Расчет токоограничивающего резистора для светодиода
В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.
Расчет резистора для одного светодиода
Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.
Рис.1 – Схема подключения одного светодиода
Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения.
Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.
Таблица 1 — Характеристики светодиодов
Цветовая характеристика | Длина волны, нМ | Напряжение, В |
---|---|---|
Инфракрасные | от 760 | до 1,9 |
Красные | 610 — 760 | от 1,6 до 2,03 |
Оранжевые | 590 — 610 | от 2,03 до 2,1 |
Желтые | 570 — 590 | от 2,1 до 2,2 |
Зеленые | 500 — 570 | от 2,2 до 3,5 |
Синие | 450 — 500 | от 2,5 до 3,7 |
Фиолетовые | 400 — 450 | 2,8 до 4 |
Ультрафиолетовые | до 400 | от 3,1 до 4,4 |
Белые | широкий спектр | от 3 до 3,7 |
Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.
Сопротивление резистора определяется по формуле:
R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.
где:
- Uн.п – напряжение питания, В;
- Uд — прямое падение напряжения на светодиоде, В;
- Iд – рабочий ток светодиода, А.
Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.
Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.
Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).
В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).
Расчет резистора при последовательном соединении светодиодов
В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.
Рис.2 – Схема подключения светодиодов при последовательном соединении
Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.
Сопротивление резистора определяется по формуле:
R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.
где:
- Uн.п – напряжение питания, В;
- Uд1…Uд3 — прямое падение напряжения на светодиодах, В;
- Iд – рабочий ток светодиода, А.
Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.
Расчет резисторов при параллельно – последовательном соединении светодиодов
Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков.
Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.
Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении
Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.
Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.
Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:
R = (Uн. п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.
Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.
Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!
Расчет резистора при параллельном соединении светодиодов
Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.
В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.
Рис.4 – Схема подключения светодиодов при параллельном соединении
Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.
Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении
Всего наилучшего! До новых встреч на сайте Raschet.info.
Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения
Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.
Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.
Входные данные
Напряжение источника питания
VsВ
Напряжение источника питания должно быть выше прямого напряжения светодиода и менее 250 В.
Прямой ток светодиода
IfмА
Для питания мощных светодиодов необходимо использовать стабилизаторы тока, а не ограничительные резисторы.
Выберите тип светодиода
Выберите тип светодиодаинфракрасныйкрасныйзелёныйжёлтыйоранжевый/янтарныйсинийбелыйдругой
или Прямое напряжение светодиода
VfВ
Количество светодиодов в массиве
Nt
Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.
Ns
Число светодиодов в цепи последовательно включенных светодиодов не должно быть больше {0} для заданных напряжения источника питания и прямого напряжения светодиода.
Выходные данные
Такая схема имеет слишком низкий КПД из-за большой мощности, рассеиваемой на одном или нескольких ограничительных резисторах.
Массив {0} x {1}, всего светодиодов {2}
Число светодиодов в одной цепи {0}
Принципиальная схема
Монтажная схема
Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:
Общая мощность, рассеиваимая на всех ограничительных резисторах:
Общая мощность, рассеиваемая всеми светодиодами:
Общая мощность, потребляемая массивом светодиодов:
Ток, потребляемый от источника питания:
Количество светодиодов в матрице:
Количество последовательных ветвей, соединенных параллельно:
Количество светодиодов в последовательной ветви с макс. количеством светодиодов:
Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:
Определения и формулы для расчета
Одиночный светодиод
Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.
Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.
Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.
Цвета светодиодов, материал полупроводника, длина волны и падение напряжения | |||
---|---|---|---|
Цвет | Материал полупроводника | Длина волны | Падение напряжения |
Инфракрасный | Арсенид галлия (GaAs) | 850-940 нм | |
Красный | Арсенид-фосфид галлия (GaAsP) | 620-700 нм | 1.6—2.0 В |
Оранжевый | Арсенид-фосфид галлия (GaAsP) | 590-610 нм | 2.0—2.1 В |
Желтый | Арсенид-фосфид галлия (GaAsP) | 580-590 нм | 2.1—2.2 В |
Зеленый | Фосфид алюминия-галлия (AlGaP) | 500-570 нм | 1.9—3.5 В |
Синий | Нитрид индия-галлия (InGaN) | 440-505 нм | 2.48—3.6 В |
Белый | Диоды с люминофором или трехцветные RGB | Широкий спектр | 2.![]() |
Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:
Вольтамперные характеристики типичных светодиодов различных цветов
Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.
Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.
Формулы для расчетов
Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня
Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:
Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.
После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.
Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле
Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с
Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.
А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:
Тогда общее потребление будет равно
КПД схемы включения светодиода с ограничительным резистором:
Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:
Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами
Светодиодные массивы
Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.
Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.
Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.
Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.
При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.
Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.
В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.
Расчет токоограничительных резисторов
Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как
Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как
Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.
Количество цепей с максимальным количество светодиодов в цепи Nstrings:
Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :
Если Nremainder LEDs = 0, то дополнительной цепи не будет.
Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:
Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:
Общая мощность PLED, рассеиваемая всеми светодиодами:
Мощность, потребляемая всеми резисторами:
Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.
Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.
Рассчитаем общую мощность, потребляемую всеми резисторами:
Рассчитаем общую мощность, потребляемую светодиодным массивом:
Рассчитаем ток, который должен обеспечить источник питания:
И наконец, рассчитаем КПД нашего массива:
Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.
Автор статьи: Анатолий Золотков
Калькулятор светодиодов
Я уже прочитал статью, сразу перейти к калькулятору.Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода.
Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле
P = I2R, где P — выделяемое тепло в ваттах, I — сила тока в цепи в амперах, R — сопротивление в омах.
Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.
Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:
R = (U — UL) / I, где R — требуемое сопротивление в омах, U — напряжение источника питания, UL — падение напряжения на светодиоде в вольтах, I — нужный ток светодиода в амперах.
Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.
Схема последовательного подключения светодиодов
Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.
Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.
Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.
Схема параллельного подключения светодиодов
Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.
Схема правильного и неправильного параллельного подключения светодиодов
Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.
Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.
Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.
Расчет резистора для светодиода
Тип подключения:Выбрано: Один светодиод
Общая потребляемая мощность:
Общий ток источника питания:
На резисторах рассеивается:
На светодиодах рассеивается:
КПД схемы:
Требуемая мощность резисторов — очень большая!!
Выбирайте резисторы с номиналом не меньше рассчитанного!
Расчитываем резистор для светодиода, драйвер и гасящий конденсатор
Светодиодные элементы все чаще применяются в сферах деятельности человечества как осветительные приборы для помещений, в уличных фонарях, карманных фонариках, при освещении аквариума. В автомобильной индустрии группы светодиодов широко используются для подсветки габаритных огней, стоп сигналов и поворотов.
Внешний вид светодиодов
Отдельными элементами с различными цветами обеспечивают подсветку приборной панели, индикацию понижения уровня охлаждающей жидкости радиатора. Невозможно перечислить все направления их использования: от украшения новогодней елки, подсветки аквариума до приборов ракетно-космической техники.
Они постепенно вытесняют обычные лампы накаливания. Многочисленные Интернет магазины в режиме онлайн продают светодиодные ленты и другие осветительные приборы. Также можно найти калькулятор расчета схем драйверов для них, если появится необходимость их ремонта или изготовления своими руками. Такому бурному развитию есть целый ряд причин.
Основные преимущества
- малое потребление энергии;
- высокий КПД;
- низкие напряжения;
- почти отсутствует нагрев;
- высокая степень электрической и пожарной безопасности;
- крепкий корпус: отсутствие хрупких нитей накаливания и стеклянных колб делает их устойчивыми к механическим, вибрационным воздействиям;
- безынерционное срабатывание обеспечивает быстродействие, нет затрат времени на разогрев нити накаливания;
- прочность, малые габариты и долговечность;
- непрерывный ресурс работы не менее 5 лет;
- широкий выбор спектра (цвета) и возможность конструкции отдельного элемента делать рассеянное или направленное освещение.
Есть несколько существенных недостатков:
- Высокая стоимость.
- Интенсивность светового потока отдельного элемента мала.
- Чем выше напряжение требуемого источника питания, тем быстрее разрушается структура светодиодных элементов. Проблема перегрева решается установкой радиатора.
Параметры и особенности
Достоинств у светодиодов намного больше, чем недостатков, но по причине высокой стоимости народ не спешит приобретать осветительные приборы на основе светодиодов. Люди, обладающие необходимыми познаниями, покупают отдельные элементы и сами собирают светильники для аквариума, делают подключения на приборные панели автомобилей, стоповых сигналов и габаритов. Но для этого надо хорошо разобраться в принципах работы, параметрах и конструктивных особенностях светодиодов.
Параметры:
- рабочий ток;
- рабочее напряжение;
- цвет светового потока;
- угол рассеивания:
- тип корпуса.
Особенностью конструкций является диаметр, форма линзы, которая определяет направленность и степень рассеивания светового потока. Участок цветового спектра свечения определяют примеси добавляемые в полупроводниковый кристалл диода. Фосфор, индий, галлий, алюминий обеспечивают подсветку от красного до желтого диапазона.
Состав азота, галлия, индия сделает спектр в диапазоне синего и зеленого цветов, если к кристаллу синего (голубого) спектра добавить люминофор, можно получить белый свет. Углы направления и рассеивания потоков определяет состав кристалла, но в большей степени форма линзы светодиода.
Для поддержания живого мира аквариума необходим процесс фотосинтеза водорослей. Здесь требуется правильный спектр и определенный уровень освещения аквариума, с чем хорошо справляются светодиоды.
Расчет параметров и схем
Определившись с цветом, направлением потока освещения и напряжением источника питания можно покупать светодиоды. Но чтобы собрать нужную схему, надо сделать расчет резистора светодиода в цепи, который гасит повышенное напряжение питания. Рабочий ток и напряжение нам известно по номиналам.
Надо обязательно учитывать, что светодиод это полупроводник, который имеет полярности.
Если перепутать полярности, он не засветится и может вообще выйти из строя. Хорошим примером для расчета гасящего резистора в схемах подключения светодиодов являются светотехнические приборы автомобиля. В качестве индикации состояния определенного технического параметра используется один светодиодный элемент, как вариант берется пониженный уровень охлаждающей жидкости радиатора.
Схема подключения светодиода
R = Uак. – Uраб./ I раб.
R = 12В – 3В/00,2А = 450 Ом = 0,45 кОм.
Uак – напряжение источника питания, в нашем случае автомобильный аккумулятор 12В;
Uраб – рабочее напряжение светодиода;
I раб – рабочий ток светодиода.
Можно рассчитать сопротивление гасящего резистора в схеме с последовательным подключением некоторого количества светодиодов. Такой вариант может использоваться для подсветки приборов на передней панели или в качестве стоповых огней автомобиля.
Схема последовательного подключения светодиодов и гасящего сопротивления
Расчет сопротивления аналогичный:
R = Uак – Uраб*n / Iраб.
R = 12В – 3В * 3/ 0.02А = 150 Ом = 0,15 кОм.
n – количество светодиодов 3 шт.
Стоит рассмотреть случай с шестью светодиодами; в стопорных фонарях применяют и большее количество, но методика расчета сопротивления и построение схемы будут те же.
R = Uак – Uраб*n / Iраб
R = 12В – 18 В/ 002А – рабочее напряжение диодов превышает напряжение источника питания, в этом случае придется диоды разделить на 2 группы по три диода и подключить их по параллельной схеме. Расчеты делаем для каждой группы отдельно.
Схема с шестью светодиодами
Предыдущий расчет с тремя светодиодами в схеме с последовательным подключением показывает, что для параллельного подключения в каждой группе величина сопротивления резистора должна быть по 0,15 кОм.
Несмотря на небольшой нагрев, светодиодные светильники не работают без радиатора. Например, для освещения аквариума сверху устанавливается крышка, на которой крепятся точечные источники света или светодиодная лента. Чтобы избежать ее перегрева, применяется алюминиевый профиль. Для изготовления радиатора начинают применять специальные пластмассы, рассеивающие тепло. Специалисты не рекомендуют самостоятельно заниматься их изготовлением, хотя никто не запрещает принимать меры по улучшению теплоотвода от мощных светильников. В качестве радиатора хорошо применять медь, обладающую высокой теплопроводностью.
На многих сайтах можно найти калькулятор, с помощью которого предоставляется возможность выбора схемы, внесения параметров диода и расчета в режиме онлайн резистора для одного светодиода или группы.
В специализированных магазинах можно купить диски с программным обеспечением и установить на домашний компьютер драйвера. Программа с драйверами легко скачивается бесплатно в режиме онлайн или покупается, если оплатить электронными деньгами на сайте.
Особенности, которые надо учитывать:
- Не рекомендуется подключать светодиоды в параллельной схеме через одно сопротивление.
При неисправности одного диода на остальные будет подаваться слишком мощное напряжение, что приведет все диоды к выходу из строя. Если попадется такая схема, можно через онлайн-калькулятор рассчитать и переделать ее, добавив отдельные сопротивления на светодиоды.
Схема параллельного подключения
- В расчетах могут получиться значения резистора, которые не совпадают со стандартными номиналами, тогда выбирается сопротивление немного большее. Здесь удобно использовать калькулятор в онлайн режиме.
- При совпадении рабочего напряжения светодиодов и источника питания в бытовых схемах для фонариков, елочных гирлянд иногда резистор не используют. При этом отдельные светодиоды светятся с разной яркостью, это вызвано разбросом их параметров. Рекомендуется в этих случаях применять конверторы для повышения напряжений.
Ниже изображена одна из простейших схем драйвера светодиодной лампы.
Схема и фото драйвера лампы MR-16
Схема собрана с применением вместо трансформатора конденсатора C1 и резистора R1. Напряжение подается на диодный мост. Ограничение тока обеспечивается за счет конденсатора С1, который создает сопротивление, но не рассеивает тепло, а уменьшает напряжение при последовательном подключении к цепи питания.
Выпрямленное напряжение сглаживается с помощью электролитического конденсатора С2. Сопротивление R1 предназначено для разрядки конденсатора С1 при отключении питания. R1 и R2 в работе схемы не участвуют. Резистор R2 предназначен для защиты конденсатора С2 от пробоя, если происходит обрыв в цепи питания лампы.
На фото представлен вид драйвера с двух сторон. Красный цилиндр — это изображение конденсатора С1, черный — С2.
Резистор. Видео
На вопрос, что такое резистор, и как он работает, ответит это видео. Простота изложения дает возможность усвоить материал даже новичку.
Учитывая все вышесказанное, можно сделать правильный самостоятельный расчет резистора для светодиода и приобрести в специализированном магазине то, что по-настоящему пригодится в хозяйстве.
Расчет резистора для светодиода. Онлайн калькулятор
Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.
Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.
Держатель для платы
Материал: АБС + металл, размер зажима печатной платы (max): 20X14 см…
Расчет резистора для светодиода
Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:
где:
- V — напряжение источника питания
- VLED — напряжение падения на светодиоде
- I – рабочий ток светодиода
Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:
Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.
Давайте, на примере выполним расчет сопротивления резистора для светодиода.
Электрический паяльник с регулировкой температуры
Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…
Мы имеем:
- источник питания: 12 вольт
- напряжение светодиода: 2 вольта
- рабочий ток светодиода: 30 мА
Рассчитаем токоограничивающий резистор, используя формулу:
Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).
Последовательное соединение светодиодов
Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.
Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.
Пример расчета сопротивления резистора при последовательном подключении.
В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.
Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.
Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:
Резистор должен иметь значение не менее 183,3 Ом.
Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)
Параллельное соединение светодиодов
Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.
Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.
И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.
Онлайн калькулятор расчета резистора для светодиода
Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:
примечание: разделителем десятых является точка, а не запятая
Формула расчета сопротивления резистора онлайн калькулятора
Сопротивление резистора = (U – UF)/ IF
- U – источник питания;
- UF – прямое напряжение светодиода;
- IF – ток светодиода (в миллиамперах).
Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.
Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.
Расчет резистора для светодиодов: примеры, онлайн калькулятор
При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор. Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.
Светодиод как нелинейный элемент
Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:
Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.
Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.
Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.
На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.
Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:
Полная же ВАХ выглядит следующим образом:
Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.
Как подобрать резистор для одиночного светодиода
Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:
Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:
где U пит — напряжение питания,
U пад- падение напряжения на светодиоде,
I — требуемый ток светодиода.
При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:
Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять
Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит
Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.
Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:
Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.
Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.
Расчет резистора при подключении нескольких светодиодов
Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.
При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:
где — напряжение питания,
— сумма падений напряжения на светодиодах,
— ток потребления.
Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением
При этом он должен рассеивать мощность
При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.
Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.
Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.
Программы для расчета сопротивления
При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.
Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:
https://cxem.net/calc/ledcalc.php
Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.
Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:
Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.
Еще одна простая программа для расчета сопротивления разработана Сергеем Войтевичем. Скачать программу можно по этой ссылке.
Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.
Заключение
Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.
какие формулы помогут вычислить сопротивление
В наше время светодиоды используются если не во всех, то в очень многих сферах деятельности. И несмотря на это, многие потребители едва ли понимают принципы работы светодиодов. Как и почему вообще работают светодиоды? И какую роль в этом процессе играют резисторы? Как произвести расчет резистора для светодиода? Постараемся разобраться.
Что такое резистор и сопротивление светодиода?
Резистором называется компонент электрической цепи, который характеризуется пассивностью и в лучшем случае обладает сопротивлением электрическому току. Другими словами, для такого устройства в любое время должен действовать закон Ома.
Главная функция резистора – энергичное сопротивление электротоку. Именно это качество делает резисторы необходимыми при создании систем искусственного освещения, в том числе и с применением светодиодов.
В каких случаях возможно подключение светодиода с помощью резистора?
Подключать светодиод с помощью резистора можно при условии, что эффективность схемы не является первостепенной целью. Самый простой пример – применение светодиода для индикации подсветки выключателя в электроприборе. В таком случае мощность потребления едва достигает 0.1 Вт, а яркость не ставится во главу угла. А вот при использовании светодиода с энергопотреблением более 1 Вт нужно обязательно убедиться, что блок питания обеспечивает стабилизированное напряжение. Если же напряжение схемы не стабилизировано, то все скачки и помехи будут негативно сказываться на работе светодиода.
Не менее актуальна схема питания через резистор в лабораторных условиях, когда есть задача тестирования новой модели светодиода.
Виды резисторов
Существует несколько классификаций резисторов, каждая из которых отличается признаков, по которому сравниваются разные виды устройств.
В зависимости от материала резистивного элемента выделяют следующие типы резисторов:
- Металлофольговые;
- Непроволочные;
- Проволочные.
По способы защиты резисторы бывают:
- Неизолированными;
- Изолированными;
- Вакуумными;
- Герметизированными.
Назначение резисторов группирует устройства следующим образом:
- Резисторы общего предназначения;
- Высокочастотные;
- Высокомегаомные;
- Высоковольтные.
Расчет резистора для светодиода
Осуществить расчет резисторов по силам не только специалистам. Достаточно базовых знаний и понимания физики процесса. Чтобы определить необходимое сопротивление резисторов, нужно учитывать следующие важные факторы:
- Маркировка на устройстве отображает так называемое напряжение падения, которое необходимо для расчета необходимого напряжения и для подбора резисторов.
- Числовое значение напряжения определяется в виде разницы между напряжением агрегата и напряжением питания светодиода;
- Чтобы рассчитать необходимое сопротивление, нужно разделить остаточное напряжение на величину тока, необходимую для бесперебойной работы системы.
Математический расчет сопротивления резистора
Согласно второму правилу Кирхгофа, можно составить равенство U = Ur + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.
Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.
Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.
Как рассчитать резистор графическим способом?
При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.
Особенности расчета
Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.
Последовательное соединение
При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления. Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.
Параллельное соединение
Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.
Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.
Смешанное соединение
При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов. Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи.
Примеры расчетов сопротивления и мощности резистора
Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.
При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами ULED=3,3 В и ILED=0,02 А.
R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.
Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.
Как рассчитать номинал резистора для светодиодного освещения
Определение номинала резистора для освещения светодиодов простое и понятное дело, но мы должны принимать во внимание цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи. Мы надеемся, что чтение «Как рассчитать номинал резистора для светодиодного освещения» даст вам то, что вам нужно для вашего проекта.
становятся все более популярными для различных световых проектов и нужд.Это связано с превосходной энергоэффективностью и увеличенным сроком службы светодиодов по сравнению с лампами накаливания. Кроме того, по мере совершенствования технологии и увеличения производства стоимость продолжает снижаться.
Выполните следующие действия, чтобы рассчитать номинал резистора для светодиодного освещения от 12 В постоянного тока:
- Определите напряжение и ток, необходимые для вашего светодиода.
- Мы будем использовать следующую формулу для определения номинала резистора: резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода.
- Для типичного белого светодиода, который требует 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом.
- Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения.
Из приведенного выше примера, если мы используем 5 белых светодиодов, потребляемый ток составляет 10 мА x 5 = 50 мА. Итак (12-3,4) /. 050 = 172 Ом.
Объясните идею расчета номинала резистора для светодиодного освещения
Светодиодный куб RGB 8x8x8 по GPL3 +
LED — это аббревиатура от Light Emitting Diode.Это означает, что светодиод имеет определенную полярность, которая должна быть применена, чтобы он излучал свет. Несоблюдение этого требования полярности может вызвать катастрофическое повреждение светодиода. Это связано с тем, что светодиод имеет относительно низкое допустимое значение напряжения обратной полярности (обычно около 5 вольт). Поскольку светодиод по сути является диодом, он имеет максимальное значение тока, которое нельзя превышать в течение любого периода времени.
Применение светодиодов
Имея это в виду, мы рассмотрим требования к ограничивающему резистору, который должен использоваться в цепи светодиода. Поскольку светодиоды доступны в различных цветах, требуемое значение сопротивления будет варьироваться в зависимости от цвета светодиода. Это связано с тем, что цвет светодиода определяется материалами, из которых он изготовлен, и эти различные материалы имеют разные характеристики напряжения. Значение прямого напряжения — это напряжение, необходимое для включения светодиода. Обычные красный, зеленый, оранжевый и желтый светодиоды имеют прямое напряжение приблизительно 2,0 В; но белый и синий светодиоды имеют значение прямого напряжения 3.4 вольта. Из-за этого изменения значение сопротивления резистора будет варьироваться в зависимости от цвета светодиода.
Процедура заключается в выборе номинала резистора, который будет обеспечивать правильное количество тока, протекающего через светодиод, на основе этого значения прямого напряжения и значения источника питания, запитывающего схему.
Так как автомобильные приложения — одно из самых популярных применений светодиодов, я рассмотрю пример проекта светодиодного освещения, в котором в качестве источника питания используется 12 вольт. Требуемая формула — это закон Ома, который гласит, что сопротивление равно напряжению, деленному на ток. Здесь важно отметить, что значение напряжения, используемое в расчетах. Разница между напряжением источника питания (аккумулятора) и значением прямого напряжения светодиода. Это потому, что мы хотим, чтобы резистор «понижал» напряжение от источника питания до значения прямого напряжения светодиода.
Формула
Резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода. Итак, предположим, что источник питания 12 В и белый светодиод с желаемым током 10 мА; Формула принимает вид Резистор = (12–3,4) /. 010, что составляет 860 Ом. Поскольку это нестандартное значение, я бы использовал резистор на 820 Ом. Нам также необходимо определить номинальную мощность (ватт) необходимого резистора. Это вычисляется путем умножения значения напряжения, падающего на резистор, на значение тока, протекающего в нем. Для нашего примера выше (12–3,4) X 0,010 = 0,086, поэтому мы можем безопасно использовать в этом приложении резистор Вт, поскольку мы должны использовать следующий по величине стандартный номинал мощности.
Если требуется более одного светодиода, несколько светодиодов (одного цвета) могут быть подключены параллельно. Это сохранит то же требование напряжения, но значение тока будет увеличиваться прямо пропорционально количеству светодиодов. Номинальная мощность резистора также может увеличиться. В качестве примера мы возьмем тот же белый светодиод, но мы подключим 5 светодиодов параллельно. Следовательно, требуемое значение тока будет 10 мА, умноженным на 5 (0,010 X 5 = 0,050). Используя это в нашей формуле; (12-3.4) /. 050 = 172 Ом. Используйте стандартное значение 180 Ом. Номинальная мощность теперь будет выше (12–3,4) X 0,050 = 0,43, поэтому в этом случае нам нужно использовать резистор не менее ½ Вт.
Заключение
Эти два примера будут повторяться для красных светодиодов. Для одного красного светодиода: (12–2,0) /. 010 = 1000 Ом, что составляет 1 кОм, а номинальная мощность составляет (12–2,0) X (0,010) = 0,100, поэтому Вт достаточно. Для 5 красных светодиодов, включенных параллельно: (12-2. 0) /. 05 = 200 Ом, что является стандартным значением, а номинальная мощность составляет (12-2.0) X 0,050 = 0,5, поэтому я бы использовал резистор на 1 Вт, чтобы дать нам некоторый допуск для компенсации колебаний напряжения источника питания и т. Д.
Как мы видим, определение номинала резистора для освещения светодиодов простое и понятное, но мы должны учитывать цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи. Вы можете посетить наш магазин, где представлен широкий выбор светодиодов и резисторов.
Извините, эта страница не существует.Пожалуйста, дайте нам знать, где была неправильная ссылка.
Спасибо. Вот наша карта сайта:
|
Как рассчитать номинал резистора для светодиодов и цепей светодиодов
Как найти номинал резистора для различных типов цепей светодиодов Следующее пошаговое руководство поможет вам найти правильное значение резистора (или резисторов) для одного или нескольких светодиодов и цепочек цепочек светодиодов для подключения к батарее и источнику питания.
Если вы выберете эту тему, вы сможете:
- Рассчитать номиналы резисторов для различных схем светодиодов
- Рассчитать прямой ток светодиодов
- Рассчитать прямое напряжение для разных светодиодов Цепи
- Последовательное подключение светодиодов к аккумулятору
- Подключение светодиодов параллельно аккумулятору
- Подключение светодиодов последовательно-параллельным комбинированным цепям
Обновление: Вы также можете использовать этот светодиод Вычислитель резисторов для этой цели
Типичный светодиодный символ, конструкция и идентификация проводов.Щелкните изображение, чтобы увеличить
Прежде чем мы углубимся в детали, мы попробуем прокатиться по простой схеме ниже, чтобы было легче понять другой расчет.
Щелкните изображение, чтобы увеличить
Это самая простая схема серии светодиодов .
Здесь напряжение питания составляет 6 В, прямое напряжение светодиода (V F ) составляет 1,3 В, а прямой ток (I F ) составляет 10 мА.
Теперь значение резистора (который мы будем последовательно соединять со светодиодом) для этой схемы будет:
Значение резистора = (В питание — В F) / I F = (6 — 1,3) / 10 мА = 470 Ом
Потребляемый ток = 20 мА
Формула номинальной мощности резистора для этой схемы
Номинальная мощность резистора = I F 2 x Номинал резистора = (10 мА) 2 x 470 Ом = 0,047 Вт = 47 мВт
Но Это минимальное необходимое сопротивление резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0. 047 Вт x 2 = 0,094 Вт = резистор 94 мВт для этой схемы. Номинальная мощность резистора (значение удвоено) = 0,094 Вт = (94 мВт)
Также имейте в виду, что:
- Слишком сложно найти точное номинальные резисторы, которые вы рассчитали. Обычно резисторы бывают 1/4 Вт, 1/2 Вт, 1 Вт, 2 Вт, 5 Вт и так далее. Поэтому выберите следующее более высокое значение номинальной мощности. Например, если вы рассчитали номинальную мощность резистора 0,789 Вт = 789 мВт, то вы должны выбрать резистор 1 Вт.
- Слишком сложно найти точное значение резисторов, которое вы рассчитали. Как правило, резисторы имеют стандартные значения. Если вы не можете найти точное значение резистора, которое вы рассчитали, а затем выберите следующее значение резистора, которое вы рассчитали, например, если рассчитанное значение составляет 313,5 Ом, вы должны использовать ближайшее стандартное значение, что составляет 330 Ом. если ближайшее значение недостаточно близко, то можно сделать это, подключив резисторы последовательно — параллельная конфигурация.
- I F = Прямой ток светодиода: Это максимальный ток, который светодиод может принимать непрерывно. Рекомендуется обеспечить 80% номинального прямого тока светодиодов для длительного срока службы и стабильности. Например, если номинальный ток светодиода составляет 30 мА, вы должны включить этот светодиод на 24 мА. Значение тока, превышающее это значение, сократит срок службы светодиода или может начать дымиться и гореть.
- Если вы все еще не можете найти прямой ток светодиода, предположите, что он 20 мА, потому что типичный светодиод работает на 20 мА.
- В F = прямое напряжение светодиода: Это прямое напряжение светодиода, то есть падение напряжения при подаче номинального прямого тока. Вы можете найти эти данные на пакетах светодиодов, но они находятся в диапазоне от 1,3 В до 3,5 В в зависимости от типа, цвета и яркости. Если вы все еще не можете найти прямое напряжение, просто подключите светодиод через 200 Ом с батареей 6 В.
Теперь измерьте напряжение на светодиоде. Это будет 2 В, и это прямое напряжение.
Формула для определения номинала резистора (ов) для последовательного подключения светодиодов:
Ниже приведена еще одна простая схема светодиодов (светодиодов, подключенных последовательно).В этой схеме мы подключили последовательно 6 светодиодов. Напряжение питания составляет 18 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.
Щелкните изображение, чтобы увеличить
Значение резистора (светодиоды в серии) = (В , питание — (В F x количество светодиодов)) / I F
Здесь общее прямое напряжение (V F ) из 6 светодиодов = 2 x 6 = 12 В
и прямой ток (I F ) такой же (т.е.е. 20 мА)
( Примечание: это последовательная цепь, поэтому ток в последовательной цепи в каждой точке одинаков, а напряжения складываются) . Теперь значение резистора (для последовательной цепи) будет:
= (В питание — (V F x количество светодиодов)) / I F = (18 — (2 x 6)) / 20mA
= (18-12) / 20mA = 300 Ω
Общий потребляемый ток = 20 мА
(Это последовательная цепь, поэтому токи одинаковы) Номинальная мощность резистора
= I F 2 x Номинал резистора = (20 мА) 2 x 300 Ом = 0.12 = 120 мВт
Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,12 Вт x 2 = 0,24 Вт = Резистор 240 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,24 Вт = (240 мВт)
Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с общим резистором):
Нажмите на изображение, чтобы увеличить
В этой схеме мы подключили светодиоды параллельно общему резистору. Напряжение питания составляет 18 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.
Значение резистора (светодиоды параллельно с общим резистором) = (В , питание — В F) / (I F x количество светодиодов)
Здесь общий прямой ток (I F ) 4 светодиода = 20 мА x 4 = 0,08 А, и прямое напряжение (В F ) такое же (т.е. 2 В)
( Примечание: это параллельная цепь, поэтому напряжение параллельной цепи одинаково в каждой точке, а токи аддитивны).
Теперь значение резистора (для параллельной цепи с общим резистором) будет:
= (В , питание — В F) / (I F x количество светодиодов)
= (18 — 2) / 0,08
= 200 Ом
Общий потребляемый ток = 20 мА x 4 = 80 мА
(Это параллельная схема, поэтому токи складываются)
Номинальная мощность резистора = I F 2 x номинал резистора = (20 мА) 2 x 200 Ом = 0. 08 Вт = 80 мВт
Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 1,28 Вт x 2 = 2,56 Вт. резистор для этой схемы. Номинальная мощность резистора (значение удваивается) = 2,56 Вт (280 мВт)
Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с отдельным резистором)
Нажмите на изображение, чтобы увеличить
Это еще один способ подключения светодиодов параллельно с отдельными резисторами.В этой схеме мы подключили 4 светодиода параллельно с отдельными резисторами. Напряжение питания составляет 9 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.
Значение резистора (светодиоды включены параллельно с отдельным резистором) = (В питание — В F ) / I F Здесь общее прямое напряжение (В F ) светодиодов = 2 и прямой ток ( I F ) 20 мА (т. е. 20 мА)
( Примечание: это параллельная цепь, но мы находим значение резистора для каждой секции, а не для всей цепи.Таким образом, в каждом разделе схема становится последовательной (обратитесь к формуле последовательной схемы или к простой схеме 1 st выше, вы обнаружите, что они такие же)
Теперь значение резистора (для параллельной схемы с отдельным резисторы) будет:
= (V питание — V F ) / I F = (9-2) / 20 мА = 350 Ом
Общее потребление тока = 20 мА x 4 = 80 мА (Это является параллельной схемой, поэтому токи складываются)
Номинальная мощность резистора = I F 2 x Номинал резистора = (20 мА) 2 x 350 Ом = 0.14 = 140 мВт
Но это минимально необходимое значение резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,14 Вт x 2 = 0,28 Вт = резистор 280 мВт для этой схемы. Номинальная мощность резистора (значение удвоено) = 0,28 Вт (280 мВт)
Есть другой способ (последовательно-параллельная комбинация) для соединения светодиодов с батареей; Если вы поняли этот простой расчет, то я уверен, что вы легко сможете рассчитать номинал резисторов и для схемы подключения последовательно-параллельной комбинации светодиодов.
Похожие сообщения:
Основы: Выбор резисторов для светодиодов
Итак … вы просто хотите зажечь светодиод. Какой резистор использовать?
Может быть, вы знаете ответ, или, может быть, все уже считают, что вы должны знать, как добраться до ответа. В любом случае, это вопрос, который вызывает больше вопросов, прежде чем вы действительно сможете получить ответ: какой тип светодиода вы используете? Какой блок питания? Батарея? Плагин? Часть более крупной схемы? Ряд? Параллельно?
Игра со светодиодами должна доставлять удовольствие, и выяснение ответов на эти вопросы на самом деле является частью забавы. Есть простая формула, которую вы используете для выяснения этого — закон Ома. Эта формула: В = I × R , где В, — напряжение, I — ток, а R — сопротивление. Но как узнать, какие числа использовать в этой формуле, чтобы получить правильное значение резистора?
Чтобы получить В в нашей формуле, нам нужно знать две вещи: напряжение нашего источника питания и напряжение наших светодиодов.
Начнем с конкретного примера.Предположим, что мы используем держатель батареек 2 × AA (например, этот из нашего магазина), который обеспечит нас питанием 3 В (с двумя последовательно соединенными элементами AA 1,5 В; мы складываем напряжения), и мы планирую подключить желтый светодиод (как один из этих).
Светодиоды имеют характеристику, называемую «прямым напряжением», которая часто обозначается в технических данных как Vf. Это прямое напряжение представляет собой величину напряжения, «потерянного» в светодиоде при работе с определенным опорным током, обычно определяемым как около 20 миллиампер (мА), т. е.е., 0,020 ампер (А). Vf зависит в первую очередь от цвета светодиода, но на самом деле немного отличается от светодиода к светодиоду, иногда даже в пределах одного пакета светодиодов. Стандартные красные, оранжевые, желтые и желто-зеленые светодиоды имеют Vf около 1,8 В, в то время как чисто зеленые, синие, белые и УФ-светодиоды имеют Vf около 3,3 В. Таким образом, падение напряжения на нашем желтом светодиоде будет равным. около 1,8 В.
В в нашей формуле находится путем вычитания прямого напряжения светодиода из напряжения источника питания.
3 В (источник питания) — 1.8 В (падение напряжения на светодиодах) = 1,2 В
В этом случае у нас осталось 1,2 В, которые мы подключим к нашей формуле V = I × R .
Следующее, что нам нужно знать, это I , ток, на котором мы хотим управлять светодиодом. Светодиоды имеют максимальный номинальный непрерывный ток (часто обозначается как If или Imax в таблицах данных). Часто это около 25 или 30 мА. На самом деле это означает, что типичное значение тока, к которому нужно стремиться со стандартным светодиодом, составляет от 20 мА до 25 мА, что немного ниже максимального тока.
Вдобавок: Всегда можно дать светодиоду меньше тока . Работа светодиода, близкая к номинальному максимальному току, дает вам максимальную яркость за счет рассеивания мощности (тепла) и срока службы батареи (если, конечно, у вас разряжаются батареи). Если вы хотите, чтобы ваши батареи прослужили в десять раз дольше, обычно вы можете просто выбрать ток, который составляет лишь одну десятую номинального максимального тока.
Итак, 25 мА — это «желаемый» ток — то, что мы надеемся получить, когда выбираем резистор, а также I , который мы подключим к нашей формуле V = I × R .
1,2 В = 25 мА × R
или перефразируя:
1,2 В / 25 мА = R
и когда мы решаем это, получаем:
1,2 В / 25 мА = 1,2 В / 0,025 А = 48 Ом
Где «48 Ом» — 48 Ом. (Единицы измерения таковы, что 1 В / 1 А = 1 Ом; один вольт, разделенный на один ампер, равен одному ому. Если вы имеете дело с током в мА, преобразуйте его в А, разделив на 1000.)
Наша версия формулы теперь выглядит так:
(напряжение источника питания — напряжение светодиода) / ток (в амперах) = требуемое значение резистора (в омах)
Получаем сопротивление резистора 48 Ом.И это хорошее значение пускового резистора для использования с желтым светодиодом и источником 3 В.
Давайте на мгновение посмотрим на номиналы резисторов. Резисторы обычно доступны в таких номиналах, как 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 51 Ом, 56 Ом, 68 Ом, 75 Ом и 82 Ом. (и их кратные 510 Ом, 5,1 кОм, 51 кОм и т. д.), и (если вы не укажете более высокую точность при совершении покупок) имеют значение допуска около ± 5%.
Если вы занимаетесь большим количеством проектов в области электроники, у вас, скорее всего, будет валяться куча резисторов. Если вы только начинаете, возможно, вам захочется приобрести ассортимент, чтобы было что-нибудь под рукой. Резисторы также рассчитаны на работу с различной мощностью — резисторы, рассчитанные на большую мощность (больше ватт), могут безопасно рассеивать больше тепла, выделяемого внутри резистора. Резисторы на 1/4 ватта, вероятно, являются наиболее распространенными и обычно подходят для простых светодиодных схем, подобных тем, которые мы здесь рассматриваем. (Мы обсуждали рассеяние мощности ранее — обратите внимание на это, когда вы начнете выходить за рамки этих основ.)
Итак, значение резистора, которое мы вычислили выше, было 48 Ом, что не является одним из наших обычных значений. Но это нормально, потому что мы будем использовать резистор с допуском ± 5%, так что в любом случае это значение не обязательно будет точно таким же. На всякий случай мы обычно выбираем следующее более высокое значение, которое у нас есть; 51 Ом в этом примере.
Давайте подключим:
батарейный блок на 3 В, резистор 51 Ом и желтый светодиод.
Это небольшая симпатичная светодиодная схема, но как мы можем сделать это с помощью большего количества светодиодов? Можем ли мы просто добавить еще один резистор и еще один светодиод? Ну да, в точку.Каждому светодиоду потребуется 25 мА, поэтому нам нужно выяснить, какой ток могут отдавать наши батареи.
Помимо : Немного покопавшись, можно найти полезный технический справочник (pdf) по щелочным батареям от Energizer. Оказывается, чем сильнее вы их водите, тем быстрее вы их истощаете. Часть этого очевидна: если вы постоянно потребляете 1000 мА из батареи, вы ожидаете, что батарея прослужит 1/10 того времени, как если бы вы потребляли 100 мА. Но на самом деле есть второй эффект, заключающийся в том, что общая выходная энергия батареи (измеряемая в ватт-часах) уменьшается, когда вы приближаетесь к пределу того, какой ток может выдавать батарея.На практике, с щелочными батареями AA, если вы разрядите их при токе 1000 мА, они прослужат только около 1/20 того времени, как если бы вы разрядили их при 100 мА.
Для нашего одиночного светодиода 25 мА элементы AA прослужат чертовски долго. Если мы запустим четыре светодиода параллельно, потребляя 100 мА, мы все равно получим довольно приличное время автономной работы. Если ток превышает 500 мА, следует подумать о подключении к розетке. Итак, мы можем добавить несколько наших желтых светодиодов, каждый с собственным резистором 51 Ом, и успешно управлять ими с помощью держателя батареи 2xAA.
Хорошо, а как насчет батареи на 9 В? Давайте остановимся на желтых светодиодах. Если мы хотим отключить один светодиод от батареи 9 В, это означает, что мы должны потреблять колоссальные 7,2 В с нашим резистором, который должен составлять 288 Ом (или ближайшее удобное значение: 330 Ом, в моей мастерской). .
9 В (питание) — 1,8 В (желтый светодиод) = 7,2 В
7,2 В / 25 мА = 288 Ом (округлить до 330 Ом)
Использование резистора для падения напряжения любого размера рассеивает эту энергию в виде тепла.Это означает, что мы просто тратим эту энергию на тепло, вместо того, чтобы получать больше света от нашей светодиодной схемы. Итак, можем ли мы использовать несколько светодиодов, соединенных вместе? Да! Давайте соединим четыре светодиода 1,8 В последовательно, в сумме получим 7,2 В. Когда мы вычтем это из напряжения питания 9 В, у нас останется 1,8 В, для чего потребуется только резистор 72 Ом (или ближайшее значение. : 75 Ом).
9 В — (1,8 В × 4) = 9 В — 7,2 В = 1,8 В
1,8 В / 25 мА = 72 Ом (затем округляем до 75 Ом)
Наша обобщенная версия формулы с несколькими последовательно включенными светодиодами:
[Напряжение источника питания — (напряжение светодиода × количество светодиодов)] / ток = номинал резистора
Мы даже можем подключить пару цепочек из четырех светодиодов плюс резистор параллельно, чтобы получить больше светового потока, но чем больше мы добавляем, тем больше мы сокращаем срок службы батареи.
А можно ли сделать пять последовательно с батареей 9 В? Ну, возможно. Значение 1,8 В, которое мы использовали, является всего лишь «типичным практическим правилом». Если вы уверены, что прямое напряжение равно 1,8 В, он будет работать. Но что, если это не совсем так? Если прямое напряжение ниже, вы можете перегрузить их при более высоком токе, что может сократить срок их службы (или полностью убить). Если прямое напряжение выше, светодиоды могут быть тусклыми или даже не гореть. В некоторых случаях вы можете подключить светодиоды последовательно без резистора, как в нашей схеме светодиодного обеденного стола, но в большинстве случаев предпочтительнее и безопаснее использовать резистор.
Давайте сделаем еще один пример, на этот раз с белым светодиодом (вы можете найти его здесь) и батарейным блоком 3xAA (например, этот). Напряжение источника питания составляет 4,5 В, а напряжение светодиода — 3,3 В. Мы по-прежнему стремимся к току 25 мА.
4,5 В — 3,3 В = 1,2 В
1,2 В / 25 мА = 48 Ом (округлить до 51 Ом)
Итак, вот примеры, которые мы рассмотрели, и еще несколько примеров с некоторыми другими распространенными типами источников питания:
Напряжение источника питания | Цвет светодиода | Светодиод Vf | светодиодов серии | Желаемый ток | Резистор (расчетный) | Резистор (округлый) |
3 В | Красный, желтый или желто-зеленый | 1.![]() | 1 | 25 мА | 48 Ом | 51 Ом |
4,5 В | Красный, желтый или желто-зеленый | 1,8 | 2 | 25 мА | 36 Ом | 39 Ом |
4,5 В | Синий, Зеленый, Белый или УФ | 3,3 | 1 | 25 мА | 48 Ом | 51 Ом |
5 В | Синий, Зеленый, Белый или УФ | 3,3 | 1 | 25 мА | 68 Ом | 68 Ом |
5 В | Красный, желтый или желто-зеленый | 1.8 | 1 | 25 мА | 128 Ом | 150 Ом |
5 В | Красный, желтый или желто-зеленый | 1,8 | 2 | 25 мА | 56 Ом | 56 Ом |
9 В | Красный, желтый или желто-зеленый | 1,8 | 4 | 25 мА | 72 Ом | 75 Ом |
9 В | Синий, Зеленый, Белый или УФ | 3,3 | 2 | 25 мА | 96 Ом | 100 Ом |
Все эти значения основаны на тех же предположениях о прямом напряжении и желаемом токе, которые мы использовали в первых примерах. Вы можете проработать их и проверить математику или просто использовать ее как удобную таблицу, если считаете, что наши предположения разумны. 😉
Так вот, в какой-то момент кто-то мог сказать вам: «Просто воспользуйтесь онлайн-калькулятором светодиодных резисторов». И действительно, такие вещи есть — даже у нас есть одна (ну, версия для печати из бумаги) — так зачем вообще работать над всем этим? Во-первых, гораздо лучше понять, что и почему этот калькулятор делает то, что он делает. Но также почти невозможно использовать эти калькуляторы, если вы не знаете, какие переменные вам нужно будет ввести.Надеюсь, теперь вы сможете вычислить значения, которые вам понадобятся (напряжение источника питания, напряжение светодиода и ток) для использования светодиодного калькулятора. Но что еще более важно (1) он вам на самом деле не нужен: вы можете сделать это сами и (2) если вы его используете, вы можете подвергнуть сомнению основные предположения, которые он может сделать от вашего имени.
Надеюсь, вы также увидели, что есть гораздо больше, чем просто один способ зажечь светодиод. И мы даже не дошли до таких вещей, как объединение светодиодов разного номинала в цепи! Теперь, можете ли вы вернуться к наклеиванию светодиодов на батареи CR2032, чтобы сделать светодиодные броски? Да, определенно можно.Но вы можете вернуться и прочитать о том, когда вам следует добавить резистор даже в эту маленькую схему!
Наконец, отметим, что в этой статье мы говорили о вашем основном сквозном маломощном (хотя, возможно, очень ярком) светодиодах. Специализированные типы, такие как светодиоды высокой мощности, могут иметь несколько другие характеристики и требования.
Обновление : исправлен список общих значений резисторов, чтобы включить более общие значения.
Калькулятор светодиодных резисторовТокоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.
Если вам интересно, «Какой резистор мне использовать с моим светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.
На схеме выше вы можете увидеть распиновку светодиода. Катод — отрицательная клемма. Это на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг.Вы только посмотрите на него, надеюсь, он утонет …
Калькулятор токоограничивающего резистора — Серия
прямое напряжение
Прямое падение напряжения обычно обозначается просто как прямое напряжение — это конкретное значение для каждого светодиода. Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого обычно доступного светодиода по цвету.
Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.
Как измерить прямое напряжение Vf
Если у вас есть цифровой мультиметр, то вы также можете измерить прямое падение напряжения. У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!
Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом.Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.
Диаграмма по цвету
Цвет светодиода | Прямое напряжение Vf | Прямой ток Если |
Белый | 3,2–3,8 В | 20–30 мА |
Теплый белый | 3,2–3,8 В | 20 от мА до 30 мА |
Синий | от 3,2 В до 3,8 В | от 20 мА до 30 мА |
Красный | 1.От 8 В до 2,2 В | от 20 мА до 30 мА |
Зеленый | от 3,2 В до 3,8 В | от 20 мА до 30 мА |
Желтый | от 1,8 В до 2,2 В | от 20 мА до 30 мА |
Оранжевый | от 1,8 до 2,2 В | от 20 мА до 30 мА |
Розовый | от 3,2 В до 3,8 В | от 20 мА до 30 мА |
UV | от 3,2 до 3,8 В | от 20 мА до 30 мА |
Вот диаграмма, показывающая прямое напряжение по цвету для широко доступных светодиодов на eBay.Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а длину анода — 19 мм.
Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.
Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2.2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.
Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.
Выбор резистора для использования со светодиодами
Напряжение питания Vs | Vf = 1.8 В | Vf = 3,2 В |
3,3 В | 75 Ом | 5 Ом |
5 В | 160 Ом | 90 Ом | 9 360 Ом | 290 Ом |
12 В | 510 Ом | 440 Ом |
Как видно из диаграммы выше, обычно используются два прямых напряжения. Красный, желтый и оранжевый светодиоды попадают в 1.Категория 8 В, а белый, синий, зеленый, розовый, УФ, попадают в категорию 3,2 В.
Таким образом, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями в своих проектах. Просто воспользуйтесь таблицей стандартных значений резисторов, чтобы найти ближайшее из возможных значений.
Пример 1: Синий светодиод имеет типичное прямое падение напряжения, равное 3.2 В, поэтому при напряжении питания 3,3 В требуется резистор 5 Ом. Однако, если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.
Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, номиналы резисторов 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться при напряжении питания 3,3 В, 5 В, 9 В и 12 В соответственно.
Формула для расчета номиналов резисторов
Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.
Учитывая прямое напряжение диода Vf, напряжение на резисторе равно Vs –Vf.
Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.
Схема с несколькими светодиодами — Серия
Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которые вы можете установить. Как видите, полное прямое напряжение — это сумма всех прямых напряжений, представленных каждым светодиодом.Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.
Схема с несколькими светодиодами — параллельная
Вот такой правильный способ подключения нескольких светодиодов параллельно. У каждого светодиода есть собственный резистор, ограничивающий ток.
В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток — это сумма всех индивидуальных прямых токов каждого светодиода.
Калькулятор светодиодных резисторов
Этот калькулятор светодиодных резисторов представляет собой инструмент для определения того, какой резистор следует использовать при создании различных электронных схем со светодиодами. Благодаря этим расчетам вы можете быть уверены, что не повредите диоды чрезмерным током.
Вы можете использовать этот калькулятор светодиодов для определения необходимого сопротивления и рассеиваемой мощности для одного светодиода, всех светодиодов или резистора.
Светодиодный калькулятор: обзор
Светодиоды, или светодиоды, представляют собой небольшие электронные компоненты.Когда ток подается на светодиоды, они излучают свет различных цветов, например красный, зеленый или синий. Однако, если ток, проходящий через диод, будет слишком большим, это приведет к повреждению светодиода.
Чтобы ограничить ток, проходящий через диод, обычно в схему добавляют резистор, как показано на изображении выше. Этот резистор обычно добавляется последовательно. Несмотря на то, что этот метод прост и решает многие проблемы с базовой схемой, его не следует применять для сильноточных светодиодов.
Что вам нужно знать?
Чтобы рассчитать сопротивление и рассеиваемую мощность, вам необходимо ввести несколько параметров в этот калькулятор светодиодного резистора:
Тип цепи. Ваши светодиоды подключены последовательно или параллельно?
n
— количество подключенных светодиодов.В
— напряжение питания вашей цепи. Типичные значения — 5, 7 и 12 В для разъемов Molex и 1.5 или 9 вольт для батарей.Вₒ
— падение напряжения на одном светодиоде. Это значение зависит от цвета светодиода и колеблется от 1,7 В (инфракрасный) до 3,6 (белые или синие диоды).Iₒ
— ток через один светодиод. Обычные светодиоды требуют 20 или 30 мА.
Светодиоды в серии
Если вы подключаете несколько диодов последовательно или рассчитываете резистор только для одного диода, вы можете использовать следующие формулы:
Сопротивление:
R = (V - n * Vₒ) / Iₒ
Мощность, рассеиваемая одним светодиодом:
Pₒ = Vₒ * Iₒ
Мощность, рассеиваемая всеми светодиодами (общая):
P = n * Vₒ * Iₒ
Мощность, рассеиваемая на резисторе:
Pr = (Iₒ) ² * R
Светодиодов параллельно
Для светодиодов, соединенных параллельно, вычислитель резисторов светодиодов использует следующие уравнения:
Сопротивление:
R = (V - Vₒ) / (n * Iₒ)
Мощность, рассеиваемая одним светодиодом:
Pₒ = Vₒ * Iₒ
Мощность, рассеиваемая всеми светодиодами (общая):
P = n * Vₒ * Iₒ
Мощность, рассеиваемая на резисторе:
Pr = (n * Iₒ) ² * R
Хотите знать, откуда взялись эти формулы? Взгляните на калькулятор закона Ома!
LED Resistor Calculator — Дюймовый калькулятор
Рассчитайте резистор для использования в цепи со светодиодом, указав ниже напряжение питания, прямое напряжение и прямой ток.При необходимости рассчитайте резистор для размещения нескольких последовательно соединенных светодиодов.
Результатов:
Рекомендация по мощности резистора
Как рассчитать размер резистора для использования со светодиодом
Светоизлучающие диоды или светодиоды, используемые в электрических цепях, должны быть соединены с резистором для регулирования тока.Это необходимо для предотвращения потребления тока, превышающего номинальный для светодиода, что может привести к повреждению компонента.
Чтобы определить правильное значение резистора, закон Ома используется для вывода формулы для резистора.
Формула для расчета светодиодного резистораR (Ом) = V с — (V f × N) I f
Требуемое сопротивление равно напряжению питания минус прямое напряжение, умноженное на количество светодиодов, деленное на прямой ток.
В с — или напряжение питания — равно напряжению, подаваемому в цепь.
В f — или прямое напряжение — равно падению напряжения светодиода. Это значение различается для светодиодов разного цвета, см. Таблицу ниже, где показано падение напряжения для светодиодов разных цветов.
I f — или прямой ток — равен току, потребляемому светодиодами. Большинство светодиодов рассчитаны на ток 20-30 мА.
N — количество последовательно включенных светодиодов.
Схема, показывающая схему со светодиодом и необходимым резистором.Например, найти резистор для использования в светодиодах с прямым напряжением 2 вольта и током 20 миллиампер при напряжении питания 5 В.
R = 5 В — 2 В 0,02 A
R = 3 В 0,02 A
R = 150 Ом