Светодиоды на 220 вольт без драйвера – Бездрайверная светодиодная матрица (модуль) с питанием от сети 220в

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампБесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп

Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
За час работы измерил температуру нагрева светодиода и она показала 40 градусов Цельсия.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
По моим ощущениям освещенность от светодиода примерно соответствует лампе накаливания на 100 ватт .
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп

Эта переделанная настольная лампа на светодиоде работает уже полгода. Нареканий нет, меня устраивает. В общем результате получился драйвер для светодиодов бесплатно и из бросовых материалов. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Простой драйвер светодиода от сети 220В

Старая компактная люминесцентная лампа

Для питания светодиоду требуется источник постоянного напряжения и устройство стабилизации тока – драйвер. А если требуется (или очень хочется) подключить светодиод к сети 220В? И светодиод, при этом, мощный? Простым резистором и диодом здесь не обойтись. Самый правильный, вернее, единственно правильный способ – использовать специализированный драйвер. Его можно даже самому собрать (читайте в статье «Схема драйвера для светодиодов от сети 220В»).

Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно. И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

Но, если интересно, то вперед!

Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить. При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке. Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

Аккуратно, по пояску открываем лампу.

Раскрытая энергосберегающая лампа

Аккуратно открытая энергосберегающая лампа

Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

Получилась вот такая штучка.

Балласт компактной люминесцентной лампы

Извлеченный балласт люминесцентной лампы — до переделки

Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

Принципиальная схема балласта КЛЛ

Принципиальная схема балласта компактной люминесцентной лампы

Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

Получится примерно так:

Балласт КЛЛ после удаления ненужных деталей

Импульсный преобразователь после удаления «лишних» деталей

После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

Обратная сторона платы балласта

Обратная сторона платы импульсного преобразователя

Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита. Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом. Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

Разобранный дроссель балласта КЛЛ

Побежденный и разобранный дроссель

На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

Драйвер для светодиода из балласта КЛЛ

Результат работы — готовый «драйвер» из балласта энергосберегайки

Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки. Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке. Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

Параллельное подключение светодиодов

Параллельное подключение двух линеек светодиодов

Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

Встречное подключение выглядит так:

Встречное подключение светодиодов

Встречное подключение двух линеек светодиодов

Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

Светодиоды подключены к драйверу из балласта КЛЛ

Результат работы — светодиоды подключены и ярко светят.

У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

В итоге получился компактный и практически бесплатный «драйвер», который позволил мне подключить светодиоды к сети 220В. Осталось соорудить корпус и смонтировать настольный светодиодный светильник. Но это уже другая история и о ней читайте в статье «Светодиодный светильник своими руками».

Также, имеются готовые модели драйверов для светодиодов, без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

www.flashled.com.ua

как сделать, схема простого самодельного стабилизатора напряжения для работы лед светильника от сети

Светодиоды по сравнению с традиционными лампочками накала эффективны, экономны и долговечны, однако при этом очень дороги, поэтому есть смысл изготовить их своими руками, но при этом для питания их от сети 220 В понадобится специальный драйвер. Поэтому рассмотрим, как самостоятельно изготовить этот модуль, что вообще он собой представляет и зачем нужен, каковы его особенности и принцип действия, как выглядит его схема, какие компоненты в ней применяются и каковы нюансы варианта без стабилизатора тока.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового лед-кристалла напрямую зависит от силы тока, проходящего через него. Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется для него драйвер. В его задачу входит преобразование параметров электрического тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Обратите внимание! Величина напряжения на выходе из драйвера напрямую определяет способ и тип подключаемого светодиода. Если питание лампы идет от бытовой сети, параметр этого модуля должен быть на 220 В. Это нужно учитывать при покупке компонентов для светильника и стабилизатора, изготавливаемого своими руками.

Особенности драйвера светодиодов на 220 В

Главная особенность драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в том, что он изменяет напряжение и предназнач

svetilnik.info

Светодиод нового поколения COB LED 50W 220V с питанием от сети 220В

На рынке уже появилось множество светодиодов со встроенным драйвером. Для того чтобы посмотреть что это за зверь, я решил приобрести его и посмотреть в живую. Данный светодиод мне понравился больше чем светодиод из прошлого обзора на 5 ватт, не только из-за яркости, но и нагревается он гораздо меньше. Считаю, что данный светодиод неплохое и простое решение осветить не жилое помещение своими руками
Полученный мной светодиод имеет огрехи в поверхности, что говорит о том, что заливка светодиода идет ручным способом. Впрочем, поверхность более чем аккуратная. Все силовые части спрятаны под слоем силиконового компаунда для защиты схемы от внешней среды.
Силовая часть выполнена на расстоянии от самого светодиода, что уменьшает дополнительный ее разогрев при работе светодиода.



Из минусов так же стоит отметить, что компаунд нанесен не равномерно. Если сверху светодиода кристаллы через компаунд еще как-то видны, то с другого нижнего угла кристаллы трудно различимы. Впрочем на яркость это никак не влияет. А вот на разницу температур нагрева светодиода эта маленькая проблема влияет заметно.

Общий вид светодиода:



Для включения светодиода я буду использовать пассивное охлаждение, а именно радиатор размерами 122х180х38 Российского производства.

Для начала я решил измерить какая будет температура кристаллов светодиода в разных точках, где толщина компаунда разная. Ну и для интереса при этих замерах буду дополнительно замерять температуру радиатора. Для замера температуры в двух точках я использую два одинаковых мультиметра с новыми термодатчиками.
Тут можно глянуть в каких точках я буду замерять температуру и какие данные я получил на приборах




Данные, которые я собрал при замерах температуры:
Замер температуры в трех точках светодиода с интервалом по 5 минут.

температура в верхней точке: радиатор -40, светодиод -66

температура в нижней точке: радиатор -40 светодиод — 52

температура в центральной точке: радиатор -42 светодиод -110

Температура драйвера через час: радиатор -80 драйвер -85
в первых двух точках температура за час работы повышается до 100-120 градусов, в зависимости от напряжения в сети.

Полученная мощность светодиода по замерам, при разном входном напряжении сети.
I — 0.17 — 0.24 ампер

U- 180 — 240 вольт

Power — 30 min — max 57 ватт
Соответственно, чем выше напряжение сети и чем меньше температура радиатора, тем выше ток питания светодиода, и выше яркость светодиода.
Наблюдая за светодиодом при разном входном напряжении, когда яркость то падает, то яркость повышается. Сразу вспомнилось лампа накаливания. При входном напряжении 210-240 вольт скачки в яркости не замечены.
Пару слов про драйвер светодиода, он выполнен на noname микросхеме 1627, к сожалению, найти мануал на данный драйвер не получилось. Поэтому, кроме как у него есть термозащита, я больше ничего сказать по нему не могу.
Что касаемо пульсаций, они есть частота 100 герц. Могу предположить что данный драйвер работает по тому же принципу что и у светодиода на 5 ватт из предыдущего обзора. Единственное его схема подключения различается. Резисторы тут установлены на маленькое сопротивление.

В общем Подведем выводы:

По минусам:
Нужен большой радиатор, или активное охлаждение
Перепады по мощности при скачках напряжения.
Маленький срок службы всего 3000 часов и более если повезет
Высокая температура.
Цена

По плюсам:
Простота подключения.
Контроль температуры. — Не сгорел без радиатора при превышении температуры, (сработала защита.)

Мое мнение: Светодиод неплохой, работает лучше чем 5 ваттный. Для жилых помещений, я бы его не рекомендовал из за скачков яркости, но для каких то проходных помещений, неплохое решение. На светодиоде установлен предохранитель, в виде одно омного сопротивления, что можно тоже отнести к плюсу.
Ну и моя версия обзора кому интересно могут посмотреть тут:
видео тут

mysku.ru

Драйвер питания светодиодов 7 х 1 Вт (220 В). Дёшево и качественно?! + Сюрприз от монтажников 🙂

Привет всем!
Поделюсь очередной версией драйвера для питания 1 Вт-ных светодиодов от 220 В.
Это первый заказанный мной драйвер в Китае, поэтому выбирал на пробу самый дешевый и относительно мощный.
А какой он вышел по конструктиву и характеристикам — судить вам.

Описание продавца: ( 4-7 ) х 1 Вт 7 x 1 Вт из светодиодов драйвер 4 Вт 5 Вт 6 Вт 7 Вт лампы драйвер питания освещения трансформатор AC85-265V для из светодиодов газа прожектор.
На страничке товара (идентификатор 32284860572) много фотографий разных драйверов, мне же достался такой:

Производитель — Dark Energy, версия чего-то — 1.6.

Нижняя сторона:

Верхняя сторона:

Схема:

На выход подключил сборку из семи 1-ваттных светодиодов:

Судя по обзорам на mySKU.ru драйверов, на плате установлены входной конденсатор, соответствующий заявленой мощности 7 Вт — 6,8 мкФ х 400 В и конденсатор подавления помех. По крайней мере, приёмник ФМ на работу драйвера никак не реагирует.

Что интересно, драйвер заработал сразу и без всяких неожиданностей (смотри картинку ниже)! Измеренные параметры вышли такие: напряжение на 7-ми светодиодах — 23,45 В, ток через них — 245 мА.
Планка со светодиодами нагрелась через 5 минут выше 70 градусов, поэтому на большее время не включалась.

А сюрпризом оказалась микросхема, которая при внимательном рассмотрении оказалась припаянная мимо контактных площадок:


Мало того, что припаяна криво, так еще и отвалилась, стоило её чуть ковырнуть 🙂
Несмотря на это — схема работала!

После нормальной запайки все параметры остались такими же, как и при первом измерении.
На всякий случай, замерил еще при 5-ти светодиодах:
16,5 В х 250 мА.

П.С. Осталось несколько вопросов к специалистам:
1. Стоит ли менять быстрый диод D2 (ES1D) на диод Шоттки?
2. Стоит ли ставить параллельно выходному конденсатору керамический?
3. Входной конденсатор 6,8 мкФ х 400 В имеет ESR 3,5 Ома. Это нормально, или стоит поискать что-то понадёжней?

Всем пока и спасибо за внимание!

mysku.ru

LED со встроенным драйвером (7-50вт 220в)

Давненько собрал на такой сборке лампу, замену типовой люминесцентной ЛДЦ 80, решил показать «как не надо делать» 🙂

Не надо делать — имеется ввиду от лени скорее (и потому что сам светильник скрыт, скорее как спот светит) до ума его не довел. Однако используется уже с весны и вроде как все замечательно и в таком (недоделанном) варианте. Подумалось, вдруг еще кому станет любопытен опыт. Сразу после изготовления не опубликовывал, потому что «похожий» вариант на сайте описывали, повторяться не видел смысла (идея вообщем то похожая, и родилась наверное в одно время в разных головах)

Покупал «светодиоды» скорее из любопытства, никакой конкретики использования не предполагалось, уж очень неплохая цена была (по крайней мере на тот период времени) и еще потому, что таких не было в «коллекции» 😉
На самом деле уже приличное количество всяких «Кри» и сборок по коробочкам рассовано, некоторые уже наверное и устарели морально (за несколько лет), однако «глаза завидущие» — попадается любопытный образец, не могу удержаться 🙂

Сначала купил пару штук (по одной 20вт и 50вт теплого белого цвета), потом подключились такие же «больные на голову» сослуживцы и были куплены еще несколько разных вариантов (стадное чувство оно такое :)))

Практическое применение получил только 20вт вариант у меня (и вроде 30-ка у товарища) — отчасти это обусловлено высоким температурным режимом сборок, им необходимо нормальное охлаждение, что вносит некоторые ограничения использования.

ТТХ

Производитель:LANCHUANG
Тип светодиодной лампочки: Прожекторная светодиодная лампа
Сертификация:CE,RoHS,CCC
Средний Срок Эксплуатации (ч):30000
Угол освещения (°):360°
Напряжение:AC220V
Световой Поток:1000-1999 Люмен
Количество светодиодов:1 шт.
Цветовая температура: Тёплый белый (2700-3500 K)
Погрешность:3%

Как следует из описания, драйвер уже находится на плате сборки. Нет необходимости использовать внешние (компактность и удобство)

Получил в пакетиках. Обернуты светодиоды были пищевой пленкой.
20 вт от 30вт внешне практически неотличимы! Сначала было подозрение что это одно и тоже.

Первым делом, конечно, проверил — нахватался зайчиков! Решил что это несправедливо, и пригласил всех сделавших заказ позже — «показать как оно светит»… В итоге остались довольны ВСЕ(в том числе и я;)

Включал кратковременно (без радиатора) для оценки работоспособности и яркости, т.к такая сборка предполагает хороший теплоотвод. Продавец рекомендует поддерживать температуру ниже 70 градусов.

Поэтому последующей «головной болью» стал поиск охлаждения будущего светильника.

Хотелось сделать как можно проще и из того что есть под руками.
Учитывая мой профиль работы, валяется много различных радиаторов от процессоров — решил подбирать среди них. Активное охлаждение не хотелось использовать из-за дополнительного усложнения конструкции (доп. питание и пр.), поэтому пришлось перебирать разные варианты.

В итоге остановился вот на таком.

Для 50ки конечно такой площади мало, а для 20вт рассчитывал должно было хватить.

50ВТ долгое время хотел попробовать закрепить прямо на металлический навес, используя трубу для охлаждения, но уж слишком напрягает «незащищенные» 220в на сборке, «чота Славик я очкую…» поэтому этот проект так и остался в голове.

Наличие крепления добавило оптимизма — будет меньше возни с установкой.

Форма крепления навела на идею использования старой (неисправной) энергосберегайки, уж больно хорошо все походило по размерам… Вполне можно под патрон Е27 изготовить с этим радиатором лампочку 🙂

Решил оставить эксперименты с подобным решением «на потом», потому что появилась идея КУДА применить у себя такой яркий светодиод! 🙂

Для начала закрепил матрицу на радиаторе (просверлил отверстия и саморезики подобрал)

Во всей этой конструкции мне очень не нравятся открытые 220в, да и вообще изоляция на тонкой металлической пластине как-то напрягает — слишком ненадежно выглядит.
Поэтому решил, на время испытаний, «экраном» прикрыть явный доступ к припаянным проводам с опасным напряжением.
Для этого нашел несколько небольших стоек от какой-то старой аппаратуры и на них уже закрепил кусочек изоляции.


Конструкция конечно не ахти какая, но от случайного прикосновения должна была в некоторой степени обезопасить.
На радиатор нанес немного термопасты, для лучшего теплообмена.

Вот именно про эту конструкцию и имел в виду в начале описания «как не надо делать» — тут необходимо продумать более серьезную защиту, если собираетесь использовать в относительно открытом виде эту «лампочку»

Далее решил проверить эффективность пассивного охлаждения. Включил на длительное время в помещении эту конструкцию, для измерения установившейся температуры. Получилось неплохо, даже несмотря на «неправильную» ориентацию радиатора:)
Все в пределах нормы! 65.6 градусов

Фильтрация встроенного драйвера конечно «никакая» — это четко видно на фото (вертикальные черные полосы), но для подсветки (вторичное освещение) и освещения улицы пойдет!

Следующим пунктом была проверка потребляемого тока, на предмет соответствия заявленной и реальной мощности.

С этим оказалось все замечательно — претензий к продавцу нет. Замеренная мощность даже немного выше заявленной.

Примерно вот так, как спот, используется собранный светильник сейчас на мансарде дачи

На своем «рабочем» месте радиатор греется ЗНАЧИТЕЛЬНО слабее, чем на испытаниях. Очевидно сказывается более «правильное» расположение радиатора (на ощупь лишь немного теплый)

К сожалению фото предыдущего светильника (его размещения и яркости) отсутствует, поэтому для сравнения покажу подобный установленный в похожем месте, но меньшей мощности и размеров.

Крепление собранного светильника оказалось очень удобным, достаточно прикрутить съемную часть под вентилятор охлаждения, а затем защелкнуть сам светильник в него.

По-хорошему конечно надо добраться бы и переделать эту конструкцию в более эстетический вид, но пока висит так 🙂

Светодиоды вполне себе неплохие, но несколько напрягает открытое 220в. Ну и качество (надежность) изоляции от металлической подложки для меня лично вопрос открытый.
Свет яркий, приятной температуры. Требуется хорошее охлаждение. Вероятно очень практичная вещь при изготовлении уличного освещения и прожекторов. К покупке вполне можно рекомендовать!

Всем удачи «по везде»!

mysku.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о