Почему свет преломляется – Почему и как преломляется свет

Почему и как преломляется свет

Почему и как преломляется свет

То, что при переходе из одной среды в другую луч

света преломляется, многим представляется странным капризом природы.

Кажется непонятным, почему свет не сохраняет в новой среде первоначального

своего направления, а избирает ломаный путь.

Кто так думает, тот,

вероятно, с удовлетворением узнает, что луч света претерпевает,

в сущности, то же самое, что происходит и с марширующей колонной

бойцов, пересекающей границу между почвой, удобной для ходьбы, и

почвой неудобной. Вот что говорит об этом Джон Гершель, знаменитый

астроном и физик прошлого века.


“Представьте себе отряд солдат, идущий по местности, разделенной

прямой границей на две полосы, из которых одна гладкая, ровная и

удобная для ходьбы, другая — кочковатая, затруднительная, так что

ходьба по ней не может совершаться столь быстро.

Предположим сверх

того, что фронт отряда составляет угол с пограничной линией между

двумя полосами, так что солдаты достигают этой границы не все одновременно,

а последовательно один за другим.


Тогда каждый солдат, переступив

границу, очутится на почве, по которой он не может более подвигаться

так быстро, как до того времени.

Он не сможет уже держаться на одной

линии с остальной частью шеренги, еще находящейся на лучшей почве,

и будет от нее отставать с каждой секундой все больше.

Так как каждый

солдат, достигая границы, испытывает одинаковое затруднение в ходьбе,

то если солдаты не нарушат строя, не рассеются, а будут продолжать

маршировать правильной колонной, вся та часть колонны, которая переступила

границу, будет неизбежно отставать от остальной и составит с ней

поэтому тупой угол в точке пересечения границы.

И так как необходимость

ходить в ногу, не перебивая дороги друг другу, заставит каждого

солдата шагать прямо перед собой, под прямым углом к новому фронту,

то путь, который он пройдет по переходе границы, будет, во-первых,

перпендикулярен к новому фронту, а во-вторых, так относиться к тому

пути, какой был бы пройден в случае отсутствия замедления, как новая

скорость к прежней”.

Рис. 109. Опыт, поясняющий преломление света.

В малом виде вы можете воспроизвести это наглядное

подобие преломления света у себя на столе. Накройте половину стола

скатертью (рис. 109) и, слегка наклонив стол, заставьте скатываться

по нему пару колесиков, наглухо посаженных на общую ось (например,

от сломанного детского паровоза или другой игрушки).

Если направление

движения колес и край скатерти составляют прямой угол, преломления

пути не происходит. Вы имеете в этом случае иллюстрацию оптического

правила: луч, перпендикулярный к плоскости раздела сред, не преломляется.

При направлении, наклонном к краю скатерти, путь колес изламывается

на этом краю, т. е. на границе между средами с различной скоростью

движения в них.

Легко заметить, что при переходе из части стола,

где скорость движения больше (непокрытая часть), в ту часть, где

скорость меньше (скатерть), направление пути (“луч”) приближается

к “перпендикуляру падения”. В обратном случае наблюдается удаление

от этого перпендикуляра.

Из этого можно, между прочим, почерпнуть важное указание, вскрывающее

сущность рассматриваемого явления, а именно, что преломление обусловлено

различием скорости света в обеих средах.

Чем больше различие в скорости,

тем значительнее преломление; так называемый “показатель преломления”,

характеризующий величину излома лучей, есть не что иное, как отношение

этих скоростей. Когда вы читаете, что показатель преломления при

переходе из воздуха в воду есть 4/3, то вы, вместе с тем, узнаёте,

что свет движется в воздухе примерно в 1,3 раза скорее, чем в воде.

А в связи с этим находится и другая поучительная особенность распространения

света. Если в случае отражения световой луч следует кратчайшим путем,

то в случае преломления он избирает скорейший путь: никакое другое

направление не приводит луч так скоро к “месту назначения”, как

этот изломанный путь.

Знаете ли вы?

Зрительные эффекты в атмосфере Земли

Преломлением света в атмосфере Земли объясняются многие зрительные эффекты.

Так, при определённых метеорологических условиях Земля с небольшой высоты кажется наблюдателю вогнутой чашей, а не частью выпуклого шара.

Преломление света в атмосфере приводит к тому, что мы наблюдаем восход Солнца несколько раньше, а закат несколько позже, чем это имело бы место при отсутствии атмосферы.

По той же причине на горизонте диск Солнца выглядит немного сплющенным вдоль горизонтали.

class-fizika.ru

Занимательная физика. Почему и как преломляется свет?

Занимательная физика. Почему и как преломляется свет?

То, что при переходе из одной среды в другую луч света преломляется, многим представляется странным капризом природы. Кажется непонятным, почему свет не сохраняет в новой среде первоначального своего направления, а избирает ломаный путь. Кто так думает, тот, вероятно, с удовлетворением узнает, что луч света претерпевает, в сущности, то же самое, что происходит и с марширующей колонной бойцов, пересекающей границу между почвой, удобной для ходьбы, и почвой неудобной. Вот что говорит об этом Джон Гершель, знаменитый астроном и физик прошлого века.

“Представьте себе отряд солдат, идущий по местности, разделенной прямой границей на две полосы, из которых одна гладкая, ровная и удобная для ходьбы, другая — кочковатая, затруднительная, так что ходьба по ней не может совершаться столь быстро. Предположим сверх того, что фронт отряда составляет угол с пограничной линией между двумя полосами, так что солдаты достигают этой границы не все одновременно, а последовательно один за другим. Тогда каждый солдат, переступив границу, очутится на почве, по которой он не может более подвигаться так быстро, как до того времени. Он не сможет уже держаться на одной линии с остальной частью шеренги, еще находящейся на лучшей почве, и будет от нее отставать с каждой секундой все больше. Так как каждый солдат, достигая границы, испытывает одинаковое затруднение в ходьбе, то если солдаты не нарушат строя, не рассеются, а будут продолжать маршировать правильной колонной, вся та часть колонны, которая переступила границу, будет неизбежно отставать от остальной и составит с ней поэтому тупой угол в точке пересечения границы. И так как необходимость ходить в ногу, не перебивая дороги друг другу, заставит каждого солдата шагать прямо перед собой, под прямым углом к новому фронту, то путь, который он пройдет по переходе границы, будет, во-первых, перпендикулярен к новому фронту, а во-вторых, так относиться к тому пути, какой был бы пройден в случае отсутствия замедления, как новая скорость к прежней”.

В малом виде вы можете воспроизвести это наглядное подобие преломления света у себя на столе. Накройте половину стола скатертью и, слегка наклонив стол, заставьте скатываться по нему пару колесиков, наглухо посаженных на общую ось (например, от сломанного детского паровоза или другой игрушки).

Опыт, поясняющий преломление света.

Если направление движения колес и край скатерти составляют прямой угол, преломления пути не происходит. Вы имеете в этом случае иллюстрацию оптического правила: луч, перпендикулярный к плоскости раздела сред, не преломляется. При направлении, наклонном к краю скатерти, путь колес изламывается на этом краю, т. е. на границе между средами с различной скоростью движения в них. Легко заметить, что при переходе из части стола, где скорость движения больше (непокрытая часть), в ту часть, где скорость меньше (скатерть), направление пути (“луч”) приближается к “перпендикуляру падения”. В обратном случае наблюдается удаление от этого перпендикуляра.

Из этого можно, между прочим, почерпнуть важное указание, вскрывающее сущность рассматриваемого явления, а именно, что преломление обусловлено различием скорости света в обеих средах. Чем больше различие в скорости, тем значительнее преломление; так называемый “показатель преломления”, характеризующий величину излома лучей, есть не что иное, как отношение этих скоростей. Когда вы читаете, что показатель преломления при переходе из воздуха в воду есть 4/3, то вы, вместе с тем, узнаёте, что свет движется в воздухе примерно в 1,3 раза скорее, чем в воде.

А в связи с этим находится и другая поучительная особенность распространения света. Если в случае отражения световой луч следует кратчайшим путем, то в случае преломления он избирает скорейший путь: никакое другое направление не приводит луч так скоро к “месту назначения”, как этот изломанный путь.

infourok.ru

Преломление света. Закон преломления. Преломление лучей


 

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление — свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда — читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет — во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

 

Закон преломления (частный случай).

 

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. 1.

Рис. 1. Преломление луча на границе «воздух–среда»

 

В точке падения проведён перпендикуляр (или, как ещё говорят, нормаль) к поверхности среды. Луч , как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью — углом падения. Луч — это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной , которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла , а для воды . Вообще, у любой среды ; показатель преломления равен единице только в вакууме. У воздуха , поэтому для воздуха с достаточной точностью можно полагать в задачах (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход «воздух–среда»).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:

. (1)

Поскольку из соотношения (1) следует, что , то есть — угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: . И вот оказывается,что

. (2)

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы . (1) и (2):

. (3)

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме . Приняв это во внимание и глядя на формулу . (3), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

 

Обратимость световых лучей.

 

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.

Рис. 2. Преломление луча на границе «среда–воздух»

 

Раз геометрическая картинка не изменилась, той же самой останется и формула (1): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол — углом преломления.

В любом случае, как бы ни шёл луч — из воздуха в среду или из среды в воздух — работает следующее простое правило. Берём два угла — угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

 

Закон преломления (общий случай).

 

Пусть свет переходит из среды 1 с показателем преломления в среду 2 с показателем преломления . Среда с большим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 3). В этом случае угол падения больше угла преломления: .

Рис. 3.

 

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4). Здесь угол падения меньше угла преломления:

Рис. 4.

 

Оказывается, оба этих случая охватываются одной формулой — общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

. (4)

Нетрудно видеть, что сформулированный ранее закон преломления для перехода «воздух–среда» является частным случаем данного закона. В самом деле, полагая в формуле (4) , мы придём к формуле (1).

Вспомним теперь, что показатель преломления — это отношение скорости света в вакууме к скорости света в данной среде: . Подставляя это в (4), получим:

. (5)

Формула (5) естественным образом обобщает формулу (3). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

 

Полное внутреннее отражение.

 

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление — полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света , испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 5).

Рис. 5. Полное внутреннее отражение

 

Луч падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч ) и частично отражается назад в воду (луч ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.

Угол падения луча больше. Этот луч также разделяется на два луча — преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч будет тусклее, чем луч (то есть получит меньшую долю энергии), а отражённый луч — соответственно ярче, чем луч (он получит большую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая — преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения , которому отвечает угол преломления . В данной ситуации преломлённый луч должен был бы пойти параллельно поверхности воды, да идти уже нечему — вся энергия падающего луча целиком досталась отражённому лучу .

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение — все такие лучи целиком отражаются назад в воду. Угол называется предельным углом полного отражения.

Величину легко найти из закона преломления. Имеем:

.

Но , поэтому

,

откуда

.

Так, для воды предельный угол полного отражения равен:

.

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности — вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

 

Звоните нам:
8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Преломление света: как работает на практике, законы и формулы

 

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

 

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.

 

1posvetu.ru

Преломление света

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Вакуум 1 Вода 1,33
Воздух 1,0003 Глицерин 1,47
Лёд 1,31 Стекло 1,5 – 2,0

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

Закон преломления света. Чтобы рассмотреть этот закон, введём определения. Угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом падения (a). Аналогично, угол между преломлённым лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом преломления (g).

При преломлении света всегда выполняются закономерности, составляющие закон преломления света: 1. Луч падающий, луч преломлённый и перпендикуляр к границе раздела сред в точке излома луча лежат в одной плоскости. 2. Отношение синуса угла падения к синусу угла преломления – постоянная величина, не зависящая от углов:

n – относительный показатель преломления
a – угол падения луча
g – угол преломления луча

Применяют и качественную трактовку закона преломления света: при переходе света в оптически более плотную среду луч отклоняется к перпендикуляру к границе раздела сред. И наоборот.

Принцип обратимости световых лучей. При отражении или преломлении света падающий и отражённый лучи всегда можно поменять местами. Это означает, что ход лучей не изменится, если изменить их направления на противоположные. Многочисленные опыты подтверждают: при этом «траектория» хода лучей не меняется (см. чертёж).

questions-physics.ru

Почему и как преломляется свет? « Учи физику!

То, что при переходе из одной среды в другую луч света изламывает свой путь, многим представляется странным капризом природы. Кажется непонятным, почему свет не сохраняет в новой среде первоначального своего направления, а избирает ломаный путь. Кто так думает, тот, вероятно, с удовлетворением узнаёт, что луч света претерпевает в сущности то же самое, что происходит и с марширующей колонной бойцов, пересекающей границу между почвой, удобной для ходьбы, и почвой неудобной. Вот что говорит об этом астроном и физик прошлого века Джон Гершель:

«Представьте себе отряд солдат, идущий по местности, разделённой прямой границей на две полосы, из которых одна гладкая, ровная и удобная для ходьбы, другая — кочковатая, затруднительная, так что ходьба по ней не может совершаться столь быстро. Предположим сверх того, что фронт отряда составляет угол с пограничной линией между двумя полосами, так что солдаты достигают этой границы не все одновременно, а последовательно один за другим. Тогда каждый солдат, переступив границу, очутится на почве, по которой он не может более подвигаться так быстро, как до того времени. Он не сможет уже держаться на одной линии с остальной частью шеренги, ещё находящейся на лучшей почве, и будет от неё отставать с каждой секундой всё больше. Так как каждый солдат, достигая границы, испытывает одинаковое затруднение в ходьбе, то если солдаты не нарушат строя, не рассеются, а будут продолжать маршировать правильной колонной, вся та часть колонны, которая переступила границу, будет неизбежно отставать от остальной и составит с ней поэтому тупой угол в точке пересечения границы. И так как необходимость ходить в ногу, не перебивая дороги друг другу, заставит каждого солдата шагать прямо перед собой, под прямым углом к новому фронту, то путь, который он пройдёт по переходе границы, будет, во-первых, перпендикулярен к новому фронту, а, во-вторых, так относиться к тому пути, какой был бы пройден в случае отсутствия замедления, как новая скорость к прежней».
В малом виде вы можете воспроизвести это наглядное подобие преломления света у себя на столе. Накройте половину стола скатертью (рис. 116) и, слегка наклонив стол, заставьте скатываться по нему пару колесиков, наглухо посаженных на общую ось (например, от сломанного детского паровоза или другой игрушки). Если направление движения колёс встречает край скатерти под прямым углом, преломления пути не происходит. Вы имеете в этом случае иллюстрацию оптического правила:

 

Занимательная физика Ч-1 Я.И. Перельман

Задачи

Общая теория относительности и геометрия

На главную

uchifiziku.ru

Почему свет преломляется на границе раздела сред? Если из-за разницы скоростей распространения, то откуда берётся Е?

В формуле преломления света нет Е

Свет всегда движется со скоростью света. Просто в материальных средах он может временно поглощаться, переводя электрон на метастабильную или совсем нестабильную орбиту, тем самым фотон «исчезает» на какое-то время и затем снова переизлучается.
Почему он отклоняется на определённый угол? По квантовой механике. Фотон летит по всем возможным траекториям сразу, и всё сводится к интерференции (только интерференцию нужно делать по правилам квантовой механики) . Просто в реальности (квинтиллионы атомов… ) получается, что вероятность фотона отклониться на определённый угол равна 0,999999… (практически 1).

А что такое E? Чем оно мешает преломлению вследствие разности скоростей?

Е это Энергия. Просто лимит знаков в вопросе маленький, и я не смог чётко всё сформулировать. Вот допустим луч падает на стекло, на границе раздела сред он преломляется и распространяется в стекле под углом, отличным от первоначального (в воздухе) . Луч света проходит стекло, снова граница раздела сред и угол становиться первоначальным. В школе это объяснялось тем, что плотности воздуха и стекла разные, следовательно разные и скорости движения луча света в среде. Значит при входе в стекло свет тормозиться, теряет энергию на преодоления препятствия, но откуда берётся энергия для набора первоначальной скорости, когда луч прошел через стекло? ! Я уже не говорю о том, что стекло должно было нагреться и расплавиться, а свет Солнца вообще не достигнуть поверхности Земли, остановившись в атмосфере.

touch.otvet.mail.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о