Почему свет преломляется – Преломление — Википедия

Преломление — Википедия

Кажущееся преломление прямых предметов, косо пересекающих границу раздела сред с разной оптической плотностью

Преломле́ние (рефра́кция) — изменение направления луча (волны), возникающее на границе двух сред, через которые этот луч проходит[1] или в одной среде, но с меняющимися свойствами, в которой скорость распространения волны неодинакова[2].

Феномен преломления объясняется законами сохранения энергии и сохранения импульса. При изменении передающей среды изменяется скорость волны, а её частота остаётся такой же. Преломление света через стекло или воду — наиболее простой и очевидный пример искажения луча, но законы преломления действительны для любых волн, — электромагнитных, акустических и даже морских. В общем случае закон преломления описывается «Законом Снеллиуса».

Термины «рефракция» и «преломление» взаимозаменяемы[2]; традиционно, термин «рефракция» чаще употребляется для описания излучения в средах, показатель преломления в которых от точки к точке меняется плавно (траектория луча имеет вид плавно искривляющейся линии), в то время как термин «преломление» чаще используется для описания резкого изменения траектории луча на границе сред из-за высокой разницы в их показателях преломления

[2]. Действует при этом один и тот же закон — зависимость скорости волны от показателя преломления конкретной передающей среды.

Иногда специфика передающей среды или источника излучения требует выделить исследования конкретно этой рефракции в особый раздел. Так, рефракцию человеческого глаза изучает офтальмология, в то время как рефракцию звука в воде изучает гидроакустика, рефракцию небесных светил — астрономия и так далее.

Изучение законов преломления имеет фундаментальное значение для науки и техники. Их применение в разных областях знаний позволяет создавать точные оптические приборы (телескопы, микроскопы, фотоаппараты, кинокамеры, очки, контактные линзы и т. п.), исследовать химическую структуру соединений и определять состав химических смесей[3], получать точные геодезические и астрономические координаты

[4], создавать оптимальные системы связи и многое другое.

Измерение углов падения и преломления луча света Преломление волновых фронтов на поверхности раздела двух сред

Преломление наблюдается, когда фазовые скорости электромагнитных волн в контактирующих средах различаются (см. показатель преломления). В этом случае полное значение скорости волны должно быть разным по разные стороны границы раздела сред. Однако если проследить движение, например, гребня волны вдоль границы раздела — то соответствующая скорость должна быть одинаковой для обеих «половинок» волны (поскольку при пересечении границы максимум волны остается максимумом, и наоборот; то есть можно говорить о синхронизации падающей и прошедшей волны во всех точках границы, см. верхний рисунок). Из простого геометрического построения получаем, что скорость движения точки пересечения гребня vα{\displaystyle v_{\alpha }} с линией, наклонённой к направлению распространения волны под углом α{\displaystyle \alpha }, будет равна vα=v/sin⁡α{\displaystyle v_{\alpha }=v/\sin \alpha }, где v{\displaystyle v} — скорость распространения волны.

Это ясно из того, что, пока гребень волны пройдёт в направлении своего распространения (то есть перпендикулярно гребню) расстояние, равное катету треугольника, точка пересечения гребня с границей пройдёт расстояние, равное гипотенузе, а отношение этих расстояний, равное синусу угла, и есть отношение скоростей.

Тогда, приравняв скорости вдоль границы раздела для падающей и прошедшей волн, получим v1/sin⁡α=v2/sin⁡β{\displaystyle v_{1}/\sin \alpha =v_{2}/\sin \beta }, что эквивалентно закону Снелла, поскольку показатель преломления определяется как отношение скорости электромагнитного излучения в вакууме к скорости электромагнитного излучения в среде: n1=c/v1, n2=c/v2{\displaystyle n_{1}=c/v_{1},~n_{2}=c/v_{2}}.

В итоге на границе раздела двух сред наблюдается преломление луча, качественно состоящее в том, что углы к нормали к границе раздела сред для падающего и преломлённого луча отличаются друг от друга, то есть ход луча вместо прямого становится ломаным — луч преломляется.

Заметим, что практически тождественным способом вывода закона Снелла является построение прошедшей волны с помощью принципа Гюйгенса — Френеля (см. рисунок).

При движении волны в средах с разными показателями преломления её частота сохраняется, а длина волны изменяется пропорционально скорости.

В изотропной среде для синусоидальной волны, характеризуемой частотой и волновым вектором, перпендикулярным направлению распространения волны, соображения, что составляющая волнового вектора, параллельная границе раздела, должна быть одинаковой до и после прохождения этой границы, приводят к такому же виду закона преломления.

Дополнительно стоит отметить, что волновой вектор фотона равен вектору его импульса, делённому на постоянную Планка, и это даёт возможность естественной физической интерпретации закона Снелла как сохранения проекции импульса фотона на пересекаемую им границу раздела сред.

Тесно связано с преломлением такое явление, как отражение от границы раздела прозрачных сред. В некотором смысле это две стороны одного и того же явления.

Явление полного внутреннего отражения (ПВО) связано с тем, что преломлённой волны, которая бы удовлетворяла закону Снелла, для некоторых углов падения не существует. Это означает, что возникает только отражённая волна и, значит, волна отражается полностью. ПВО возможно при падении волны из среды, где волна распространяется с меньшей фазовой скоростью (бо́льшим показателем преломления), на границу со средой с большей фазовой скоростью распространения такой волны (меньшим показателем преломления).

При постепенном увеличении угла падения по отношению к нормали, в какой-то момент преломленный луч совпадает с границей раздела сред, а затем исчезает — остается только отраженный луч.

Если вертикально поляризованная волна падает на поверхность раздела под углом Брюстера, то будет наблюдаться эффект полного преломления — отражённая волна будет отсутствовать.

Двойная радуга — одно из самых красивых явлений, связанных с рефракцией.

Преломление встречается на каждом шагу и воспринимается как совершенно обыденное явление: можно видеть как ложка, которая находится в чашке с чаем, будет «переломлена» на границе воды и воздуха. Тут уместно отметить, что данное наблюдение при некритическом восприятии даёт неверное представление о знаке эффекта: кажущееся преломление ложки происходит в сторону, обратную реальному преломлению лучей света.

Преломление света на границе двух сред даёт парадоксальный зрительный эффект: пересекающие границу раздела предметы в более плотной среде выглядят «преломлёнными вверх»; в то время как луч, входящий в более плотную среду, распространяется в ней под меньшим углом, «преломляется вниз». Этот оптический эффект и приводит к ошибкам в визуальном определении глубины водоёма, которая всегда кажется меньше, чем есть на самом деле.

Преломление, дисперсия и внутреннее отражение света в каплях воды вместе порождают радугу. Из-за дисперсии света капли по-разному преломляют и отклоняют свет разных цветов: сильнее всего преломляются и отклоняются лучи с наименьшей длиной волны (фиолетовый цвет), а слабее всего — с наибольшей (красный цвет). В результате возникает дуга, окрашенная в различные цвета.

Многократным преломлением (отчасти и отражением) в мелких прозрачных элементах структуры (снежинках, волокнах бумаги, пузырьках) объясняются свойства матовых (не зеркальных) отражающих поверхностей, таких как белый снег, бумага, белая пена.

Рефракцией в атмосфере Земли объясняются многие зрительные эффекты. Например, при определённых метеорологических условиях Земля (с небольшой высоты) представляется наблюдателю как вогнутая чаша (а не часть выпуклого шара). Из-за рефракции кажется, что звёзды «мерцают»[4]. Также, преломление света в атмосфере приводит к тому, что мы наблюдаем восход Солнца (и вообще любого небесного светила) несколько раньше, а закат несколько позже, чем это имело бы место при отсутствии атмосферы[4]. По той же причине на горизонте диск Солнца выглядит немного сплющенным вдоль горизонтали.

В технике и научных приборах[править | править код]

Явление преломления лежит в основе работы телескопов-рефракторов (научного и практического назначения, в том числе подавляющей доли зрительных труб, биноклей и других приборов наблюдения), объективов фото-, кино- и телекамер, микроскопов, увеличительных стёкол, очков, проекционных приборов, приёмников и передатчиков оптических сигналов, концентраторов мощных световых пучков, призменных спектроскопов и спектрометров, призменных монохроматоров, и многих других оптических приборов, содержащих линзы и/или призмы. Его учёт необходим при расчёте работы почти всех оптических приборов. Всё это относится к разным диапазонам электромагнитного спектра.

В акустике преломление звука особенно важно учитывать при исследовании распространения звука в неоднородной среде и, конечно, на границе разных сред.

Может быть важным в технике и учёт преломления волн другой природы, например, волн на воде, различных волн в активных средах и т. д.

В медицине[править | править код]

Преломление света

Явление преломления используется в таких областях медицины как оптометрия и офтальмология. С помощью фороптера возможно определить аномалии рефракции в глазу пациента, и, проведя несколько тестов с линзами разной оптической силы и с разным фокусным расстоянием, можно подобрать для пациента подходящие очки или контактные линзы.

ru.wikipedia.org

Почему и как преломляется свет

Почему и как преломляется свет

То, что при переходе из одной среды в другую луч света преломляется, многим представляется странным капризом природы. Кажется непонятным, почему свет не сохраняет в новой среде первоначального своего направления, а избирает ломаный путь.

Кто так думает, тот, вероятно, с удовлетворением узнает, что луч света претерпевает, в сущности, то же самое, что происходит и с марширующей колонной бойцов, пересекающей границу между почвой, удобной для ходьбы, и почвой неудобной. Вот что говорит об этом Джон Гершель, знаменитый астроном и физик прошлого века.

“Представьте себе отряд солдат, идущий по местности, разделенной прямой границей на две полосы, из которых одна гладкая, ровная и удобная для ходьбы, другая — кочковатая, затруднительная, так что ходьба по ней не может совершаться столь быстро.

Предположим сверх того, что фронт отряда составляет угол с пограничной линией между двумя полосами, так что солдаты достигают этой границы не все одновременно, а последовательно один за другим.


Тогда каждый солдат, переступив границу, очутится на почве, по которой он не может более подвигаться так быстро, как до того времени.

Он не сможет уже держаться на одной линии с остальной частью шеренги, еще находящейся на лучшей почве, и будет от нее отставать с каждой секундой все больше.

Так как каждый солдат, достигая границы, испытывает одинаковое затруднение в ходьбе, то если солдаты не нарушат строя, не рассеются, а будут продолжать маршировать правильной колонной, вся та часть колонны, которая переступила границу, будет неизбежно отставать от остальной и составит с ней поэтому тупой угол в точке пересечения границы.

И так как необходимость ходить в ногу, не перебивая дороги друг другу, заставит каждого солдата шагать прямо перед собой, под прямым углом к новому фронту, то путь, который он пройдет по переходе границы, будет, во-первых, перпендикулярен к новому фронту, а во-вторых, так относиться к тому пути, какой был бы пройден в случае отсутствия замедления, как новая скорость к прежней”.

Рис. 109. Опыт, поясняющий преломление света.

В малом виде вы можете воспроизвести это наглядное подобие преломления света у себя на столе. Накройте половину стола скатертью (рис. 109) и, слегка наклонив стол, заставьте скатываться по нему пару колесиков, наглухо посаженных на общую ось (например, от сломанного детского паровоза или другой игрушки).

Если направление движения колес и край скатерти составляют прямой угол, преломления пути не происходит. Вы имеете в этом случае иллюстрацию оптического правила: луч, перпендикулярный к плоскости раздела сред, не преломляется. При направлении, наклонном к краю скатерти, путь колес изламывается на этом краю, т. е. на границе между средами с различной скоростью движения в них.

Легко заметить, что при переходе из части стола, где скорость движения больше (непокрытая часть), в ту часть, где скорость меньше (скатерть), направление пути (“луч”) приближается к “перпендикуляру падения”. В обратном случае наблюдается удаление от этого перпендикуляра.

Из этого можно, между прочим, почерпнуть важное указание, вскрывающее сущность рассматриваемого явления, а именно, что преломление обусловлено различием скорости света в обеих средах.

Чем больше различие в скорости, тем значительнее преломление; так называемый “показатель преломления”, характеризующий величину излома лучей, есть не что иное, как отношение этих скоростей. Когда вы читаете, что показатель преломления при переходе из воздуха в воду есть 4/3, то вы, вместе с тем, узнаёте, что свет движется в воздухе примерно в 1,3 раза скорее, чем в воде.

А в связи с этим находится и другая поучительная особенность распространения света. Если в случае отражения световой луч следует кратчайшим путем, то в случае преломления он избирает скорейший путь: никакое другое направление не приводит луч так скоро к “месту назначения”, как этот изломанный путь.

Знаете ли вы?

Зрительные эффекты в атмосфере Земли

Преломлением света в атмосфере Земли объясняются многие зрительные эффекты.

Так, при определённых метеорологических условиях Земля с небольшой высоты кажется наблюдателю вогнутой чашей, а не частью выпуклого шара.

Преломление света в атмосфере приводит к тому, что мы наблюдаем восход Солнца несколько раньше, а закат несколько позже, чем это имело бы место при отсутствии атмосферы.

По той же причине на горизонте диск Солнца выглядит немного сплющенным вдоль горизонтали.


class-fizika.ru

Занимательная физика. Почему и как преломляется свет?

Занимательная физика. Почему и как преломляется свет?

То, что при переходе из одной среды в другую луч света преломляется, многим представляется странным капризом природы. Кажется непонятным, почему свет не сохраняет в новой среде первоначального своего направления, а избирает ломаный путь. Кто так думает, тот, вероятно, с удовлетворением узнает, что луч света претерпевает, в сущности, то же самое, что происходит и с марширующей колонной бойцов, пересекающей границу между почвой, удобной для ходьбы, и почвой неудобной. Вот что говорит об этом Джон Гершель, знаменитый астроном и физик прошлого века.

“Представьте себе отряд солдат, идущий по местности, разделенной прямой границей на две полосы, из которых одна гладкая, ровная и удобная для ходьбы, другая — кочковатая, затруднительная, так что ходьба по ней не может совершаться столь быстро. Предположим сверх того, что фронт отряда составляет угол с пограничной линией между двумя полосами, так что солдаты достигают этой границы не все одновременно, а последовательно один за другим. Тогда каждый солдат, переступив границу, очутится на почве, по которой он не может более подвигаться так быстро, как до того времени. Он не сможет уже держаться на одной линии с остальной частью шеренги, еще находящейся на лучшей почве, и будет от нее отставать с каждой секундой все больше. Так как каждый солдат, достигая границы, испытывает одинаковое затруднение в ходьбе, то если солдаты не нарушат строя, не рассеются, а будут продолжать маршировать правильной колонной, вся та часть колонны, которая переступила границу, будет неизбежно отставать от остальной и составит с ней поэтому тупой угол в точке пересечения границы. И так как необходимость ходить в ногу, не перебивая дороги друг другу, заставит каждого солдата шагать прямо перед собой, под прямым углом к новому фронту, то путь, который он пройдет по переходе границы, будет, во-первых, перпендикулярен к новому фронту, а во-вторых, так относиться к тому пути, какой был бы пройден в случае отсутствия замедления, как новая скорость к прежней”.

В малом виде вы можете воспроизвести это наглядное подобие преломления света у себя на столе. Накройте половину стола скатертью и, слегка наклонив стол, заставьте скатываться по нему пару колесиков, наглухо посаженных на общую ось (например, от сломанного детского паровоза или другой игрушки).


Опыт, поясняющий преломление света.

Если направление движения колес и край скатерти составляют прямой угол, преломления пути не происходит. Вы имеете в этом случае иллюстрацию оптического правила: луч, перпендикулярный к плоскости раздела сред, не преломляется. При направлении, наклонном к краю скатерти, путь колес изламывается на этом краю, т. е. на границе между средами с различной скоростью движения в них. Легко заметить, что при переходе из части стола, где скорость движения больше (непокрытая часть), в ту часть, где скорость меньше (скатерть), направление пути (“луч”) приближается к “перпендикуляру падения”. В обратном случае наблюдается удаление от этого перпендикуляра.

Из этого можно, между прочим, почерпнуть важное указание, вскрывающее сущность рассматриваемого явления, а именно, что преломление обусловлено различием скорости света в обеих средах. Чем больше различие в скорости, тем значительнее преломление; так называемый “показатель преломления”, характеризующий величину излома лучей, есть не что иное, как отношение этих скоростей. Когда вы читаете, что показатель преломления при переходе из воздуха в воду есть 4/3, то вы, вместе с тем, узнаёте, что свет движется в воздухе примерно в 1,3 раза скорее, чем в воде.

А в связи с этим находится и другая поучительная особенность распространения света. Если в случае отражения световой луч следует кратчайшим путем, то в случае преломления он избирает скорейший путь: никакое другое направление не приводит луч так скоро к “месту назначения”, как этот изломанный путь.

infourok.ru

Преломление света: как работает на практике, законы и формулы

 

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

 

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.

 

1posvetu.ru

Почему происходит преломление ?

Преломление — изгиб луча света, когда он входит в среду разной плотности. Свет проходит быстрее в вакууме и в воздухе. Когда свет проникает в среду с более высокой плотностью, например, в воду, ее скорость изменяется и заставляет ее изгибаться или преломляться.

Угол, при котором изгибы света зависят от плотности новой среды относительно среды, из которой первоначально излучался свет. Это связано с тем, что свет распространяется медленнее в более плотной среде, что заставляет свет преломлять больше. Например, если свет перемещается по воздуху, а затем встречает воду на своем пути, он замедляется, потому что вода плотнее воздуха, и это изменение скорости заставляет свет сгибаться очень слабо.

Если свет перемещается от воздуха к стеклу, а не к воде, он в большей степени сгибается, потому что стекло плотнее воды и заставляет свет замедляться больше, чем вода. В обоих случаях луч света сгибается к «нормальному», что является просто линией, вытянутой перпендикулярно границе между воздухом и водой, воздухом и стеклом.

Если бы свет двигался из более плотной среды в более редкую среду, например воду в воздух, тогда свет ускорялся бы при достижении воздуха и отгибался бы от нормали. Это явление изгиба света из-за изменения его скорости называется преломлением.

howdoright.ru

Почему лучи света преломляются в воде? — Энциклопедия вещей

Поднимем предмет… не прикасаясь к нему

Сделаем простой и эффектный оптический опыт. Положим на дно пустого стеклянного стакана металлическое кольцо или монету и поставим стакан так, чтобы его край мешал нам видеть их сверху.

Начнем наливать в стакан воду. Мы с удивлением обнаружим, что кольцо или монета начнут появляться из-за края стакана. Трудно удержаться, чтобы не посмотреть на стакан сбоку: нет, кольцо или монета по-прежнему спокойно лежат на дне, а ведь нам казалось, что они всплывают. Всплывают, повинуясь таинственному оптическому закону преломления света.

Только что рассказанный опыт впервые описал великий геометр Евклид в III веке до нашей эры.

Размышляли об искажении пути световых лучей при переходе из воздуха в воду, из воды в стекло (и наоборот) и другие крупные ученые древности — Аристотель, Птолемей, Клеомед. Они первыми начали изучать отражение и преломление лучей на границе двух оптических сред.

Птолемей даже измерил, как отклоняется световой луч от первоначального пути при переходе из воздуха в воду, с помощью опущенного в воду диска с делениями и подвижными линейками, вращающимися вокруг центра диска. По данным Птолемея, если падающий луч отклоняется в воздухе от вертикали на 50 градусов, то угол между вертикалью к поверхности раздела двух сред и преломленным лучом в воде составляет 35 градусов.

Измерения, сделанные в наше время, через 18 веков после исследований Птолемея, дали для преломленного луча цифру 34 градуса и 3 минуты. Неплохой точности измерений достигли древнегреческие ученые!

Беседующие философы. Фрагмент картины Пьеро Франчески, написанной в XV столетии.

Еще до нашей эры был установлен закон отражения от зеркальной поверхности: угол падения равен углу отражения (оба угла отсчитываются от вертикали к поверхности). Этому закону подчиняются любые зеркала: металлические и стеклянные, плоские, выпуклые и вогнутые. С помощью этого закона, впервые сформулированного в труде Евклида «Катоптрика» (от греческого слова «катоптрон» — зеркало), ученые научились рассчитывать форму и размер изображений в зеркалах, определять фокус вогнутых зеркал — жаркую точку, где сходятся отраженные таким зеркалом солнечные лучи.

Древнегреческие исследователи природы доказали, что при переходе из менее плотной среды (воздуха) в более плотную (стекло, воду) световой луч отклоняется от вертикали к поверхности раздела двух сред на меньший угол, чем луч падающий. Они понимали, что уловленную ими закономерность можно выразить в виде четко сформулированного простого закона, но сделать это удалось лишь в первой половине XVII века Виллеброду, Снеллиусу и Рене Декарту.

Падающий и преломленный лучи лежат в одной плоскости для всех углов падения. Отношение синуса угла падения к синусу угла преломления есть величина постоянная и равная показателю преломления одной среды по отношению к другой. Например, относительно воздуха вода имеет показатель преломления — 1,33, а кварцевое стекло — 1,52.

Прошло еще полвека, и ученые открыли, что явление преломления света связано с изменением скорости света при переходе из одной среды в другую.

Показатель преломления больше единицы означает, что луч света, попадая в более плотную среду, немного замедляет свой стремительный бег.

Почему уменьшение скорости приводит к изменению направления лучей?

На первый взгляд это не кажется очевидным, и на помощь полезно призвать образное сравнение. Например, с автомобилем, прямолинейный путь которого, как свидетельствует печальный опыт некоторых водителей, заметно искажается при резком торможении на скользкой дороге…

Или часто приводимая аналогия с отрядом солдат, идущих по ровной гладкой дороге, после которой (под большим углом к дороге) внезапно начинается рыхлое поле. Солдаты, вступившие на поле, естественно, замедляют ход, и те, кто еще идет по ровной дороге, начинают их догонять. Затем и они вступят на поле, скорость всех снова сравняется, но идти вся колонна будет уже немного отклонившись от первоначального направления.

Как говорил в своей речи при получении Нобелевской премии в 1933 году известный физик Э. Шредингер, описывая движение светового луча в среде с переменной плотностью с помощью того же примера с отрядом солдат: «…и поворот фронта осуществится сам собой».

Источник: Марк Колтун “Мир физики“.

www.thingshistory.com

Почему свет преломляется на границе раздела сред? Если из-за разницы скоростей распространения, то откуда берётся Е?

В формуле преломления света нет Е

Свет всегда движется со скоростью света. Просто в материальных средах он может временно поглощаться, переводя электрон на метастабильную или совсем нестабильную орбиту, тем самым фотон «исчезает» на какое-то время и затем снова переизлучается. Почему он отклоняется на определённый угол? По квантовой механике. Фотон летит по всем возможным траекториям сразу, и всё сводится к интерференции (только интерференцию нужно делать по правилам квантовой механики) . Просто в реальности (квинтиллионы атомов… ) получается, что вероятность фотона отклониться на определённый угол равна 0,999999… (практически 1).

А что такое E? Чем оно мешает преломлению вследствие разности скоростей?

Е это Энергия. Просто лимит знаков в вопросе маленький, и я не смог чётко всё сформулировать. Вот допустим луч падает на стекло, на границе раздела сред он преломляется и распространяется в стекле под углом, отличным от первоначального (в воздухе) . Луч света проходит стекло, снова граница раздела сред и угол становиться первоначальным. В школе это объяснялось тем, что плотности воздуха и стекла разные, следовательно разные и скорости движения луча света в среде. Значит при входе в стекло свет тормозиться, теряет энергию на преодоления препятствия, но откуда берётся энергия для набора первоначальной скорости, когда луч прошел через стекло? ! Я уже не говорю о том, что стекло должно было нагреться и расплавиться, а свет Солнца вообще не достигнуть поверхности Земли, остановившись в атмосфере.

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *