Красный — это плюс, а синий — минусовой. Такая же маркировка применена и на потребителях электроэнергии. При подключении это правило соблюдают, в противном случае схема работать не будет

    Применяя несколько лент нельзя последовательно (напрямую), припаивать их концы. Например, составляя вместе пятиметровые, стараются получить в два раза длиннее 10 м. Но необходимо учесть, что соединительные провода мелкого сечения и рассчитаны только на одну ленту. Подключая их последовательно, добавляется сопротивление, из-за чего № 2 светит с меньшей яркостью. А через № 1 протекает увеличенный от номинала ток, который приведёт к повышенному перегреву, сокращающему в разы срок службы. Рис. 5.

    К выходу БП (рисунок 6) подключают провода следующей ленты № 2, минуя

    Для уменьшения потерь напряжения, их сечение выбирают несколько больше (1,5 мм.). Длина проводов такая же, как и к ленте № 1. Схему применяют при достаточном месте для размещения БП, показанную на рисунке 7. Второй блок питания подсоединяют проводом 0,75 мм. Положительным моментом является то, что их мощность уменьшилась вдвое. При отсутствии пространства применяют схему на рис. 6. Когда задача размещения и укрепления второго источника усложняется поиском подходящего места.

    Монтаж цветной ленты, усилителя и контроллера

    RGB-контроллер предназначен для регулировки света. Работает при напряжении 12, 24 в. Установленная мощность 72,108,144,288 Вт, со встроенной программой управления излучением, укомплектованы дистанционным пультом. Рис. 8. Клеммы для подключения ленты обозначены: R — для регулировки красного; G — зелёного; B — синего; V+ — общий.

    Сетевые разъёмы маркируют «V +», и «-V». На контакт, обозначенный плюсом, закрепляют красный, на минус — чёрный или синий провод. Подсоединения желательно не перепутать. В противном случае пульт выдаст ошибочную команду.

    Дистанционный способ управления

    Контроллер простой по конструкции и экономичный.
    Установлена программа смены цветов. Подходит для устройства подсветки вывесок, витрин магазинов. Иногда прибор используют как простой выключатель.

    Инфракрасный

    Работает при условии видимости приёмника контроллера, ограниченной дистанцией до 10 м. Его функции похожи на телевизионный пульт.
    Яркость излучения регулируется. Предусмотрен подбор четырёх цветов и оттенков к ним, переливание света, и дополнительное проецирование белого. Возможна установка эффекта затухания или мерцания излучения.

    Радиоуправляемый

    IR Контроллер регулируют радиосигналом с дистанцией до 20 метров. Зрительная видимость необязательна. Соблюдая указанное расстояние, освещение регулируют с любой комнаты. Недостаток — при утере пульта необходимо покупать полный комплект нового, так как частота радиосигнала у них разная. Конструкции пультов бывают сенсорными или кнопочными, со всеми стандартными действиями.

    Работающий по WI-FI

    Функционируют по тому же принципу, с любым типом пульта, как указано выше. Контроллером можно управлять через мобильный телефон.

    Подключение нескольких RGB светодиодных лент

    Проводящие ток дорожки имеют одинаковую длину. Соединять их последовательно нельзя, так как работать будут недолго. Существует два способа подсоединений: с одним БП и с RGB-контроллером.

    Эта схема подойдёт для многоцветной ленты c 30 диодами. Но яркости будет недостаточно. Рисунок 9. При 60 штук таких же потребуется БП и в два раза мощный контроллер. Дальше рассчитываем: две ленты используют для освещения 140 Вт, контроллер для этого случая подойдёт мощностью 280 Вт, что скажется на стоимости. Место для размещения блока питания планируют при проектировании потолка. Рис. 10.
    В этой схеме используют дополнительно БП и усилитель. К нему со стороны Input (вход) подключают конец ленты № 1 и к Output (выход) начало № 2. Каждый провод подсоединяют в соответствующую клемму. После подключают БП.

    В результате получили: монтаж по этой схеме станет дороже, мощность и размеры блоков питания будут меньше, но зато появляется возможность подключать любое количество RGB изделий.

    Общий совет по установке светодиодных узлов

    Выбор комплектующих.

    По статистике спросом пользуются более сотни типов лент, около 50 моделей блоков питания, до 30 диммеров и контроллеров. Для начала необходимо определить поставленные задачи. Они могут быть следующими: подсветка потолка и ниши, дополнительное освещение кухни, интерьера комнат, спальни, ванной, шкафов, баров и т. д.

    • Проверка качества контактов на ленте. Они имеют вид четырёх проводков, припаянных к торцу платы.
    • Места припайки не всегда бывают прочным.
    • Проверяют соединения, изолируют их. Оторванный может вызвать замыкание.

    Для надёжности заделывают новые, длинные с обжимными наконечниками и усиленные термоусадочной трубкой диаметром 10 мм. Одев её на контакты светодиодной ленты, аккуратно нагревают. При этом избегают попадания горячего воздуха на полупроводник. Размягчённая трубка уменьшается в размере, прижимая контакты, изолируя и улучшая прочность соединения. Такая подготовка к монтажу обеспечивается длительный срок использования.

    Наличие инструмента и комплектующих изделий. Для устройства нужно иметь: провода, трубки, фен, ножницы, паяльник и сопутствующие материалы.

    Есть и более простой вариант решения. Можно приобрести готовый набор для монтажа светодиодных устройств. В его состав входят: ленты, блоки питания, контроллер, диммер, крепёж, разъёмы, провода. Кроме того, перечень содержимого набора дополняется пожеланиями заказчика.
    Место монтажа ленты очищают, обезжиривают. Потом со стороны клеевого слоя снимают защитную плёнку и нажатием закрепляют к подготовленной плоскости.

    Виды СД лент

    Все составляющие её элементы размещены на самоклеющейся основе. Отличие между ними — это тип используемого светодиода. Светодиод припаян к плоскости ленты. Самые применяемые два: SMD 3020 и такой же 5050. Сокращённое обозначение в переводе прочитывается как устройство, монтируемое на поверхности. Цифры указывают размер светодиодов в миллиметрах. Конструкция первого состоит из одного кристалла, второго — из трёх штук. Последний излучает более яркий свет в 2,5 раза. Для сравнения: светодиод SMD 5050 даёт поток в 12 лм, а типа 3020 излучает только 4,5.

    Цвет свечения обуславливается свойством использованного полупроводникового материала. Каждый проецирует характерный свет. Распространён зелёный, красный и такие как жёлтый, синий. Но на практике существует излучение белого света, хотя в природе таких материалов нет. Однако, для его получения используют синий диод, продуцирующий ультрафиолет. Для этого на его поверхность наносят тонкий слой люминофора. Под его воздействием материал излучает белый светом. Это покрытие прибора имеет недостаток, проявляющееся со временем. За которое слой выгорает, свечение становится синеватым, яркость снижается. Поэтому лента белого цвета недолговечная, сила потока после года эксплуатации, может, уменьшиться на 40%. А действительным сроком службы СД считают время, за которое он потускнеет на 30% с момента первого включения.

    Существует второй вариант получения белого оттенка. Для этого в корпусе светодиода установленных размеров (смотри выше) размещают не более трёх кристаллов. Из которых каждый излучает свой природный оттенок. Он бывает синим или красным и, наконец, зелёным. Если смешать их, то в результате получится белый. Срок использования такого диода будет намного дольше.

    Собранная из них конструкция и размещённая на материале с клейкой поверхностью, называют RGB-лентой. И ещё один плюс. Так как каждый кристалл раздельно подключён к источнику питания, тогда они излучают свой цвет. Поэтому ленту подсоединяют четырьмя проводами. Из которых три идут на каждый кристалл и один общий для всех.

    Такая конструкция позволяет регулировать световую окраску с помощью пульта управления. Так, для общего освещения включают белый, для медитации и расслабления — зелёный, для приятного ужина — красный. Есть ещё особенность ленты: яркость свечения зависит от количества СД на один метр, что повлечёт увеличение её стоимости.

    Подборка диодов и расчёт БП

    СД ленту подключают к блоку питания напряжением 24, 12 или 6 вольт. Их потребность в мощности приведена в таблице.
    Светодиод марки SMD Мощность (Вт.) Количество сд (шт.)
    3528 4,8 60
    3528 7,2 120
    3528 16,0 240
    5050 7,2 30
    5050 14,0 60
    5050 25,0 120

    Сначала уточняют, сколько потребляет 1 м ленты. Например, две 5-и метровые используют 72 ватта. Эксплуатационный запас блока должен иметь 30%. Для работы длиной в два раза большей типа 5050 c 30 светодиодами необходимо выбрать БП мощностью 93,6 ватта.

    Возможные варианты выбора БП

    Существуют основные типы этого устройства.

    • Герметичный, компактный в корпусе из пластика. Защищён от влаги. Предел его мощности 75 ватт. Для двух лент необходимы 2 блока питания по 50 Вт. Из-за небольших размеров БП используют при монтаже интерьерной подсветки.
    • Такой же тип в алюминиевом корпусе. Его 100 Вт мощности достаточно для эксплуатации двух лент. Имеет больший вес (1 кг) и габариты. Подходит к подсветке уличных указателей. Защищён от дождя, солнечных лучей, колебаний температуры, мороза.
    • Открытый БП. При 100 Вт мощности обладает большим весом и размерами. Редко используют для подсветки стен и потолков из-за сложности найти свободное место. Устанавливают в отдельном шкафу. Стоимость более низкая.

    Недостатки СД лент

    • Длина ограничивается пятью метрами. Это связано с трудностью выдержать равномерную яркость во всех элементах конструкции.
    • Хрупкость и ломкость проводящих ток дорожек, изготовленных из фольги или меди. Радиус изгиба — не менее 25 мм.
    • Необходимость усиления отдельных мест, соединений, изоляции контактов.
    • Используя устройства светодиодных лент, потребляющих ток выше 80 мА, предусматривают дополнительные приспособления для охлаждения.
    • Относительно высокая стоимость.

    Достоинства светодиодных лент

    • Экономное потребление электроэнергии.
    • Срок службы от 5 до 13 лет, превышающей традиционные источники света.
    • За счёт гибкости конструкции ленте придают любую форму.
    • Возможность увеличивать (подобрать) длину, добавляя шести или десятиметровыми кусками (по 3 или 5 диодов в каждом).
    • Потребляемая электроэнергия используется на излучение света, а не на подогрев прибора.
    • Нулевое мерцание и отсутствие ультрафиолета.
    • Устойчиво работает при колебаниях сетевого напряжения. Функционирует через блок питания при изменениях в пределах 130—160 вольт.
    • Широкий выбор световой гаммы сохраняется во весь период эксплуатации.
    • Простота монтажа.
    • Производители гарантируют качество светодиодных лент.

    Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

    Основные правила и ошибки при подключении светодиодной ленты

    В список бытовых источников освещения (различные виды традиционных ламп, торшеров и люстр), относительно недавно был дополнен светодиодными лентами. Фокусное области их применения — различные подсветки и декоративное освещение. По своему принципу действия светодиодные источники отличаются от классических ламп накаливания и их более современных энергоэффективных аналогов, что влечет за собой изменение некоторых правил подключения. Игнорирование этих особенностей обычно сопровождается быстрым выходом ленты из строя.

    Далее приведем несколько простых правил, соблюдение которых гарантирует продолжительную эксплуатацию лент. Предполагается, что сами ленты, источники питания и блоки управления (при их наличии) изначально имеют изначально хорошее качество.

    Конструкция светодиодной ленты

    Конструктивно СД-лента включает такие компоненты как гибкую основу, сформированные на ней печатные проводники, а также установлены бескорпусные светодиоды. Последние представляют собой специальным образом сформированный полупроводниковый диод, при протекании через который прямого тока за счет рекомбинации зарядов начинается свечение зоны p-n-перехода. В зависимости от конструкции диоды могут работать в монохромном режиме (один цвет свечения), а также представлять собой т.н. RGB-источник, цвет свечения которого можно менять с пульта.

    Светодиоды обычно группируются по три штуки, которые включены последовательно и дополнены токоограничивающим резистором. Каждая такая группа образует самостоятельную секцию, а отдельные секции включаются параллельно друг другу. У монохромных (одноцветных) лент все секции однотипны, у RGB-ленты дополнительно выделяют элементарную сборку из трех функционирующих параллельно секций так, как это показано на рисунке 1.

    Максимальная протяженность ленты обычно не превышает 5 м, питание выполняется от 12- или 24-вольтового источника.

    Параллельное включение отдельных секций приводит к изменению некоторых правил подключения ленты к источнику.

    Первая типовая ошибка – последовательное соединение отдельных лент

    Иногда случается так, что даже 5-метровой ленты не хватает для решения имеющейся задачи и их количество приходится увеличивать. В этой ситуации ленты необходимо подключать к источнику питания только параллельно, т.е. так, как это показано на рисунке 2.

    При последовательном подключении через печатные проводники ближней к блоку питания ленты будет проходить удвоенный ток. Нештатный режим функционирования печатных проводников быстро приводит к перегоранию ленты. Кроме того, из-за повышенного падения напряжения на проводниках первой ленты может наблюдаться заметное снижение яркости свечения СД второй ленты.

    Вторая типовая ошибка – установка ленты на подложку с низкой теплопроводностью

    Параллельное подключение отдельных секций СД приводит к тому, что ток питания всей ленты увеличивается в кратное числу таких секций раз. Это в сочетании с довольно низким напряжением питания сопровождается их ощутимым нагревом. При установке ленты по всей длине на подложке с хорошей теплопроводностью этот эффект отсутствует, избыток тепла эффективно отводится, она не перегревается, СД не деградируют и не теряют яркости свечения.

    Функции подложки-радиатора может выполнять декоративный профиль (пример показан на рисунке 3), монтажная планка и другие металлические элементы.

    Третья типовая ошибка – выбор недостаточно мощного блока питания

    Питание ленты производится от специализированного блока. Типичное конструктивное исполнение этого устройства показано на рисунке 4.

    Одним из популярных способов снижения издержек производства компании, производящей такие устройства, — всемерное уменьшение запасов по мощности. Отсюда следует, что функционирование источника при 100-процентной загрузке источника происходит в очень напряженном режиме, что сопровождается ростом вероятности отказа. Отсюда вытекает правило о необходимости применения для питания СД-лент источников с 20-30-процентным запасом по мощности.

    Определение требуемой мощности источника выполняют по погонной мощности ленты, которую заимствуют из технических данных. Если, например, там указана мощность 5 Вт/м, а на параллельную работу ставится две 5-метровые ленты, то мощность источника должна составлять по меньшей мере Р = 1,2*(2*5*5) = 60 Вт.

    Заключение

    Несмотря на наличие определенной специфики, достижение надежной работы СД-ленты не представляет больших проблем. Для этого достаточно не гоняться за дешевизной и приобрести изначально качественную продукцию, соблюдать три рассмотренных выше правила и аккуратно произвести монтаж.

    Как подключить светодиодную ленту параллельно или последовательно

    Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

    Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

    Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

    Для примера, заглянем в даташит светодиода 2835:

    Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.

    Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

    Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

    Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

    Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

    К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

    Вот прекрасная иллюстрация к вышесказанному:

    Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

    Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

    Параллельное подключение

    При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

    Очевидно, что такого неравномерного распределения мощностей нужно избегать.

    Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

    Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

    Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

    В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

    Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

    Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

    Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

    Uпит ILED
    5 мА 10 мА 20 мА 30 мА 50 мА 70 мА 100 мА 200 мА 300 мА
    5 вольт 340 Ом 170 Ом 85 Ом 57 Ом 34 Ом 24 Ом 17 Ом 8.5 Ом 5.7 Ом
    12 вольт 1.74 кОм 870 Ом 435 Ом 290 Ом 174 Ом 124 Ом 87 Ом 43 Ом 29 Ом
    24 вольта 4.14 кОм 2.07 кОм 1.06 кОм 690 Ом 414 Ом 296 Ом 207 Ом 103 Ом 69 Ом

    При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

    Последовательное подключение

    При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

    Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

    Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

    Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

    Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

    Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

    Вот пример готового устройства:

    Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

    И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

    Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

    Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

    Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

    Как выбрать нужный драйвер?

    Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

    1. выходной ток;
    2. максимальное выходное напряжение;
    3. минимальное выходное напряжение.

    Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

    Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

    Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

    Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

    Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

    Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

    Следовательно, для наших целей подойдет что-нибудь вроде этого:

    Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

    Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

    Светодиоды Какой нужен драйвер
    60 мА, 0.2 Вт (smd 5050, 2835) см. схему на TL431
    150мА, 0.5Вт (smd 2835, 5630, 5730) драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
    300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
    700 мА, 3 Вт (led 3W, фитосветодиоды) драйвер 700мА (для 6-10 светодиодов)
    3000 мА, 10 Ватт (XML2 T6) драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

    Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

    Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

    Есть две основные причины выхода из строя светодиодной подсветки:

      не качественные светодиоды и блоки питания
      не правильный монтаж и подключение с ошибками

    Вот основные три правила и ошибки, на которые нужно обращать внимание в первую очередь.

    Светодиодная лента подключается параллельно, отрезками не более чем по 5 метров каждый.

    Она даже продается катушками этого метража. А что если вам нужно подключить 10 или 15м? Казалось бы, подсоединил конец первого куска с началом второго и готово. Однако такое подключение запрещается. Почему так принято?

    Потому что пять метров – это расчетная длина, которую могут выдержать токоведущие дорожки ленты. При большей длине, нагрузка будет превышать допустимую и лента обязательно выйдет из строя. Кроме того, будет наблюдаться неравномерность свечения. В начале ленты светодиоды будут светить ярко, а в конце гораздо тусклее.

    Вот так будет выглядеть схема параллельного подключения светодиодных лент длиной превышающих допустимую:

    При этом подключать ленту можно как с двух сторон, так и с одной. Подключение с двух сторон позволяет уменьшить нагрузку на токовые дорожки, а также помогает избежать неравномерности свечения в начале и конце ленты.

    Особенно это важно на мощной ленте – свыше 9,6Вт/метр. Именно так советуют подключать профессионалы, которые занимаются установкой светодиодной продукцией долгие годы. Единственный жирный минус – приходится тащить дополнительные провода вдоль всего освещения.

    Светодиодная лента должна обязательно монтироваться на алюминиевый профиль, который выполняет роль теплоотвода.

    Во время работы лента нагревается, и эта температура отрицательно влияет на сами светодиоды. Они попросту перегреваются и начинают терять яркость, постепенно деградируя и разрушаясь.

    Таким образом лента, которая могла бы спокойно проработать 5-10 лет, без профиля перегорит у вас через год, а может даже и раньше. Поэтому использование алюминиевого профиля в светодиодной подсветке обязательно.

    Единственная лента, где можно обойтись без него – это SMD 3528. Она маломощная, всего 4,8Вт на 1м и не столь требовательна к теплоотводу.

    Особенно нуждаются в теплоотводе ленты залитые сверху силиконом. В них теплоотдача происходит только через подложку, снизу. А этого бывает иногда недостаточно. Если вы еще наклеите ее на какой-нибудь пластик или дерево, то здесь вообще никакого охлаждения не будет.

    Правильный выбор блока питания это гарантия долговременной и безопасной работы всей подсветки.

    Блок питания должен быть мощнее чем светодиодная лента на 30%.

    Только в этом случае он будет работать нормально. Если вы подберете его впритык, ровно по мощности всех светодиодов, то блок будет постоянно трудиться на своем пределе. Естественно такая работа скажется на продолжительности эксплуатации. Поэтому всегда давайте ему запас.

    Для монтажа освещения с помощью светодиодной ленты вам понадобится:

      бухта светодиодной ленты. Необходимую длину отрежете в процессе монтажа.
      трехжильный кабель ВВГнг-Ls сечением 1,5мм2
      блок питания
      диммер и пульт управления
      монтажный провод ПуГВ. Лучше всего взять с разноцветной изоляцией красного и черного цветов. Сечение также 1,5мм2

    Если у вас не выполнены эл.монтажные работы, то предварительно необходимо подвести напряжение 220В к месту подключения ленты. Для этого штробите стену, либо укладываете кабельный канал и протягиваете по нему трехжильный кабель ВВГнг-Ls 3*1,5. Ведете его непосредственно до той распредкоробки, где будет подключаться питание светодиодной ленты.

    Можно использовать существующую распаечную коробку, где подключено основное освещение. Главное чтобы место позволяло свободно подключить дополнительные провода и клеммники.

    Выключатель на светодиодную ленту желательно устанавливать именно на провода 220 Вольт, а не перед лентой на отходящие 12-24В. В этом случае блок не будет работать постоянно. Тем более, импульсным блокам работать без нагрузки противопоказано. К тому же так будет выше уровень безопасности.

    Предварительно проверьте и не перепутайте фазу, ноль и землю. Чаще всего, ноль бывает синего цвета, заземляющая жила – желто-зеленого, а фазная — любых других расцветок.
    Но доверять только цветовой маркировке нельзя! Более подробно как без ошибок отличить ноль и фазу можно ознакомиться в статье «Как определить фазу и ноль в электропроводке».

    Далее нужно от этой распредкоробки в штробе, гофрорукаве или в кабельном канале проложить кабель к будущему месту установки блока питания. Для его размещения монтируете удобную полочку. Изготовить ее можно из кусков фанеры или гипсокартона. Рядом размещаете и диммер.

    Протянув кабель до блока, можно приступать непосредственно к подключению проводов.

    Подписка на рассылку

    Светодиодные ленты бывают двух типов: одноцветные и RGB. Последние отлично подходят для динамического освещения, поскольку за счет изменения яркости разных светодиодов изменяется цвет освещения.

    Если вы решили самостоятельно подключить светодиодные ленты, стоит упомянуть, что для этого не подойдет сеть со стандартным напряжением в 220 В. Для светодиодных лент необходимо напряжение 12–24 В, поэтому для подключения данных осветительных приборов необходимо приобрести блок питания или трансформатор, которые обеспечат понижение напряжения до необходимого значения. Кроме того, использование данных приспособлений обеспечивает защиту лент от перепадов напряжения в сети. Выбор подходящего блока питания (трансформатора) зависит от суммарной мощности лент. Его необходимо подбирать из расчета: суммарная мощность лент +20 %.

    Схема подключения светодиодной ленты к сети 220 В

    Перед тем как подключить адаптер, необходимо подвести проводку к тому месту, где планируется установка лент. Для этого вам потребуется кабель с сечением жил 1,5 или 2,5 мм2, поскольку при сечении меньшем 1,5 мм2 напряжение может значительно упасть, а яркость светодиодов — снизиться. Для этих целей можно использовать кабель марки ВВГ-П 2х1,5 или ВВГ 2х2,5. На одном конце кабеля должна быть установлена вилка, а другой необходимо очистить от изоляции на несколько миллиметров.

    Рисунок 1 Зачищенные концы нужно вставить в гнездо сетевого адаптера, после чего закрутить винтом. Подключение осуществляется к разъемам, обозначенным буквами L и N. К первому разъему (L) — фаза, подключается провод коричневого цвета, ко второму — провод синего цвета. На рис. 1 изображена схема подключения светодиодной ленты к адаптеру.

    При подключении светодиодных лент необходимо учитывать полярность, поскольку данные осветительные приборы работают от постоянного тока. На ленте есть маркировка «+» и «–», а блок питания соответственно содержит надписи «+V», а также «–V».

    Подключение нескольких светодиодных лент

    Рисунок 2 В случае подключения нескольких лент, необходимо соблюдать некоторые правила:

    • Длина каждой ленты не должна превышать 5 метров, поскольку при большей длине токопроводящие дорожки ленты могут перегореть. Каждая лента может включать несколько отрезков разной длины, главное, чтобы суммарная величина не превышала пяти метров.
    • Каждая лента обязательно должна подключаться параллельно, а не последовательно. На рис. 2 показана схема соединения светодиодных лент, правильный и неправильный варианты. В случае подключения нескольких светодиодных лент также необходимо соблюдать полярность.

    Как подключить светодиодную ленту 220 вольт.

    Светодиодная лента 220 Вольт — это лента которая не нуждается в блоке питания. Ее можно напрямую подключать к сети переменного напряжения, грубо говоря прямо в розетку или через выключатель, либо фотореле.

    Правда для этого вам понадобится специальный провод. Этот провод имеет в своей конструкции диодный мост — выпрямитель.

    Стоимость такого шнура 2-3 доллара. Сравните это с ценами на блоки питания!

      • коннектор-вилка
      • Какие же преимущества имеет светодиодная лента 220В?

        1Как уже было сказано выше, она не требует блока питания.

        Отсюда выходит существенная экономия общих затрат.

      • 2Светодиодную ленту 220V можно подключать последовательно длиной до 100 метров.

        Вам уже не придется паять параллельные кусочки, соединяя их по несколько метров.

        Она сразу может идти в катушках протяженностью по 50-100 метров.

        То есть, если вам необходимо проложить подсветку на большом протяженном участке, просто разматываете ее с бобины. С одного конца подключаете вилку, с проводом имеющим диодный мост, втыкаете в розетку и на этом все. Наслаждаетесь освещением.

        Если нужно осветить участок в 100 метров — берете одну катушку, плюс один коннектор и соединяете. Правда лента такой длины должна быть маломощной — до 10 Вт.

        Еще имейте в виду, что в местах соединения отдельных кусков, будут небольшие «провалы» освещения из-за вставок и большого расстояния между светодиодами.

        3Светодиодная лента сразу идет в силиконе со степенью защиты IP65 — IP68.

        Ее можно протирать влажной тряпкой, чистить. Отсюда же следует и автоматическая защита от дождя, снега и т.п.

        4У лент 220В отсутствуют строгие требования по минимальному сечению проводов питания.

        Если в экземплярах 12 и 24В рекомендуется все освещение запитывать от проводов сечением от 1,5мм2 и выше,

        то для 220В можно выбирать и меньшие сечения.

        Правда здесь уже будет играть большую роль механическая прочность жил, а не их электрическое сопротивление и токопроводимость.

         

        Казалось бы, преимущества такой ленты неоспоримы. Почему же многие все-таки отказываются от нее в пользу других вариантов, подключаемых через блоки питания?
    • Потому что, кроме перечисленных преимуществ она имеет ряд существенных недостатков, из-за которых люди отказываются с ней работать наотрез.

      1Первый недостаток, как это не странно, проистекает из ее первого же преимущества. Это отсутствие блока питания.

      Если его нет, значит и отсутствует фильтрующий и стабилизирующий элемент в цепи. То есть, все перепады и скачки напряжения, которые происходят в сети, будут напрямую сказываться на светодиодной ленте.

    • Упало напряжение в розетке — упадет напряжение и на светодиодах. Соответственно светить они будут уже не с той яркостью. Повысилось напряжение — светодиоды с высокой вероятность могут перегореть.

      2Эту ленту нельзя нарезать такими маленькими отрезками как ленты 12 и 24В.

      В зависимости от типа светодиода ее можно отрезать:

      То есть, меньше чем по полметра, светодиодную ленту 220 Вольт вы порезать не сможете.

     

    Это все напрямую связано с падением напряжения. На каждом светодиоде оно составляет от 3 до 3,5 Вольт. В итоге получается примерно отрезок с минимальным количеством светодиодов 60 штук. Это как раз таки и есть полметра.

    Таким образом, если вам нужна подсветка короткого участка в 30 или 80 см, то сделать у вас этого не получится.

    3Мерцание.

    Этот недостаток опять же проистекает по причине отсутствия в схеме устройства стабилизации и фильтрации — блока питания.

    Благодаря диодному мосту в коробочке, которая идет с отрезком кабеля для подключения, происходит некоторое сглаживание пульсации. Но этого не достаточно.

    Вашим глазам визуально этого может быть не видно, однако по всем нормам, такая частота пульсации не допустима в жилых помещениях.

    4Светодиодная лента 220В не безопасна.

    Одно дело монтировать и обслуживать изделия напряжением 12В, и совсем другое иметь дело с 220V. Работать здесь нужно с соблюдением правил техники безопасности.

    Недопустимо, чтобы где-то оказался не герметичный отрезок или торчащие куски проводов. Помните, что силиконовая оболочка здесь играет в первую очередь роль вашей защиты от высокого напряжения, а уже потом защищает ленту от воды.

    5Отсутствие самоклеющейся подложки.

    Вы не сможете без дополнительных аксессуаров наклеить ленту где угодно. Придется докупать дополнительные клипсы для монтажа, либо использовать обыкновенные кабельные стяжки.

    Можно приспособить для этого дела крепеж под домашнюю проводку:

    Если не хотите, чтобы лишние элементы крепежа портили подсветку, используйте автомобильный двухсторонний скотч. Но опять же от температуры нагрева он может запросто отклеиться.

    Монтаж и подключение

    Для того, чтобы подключить светодиодную ленту на 220 Вольт вам понадобится:

     

    • сама лента

       

    У нее в начале должны быть отверстия для вилки коннектора, через которую подсоединяют контакты к шнуру питания.

     

    • вилка 220V с диодным мостом-выпрямителем и разъемом на конце

    Она нужна в целях безопасности. И одевается в самом конце отрезка.

    Первым делом вставляете вилку-коннектор в отверстия расположенные по краям силикона. Тем самым, вы соедините ее с питающими проводами, идущими вдоль всей поверхности.

    Фактически, в самой ленте, таким образом реализовано параллельное подключение. И получается, что суммарный ток на всем протяжении идет не по дорожкам, а по этим двум проводникам.

    Далее подключаете питающий шнур. Здесь нужно будет соблюсти полярность.

    По самой вилке не будет понятно, где плюс «+», а где минус «-«. Это нужно выяснять экспериментальным путем, например при помощи мультиметра.

    После этого ищите плюсовой и минусовой контакты на самой ленте. Втыкаете ленту с вилкой-коннектором в выходные разъемы шнура. С обратной стороны сразу одеваете заглушку.

    Для полной герметизации необходимо будет промазать термоклеем все стыки и щели, в местах подключения коннектора и заглушки.

    Осталось все это дело включить в розетку и наслаждаться освещением.

    Бывает такое, что полярность все-таки перепутывается. Не переживайте, ничего при этом не замкнет и не взорвется. Лента всего лишь не будет светиться.

    Для исправления проблемы, просто вытаскиваете разъем, переворачиваете коннектор и вновь подключаете к розетке.

    Исходя из всего вышеизложенного, применять светодиодную ленту 220В в помещениях не рекомендуется. И уж тем более не безопасно ее вешать в ванных комнатах, банях, возле умывальника и т.д.

    Она в первую очередь идеально подходит для уличного монтажа — подсветки фасадов, заборов, элементов архитектуры.

    Очень часто ее применяют на рекламных щитах, вывесках, в качестве привлечения внимания. Можно также использовать зимой, под Новый Год, для украшения деревьев во дворе дома.

     

    Почему нельзя подключать более 5м ленты последовательно.

    При подключении светодиодной ленты, общим правилом является то, что «нельзя включать более 5м ленты в длину». Разберем подробнее, откуда взялась такая рекомендация.

    Проводники, по которым течет ток к светодиодам, не идеальны. У них есть небольшое сопротивление, но его достаточно, чтобы небольшая часть напряжения «осела» от большого тока потребления. Это «осевшее» напряжение, кроме прочего, вызывает разогрев проводника.


    К светодиодам, находящимся на дальнем от запитанного конца ленты, доходит уже не 12В, а меньше. В случае длины 5 м, это может быть менее 11В. Понятно, что концы ленты будут иметь разную яркость, здесь справа — начало ленты, слева — конец:


    Если подключить еще 5 м ленты, эта ситуация ухудшится, и на выходе первых 5 метров ленты может уже быть даже 10В. Второй 5-и метровый участок будет изначально запитан не от 12В а 10-11В, и иметь низкую яркость. При этом, «осевшие» 2В будут разогревать первые 5м ленты, а точнее говоря — ее начало (бОльшая часть напряжения упадет именно на начальном участке ленты, т. к. там будет максимальный ток — сумма токов всех диодов 10-метровой ленты). Это значительно уменьшит срок службы светодиодов, а в некоторых случаях может привести к перегоранию проводников гибкой печатной платы. Кроме того, яркость свечения диодов на конце 10-метровой ленты будет значительно ниже номинальной, и при стыковке с началом другого куска ленты разницы свечения будет сильно заметна.

    На фото конец и начало 10-и метрового куска ленты в одном профиле:


    Как видно, разница в яркости неудовлетворительна. В данном случае, для примера взята лента 5050-60led, которая имеет довольно большую мощность. В случае использования ленты меньшей мощности, разница будет меньше, но и она может бросаться в глаза на стыке яркого и тусклого участка.

    Чтобы этого не происходило, 5-и метровые участки ленты подключают отдельно каждый, или к своему блоку питания, или к общему для всех:


    При этом удаленные от блока питания участки ленты не следует подключать тонким проводом — на нем тоже упадет некоторое напряжение. В случае провода длиной 5-10 м, и нагрузки на него 4…5 А, желательно выбирать сечение более 1.5 мм2

    Соединение светодиодных лент «последовательно» и «параллельно»

    Вы решили использовать светодиодные ленты для своего следующего проекта, или вы даже можете быть готовы все подключить. Если у вас более одного ряда светодиодных лент и вы пытаетесь подключить их к одному источнику питания, вы можете задаться вопросом: должны ли они быть подключены последовательно или параллельно?

    Светодиодные ленты имеют маркировку, которая показывает, с какой стороны подключать положительный провод, а с какой стороны — отрицательный (заземляющий) провод, поэтому это довольно просто, когда вам просто нужно подключить один сегмент светодиода к соответствующим проводам источника питания такого же цвета.Если у вас есть две или более секций светодиодных лент и вам интересно, как их соединить вместе, читайте дальше, чтобы узнать, как подключать светодиодные ленты последовательно или параллельно!

    Заявление об ограничении ответственности: термины «последовательный» и «параллельный» технически неверны с точки зрения электроники! Мы используем эти термины в этой статье для простоты, но для точности помещаем их в кавычки. Пожалуйста, прочтите конец статьи для подробного объяснения.

    Как соединить светодиодные ленты в «серию»

    Идея соединения двух секций светодиодных лент в «серию», вероятно, является наиболее логичным и простым методом.Вы можете думать об этом как о простом присоединении одного конца светодиодной ленты к следующей секции светодиодной ленты. Если вам просто нужно протянуть небольшое расстояние, вы можете найти несколько беспаечных разъемов под рукой, или вы даже можете покрыть большее расстояние с помощью медных проводов, отрезанных до нужной вам длины. Для более длительных пробежек вам нужно следить за падением напряжения, но в противном случае все, что вам действительно нужно сделать, это создать электрическое соединение между положительными / отрицательными медными площадками от одной секции светодиодной ленты к другой


    Это быстрый и простой способ, поскольку он не требует создания еще одного отдельного проводного подключения к источнику питания.Вы просто позволяете «прыгать» между двумя секциями светодиодной ленты.

    Обратной стороной является то, что это создает потенциал для дополнительного падения напряжения, что приводит к уменьшению светоотдачи среди светодиодов, наиболее удаленных от источника питания. Причина в том, что соединение светодиодных лент «последовательно» позволяет прохождению электрического тока только по одному пути. Весь электрический ток для всей установки светодиодной ленты должен проходить через первые несколько дюймов пробега светодиодной ленты, которые могут действовать как горлышко бутылки для протекания тока, уменьшая количество напряжения и тока, которые достигают дальних участков светодиодной ленты. .

    Как соединить светодиодные ленты «параллельно»

    Альтернативой соединению нескольких секций светодиодных лент является их «параллельное» соединение. Этот метод включает создание независимых прогонов секций светодиодной ленты, каждая из которых подключается непосредственно к источнику питания.


    Как вы можете видеть на схеме, это уменьшает количество тока, который должен пройти через любую заданную секцию светодиодной ленты, поскольку они подключены напрямую к источнику питания. Это может значительно снизить вероятность падения напряжения.

    Основным недостатком этого подхода является то, что он потребует немного больше электромонтажных работ. Основная проблема заключается в том, что большинство блоков питания будет иметь только по одному положительному и отрицательному выходным проводам, поэтому для подключения его к более чем одной секции светодиодной ленты вам потребуется разделить этот выход на несколько проводов. Для этой цели доступны специальные клеммные колодки с разделителями проводов.

    Еще одна сложность состоит в том, что некоторые участки светодиодной ленты могут располагаться далеко от источника питания.В этих случаях вы можете столкнуться не только с дополнительными расходами из-за длинных проводов, но и из-за того, что они должны быть достаточного диаметра. В противном случае вы можете столкнуться с падением напряжения в проводах еще до того, как дойдете до участка светодиодной ленты.

    Почему термины «последовательный» и «параллельный» являются технически неправильными

    Многие клиенты используют слово «серия» для описания сквозного или последовательного соединения нескольких секций светодиодной ленты. Однако некоторые из наших более наблюдательных читателей, возможно, заметили, что мы помещаем слово «серия» в кавычки.Причина в том, что с технической точки зрения термин «серия» неверен по отношению к этой конфигурации.

    Почему это неверно и почему это важно? Это связано с конструкцией светодиодных лент и соответствующими принципами работы электроники. Светодиодные ленты длинные и идут последовательно (в неинженерном смысле, как «одна за другой»), но на самом деле они состоят из множества параллельных ветвей, каждая из которых состоит из 3 светодиодов для светодиодных лент с номиналом 12 В. (или 6 светодиодов в светодиодной ленте 24 В).

    Другими словами, 3 светодиода подключены последовательно, но группы из 3 светодиодов подключены друг к другу параллельно. Это то, что позволяет нам просто разрезать светодиодную ленту с интервалом в 3 светодиода. Если вы разрежете светодиодную ленту, вы просто уменьшите количество параллельных ветвей. Когда вы подключаете светодиодную ленту в сквозной конфигурации (гирляндное соединение), вы просто добавляете дополнительные параллельные ветви.

    Мы считаем важным внести ясность, потому что истинное последовательное электрическое соединение изменит требуемое входное напряжение.Когда люди говорят о «последовательном» соединении светодиодных лент, они почти всегда соединяют секции светодиодных лент встык. При таком подключении входное напряжение светодиодной ленты остается неизменным. Другими словами, вы можете использовать источник питания 12 В для питания 4-футовой секции светодиодных лент на 12 В с еще одной трехфутовой секцией светодиодных лент на 12 В, соединенных в гирляндную цепь.

    Другие сообщения



    Что означает плотность светодиода на светодиодной ленте?

    При покупке светодиодных лент вы можете встретить число, называемое «плотность светодиода», или такое обозначение, как 300 светодиодов.Что это значит? Thi … Подробнее


    Почему эти лампочки не могут быть доставлены в Калифорнию? Обзор Закона Калифорнии по энергетике Title 20

    Штат Калифорния исторически был лидером в продвижении энергоэффективности на политическом уровне, часто требуя производства… Подробнее


    В чем разница между CCT и CRI?

    До того, как энергоэффективное освещение стало массовым явлением, выбрать лампочку было довольно просто. 40-ваттная лампочка не дает вам достаточно … Подробнее


    Что такое лампа E26 и как она выглядит?

    Если вы собираетесь купить новую лампочку, вы могли встретить термин «E26», но вы могли не знать, что он означает.Читайте дальше … Подробнее


    Вернуться к блогу об освещении осциллограмм

    Просмотрите нашу коллекцию статей, практических рекомендаций и руководств по различным приложениям освещения, а также подробные статьи по науке о цвете.


    Обзор продукции для освещения осциллограмм


    Описание серии

    и параллельных цепей

    Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство.Однако вполне вероятно, что вы уже читали здесь страницу Википедии о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этому вопросу, но все еще неясны или вам нужна более конкретная информация, касающаяся светодиодов. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю критически важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

    Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

    Какой тип цепи мне следует использовать?
    Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

    Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

    Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

    Но сначала давайте рассмотрим схему серии :

    Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее подключение светодиода идет от отрицательного полюса светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

    Вот несколько пунктов для справки о последовательной цепи:

    1. Одинаковый ток течет через каждый светодиод
    2. Общее напряжение цепи — это сумма напряжений на каждом светодиоде
    3. При выходе из строя одного светодиода вся цепь не будет работать
    4. Цепи серии
    5. проще подключать и устранять неисправности
    6. Различное напряжение на каждом светодиодах — это нормально

    Питание последовательной цепи:

    Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

    Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиода равна 8,85 В постоянного тока . Таким образом, теоретически 8,85 В — это минимальное необходимое входное напряжение для управления этой схемой.

    В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

    Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких светодиодов последовательно, или, может быть, слишком много светодиодов для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

    Параллельная цепь:

    Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

    Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

    В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

    В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

    Вот несколько пунктов для справки о параллельной цепи:

    1. Напряжение на каждом светодиоде одинаковое
    2. Полный ток — это сумма токов, протекающих через каждый светодиод
    3. Общий выходной ток распределяется через каждую параллельную цепочку
    4. Точное напряжение требуется в каждой параллельной цепочке, чтобы избежать перегрузки по току

    А теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :

    Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L при 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из пунктов маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательного включения всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Однако 12 В постоянного тока достаточно для работы трех последовательно включенных (3 x 2,98 = 8,94 В, постоянного тока, ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и имели три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

    Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько различных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

    Падение нескольких светодиодных гирлянд:

    При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

    Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет изменяться сильнее, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

    Как работает светодиод 5 мм?

    Светодиоды окружают нас повсюду. Они есть в наших домах, в наших машинах, даже в наших телефонах. Светодиоды бывают разных форм и размеров, что дает дизайнерам возможность адаптировать их к своему продукту. Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за ним находится светодиод. Их низкое энергопотребление и небольшие размеры делают их отличным выбором для многих различных продуктов, поскольку их можно более плавно интегрировать в дизайн, чтобы сделать его в целом лучшим устройством.

    Раньше мы обсуждали светодиоды высокой яркости, но в этом посте мы сосредоточим наше внимание на светодиодах диаметром 5 мм или светодиодах со сквозными отверстиями. Это типы светодиодов, которые, вероятно, будут использоваться в вашей небольшой электронике в качестве светового индикатора или чего-то в этом роде. 5-миллиметровые светодиоды потребляют гораздо меньше тока, чем светодиоды высокой яркости, 20 мА по сравнению с минимум 350 мА для мощных светодиодов. Если вы следили за нашим оригинальным постом Mastering LEDs, вы должны знать: больше тока = больше света.Очевидно, что эти 5-миллиметровые светодиоды будут скорее акцентным светом для очень маленьких помещений. Именно для этого предназначены 5-миллиметровые светодиоды, их можно использовать вместе в большом массиве для создания знака или какой-то матрицы, или их можно использовать сами по себе, чтобы сделать небольшой индикатор или один из этих крошечных фонариков на цепочке для ключей. .

    5-миллиметровые светодиоды

    очень полезны, так как они легко питаются от небольшого источника питания и служат долгое время. Это упрощает встраивание их во многие электронные устройства или установку ламп там, где они обычно не могут находиться.Название 5-миллиметрового светодиода связано с их размерами: эпоксидный корпус наверху имеет диаметр около 5 мм. Эти сверхмалые источники света просты в использовании, но мы не можем упускать из виду некоторые этапы настройки нашей светодиодной схемы.

    5 мм LED Basics

    Светодиод — это вариант основного диода. Диод — это электронный компонент, который проводит электричество только в одном направлении. Диоды имеют так называемое номинальное прямое напряжение, которое определяет минимальную разницу напряжений между анодом (+) и катодом (-), чтобы позволить электронам течь (аааа..сладкое электричество). Светодиод в основном такой же, как диод, с основным отличием, что он генерирует свет, когда течет электричество.

    5-миллиметровые светодиоды

    — это светодиоды, которые удерживают матрицу на опоре наковальни, которая для защиты заключена в эпоксидный купол. Затем соединения выполняются через две ножки или штыри, выходящие из нижней части. Как мы уже упоминали, диод пропускает поток только в одном направлении. Это делает очень важным различать положительную сторону (анод) и отрицательную сторону (катод).Со светодиодами 5мм это просто, заметили, что ножки разной длины? Более длинная ветвь — это анод, а более короткая из двух — катод. Если ваши ноги подрезаны или у вас есть производитель, который делает их такого же размера, обычно есть плоское пятно вокруг обода 5-миллиметрового корпуса со стороны катода (см. Ниже).

    Убедитесь, что вы всегда подключаете положительный полюс батареи / источника питания к аноду, а отрицательный или заземляющий — к катоду. Это обеспечит совпадение полярности и прохождение электричества, если у вас достаточно входного напряжения, и ваш 5-миллиметровый светодиод загорится.Если вы подключите его в обратном направлении, ничего не произойдет, и цепь останется замкнутой. Чтобы убедиться, что у вас достаточно мощности для светоизлучающего диода, есть два основных параметра, на которые следует обратить внимание при рассмотрении технических характеристик светодиодов: прямое напряжение и прямой ток.

    Напряжение светодиода 5 мм

    Для каждого светодиода должно быть указано «прямое напряжение», которое определяет величину напряжения, необходимого для проведения электричества и получения света. Если вы попытаетесь подать что-либо меньшее, чем это количество, светодиод останется открытым и непроводящим.Как только напряжение, падающее на светодиоде, достигнет прямого напряжения, ваш светодиод загорится. Если у вас несколько светодиодов последовательно, вы должны учитывать сумму их номинальных значений прямого напряжения.

    Давайте взглянем на один из наших стандартных синих светодиодов 5 мм. Теперь мы можем легко увидеть в технических характеристиках на странице продукта, что светодиод имеет прямое напряжение около 3,4 В. Итак, мы берем этот светодиод и пытаемся подключить его к батарее АА, светодиод что-нибудь сделает? Батарейки AA имеют номинальное напряжение только 1.5V так что нет, нам не хватает напряжения, чтобы проводить электричество. Однако, если мы последовательно добавим еще одну батарею AA, наше напряжение будет 3 В, и мы сможем запустить 5-миллиметровый светодиод. «Но вы сказали, что для светодиода требуется 3,4 В!» Да, я знаю, но когда вы говорите с точностью до нескольких знаков после запятой, все будет в порядке.

    5мм светодиодный ток

    Теперь некоторые люди думают, что им нужно позаботиться только о напряжении светодиода, и все будет в порядке. Это упускает из виду очень важную часть светодиодов — ток. Светодиоды будут потреблять столько тока, сколько они могут в цепи, в свою очередь, вызывая повышение температуры светодиода, пока он не перегорит.Поэтому, чтобы уменьшить количество выходящих из строя светодиодов, обратите внимание на номинальный ток светодиодов.

    Приведенный выше пример, когда входное напряжение и прямое напряжение настолько близки, — это единственный пример, когда вам не нужно сильно беспокоиться о токе. Как показывает практика на нашем сайте, когда ваше входное напряжение составляет 3 В, вы можете включить любой из 5-миллиметровых светодиодов, кроме красного и желтого, не беспокоясь об отслеживании тока. Это связано с тем, что в источнике питания недостаточно тока для того, чтобы 5 мм потреблял и сгорал.

    В любом другом случае вам нужно ограничить количество тока, протекающего через светодиод. В светодиодах
    для этого используется драйвер постоянного тока. Номинальный ток 5-миллиметровых светодиодов намного ниже, обычно около 15-30 мА, и мы можем контролировать ток, подключив резистор последовательно со светодиодом. Здесь вы часто будете слышать термин «резистор ограничения тока», поскольку резистор обеспечивает значительное ограничение тока, протекающего по цепи.

    5-миллиметровые светодиоды обычно тестируются при 20 мА, они могут потреблять ток до 30 мА, но, на мой взгляд, я обычно стараюсь поддерживать 5-миллиметровые светодиоды на 20 мА, что рекомендуется во всех их спецификациях.Теперь нам нужно выяснить, как подобрать резистор подходящего размера для вашей схемы, чтобы ваши светодиоды были в безопасности!

    Поиск резистора подходящего размера для светодиодов

    Резисторы

    бывают самых разных размеров, и чтобы найти правильный размер для вашей системы, требуется математика. Но не волнуйтесь, с этим калькулятором сопротивления, который рассчитывает размер резистора, который вам нужен, будет очень просто. Это отличный инструмент, но он всегда помогает узнать, как производятся расчеты, поэтому следите за ним.Чтобы найти токоограничивающий резистор правильного размера, мы должны знать два свойства светодиода: прямой ток и прямое напряжение.

    Давайте использовать тот же синий светодиод, что и в примере выше. На странице продукта вы увидите таблицу, изображенную справа. В кружке показано прямое напряжение (Vf) при заданном испытательном токе. Таким образом, вы можете видеть, что для этого светодиода при постоянном токе 20 мА на светодиоде падает 3,2-3,6 В. Мы возьмем золотую середину и предположим, что этот светодиод упадет на 3,4 В.

    В этом примере я буду использовать 3 последовательно соединенных батарейки AA в качестве источника питания.Каждая батарея AA имеет напряжение около 1,5 В, поэтому в общей сложности у нас есть 4,5 В питания для нашего светодиода. Мы должны использовать закон Ома, чтобы найти предел резистора, но сначала мы должны найти напряжение, проходящее через него. Резистор и светодиод будут размещены последовательно, что означает, что падение напряжения на них будет суммироваться, чтобы равняться входному напряжению. Это означает, что мы можем легко найти напряжение, которое будет падать на резисторе, поскольку мы уже знаем, что светодиоды составляют 3,4 В.

    Входное напряжение = LED В f + Напряжение резистора

    Напряжение резистора = Входное напряжение — светодиод В f

    Напряжение на резисторе = 4.5–3,4 В

    Таким образом, на резисторе будет падать около 1,1 В. Теперь, когда у нас есть это, мы можем использовать закон Ома для расчета необходимого сопротивления!

    Сопротивление = напряжение / ток (в амперах)

    Сопротивление = 1,1 / 0,02 (20 мА)

    Сопротивление = 55 Ом

    В зависимости от светодиода резистор будет меняться. В этом примере мы можем предположить, что требуется резистор на 55 Ом, ближайший размер, который у нас есть, — 60,4, поэтому мы бы выбрали его.Если вы сомневаетесь в значении или у вас есть одно среднее между предложенными значениями сопротивления, выберите размер немного большего размера.

    Последнее, что нужно проверить с вашими светодиодами и резисторами, — это мощность резистора. Все наши резисторы — ¼ Вт. Требуемая мощность резистора — это разница между мощностью светодиода и общей мощностью схемы. Итак, в приведенном выше примере мы найдем требуемую мощность резистора.

    Мощность светодиода = 3,4 В x 0,02 А =.068 Вт

    Общая мощность = 4,5 В x 0,02A = 0,09 Вт

    Мощность, рассеиваемая на резисторе = 0,09 — 0,068 = 0,022 Вт

    Резистор

    ¼ Вт (0,25) может легко выдержать 0,022 Вт, так что все готово! Установите резистор последовательно со светодиодом (на положительной стороне соединения), и ваш свет будет готов.

    Не хотите ломать голову над поиском резистора и работать с несколькими резисторами в одной цепи? Оцените DynaOhm от LuxDrive.Это полностью залитый полупроводниковый переменный резистор, который оптимизирован для замены резисторов в 5-миллиметровых светодиодных устройствах. Этот блок будет включаться последовательно, как и резистор. Разница в том, что он уже рассчитан на определенный номинальный ток, поэтому все, о чем вам нужно беспокоиться, — это напряжение. DynaOhm может принимать от 2,6 В до 50 В постоянного тока, поэтому вводите все, что вам нужно для светодиодов.

    Теперь, когда мы закончили все эти забавные разговоры о напряжении и токе, мы можем погрузиться в то, что действительно волнует людей, — на свет, который излучают эти крошечные лампочки.Цвет и яркость измеряются несколькими способами. На нашем сайте они всегда хорошо перечислены и систематизированы, но давайте узнаем, как эти диоды создают тот свет, который они создают.

    Длина волны светодиода

    Длина волны светодиода

    — это, по сути, очень точный способ объяснить цвет света. Для светодиодов будет различаться цвет, так как производственный процесс интенсивен, а иногда и длины волн немного отличаются. На листе технических характеристик светодиода 5 мм вы фактически увидите минимальную и максимальную длину волны.Вариации всегда находятся в пределах одного и того же спектра, просто если вы покупаете светодиоды одного цвета в разных партиях, вероятно, будут некоторые незначительные отклонения (даже если наши глаза их не замечают).

    Эта длина волны фактически определяется типом полупроводникового материала, из которого изготовлен диод внутри этого 5-миллиметрового корпуса. Структура энергетических зон полупроводников различается в зависимости от материала, поэтому фотоны излучаются с разными частотами, что влияет на видимый нами свет. Ниже представлена ​​полная таблица наших светодиодов и вариантов длины волны.Некоторые из наиболее популярных цветов, которые мы продаем, — это Deep Red 660 нм и Pink 440 нм.

    Есть также 5-миллиметровые белые светодиоды теплого и холодного белого цвета.

    Яркость светодиода

    Таким образом, длина волны зависит от материала полупроводника, но интенсивность света зависит от тока, подаваемого на диод. Следовательно, чем выше ток возбуждения, тем ярче будет ваш светодиод. Яркость 5-миллиметровых светодиодов обычно измеряется в милликанделах (мкд), но это гораздо больше, чем просто установка определенного количества яркости на любой светодиод.

    Интересная особенность этого измерения света, канделы, заключается в том, что это не мера количества световой энергии, как измеряется большинство других световых форм, а скорее фактическая яркость. Это число определяется путем определения мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции яркости света. В основном это означает, что угол луча, который мы обсудим ниже, может влиять на свет, но также влияет на длину волны. Человеческий глаз более чувствителен к некоторым длинам волн, чем к другим, и эта модель яркости учитывает это.Вот почему ИК-светодиоды 5 мм не будут иметь выхода, потому что мы не можем видеть эту длину волны. То же самое для УФ и даже синего и других распространенных цветов.

    Эта сила света (яркость) варьируется от светодиода к светодиоду, как вы увидите. Цвета обычно ниже, от десятков до сотен, тогда как белые (и некоторые цвета, которые мы видим лучше, например, зеленый) могут достигать 20 000 мкд. Мы перечисляем светоотдачу всех 5-миллиметровых светодиодов при испытательном токе 20 мА.

    Угол обзора 5 мм

    5мм светодиода на нашем сайте будут маркированы по цвету и углу луча.5-миллиметровые светодиоды показывают график, подобный приведенному справа, который показывает угол, под которым будет идти луч, и интенсивность при определенных углах. Чтобы прочитать график, представьте, что светодиод вертикально стоит под ним. «Спицы» на графике — это углы, а линии, похожие на радугу, — это интенсивность в процентах от максимальной интенсивности. Ниже мы расскажем, как определить угол обзора и яркость любого 5-миллиметрового светодиода под этим углом.

    Рассеянный светодиод 5мм

    Часто рекомендуется иметь какой-нибудь рассеиватель или матовое покрытие, если на светодиоды будут смотреть непосредственно человеческий глаз.Некоторые 5-миллиметровые светодиоды имеют эпоксидную отделку купола, которая делает световой поток более мягким. У нас есть один белый 5-миллиметровый светодиод, в котором используется эта отделка, поэтому она приятна для глаз. Это снизит яркость, но сделает свет лучше.

    Go Explore со светодиодами 5 мм

    Светодиоды

    5 мм очень доступны по цене и просты в разработке. Посмотрите, что вы можете с ними сделать, варианты безграничны. Теперь вы знаете, как запитать 5-миллиметровые светодиоды, определить их цвет и яркость, а также убедиться, что свет распространяется туда, где он вам нужен.Удачи!

    Использовать параллельную или последовательную схему для светодиодных лент большой мощности?

    Это полностью зависит от того, что вы называете «полосой» … Поэтому убедитесь, что вы знаете, что заказываете.

    Наиболее распространенной является гибкая светодиодная лента. Вот пример. Вы также можете получить их на печатных платах с металлическим сердечником.

    Важно отметить маркировку «24V DC» и наличие резисторов. Как это обычно бывает, белые светодиоды с приблизительным значением Vf 3–3.3 В соединены последовательными группами из 3 светодиодов для полосы на 12 В или 6 светодиодов для полосы на 24 В. Каждая группа имеет свой собственный резистор для установки тока, и все группы затем подключаются параллельно. Полоску можно разрезать между каждой группой светодиодов.

    В них немного эффективности ради удобства. Резисторы действительно тратят немного энергии, но вы можете просто подключить полоски параллельно и использовать источник постоянного напряжения.

    Есть тонкость: если вы соедините две полосы вместе с помощью клемм на конце, чтобы сделать более длинную полосу, они будут выглядеть так, как будто они подключены «последовательно» … но это не так, это параллельная проводка, так как + и — одной полосы подключены к + и — следующей полосы.

    Обратите внимание, что медные дорожки на них обычно довольно тонкие, поэтому, если вы используете длинный удлинитель высокой мощности, потребляющий несколько ампер, вы можете подавать его с обоих концов или с середины, а не только с одного конца, так как падение напряжения из-за сопротивления меди может вызвать падение яркости по мере удаления от разъема питания. Точно так же подключение нескольких полосок друг за другом может привести к падению яркости.Вы можете измерить напряжение вдоль полосы, чтобы убедиться, что оно равномерное.

    Теперь есть еще «полоски», которые содержат только светодиоды и никаких резисторов, подобных этому.

    Они также содержат последовательно-параллельные группы светодиодов (или иногда только одну группу), но без резисторов. Предположительно светодиоды разделены Vf для обеспечения адекватного распределения тока.

    Однако, поскольку они не включают резисторы для повышения эффективности, вы не должны использовать источник постоянного напряжения, а используйте источник постоянного тока, способный выдавать напряжение, необходимое для светодиодного модуля.

    Они также могут быть подключены параллельно, но из-за отсутствия резисторов сбалансированное разделение тока является проблемой.

    Почему люди не подключают светодиодные ленты параллельно, а не используют усилители?

    На самом деле, люди постоянно подключают светодиодные ленты RGB параллельно. Фактически, просто используя светодиодную полосу RGB, вы подключаете светодиоды параллельно, поскольку все эти полосы представляют собой просто набор параллельно подключенных светодиодов RGB с их собственными токоограничивающими резисторами (что является важной функцией, которая позволяет им работать. безопасно подключил таким образом).Точнее, они, как правило, представляют собой группы из 3 или 5 светодиодов, которые имеют общий набор токоограничивающих резисторов — поэтому вы можете разрезать полоски только на каждом третьем (или любой другой группе) светодиоде. Но каждый режущий «блок» уже подключен параллельно.

    Это означает, что нет никакой разницы в электрическом питании, сколь угодно много полос любой произвольной длины параллельно и одной гигантской полосы с тем же общим количеством светодиодов. В любом случае они уже подключены параллельно.

    Пока ваш источник питания может выдерживать нагрузку, вы можете подключить к нему параллельно светодиодные ленты, и он должен «просто работать».

    Я не знаю, почему именно вы думаете, что люди этого не делают, поскольку, по моему опыту, это делается всякий раз, когда это оправдано.

    Я думаю, что основная причина, по которой вы видите полосы последовательно и так часто используете усилители, заключается в том, что часто одним из основных аспектов светодиодных лент является пройденное расстояние. Если у вас есть 5-метровая светодиодная лента, во многих случаях один конец полосы будет находиться примерно в 5 метрах или несколько меньше, в зависимости от того, как они используются.Если вам нужно продлить эту длину за пределы 5 метров, чтобы сделать это параллельно, вам теперь нужно проложить 5 метров дополнительной проводки.

    Это могло очень быстро выйти из-под контроля. Теперь вам нужно найти способ проложить все эти дополнительные провода, и это может выглядеть не очень красиво и значительно усложняет ситуацию по сравнению с просто последовательно соединенными полосами без каких-либо проводов, за исключением короткой длины и локального источника питания для него. .

    Но если у вас есть 3 5-метровых полосы, которые начинаются примерно в одном месте, то в этом случае определенно было бы предпочтительнее соединить их параллельно — и, насколько я знаю, люди делают это, когда установка позволяет и с большой успех.

    Все это строго в контексте обычных, «тупых» светодиодных лент RGB. В случае с адресными светодиодными лентами дела обстоят иначе. Адресные светодиодные ленты питаются параллельно, но к ним подключена последовательная шина данных, так что каждый светодиод имеет вход и выход, и они передают сигнал от одного светодиода к другому, почти как пожарные ведра, только вместо воды. , его биты.

    Вы по-прежнему можете подключать адресные полоски параллельно, но вы должны подключить третий провод передачи данных в серии , чтобы сохранить полную функциональность.Опять же, это может быстро стать проблемой из-за дополнительной проводки.

    В качестве альтернативы, если вы не возражаете против того, чтобы каждая адресуемая полоска будет иметь идентичное поведение и показывать точно такой же рисунок, как и другие полоски, подключенные параллельно, вы можете подключить линию данных параллельно, как и соединения питания. Однако если вы сделаете это, вы потеряете возможность самостоятельно управлять полосами. Они всегда будут отражать другие полоски (при условии, что они одинаковой длины).

    Примечание: Вы должны соблюдать одни и те же правила для резки светодиодных лент независимо от того, как они будут подключаться / подключаться.Разрежьте только там, где полоска указывает, что это можно разрезать. Это гарантирует, что каждая группа светодиодов имеет токоограничивающие резисторы.

    Параллельное соединение светодиодных лент разной длины

    Параллельное соединение светодиодных лент разной длины — Электротехника
    Сеть обмена стеков

    Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетить Stack Exchange
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Кто угодно может задать вопрос

    Кто угодно может ответить

    Лучшие ответы голосуются и поднимаются наверх

    Спросил

    Просмотрено 4к раз

    \ $ \ begingroup \ $

    Планирую осветить часть дома стандартными светодиодными лентами 5050.

    Однако все примеры параллельной разводки, которые я видел, имеют полоски одинаковой длины. Я планировал использовать несколько полос разной длины, например полосу 6 м и несколько полос длиной 1 м, подключенных параллельно к одному и тому же источнику питания.

    Мои ограниченные (и очень ржавые) знания в области ЭЭ говорят мне, что это, вероятно, плохая идея. Я просто хотел дважды проверить здесь, действительно ли то, что я хочу сделать, жизнеспособно (без дополнительных схем или компонентов).

    Создан 13 июн.

    Obuwobuw

    1311 серебряный знак33 бронзовых знака

    \ $ \ endgroup \ $ 3 \ $ \ begingroup \ $ Светодиодные ленты

    со встроенными резисторами предназначены для разрезания в определенных местах при сохранении того же требования к напряжению; Все, что изменилось, — это текущие требования, поскольку теперь количество параллельных подсхем меньше.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *