Светодиод от сети 220 в схема: Как запитать светодиод от сети 220 В. — Мастер-ломастер

Содержание

Как запитать светодиод от сети 220 В. — Мастер-ломастер

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.


Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

      • Малые размеры

 

      • Компактное устройство световой сигнализации

 

      • Широкий диапазон питающего напряжения (вплоть до 14 вольт)

 

    • Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.

Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.

Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.

Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.

Подключение светодиода к сети 220 В

Сегодня будем рассматривать один из интереснейших вопросов — подключение светодиода к сети 220 В. В принципе, данная система достаточно проста и в этом нет ничего сложного.

Как правило, для подключения светодиодов используют драйверы. Но если Вам необходимо подключить только один светодиод, то использование таких драйверов просто-напросто нецелесообразно.

Т.к. светодиод — это полупроводниковый «прибор», то сопротивление полупроводника нелинейное, т.е., если смотреть более «кухарским» языком — нелинейно зависит от величины приложенного напряжения. Соответственно, для того, чтобы подключить светодиод к сети 220 В необходимо применять резистор.

При использовании постоянного напряжения можно применять только резистор. Если применять переменное напряжение, то можно использовать конденсатор и катушку индуктивности. Вдаваться в подробности полупериод и передачу-накопление энергии в полупериод не буду, т.к. это не та статья, где надо забивать голову этим.

Подключение светодиода к сети 220 В — простейшие схемы


В данном разделе будем рассматривать схемы, которые можно самостоятельно и быстро воплотить в жизнь, для того, чтобы выполнить подключение светодиода к сети 220 В самостоятельно.

Подключение светодиода к 220 В с использованием резистора — схема


подключение светодиода к сети 220 В

Выше вы можете видеть схему, которая используется повсеместно в цепях индикации. Т.е. если Вы разберете выключатель со светодиодной подсветкой, то обязательно увидите именно такую схему подключения светодиодов к сети 220 В. Такое соединение к 220 В у светодиода не только в выключателях. но и в индикации чайника, утюга и т.п. электротехнических устройствах. Мало того, что это самая простая схема подключения светодиодов к сети 220 В, так она еще и самая надежная.

Схема — подключение светодиода к сети 220 В при помощи резистора и диода


Для защиты светодиода используют схему подключения встречно-параллельного обычного диода.

Подключение светодиода к 220 В с диодом

Для чего в этой схеме надо использовать диод? А все просто… В проводящий полупериод на светодиоде напряжение снижается до 3В. В момент когда он заперт (непроводящий полупериод) к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого может достигать аж 310 В. А это, само-собой влечет возможность вывода из строя светодиод. Но… Если мы создадим путь протекания тока в непроводимый полупериод времени, то амплитуда обратного напряжения будет снижена. Именно для этого и применяется шунтирующий диод, показанный на схеме. В общем, если Вы хотите, чтобы Ваш светодиод при подключении к сети 220 В с резистором не погорел синем пламенем, используйте диод.

Схема — подключение светодиода к сети 220 В с диодом подключенным не встречно-параллельно


Существует возможность подключать ограничительный диод и не встречно-параллельно.

подключение светодиода к 220 В не встречно-параллельно

По сравнению с предыдущей схемой мы можем видеть, что ток протекает через резистор в 2 раза меньше. А это означает, что на нем выделится мощности ровно в 4 раза меньше.

Отрицательная сторона такого подключения светодиода к 220 В

К защитному диоду прикладывается ПОЛНОЕ напряжение сети, поэтому абы какой диод мы тут установить не можем. Для этого нам необходимо подобрать диод с обратным напряжением не менее 440 В — 1N4007.

Развенчаю домыслы многих радиолюбителей… В отрицательные полупериоды светодиод будет находиться в состоянии электрического пробоя! Но благодаря тому, что сопротивление p-n перехода защитного диода велико, тока будет недостаточно, чтобы вывести его из строя.

Электробезопасность при подключении светодиода к сети 220 В

Не забываем, что любая простая схема подключения светодиода к 220 В при прикосновении к ней человека может привести к негативным последствиям. Поэтому, дабы обезопасить себя и возможно детей от высокого напряжения необходимо поделить номинал резистора по полам и определить его на обе «линии».

электробезопасность при подключении свтеодиода к скти 220 В

Данное видоизменение используйте не только к такому типу подключения светодиодов, но и на ВСЕ схемы, где вы будете подключать светодиоды к сети 220 В без специальных устройств в виде драйвера.

Схема — подключение светодиода к сети 220 В при помощи аналогичного светодиода


Если подходящего диода нет, то подойдет и светодиод, с аналогичными характеристиками, для подключения его встречно-параллельно.

подключение светодиода к сети 220 В с использованием еще одного свтеодиода

После того, как соберете данную схему, будет казаться, что в момент подключения оба светодиода будут светиться. Однако, это ошибочное представление, т.к. они мерцают с частотой в 50 Гц.

Светодиоды работают в противофазе. Когда первый работает, второй гаснет.

Здесь Вам стоит отметить следующее:

  1. Ток протекает через оба полупериода
  2. Ток протекает через резистор

Соответственно и номинал резистора стоит снизить вдвое.

Подключение светодиода к сети 220 В с применением конденсатора


Конденсатор обладает реактивным сопротивлением переменному току. Если перевести на обывательский язык, то он не»ест» активную мощность, как это делает резистор, а соответственно и не нагревается. Постоянный ток не пропускается и является своеобразным сопротивлением, которое с легкостью приравнивается к разрыву цепи. Любые конденсаторы, которые вы будете использовать в своих схемах должны быть не менее 400 В.

Подключение светодиода с одним конденсатором


При подаче переменного напряжения на конденсатор через него будет течь ток. Сопротивление его будет обратно пропорционально зависеть от частоты. Т.е. с ростом частоты сопротивление будет падать. Сопротивление также зависит и от емкости.

подключение светодиода к сети 220 В с конденсатором

Основной минус такой схемы в том, что в момент подключения к сети 220 В протекает большой ток. Величина которого может в несколько раз превышать номинальный ток светодиода, естественно из-за чего светоизлучающий диод может выйти из строя.

Подключение светодиода к сети 220 В с использованием конденсатора и резистора


Чем больше емкость конденсатора, тем выше значение тока в момент включения. Чтобы защитить светодиод следует использовать резистор, подключенный последовательно с конденсатором.

подключение светодиода к сети 220 в с использованием конденсатора и резистора

Если Вы будете рассчитывать номинал резистора, емкость конденсатора, то сможете понять, что данная схема просто нерентабельна из-за большой потери мощности.

Однако, мы тут рассматриваем различные возможности подключения светодиода к сети 220 В, а не их применение.

В общем, я попытался Вам показать все возможные варианты подключения светодиодов к сети 220 В. Может чего-то не хватает — пишите в комментариях, добавлю.

ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ К 220 В

   При самостоятельном конструировании радиоэлектронной аппаратуры часто встает вопрос о индикации питания. Лампы накаливания никто уже не ставит, неонки получили распространение только в подсветках выключателей, поэтому современным и надежным элементом индикации является светодиод. Ведь даже в выключатели неоновые лампочки уже часто не подходят, так как многие имеют диодные осветительные лампы, которые начинают мерцать при подключении через такие выключатели света. В данной статье будет рассмотрено несколько схем подключения светодиода к 220 вольтам сети.

Схемы простейшего подключения светодиодов к 220В

   Обе схемы работают одинаково — ограничивают ток и гасят обратную полуволну переменного напряжения. Многие светодиоды не любят высокое обратное напряжение, которое и блокирует диод. Он должен быть типа IN4004 — на напряжение более 300 вольт. Если нужно включить сразу несколько (2-10) светодиодов, то соединяем их последоватедовательно.

Схема подключения светодиода к 220В через конденсатор

Схема подключения светодиода к 220В через конденсатор

   Тут лишнее напряжение гасим не резистором, а на ёмкости, потом идёт стабилитрон и ограничительный резистор. Ёмкость выбираем исходя из тока светодиодов. Примерное соотношение ёмкость/ток — 0,1 мкФ на 6 мА. Мощность резистора для импортных LED элементов с малым током потребления, может быть минимальной — подойдет 0.25 Вт. Конденсатор лучше подобрать с запасом по напряжению, то есть не менее 300 вольт. Стабилитрон должен быть немного больше напряжения питания светодиода, например на 5 вольт — это КС156А или аналогичные импортные.

   Принцип работы в том, что при подаче напряжения 220В начинает заряжаться конденсатор С1, при этом с одной стороны он заряжается напрямую, а со второй через стабилитрон. При увеличении напряжения на конденсаторе стабилитрон увеличивает свое сопротивление, ограничивая напряжения зарядки для конденсатора своим рабочим стабилизирующим напряжением. Эта схема оправдана только при питании светодиодов с большим рабочим током — от 20 мА и выше.

Схема мигающего светодиода на 220В

Схема мигающего светодиода на 220В

   А эта схема позволяет не просто светиться светодиоду, а мигать, что гораздо информативнее и красивее. Причём LED индикатор сюда ставим самый обычный — не мигающий. Для этого надо всего 5 радиодеталей.

Сборка мигающего светодиода на 220В

   Здесь напряжение сети 220 вольт через диод и резистор на 200-300 кОм заряжает электролитический конденсатор на 20 мкФ 100 В, а уже с него постоянное напряжение периодически открывает динистор DB3, заставляя вспыхивать светодиод. Частота вспышек будет определяться ёмкостью, а яркость — сопротивлением резистора.

   Вопросы по питанию светодиодов

   Светодиоды
Сборка мигающего светодиода на 220В

Лабораторный БП 0-30 вольт

Сборка мигающего светодиода на 220В

Драгметаллы в микросхемах

Сборка мигающего светодиода на 220В

Металлоискатель с дискримом

Сборка мигающего светодиода на 220В

Ремонт фонарика с АКБ

Сборка мигающего светодиода на 220В

Восстановление БП ПК ATX

Сборка мигающего светодиода на 220В

Подключение светодиода к сети 220В

Светодиодные лампы от сети 220В

Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод — для, собственно, индикации того, что напряжение в данный момент присутствует. Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется. В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

Самый простой способ ограничения тока — использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В — это ДЕЙСТВУЮЩЕЕ напряжение. Фактически же напряжение в бытовой сети меняется в более широких пределах — от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так — читайте в Википедии. Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

Сопротивление резистора рассчитывается по привычному закону Ома:

R = (Ua — UL) / I, где Ua — амплитудное значение напряжения (310В), UL — падение напряжения на светодиодах, I — требуемая сила тока.

Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

P = I2 * R

Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит. Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом. Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться «Калькулятором светодиодов».

Простые схемы подключения светодиода к сети 220В с резистором для ограничения тока

Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита. В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду. Требования к диоду — он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 — обратное напряжение 1000В, прямой ток 1А.

Второй вариант — включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно. Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети — не менее 400В. Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

C = (4,45 * I) / (Ua — UL), где I — требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

Подключения светодиода к сети 220В с балластным конденсатором

Использование балластного конденсатора для подключения светодиода к сети 220В

В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом. Резистор R2 служит для ограничения начального тока заряда конденсатора C1. Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

Оставшиеся детали — светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны — готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

Схема выключателя с подсветкой

Схема обычного выключателя с подсветкой

Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой — около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

Схемы с балластным конденсатором используются в простых светодиодных лампах.

Схема светодиодной лампы

Схема светодиодной лампы мощностью до 5Вт

Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант — использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье «Схема драйвера для светодиода от сети 220В».

Есть еще один не совсем правильный, но достаточно простой и работающий способ — можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки). Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе. Как это сделать — читайте в статье «Простой драйвер светодиода от сети 220В».

Схема включения светодиода в сеть 220 вольт

Сейчас стало очень популярным освещение светодиодными лампами. Все дело в том, что это освещение не только достаточно мощное, но и экономически выгодное. Светодиоды — это полупроводниковые диоды в эпоксидной оболочке.

Изначально они были достаточно слабыми и дорогими. Но позднее в производство были выпущены очень яркие белые и синие диоды. К тому времени их рыночная цена снизилась. На данный момент существуют светодиоды практически любого цвета, что послужило причиной использования их в различных сферах деятельности. К ним относится освещение различных помещений, подсветка экранов и вывесок, использование на дорожных знаках и светофорах, в салоне и фарах автомобилей, в мобильных телефонах и т. д.

схема включения светодиода

Описание

Светодиоды потребляют мало электроэнергии, в результате чего такое освещение постепенно вытесняет ранее существовавшие источники света. В специализированных магазинах можно приобрести различные предметы, в основе которых светодиодное освещение, начиная от обычного светильника и светодиодной ленты, заканчивая светодиодными панелями. Их всех объединяет то, что для их подключения необходимо наличие тока в 12 или 24 В.

В отличие от других источников освещения, которые используют нагревательный элемент, здесь применяется полупроводниковый кристалл, который генерирует оптическое излучение под воздействием тока.

Чтобы понять схемы включения светодиодов в сеть 220В, нужно для начала сказать о том, что напрямую от такой сети он питаться не сможет. Поэтому для работы со светодиодами нужно соблюдать определенную последовательность подключения их к сети высокого напряжения.

Электрические свойства светодиода

Вольтамперная характеристика светодиода — это крутая линия. То есть, если напряжение увеличится хотя бы немного, то ток резко возрастет, это повлечет за собой перегрев светодиода с последующим его перегоранием. Чтобы этого избежать, необходимо включить в цепь ограничительный резистор.

Но важно не забывать о максимально допустимом обратном напряжении светодиодов в 20 В. И в случае его подключения в сеть с обратной полярностью он получит амплитудное напряжение в 315 вольт, то есть в 1,41 раза больше, чем действующее. Дело в том, что ток в сети на 220 вольт переменный, и он изначально пойдет в одну сторону, а затем обратно.

Для того чтобы не дать току двигаться в противоположном направлении, схема включения светодиода должна быть следующей: в цепь включается диод. Он не пропустит обратное напряжение. При этом подключение обязательно должно быть параллельным.

Еще одна схема включения светодиода в сеть 220 вольт заключается в установке двух светодиодов встречно-параллельно.

Что касается питания от сети с гасящим резистором, то это не самый лучший вариант. Потому что резистор будет выделять сильную мощность. К примеру, если использовать резистор 24 кОм, то мощность рассеивания составит примерно 3 Вт. При включении последовательно диода мощность снизится вдвое. Обратное напряжение на диоде должно равняться 400 В. Когда включаются два встречных светодиода, можно поставить два двухваттных резистора. Их сопротивление должно быть в два раза меньше. Это возможно, когда в одном корпусе два кристалла разных цветов. Обычно один кристалл красный, другой зелёный.

схема плавного включения светодиодов

В том случае, когда используется резистор 200 кОм, наличие защитного диода не требуется, так как ток на обратном ходу маленький и не будет вызывать разрушение кристалла. Эта схема включения светодиодов в сеть имеет один минус — маленькая яркость лампочки. Она может применяться, например, для подсветки комнатного выключателя.

Из-за того, что ток в сети переменный, это позволяет избежать лишних трат электричества на нагрев воздуха с помощью ограничительного резистора. С этой задачей справляется конденсатор. Ведь он пропускает переменный ток и при этом не нагревается.

Важно помнить, что через конденсатор должны проходить оба полупериода сети, для того чтобы он смог пропускать переменный ток. А так как светодиод проводит ток только в одну сторону, то необходимо поставить обычный диод (либо еще дополнительный светодиод) встречно-параллельно светодиоду. Тогда он и будет пропускать второй полупериод.

Когда схема включения светодиода в сеть 220 вольт будет отключена, на конденсаторе останется напряжение. Иногда даже полное амплитудное в 315 В. Это грозит ударом тока. Чтобы этого избежать, нужно предусмотреть помимо конденсатора еще и разрядный резистор большого номинала, который в случае отсоединения от сети моментально разрядит конденсатор. Через этот резистор, при нормальной его работе, течет незначительный ток, не нагревающий его.

Для защиты от импульсного зарядного тока и в качестве предохранителя ставим низкоомный резистор. Конденсатор должен быть специальный, который рассчитан на цепь с переменным током не меньше 250 В, либо на 400 В.

Схема последовательного включения светодиодов предполагает установку лампочки из нескольких светодиодов, включенных последовательно. Для этого примера достаточно одного встречного диода.

Так как падение напряжения тока на резисторе будет меньше, то от источника питания нужно отнять суммарное падение напряжения на светодиодах.

Необходимо, чтобы устанавливаемый диод был рассчитан на ток, аналогичный току, проходящему через светодиоды, а обратное напряжение должно быть равно сумме напряжений на светодиодах. Лучше всего использовать чётное количество светодиодов и подключать их встречно-параллельно.

В одной цепочке может быть больше десяти светодиодов. Чтобы рассчитать конденсатор, нужно отнять от амплитудного напряжения сети 315 В сумму падения напряжения светодиодов. В результате узнаем число падения напряжения на конденсаторе.

схема плавного включения и выключения светодиодов

Ошибки подключения светодиодов

  • Первая ошибка — это когда подключают светодиод без ограничителя, напрямую к источнику. В этом случае светодиод очень быстро выйдет из строя, по причине отсутствия контроля над величиной тока.
  • Вторая ошибка — это подключение к общему резистору светодиодов, установленных параллельно. Из-за того, что происходит разброс параметров, яркость горения светодиодов будет разной. К тому же, в случае выхода одного из светодиодов из строя, произойдет возрастание тока второго светодиода, из-за чего он может сгореть. Так что, когда используется один резистор, необходимо последовательно подключать светодиоды. Это позволяет оставить ток прежним при расчёте резистора и сложить напряжения светодиодов.
  • Третья ошибка — это когда светодиоды, которые рассчитаны на разный ток, включают последовательно. Это становится причиной того, что один из них будет гореть слабо, либо наоборот — работать на износ.
  • Четвертая ошибка — это использование резистора, у которого недостаточное сопротивление. Из-за этого ток, текущий через светодиод, будет слишком большим. Некоторая часть энергии, при завышенном напряжении тока, превращается в тепло, в результате чего происходит перегрев кристалла и значительное уменьшение его срока службы. Причина этому — дефекты кристаллической решетки. Если напряжение тока еще больше возрастет, и р-n-переход нагреется, это приведет к снижению внутреннего квантового выхода. В результате этого упадет яркость светодиода, и кристалл будет подвергаться разрушению.
  • Пятая ошибка — включение светодиода в 220В, схема которой очень проста, при отсутствии ограничения обратного напряжения. Максимально допустимое обратное напряжение у большинства светодиодов — примерно 2 В, а напряжение обратного полупериода влияет на падение напряжения, которое равняется напряжению питания при запертом светодиоде.
  • Шестая причина — это использование резистора, мощность которого недостаточна. Это провоцирует сильный нагрев резистора и процесс плавления изоляции, которая касается его проводов. Затем начинает обгорать краска и под влиянием высоких температур наступает разрушение. Все по причине того, что резистор рассеивает только ту мощность, на которую он был рассчитан.

Схема включения мощного светодиода

Для подключения мощных светодиодов нужно использовать AC/DC-преобразователи, у которых стабилизированный выход тока. Это поможет отказаться от применения резистора или интегральной схемы драйвера светодиодов. В то же время мы сможем добиться простого подключения светодиодов, комфортного использования системы и снижения стоимости.

Прежде чем включить в электросеть мощные светодиоды, убедитесь в надежности подключения их к источнику тока. Не подключайте систему к блоку питания, который находится под напряжением, иначе это приведет к выходу из строя светодиодов.

Светодиоды 5050. Характеристики. Схема включения

К маломощным светодиодам относятся также светодиоды поверхностного монтажа (SMD). Чаще всего их используют для подсветки кнопок в мобильном телефоне или для декоративной светодиодной ленты.

Светодиоды 5050 (размер типокорпуса: 5 на 5 мм) — это полупроводниковые источники света, прямое напряжение которых 1,8-3,4 В, а сила прямого тока на каждый кристалл — до 25 мА. Особенность светодиодов SMD 5050 состоит в том, что их конструкция состоит из трех кристаллов, которые позволяют светодиоду излучать несколько цветов. Их называют RGB-светодиодами. Корпус их выполнен из термоустойчивого пластика. Линза рассеивания прозрачная и залита эпоксидной смолой.

Для того чтобы светодиоды 5050 работали как можно дольше, их необходимо подключать к номиналам сопротивлений последовательно. Для максимальной надежности схемы на каждую цепочку лучше подключить отдельный резистор.

Схемы включения мигающих светодиодов

Мигающий светодиод — это светодиод, в который встроен интегральный генератор импульсов. Частота вспышек у него составляет от 1,5 до 3 Гц.

Несмотря на то что мигающий светодиод достаточно компактный, в него вмещен полупроводниковый чип генератора и дополнительные элементы.

Что касается напряжения мигающего светодиода, то оно универсально и может варьироваться. Например, для высоковольтных это З-14 вольт, а для низковольтных 1,8-5 вольт.

Соответственно, к положительным качествам мигающего светодиода можно отнести, помимо маленького размера и компактности устройства световой сигнализации, еще и широкий диапазон допустимого напряжения тока. К тому же он может излучать различные цвета.

В отдельные виды мигающих светодиодов встраивают около трех разноцветных светодиодов, у которых разная периодичность вспышек.

схема включения светодиода в сеть 220 вольт

Мигающие светодиоды еще и достаточно экономичны. Дело в том, что электронная схема включения светодиода сделана на МОП-структурах, благодаря чему мигающим диодом можно заменить отдельный функциональный узел. По причине маленьких габаритов мигающие светодиоды часто применяются в компактных устройствах, требующих наличия маленьких радиоэлементов.

На схеме мигающие светодиоды обозначаются так же, как и обычные, исключение лишь в том, что линии стрелок не просто прямые, а пунктирные. Тем самым они символизируют мигание светодиода.

Через прозрачный корпус мигающего светодиода видно, что он состоит из двух частей. Там на отрицательном выводе катодного основания находится кристалл светоизлучающего диода, а на анодном выводе расположен чип генератора.

Соединены все составляющие данного устройства с помощью трех золотистых проволочных перемычек. Чтобы отличить мигающий светодиод от обычного, достаточно просмотреть прозрачный корпус на свету. Там можно увидеть две подложки одинаковой величины.

На одной подложке находится кристаллический кубик светоизлучателя. Он состоит из редкоземельного сплава. Для того чтобы увеличить световой поток и фокусировку, а также для формирования диаграммы направленности используют параболический алюминиевый отражатель. Этот отражатель в мигающем светодиоде по размеру меньше, чем в обычном. Это по причине того, что во второй половине корпуса находится подложка с интегральной микросхемой.

схемы включения мигающих светодиодов

Между собой эти две подложки сообщаются при помощи двух золотистых проволочных перемычек. Что касается корпуса мигающего светодиода, то он может быть выполнен либо из светорассеивающей матовой пластмассы, либо из прозрачного пластика.

Из-за того, что излучатель в мигающем светодиоде находится не на оси симметрии корпуса, то для функционирования равномерной засветки необходимо применение монолитного цветного диффузного световода.

Наличие прозрачного корпуса можно встретить лишь у мигающих светодиодов большого диаметра, которые обладают узкой диаграммой направленности.

Из высокочастотного задающего генератора состоит генератор мигающего светодиода. Его работа постоянна, а частота составляет около 100 кГц.

Наравне с высокочастотным генератором также функционирует делитель на логических элементах. Он, в свою очередь, осуществляет деление высокой частоты до 1,5-3 Гц. Причиной совместного применения высокочастотного генератора с делителем частоты является то, что для работы низкочастотного генератора необходимо наличие конденсатора с наибольшей ёмкостью для времязадающей цепи.

Доведение высокой частоты до 1-3 Гц требует наличия делителей на логических элементах. А их достаточно легко можно применить на небольшом пространстве полупроводникового кристалла. На полупроводниковой подложке, помимо делителя и задающего высокочастотного генератора, находится защитный диод и электронный ключ. Ограничительный резистор встраивается в мигающие светодиоды, которые рассчитаны на напряжение тока от 3 до 12 вольт.

простая схема плавного включения светодиода

Низковольтные мигающие светодиоды

Что касается низковольтных мигающих светодиодов, то у них отсутствует ограничительный резистор. При переполюсовке питания требуется наличие защитного диода. Он необходим для того, чтобы не допустить выхода микросхемы из строя.

Чтобы работа высоковольтных мигающих светодиодов была долговременной и шла бесперебойно, напряжение питания не должно превышать 9 вольт. Если напряжение тока возрастет, то рассеиваемая мощность мигающего светодиода увеличится, что приведет к нагреву полупроводникового кристалла. Впоследствии из-за чрезмерного нагрева начнется деградация мигающего светодиода.

Когда необходимо проверить исправность мигающего светодиода, то для того, чтобы это сделать безопасно, можно использовать батарейку на 4,5 вольта и включенный последовательно со светодиодом резистор сопротивлением 51 Ом. Мощностью резистора должна быть не менее 0,25 Вт.

Монтаж светодиодов

Монтаж светодиодов — очень важный вопрос по той причине, что это непосредственно связано с их жизнеспособностью.

Так как светодиоды и микросхемы не любят статику и перегрев, то паять детали необходимо как можно быстрее, не больше пяти секунд. При этом нужно использовать паяльник малой мощности. Температура жала не должна превышать 260 градусов.

При пайке дополнительно можно использовать медицинский пинцет. Пинцетом светодиод зажимается ближе к корпусу, благодаря чему при пайке создается дополнительный отвод тепла от кристалла. Чтобы ножки светодиода не сломались, их необходимо гнуть не сильно. Они должны оставаться параллельно друг другу.

Для того чтобы избежать перегрузки либо замыкания, устройство нужно снабдить предохранителем.

Схема плавного включения светодиодов

Схема плавного включения и выключения светодиодов — популярная среди других, ею интересуются автовладельцы, желающие тюнинговать свои машины. Данная схема применяется для подсветки салона автомобиля. Но это не единственное ее применение. Она используется и в других сферах.

Простая схема плавного включения светодиода должна состоять из транзистора, конденсатора, двух резисторов и светодиодов. Необходимо подобрать такие токоограничивающие резисторы, которые смогут пропускать ток в 20 мА через каждую цепочку светодиодов.

Схема плавного включения и выключения светодиодов не будет полноценной без наличия конденсатора. Именно он позволяет ее собрать. Транзистор должен быть p-n-p-структуры. А ток на коллекторе не должен быть меньше 100 мА. Если схема плавного включения светодиодов собрана правильно, то на примере салонного освещения автомобиля за 1 секунду будет проходить плавное включение светодиодов, а после закрытия дверей — плавное выключение.

схема включения мощного светодиода

Поочередное включение светодиодов. Схема

Одним из световых эффектов с применением светодиодов является поочередное их включение. Он именуется бегущим огнем. Работает такая схема от автономного питания. Для ее конструкции применяется обычный переключатель, который подает напряжение питания поочередно на каждый из светодиодов.

Рассмотрим устройство, состоящее из двух микросхем и десяти транзисторов, которые вкупе составляют задающий генератор, управление и саму индексацию. С выхода задающего генератора импульс передается на блок управления, он же десятичный счетчик. Затем напряжение поступает на базу транзистора и открывает его. Анод светодиода оказывается подключен к плюсу источника питания, что приводит к свечению.

Второй импульс формирует логическую единицу на следующем выходе счетчика, а на предыдущем появится низкое напряжение и закроет транзистор, в результате чего светодиод погаснет. Далее все происходит в той же последовательности.

200, 600 светодиодных цепей в сети 220 В

В сообщении подробно описана конструкция проекта от 200 до 600 светодиодов с использованием последовательно параллельных светодиодов для создания вывески с алфавитным дисплеем. Идея была предложена г-ном Мубараком Идрисом.

Цели и требования схемы

Мне нужен мигающий светодиод, который показывает мигание «ДОБРО ПОЖАЛОВАТЬ», а затем «ИНЖЕНЕРНЫЙ КОЛЛЕДЖ», по моей приблизительной оценке. Я собираюсь использовать около 696 светодиодов, например, для «ДОБРО ПОЖАЛОВАТЬ» = 216 СВЕТОДИОДЫ «ИНЖЕНЕРНЫЙ КОЛЛЕДЖ» 480 СВЕТОДИОДОВ название «Добро пожаловать» и «Инженерный колледж» перевернется, и я подумываю подключить их к сети переменного тока и использовать реле только для переключения «добро пожаловать» и «инженерный колледж» поочередно.надеюсь получить известие от вас, сэр, очень скоро и заранее спасибо.

The Design

Я уже обсуждал одну связанную статью, в которой мы узнали, как рассчитать последовательное и параллельное соединение светодиодов, в этом посте мы собираемся включить ту же концепцию и формулы для оценки деталей подключения предлагаемых от 200 до 600. Светодиодный проект для изготовления указанной вывески.
Поскольку предполагается, что светодиоды будут работать от сети 220 В, после выпрямления и фильтрации уровень будет составлять 310 В постоянного тока.

Таким образом, нам необходимо настроить группы светодиодов в соответствии с вышеупомянутым уровнем постоянного тока. Для этого сначала необходимо оценить общее прямое падение серии светодиодов, которое будет удобно в пределах предела 310 В.
Предположим, что светодиоды рассчитаны на 20 мА / 3,3 В, если мы разделим значение 3,3 В на 310 В, мы получим:
310 / 3,3 = 93 NO.

Это означает, что 93 светодиода могут быть соединены последовательно со входом 310 для комфортного получения оптимального освещения, однако, учитывая возможное низкое напряжение и гарантируя, что светодиоды продолжают светиться даже при низком напряжении, мы можем пойти на 50% меньше Светодиоды последовательно, то есть может быть около 46 светодиодов.

Согласно запросу, приветственный знак должен иметь 216 светодиодов, разделив эти 216 на 46, мы получим примерно 5 цепочек, в которых 4 цепочки содержат около 46 светодиодов последовательно, а 5-й может иметь 32 светодиода.

Таким образом, теперь у нас есть 4 цепочки из 46 светодиодов и 1 цепочка из 32 светодиодов, все эти цепочки теперь необходимо соединить параллельно.

Но, как мы знаем, для того, чтобы обеспечить правильное распределение тока по цепочкам и обеспечить равномерное освещение, эти светодиодные цепочки должны иметь рассчитанные резисторы, последовательно соединенные с ними.

Расчет резистора ограничения тока светодиода

Это можно вычислить с помощью следующей формулы:

R = Питание — общее напряжение FWD светодиода / ток светодиода

= 310 — (46 x 3,3) / 0,02

здесь 310 — напряжение питания постоянного тока после выпрямления источника переменного тока 220 В; 46 — общее количество светодиодов; 3,3 — прямое рабочее напряжение каждого светодиода; 0,02 — ток в амперах для каждого светодиода (20 мА); 4 — количество цепочек. ,

Решение вышеуказанного дает нам: 7910 Ом или 7.9K, или просто стандартный резистор 8k2.

мощность будет = 310 — (46 x 3,3) x 0,02 = 3,164 Вт, или просто стандартный резистор на 5 Вт выполнит свою работу

Указанный выше резистор 8k2 5 Вт необходимо будет подключить к каждой из цепочек с 46 светодиодами

Теперь для отдельных 32 светодиодов нам, возможно, придется выполнить описанные выше процедуры отдельно, как показано ниже:

R = 310 — (32 x 3,3) / 0,02 = 10220 Ом или 10,2 кОм или просто стандартный 10 кОм подойдет для job

мощность будет 310 — (32 х 3.3) x 0,02 = 4,088 или снова 5 Вт.

Принципиальная схема

С помощью приведенных выше формул мы вычислили последовательные параллельные соединения с резистором для настройки 216-светодиодного дисплея, однако приведенные выше строки теперь необходимо расположить соответствующим образом в форме алфавитов, соответствующих слову «Добро пожаловать». Это может потребовать некоторых усилий, немного времени и некоторого терпения и навыков.

Для второй группы светодиодов, состоящей из 696 светодиодов, процесс будет аналогичным.Сначала мы делим 696 на 46, что дает нам около 15,13, ​​что означает, что 14 струн могут быть сконфигурированы с серией из 46 светодиодов и одна струна с 52 светодиодами … все эти струны также необходимо будет соединить параллельно и физически расположить для представления фраза «ИНЖЕНЕРНЫЙ КОЛЛЕДЖ».

Значения резисторов для 46 светодиодных цепочек могут быть рассчитаны в соответствии с приведенными выше разделами, в то время как для 52 светодиодов это можно сделать, как указано ниже:

R = 310 — (52 x 3.3) / 0,02 = 6920 Ом или просто стандартный резистор 6k9.

мощность будет = R = 310 — (52 x 3,3) x 0,02 = 2,76 Вт или 3 Вт

Приведенное выше объяснение дает нам информацию о том, как построить любой проект на основе светодиодов от 200 до 400 для досок или демонстрационных вывесок с использованием напряжение сети без трансформатора.

Теперь, чтобы два набора светодиодных групп мигали попеременно с помощью реле, можно использовать следующую простую мигалку IC 555:

Схема светодиодной мигалки

R1, R2 и C можно соответствующим образом отрегулировать для получения желаемая частота мигания подключенных от 200 до 400 светодиодных цепочек.Реле не обязательно должно быть на 15 ампер, как показано на схеме, это может быть любое обычное реле на 12 В, 400 Ом, 5 ампер

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, схемотехник / дизайнер печатных плат , производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

3 лучшие схемы светодиодных ламп, которые вы можете сделать дома

В этом сообщении подробно объясняется, как построить 3 простых светодиодных лампы, используя несколько светодиодов последовательно и запитав их через цепь емкостного источника питания

ОБНОВЛЕНИЕ :

После выполнения Проведя много исследований в области дешевых светодиодных ламп, я наконец смог придумать универсальную дешевую, но надежную схему, которая обеспечивает безотказную безопасность светодиодной серии без использования дорогостоящей топологии SMPS. Вот окончательный вариант дизайна для всех вас:

Универсальный дизайн , разработанный Swagatam

Вам просто нужно отрегулировать потенциометр, чтобы установить выход в соответствии с общим падением прямой струны серии светодиодов.

Это означает, что если полное напряжение серии светодиодов составляет, скажем, 3,3 В x 50 шт. = 165 В, то отрегулируйте потенциометр, чтобы получить этот выходной уровень, а затем подключите его к цепочке светодиодов.

Это немедленно включит светодиоды на полную яркость и с полной защитой от перенапряжения и перегрузки по току или импульсных токов.

R2 можно рассчитать по формуле: 0,6 / Максимальный предел тока светодиода

Зачем нужны светодиоды

  • Светодиоды широко используются сегодня для всего, что может включать освещение и освещение.
  • Белые светодиоды стали особенно популярными благодаря своим миниатюрным размерам, впечатляющим возможностям освещения и высокой эффективности с точки зрения энергопотребления. В одном из своих предыдущих постов я обсуждал, как сделать суперпростую схему светодиодной трубки, здесь концепция очень похожа, но продукт немного отличается своими характеристиками.
  • Здесь мы обсуждаем создание простой светодиодной лампы. СХЕМА. Под словом «лампочка» мы подразумеваем форму блока, и его фитинги будут похожи на форму обычной лампы накаливания, но на самом деле весь корпус «лампочка» будет состоять из дискретных светодиодов, установленных рядами над цилиндрическим корпусом.
  • Цилиндрический корпус обеспечивает правильное и равномерное распределение создаваемого освещения по всем 360 градусам, так что все помещение одинаково освещено. На изображении ниже показано, как установить светодиоды на предлагаемом корпусе.

Схема светодиодной лампы, описанная здесь, очень проста в сборке, а схема очень надежна и долговечна.

Интеллектуальная функция защиты от перенапряжения, включенная в схему, обеспечивает идеальное экранирование устройства от всех скачков напряжения при включении.

Как работает схема

  1. На схеме показан один длинный ряд светодиодов, соединенных один за другим, чтобы сформировать длинную цепочку светодиодов.
  2. Чтобы быть точным, мы видим, что в основном было использовано 40 светодиодов, которые соединены последовательно. На самом деле, для входа 220 В вы, вероятно, могли бы включить около 90 светодиодов последовательно, а для входа 120 В будет достаточно около 45.
  3. Эти цифры получены путем деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода.
  4. Следовательно, 310 / 3,3 = 93 числа, а для входов 120 В рассчитывается как 150 / 3,3 = 45 чисел. Помните, что по мере того, как мы сокращаем количество светодиодов ниже этих цифр, риск выброса при включении увеличивается пропорционально, и наоборот.
  5. Схема источника питания, используемая для питания этого массива, основана на высоковольтном конденсаторе, значение реактивного сопротивления которого оптимизировано для понижения входного высокого тока до более низкого тока, подходящего для схемы.
  6. Два резистора и конденсатор на плюсовом источнике питания расположены для подавления начального скачка напряжения при включении и других колебаний во время колебаний напряжения.Фактически, реальная коррекция помпажа выполняется C2, введенным после моста (между R2 и R3).
  7. Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе цепи.

ВНИМАНИЕ: ЦЕПЬ, ПОКАЗАННАЯ НИЖЕ, НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.

Принципиальная схема # 1

Список деталей
  • R1 = 1M 1/4 Вт
  • R2, R3 = 100 Ом 1 Вт,
  • C1 = 474/400 В или 0.5 мкФ / 400 В PPC
  • C2, C3 = 4,7 мкФ / 250 В
  • D1 — D4 = 1N4007
  • Все светодиоды = белый 5-миллиметровый вход типа соломенной шляпы = сеть 220/120 В …

Вышеупомянутый дизайн отсутствует подлинная функция защиты от перенапряжения и, следовательно, может быть серьезно подвержена повреждению в долгосрочной перспективе …. для защиты и гарантии конструкции от всех видов перенапряжения и переходных процессов

Светодиоды в описанной выше схеме светодиодной лампы также могут быть защищены и их срок службы увеличен за счет добавления стабилитрона к линиям питания, как показано на следующем рисунке.

Показанное значение стабилитрона составляет 310 В / 2 Вт и подходит, если светодиодная лампа включает от 93 до 96 В. Для другого меньшего количества светодиодных цепочек просто уменьшите значение стабилитрона в соответствии с расчетом общего прямого напряжения цепочки светодиодов.

Например, если используется цепочка из 50 светодиодов, умножьте 50 на прямое падение каждого светодиода, равное 3,3 В, что дает 50 x 3,3 = 165 В, поэтому стабилитрон 170 В будет хорошо защищать светодиод от любого вида скачков напряжения или колебания …. и т. д.

Видеоклип, показывающий схему светодиодной схемы с использованием 108 светодиодов (две последовательные цепочки из 54 светодиодов, соединенные параллельно)

Высоковаттная светодиодная лампа с использованием светодиодов мощностью 1 Вт и конденсатора

Простая светодиодная лампа высокой мощности может быть построена с использованием 3 или 4 светодиодов мощностью 1 Вт последовательно, хотя светодиоды будут работать только с 30% -ной мощностью, тем не менее, освещение будет удивительно высоким по сравнению с обычными светодиодами 20 мА / 5 мм, как показано ниже. ,

Более того, вам не потребуется радиатор для светодиодов, так как они работают только на 30% своей фактической мощности.

Аналогичным образом, объединив 90 шт. Светодиодов мощностью 1 Вт в вышеуказанной конструкции, вы можете получить яркую и высокоэффективную лампу мощностью 25 Вт.

Вы можете подумать, что получение 25 Вт от 90 светодиодов «неэффективно», но на самом деле это не так.

Потому что эти 90nos светодиодов мощностью 1 Вт будут работать при меньшем токе на 70% и, следовательно, при нулевом уровне нагрузки, что позволит им прослужить почти вечно.

Далее они могли бы комфортно работать без радиатора, так что вся конструкция могла быть сконфигурирована в очень компактный блок.

Отсутствие радиатора также означает минимум усилий и времени, затрачиваемых на строительство. Таким образом, все эти преимущества в конечном итоге делают этот 25-ваттный светодиод более эффективным и экономичным по сравнению с традиционным подходом.

Принципиальная схема № 2

Регулирование напряжения с контролем перенапряжения

Если вам требуется улучшенная или подтвержденная система контроля перенапряжения и регулирования напряжения для светодиодной лампы, то с указанной выше 3-ваттной светодиодной конструкцией можно применить следующий шунтирующий регулятор:

Видеоклип:

В приведенных выше видеороликах я намеренно мигал светодиодами, подергивая провод питания, просто чтобы убедиться, что цепь на 100% защищена от перенапряжения.

Цепь полупроводниковой светодиодной лампы с регулятором яркости с использованием ИС IRS2530D

Здесь объясняется простая, но эффективная схема бестрансформаторного твердотельного контроллера светодиода с использованием одной полной мостовой схемы драйвера IRS2530D.


Настоятельно рекомендуется: простой высоконадежный неизолированный светодиодный драйвер — не пропустите, полностью протестирован


Введение

Обычно схемы управления светодиодами основаны на принципах понижающего повышения или обратного хода, когда схема сконфигурирован для создания постоянного постоянного тока для освещения серии светодиодов.

Вышеупомянутые системы управления светодиодами имеют свои недостатки и положительные стороны, в которых диапазон рабочего напряжения и количество светодиодов на выходе определяют эффективность схемы.

Другие факторы, например, включены ли светодиоды в параллельном или последовательном соединении, а также необходимо ли их регулировать или нет, также влияют на приведенные выше типологии.

Эти соображения делают эти схемы управления светодиодами довольно рискованными и сложными. Схема, описанная здесь, использует другой подход и полагается на резонансный режим применения.

Хотя схема не обеспечивает прямой развязки от входного переменного тока, она позволяет управлять многими светодиодами с током до 750 мА. Процесс мягкого переключения, включенный в схему, обеспечивает большую эффективность устройства.

Как работает контроллер светодиодов

В основном бестрансформаторная схема управления светодиодами построена на основе ИС управления диммером люминесцентных ламп IRS2530D. На принципиальной схеме показано, как ИС была подключена и как ее выход был изменен для управления светодиодами вместо обычной люминесцентной лампы.

Обычная ступень предварительного нагрева, необходимая для лампового освещения, использовала резонансный резервуар, который теперь эффективно заменен LC-схемой, подходящей для управления светодиодами. Поскольку ток на выходе является переменным током, необходимость в мостовом выпрямителе на выходе стала обязательной. ; это гарантирует, что ток непрерывно проходит через светодиоды во время каждого цикла переключения частоты.

Измерение переменного тока осуществляется резистором RCS, размещенным поперек общего провода и нижней части выпрямителя.Это обеспечивает мгновенное измерение переменного тока амплитуды выпрямленного тока светодиода. Вывод DIM ИС получает указанное выше измерение переменного тока через резистор RFB и конденсатор CFB.

Это позволяет контуру управления диммером ИС отслеживать амплитуду тока светодиода и регулировать ее, мгновенно изменяя частоту схемы переключения полумоста, так что напряжение на светодиодах поддерживает правильное среднеквадратичное значение.

Контур диммера также помогает поддерживать постоянный ток светодиода независимо от напряжения в сети, тока нагрузки и изменений температуры.Независимо от того, подключен ли один светодиод или группа последовательно, параметры светодиода всегда правильно поддерживаются IC.

В качестве альтернативы конфигурация может также использоваться в качестве сильноточной бестрансформаторной цепи питания.

Схема № 3

.

Отправить ответ

avatar
  Подписаться  
Уведомление о