Схема подключения светодиодных линеек – Сборка линейного светодиодного светильника / Habr

Содержание

Сборка линейного светодиодного светильника / Habr

Сейчас одним из самых популярных и модных решений освещения являются линейные светодиодные светильники.
 В этой статье мы разберемся, как устроены современные LED системы освещения и соберем один светильник своими руками.

Конструкция



Линейный светильник включает в себя: алюминиевый светодиодный профиль с поликарбонатным светорассеивающим стеклом, источник света (светодиодная лента или светодиодная линейка), LED драйвер. Так же к профилям предлагается огромное множество комплектующих (подвесы, заглушки, крепления и многое др.)

Из плюсов такой простой конструкции можно отметить широкие возможности конфигурации и выбора. Практически каждый такой светильник является уникальным. Неоспоримое преимущество линейных систем освещения заключается в том, что мы можем делать светильники любой длины. 


Разновидности


Линейные светильники бывают: встраиваемые, подвесные, накладные. Отличаются они по способу монтажа, который предусмотрен производителем.

Приступим


Выбор корпуса


Мы приняли решение собрать подвесной светильник, который найдет свое применение как в гараже, так и в офисе. Среди широкого ассортимента алюминиевых светодиодных профилей мы нашли подходящий. Наш выбор остановился на профиле который называется U-S35. Габариты этого профиля 35*35*2500мм.
Выбор источника света


Изучив рынок светодиодных лент, посмотрев обзоры и прочитав отзывы, мы захотели применить в нашем будущем светильнике новинку.

Японский светодиодный модуль HOKASU. Модуль обладает огромным преимуществом перед светодиодной лентой.

Злейший враг светодиодов это тепло. От температуры, которую выделяют мощные LED’ы, светодиоды деградируют, теряют проценты своей первоначальной яркости. Очень важен мгновенный отвод точечного тепла, которое концентрируется у самого основания кристалла. Так как, светодиодная лента — это гибкий проводник с smd- светодиодами, при монтаже их на охлаждающую поверхность у нас получается тепловой зазор. Лента не очень плотно клеится к поверхности, мгновенному отводу тепла мешает клей (двойной скотч 3M). Линейки лишены этого недостатка, т.к плата на заводе припаяна к алюминиевой полосе, которая в свою очередь уже крепится к поверхности.

Итак, характеристики в студию:
  • Напряжение питания, V: 24
  • Световой поток, lm / m: 2700
  • Мощность, Вт / м: 26
  • Размер светодиодов: 2835 (2.8×3.5мм)
  • Цветовая температура, K: 4000

Комплектация


Из материалов мы использовали

  • Алюминиевый профиль
  • Заглушки + подвесы + крепления для накладного монтажа
  • Светодиодный модули
  • Источник питания 24v 150w

Для сборки нам понадобится

  • Паяльник
  • Мультиметр
  • Щипцы для резки и зачистки проводов
  • Флюс, олово
  • Прямые руки

Сборка


Для начала мы примерим линейки в профиле и обрежем их до нужного нам размера.
Кстати, их можно резать каждые 4 см.

После того как мы обрезали линейку, желательно проверить её на сопротивление, т.к после первой попытки, когда я резал обычной пилой, линейка замыкала с самого края.

Это связано с тем, что основание изготовлено из алюминия и проводит ток. И при неаккуратном разрезе с торца медные дорожки задевают подложку.

Далее мы проклеиваем линейки (у них предусмотрен клейкий слой 3M):

Сейчас наш светильник практически готов, нам осталось запаять все линейки между собой. Как заявляет производитель: допустимо последовательное соединение до 3м. (Это мы проверим позже, замерив общую мощность готового линейного светильника.)

Припаиваем с одного конца провод и закрываем экран. 
(Для провода нужно сделать отверстие и вывести его за профиль, но мы пока делать этого не будем.)

Я подключил светильник к лабораторному источнику питания для того, чтобы посмотреть какой ток потребляют светодиоды.
 Довольно распространенная проблема, что при подключении мощных лент более 2м идет потеря мощности. Это связано с недостаточной проводимостью медных дорожек. У меня получилось, что суммарная мощность светильника 2.7*24 = 64.8Вт (26 Вт/м).

Показатели скакали от температуры, но усреднено 26 Вт/м. 
С учетом того, что заявленная мощность одного модуля 26Вт, я считаю это идеальный показатель.

Применимость


Для наглядности я повесил светильник над рабочим столом и сделал несколько фотографий. В будущем найду ему постоянное место.

Стоимость


Линейный светильник 65Вт, 2.5м.
  • Профиль U-S35: 2400р
  • Модули HOKASU: 2370
  • Комплектующие: ~300р
  • Источник питания: 1150р

Итого: 6220р.


Одного такого светильника хватит на 2 или даже на 3 рабочих места. Его можно разрезать пополам и установить над разными столами, подключив к одному источнику питания.

habr.com

Правильная схема подключения светодиодов: последовательно или параллельно

Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Источник тока (или генератор тока) — источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот. Источники тока, которыми запитывают светодиоды, еще называют драйверами.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

UпитILED
5 мА10 мА20 мА30 мА50 мА70 мА100 мА200 мА300 мА
5 вольт340 Ом170 Ом85 Ом57 Ом34 Ом24 Ом17 Ом8.5 Ом5.7 Ом
12 вольт1.74 кОм870 Ом435 Ом290 Ом174 Ом124 Ом87 Ом43 Ом29 Ом
24 вольта4.14 кОм2.07 кОм1.06 кОм690 Ом414 Ом296 Ом207 Ом103 Ом69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3…4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

СветодиодыКакой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835)см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730)драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W)драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды)драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6)драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

electro-shema.ru

Источник питания для светодиодных линеек — DRIVE2

Приветствую всех, кто заглянул.
В очередной раз пересмотрел и подмёл листья извлёк, присыпанные ими, грабли из схемы и вот финальный обкатанный вариант источника питания линейки светодиодов.

Суть идеи.
Чем больше ток в схеме стабилизатора тем больше тепла выделяется на разнообразных элементах оной из-за имеющего место сопротивление компонентов цепи
не буду голословным простая формула для расчёта мощности в ваттах
P=I^2*R (ток в квадрате помноженный на сопротивление).
Очень показательная формула при кол-ве светодиодов больше 40 штук и использовании токоограничивающих резисторов.
Если будет вариант включить 24 светодиода многие предпочтут воткнуть их по три штуки последовательно (3Вольта*3штуки = 9 Вольт) ну и мелкий резюк воткнуть, как в лентах,
кто то включит их параллельно посчитав что примерный ток который они будут кушать 16мА*24шт=384мА, подключит их к стабилизатору напряжения, и отрегулирует напряжение.

я выбираю в таких случаях путь высоких напряжений как Никола Тесла. ))
по 8 штук последовательно и в три параллельных ряда
ток 48мА напряжения питания таких линеек 23,8 Вольта.

Ну и схемка платы для сборки


размер 25*22мм
микросхема MC34063
все компоненты располагаюстя с одной стороны, что позволяет уместить всю схему в объём
10*25*22мм
Rsc — набор резисторов позволяющих детектировать высокий ток в цепи питания и отключить микросхему при К.З. на выходе
Vin — +вход низкого напряжения
Vout — + выход высокого напряжения
Gnd — общий минус
Adj — сюда можно подключить внешний регулируемый резистор для уменьшения итоговой яркости (напряжения на выход)

А вот мой финальный коммент по поводу этой схемы, откопал в заметках к проектам.
Печатная плата размером 25х22 мм. Охлаждение реализовано через
большие области токоведущих дорожек, (не уменьшать !).
Проверена под нагрузкой светодиодной матрицы.
Нагрузка 96 светодиодов (12рядов по 8 штук последовательно-включенных
с балластом 15 Ом в каждой ветке).
Потребление 400мА при 13В = 5.2Вт, КПД = 88%.
Мощность передаваемая на светодиоды 4.57Вт

www.drive2.ru

Обзор бюджетных светодиодных ламп — Меандр — занимательная электроника

Современная жизнь рано или поздно все равно заставит экономить и более бережно относиться к природе и природным ресурсам. Применение экономных светодиодных ламп, особенно при постоянном повышении тарифов на электроэнергию, стало современной реальностью и объективной необходимостью.

Замена традиционных ламп (и памп накаливания, и лю­минесцентных) в старых светильниках новыми светодиодны­ми лампами с однотипными габаритами — далеко не лучший вариант, а вынужденный временный переходной период. Дело в том, что обеспечить нормальный отвод тепла, каче­ственную надежную безопасную работу источника питания светодиодных ламп очень затруднительно в маленьких габа­ритных размерах традиционных лампочек.

Выполнять отдельными конструкции светодиодной лампы и светильника нет смысла, поскольку ресурс работы свето­диодов (при их правильной эксплуатации) очень большой и их замена в светильнике не предполагается. Лучше ориен­тироваться на специальную интегрированную конструкцию, в которой конструктивно учитываются особенности работы светодиодов, необходимость эффективного охлаждения, и при­меняется качественный надежный источник питания.

В последнее время, весьма популярно использование све­тодиодных линеек на алюминиевом основании, благодаря не­высокой стоимости и широкой доступности (2-3 USD за метр). Светодиодная линейка — это хорошая замена светодиодных лент, с улучшенным отводом тепла. Светодиодная линейка с успехом может быть использована как для декоративной под­светки, так и для создания систем общего освещения (рис.1).

Рис. 1

О заявленных и реальных параметрах светодиодных ламп

К сожалению, большинство продавцов не могут предоста­вить нормальную, правдивую техническую информацию по светодиодным линейкам, соответственно, в данном обзоре попытаемся рассмотреть основные параметры, и, кроме того часто складывается впечатление, что мало кто из продав­цов ходил в школу, и знает закон Ома.

Именно поэтому часто в описаниях светодиодных лине­ек присутствует полный бред — «72 светодиода на метр, по­требляемая мощность 28…36 Вт на метр, световой поток бо­лее 3000 лм».

Питание светодиодных линеек рассчитано на использова­ние стабилизированного источника с напряжением 12 В. Ми­нимальная секция/ячейка светодиодной линейки (как, впрочем, и ленты) состоит из трех последовательно соединенных свето­диодов SMD 5630/5730 и ограничивающего резистора. Преиму­щество светодиодной линейки на алюминиевом основании пе­ред простой светодиодной лентой — это заведомо лучший от­вод тепла. Производители, надеюсь, усвоили урок и решили всё- таки делать что-то более надежное, чем ранее. Ведь неудач­но наклеенная светодиодная лента через пару месяцев рабо­ты может «потерять» половину ячеек, и, кроме разочарования покупателей, вполне возможны и убытки для производителей.

Один метр светодиодной линейки на алюминиевом осно­вании содержит 24 отдельные секции/ячейки, соответствен­но, 72 светодиода SMD 5630/5730. По паспорту, светодиоды SMD 5630/5730 могут выдерживать 0,5 Вт — вот откуда бе­рутся 36 Вт на метр. Максимальный световой поток свето­диода SMD 5630/5730 около 50…55 лм, а КПД около 30%. Если перемножить все светодиоды линейки (72 шт.) на мак­симальный световой поток (55 лм), то можно получить даже не 3000 лм, а целых 3960 лм.

Но реально китайские светодиоды не могут выдержать таких нагрузок (производители это хорошо понимают), поэто­му ток ограничивают на уровне одной трети от максималь­ных 150 мА. На мировом рынке встречаются нормальные светодиодные линейки, с нормальными не китайскими све­тодиодами, мощность, действительно, около 40 Вт на метр и световой поток более 3000 лм, но к нам такие не попадают из-за их высокой стоимости. Токоограничивающий резистор у большинства китайских линеек обычно 47 Ом, реже 39 Ом, еще реже 33 Ом (другие номиналы не встречаются), ток све­тодиодов составляет 50…70 мА. С учетом, что около 20…25% мощности просто теряется на токоограничивающем резисто­ре, реальный световой поток с одного метра линейки получа­ется около 1000…1500 лм, потребляемая мощность 12…18 Вт. Это очень даже неплохо.

Практическое использование светодиодных линеек

На данном этапе светодиодная линейка очень интересна как базовый элемент для проектирования разнообразных ис­точников света. Светодиодную линейку можно легко устано­вить и прикпеитъ на любую относительно плоскую поверхность, соответственно, достаточно просто интегрировать практиче­ски в любую конструкцию светильника. Особенно проста и выгодна модернизация офисных светильников, поскольку плоская металлическая конструкция офисных светильников ис­ходно очень удобна и является хорошим теплоотводом.

Ко всему, в настоящей время нет достойного готового све­тодиодного варианта замены трубчатых люминесцентных ламп длиной 600…1500 мм для офисных или заводских светильни­ков (особенно в аспекте доступности по цене). Если есть возможность, можно во много раз лучше, качественнее, на­дежнее, дешевле и. главное, более безопасно переоборудо­вать офисные светильники самостоятельно, используя отдель­ные светодиодные линейки и качественный источник питания.

Существенно повысить эффективность и КПД (на 20…25%) светодиодной линейки можно, если уменьшить номинал токоограничивающего резистора и снизить напряжение пита­ния в стабилизаторе. Как вариант, можно вообще исключить токоограничивающие резисторы (или ставить их минималь­ного номинала) и применить вместо стабилизатора напря­жения стабилизатор тока — готовый токовый драйвер свето­диодов. На рынке присутствует огромное разнообразие го­товых токовых драйверов светодиодов, например, очень не­плохие и доступные по цене драйверы MeanWell (рис.2). К тому же, стабилизаторы тока обычно немного дешевле ста­билизаторов напряжения.

Рис. 2

От подобного стабилизатора тока можно запитыватъ по­следовательно несколько коротких кусочков линейки (длина кусочка линейки зависит от выходного тока драйвера). Вы­ходное напряжение токовых драйверов обычно около 48 В (получится 4-5 шт., включенных последовательно). Демонти­ровать токоограничивающие резисторы в линейках долго и сложно, проще поверх напаять новые или перемычки.

Опять таки, в светодиодных линейках можно корректи­ровать спектр — заменить часть светодиодов светодиодами красного цвета свечения или тонко подобрать цветовую тем­пературу разными белыми светодиодами (правда, сложно вы­полнить демонтаж и монтаж на алюминиевом основании).

Светодиодные прожекторы

Также, в последнее время, очень широкое распростране­ние получили светодиодные прожекторы. Металлическая кон­струкция упичых прожекторов (исходно разработанных под га­логенные лампы) была изначально наиболее хорошо адапти­рована для установки светодиодов.

Рис. 3

Массивный металлический корпус является хорошим теплоотводом светодиодной матри­цы из отдельных светодиодов — особо не нужно ничего доду­мывать. Несколько лет назад, в переходной период, было до­статочно много полукустарных и заводских переделок галоген­ных прожекторов под светодиоды. Затем появились чисто све­тодиодные прожекторы с улучшенным корпусом (рис.3, рис.4) даже тонкие «slim» варианты, а переделки полностью исчезли.

Рис. 4

Благодаря высокой экономичности, достаточно приемле­мой низкой стоимости (10-ваттный прожектор стоит всего око­ло 5 USD), удобной герметичной конструкции, светодиодные прожекторы сейчас массово вытесняют галогенные прожек­торы подсветки.

Естественно, самое слабое звено светодиодных прожек­торов — это драйвер. К сожалению, в последнее время, по­явилась тенденция к максимальному удешевлению прожек­торов. Если раньше применялись драйвера в металлическом корпусе для лучшего теплоотвода, сейчас их корпус изготав­ливают исключительно из пластика.

Для улучшения надежности, драйвер желательно заме­нить более качественным (что практически нереально). Так­же прослеживается стремление экономить дорогой матери­ал корпуса алюминий — все стенки делаются максимально тонкими; некоторые элементы корпуса выполняются из более дешевой стали. Как следствие, нельзя обеспечить хоро­ший теплоотвод светодиодной матрицы, наблюдается сильный локальный перегрев корпуса в месте крепления матрицы и плохое распределение тепла на весь его большой корпус.

Данный недостаток проявляется в меньшей степени в светодиодных прожекторах небольшой мощности (10…20 Вт) и сильно в светодиодных прожекто­рах большой мощности (50…100 Вт). Для лучше­го распределения тепла по всему корпусу, жела­тельно проложить толстую алюминиевую/медную пластину между светоди­одной матрицей и корпу­сом для улучшения рав­номерности нагрева кор­пуса/радиатора (получается достаточно сложно и дорого).

Еще очень заметна тенденция применения и более деше­вых и менее эффективных светодиодных матриц. Особенно тенденция прослеживается в дешевых прожекторах малой мощности. Ранее применялась, например, надежная 10-ватт­ная матрица последовательно-параллельное соединение све­тодиодов 3×3, дорогой драйвер 1 А 10 В в металлическом корпусе. Сейчас чаще используют матрицу с чисто последо­вательным соединением 9 светодиодов, дешевый драйвер 200…300 мА 30 В в пластмассовом корпусе. При этом раз­ницу в световом потоке таких прожекторов легко можно уви­деть и заметить даже «на глаз».

Производители стараются не включать матрицу на пол­ную мощность из-за высокой вероятности отказа. Так, но­вая маломощная матрица 10 Вт с последовательным соеди­нением светодиодов 30 В запитана током 230 мА, то мощ­ность получается только 6,9 Вт, а в описании на прожектор, тем не менее, указано 10 Вт.

На рынке присутствуют также и дорогие качественные светодиодные прожекторы (рис.5). Светодиодная матрица вы­полняется из отдельных светодиодов (обычно SMD 5630/5730) с последовательно-параллельным соединением. Из-за боль­шого количества светодиодов получается более равномерное распределение тепла на весь корпус. Кроме того, корпус очень массивный, и толщина стенок большая. Драйвер обя­зательно качественный, с металлическим корпусом, для луч­шего отвода тепла винтами закреплен на задней крышке. Предполагаю, что подобные качественные светодиодные про­жекторы собираются где-то у нас (т.е. они отечественного производства). Жаль только, что стоимость очень высокая — втрое выше, чем у обычного китайского.

Рис. 5

Напомню, что любые светодиоды при работе сильно на­греваются. Обычно КПД светодиодов только около 30%, боль­шая часть потребляемой мощности светодиодной лампы, в любом случае, уходит на её нагрев. Сильный перегрев вы­зывает быструю деградацию светодиодов. Поэтому наличие хорошего массивного радиатора — показатель качества в ас­пекте долговечности и надежности светодиодной лампы.

Автор: Виктор Михальчук, г. Киев
Исчточник: Электрик №1/2, 2016

Возможно, вам это будет интересно:

meandr.org

Светлый угол — светодиоды • Подскажите по подключению линеек

Обсуждаем построение светодиодных драйверов, особенности питания разных типов светодиодов.

Подскажите по подключению линеек

shmel209 » 07 мар 2014, 12:44

Доброго дня! Необходимо подключить 12 линеек трион ( потребляемая мощность 7.8Вт , прямое падение напряжения 21-22.4В, ток 350мА )
Посоветуйте пожалуйста драйвер. Пока остановился на этом http://www.mmp-irbis.ru/katalog/LED_dri … 290K03.php так как данного драйвера нет в наличии прошу вашего совета. Заранее спасибо.
shmel209
Светильник
 
Сообщений: 50
Зарегистрирован: 14 ноя 2012, 02:57
Откуда: Ульяновская область, Димитровград
Благодарил (а): 3 раз.
Поблагодарили: 5 раз.

Re: Подскажите по подключению линеек

изобретатель » 07 мар 2014, 12:48

Один блок питания 24 вольта 100 ватт, все линейки в параллель. Нужный ток устанавливается подстройкой напряжения на блоке питания.

Нет ничего невозможного, если хорошо подумать
http://led-str.ru

изобретатель
Scio me nihil scire
 
Сообщений: 8038
Зарегистрирован: 01 сен 2010, 10:36
Откуда: Стерлитамак
Благодарил (а): 92 раз.
Поблагодарили: 416 раз.

Re: Подскажите по подключению линеек

voxy » 07 мар 2014, 14:04

изобретатель писал(а):Один блок питания 24 вольта 100 ватт, все линейки в параллель. Нужный ток устанавливается подстройкой напряжения на блоке питания.

Именно так.
Я бы только добавил защиту в виде ограничителя макс. тока , а блок питания с запасом по мощности.
Кстати это будет дешевле ирбисов и с большими возможностями…


voxy
Scio me nihil scire
 
Сообщений: 1213
Зарегистрирован: 11 фев 2012, 19:56
Откуда: Пенза
Благодарил (а): 449 раз.
Поблагодарили: 74 раз.

Re: Подскажите по подключению линеек

изобретатель » 07 мар 2014, 15:19

Ограничитель не нужен, при нормальном теплоотводе линейки спокойно до 10 ватт работают. При повышении окружающей температуры будут несколько ярче и все.

Нет ничего невозможного, если хорошо подумать
http://led-str.ru

изобретатель
Scio me nihil scire
 
Сообщений: 8038
Зарегистрирован: 01 сен 2010, 10:36
Откуда: Стерлитамак
Благодарил (а): 92 раз.
Поблагодарили: 416 раз.

Re: Подскажите по подключению линеек

voxy » 07 мар 2014, 16:42

Это уж каждый решает сам — иметь защиту или нет…
Кому-то и предохранитель — излишество, а кто-то всегда пристёгивается, когда садится в автомобиль.


voxy
Scio me nihil scire
 
Сообщений: 1213
Зарегистрирован: 11 фев 2012, 19:56
Откуда: Пенза
Благодарил (а): 449 раз.
Поблагодарили: 74 раз.

Re: Подскажите по подключению линеек

изобретатель » 07 мар 2014, 17:39

В данном случае при увеличении тока через длинную цепочку светодиодов на линейке происходит ощутимый прирост напряжения. При питании линеек от стабилизатора напряжения наблюдаем эффект самостабилизации, когда прирост прямого напряжения приближается к напряжению блока питания и прекращается дальнейший прирост тока.

Нет ничего невозможного, если хорошо подумать
http://led-str.ru

изобретатель
Scio me nihil scire
 
Сообщений: 8038
Зарегистрирован: 01 сен 2010, 10:36
Откуда: Стерлитамак
Благодарил (а): 92 раз.
Поблагодарили: 416 раз.

Re: Подскажите по подключению линеек

молодой дед » 07 мар 2014, 22:42

изобретатель » Сегодня, 13:39
В данном случае при увеличении тока через длинную цепочку светодиодов на линейке происходит ощутимый прирост напряжения. При питании линеек от стабилизатора напряжения наблюдаем эффект самостабилизации, когда прирост прямого напряжения приближается к напряжению блока питания и прекращается дальнейший прирост тока.

Согласен на все 100: сам так часто делаю.

молодой дед
Scio me nihil scire
 
Сообщений: 1625
Зарегистрирован: 20 апр 2010, 02:07
Откуда: г. Калининград
Благодарил (а): 38 раз.
Поблагодарили: 40 раз.

Re: Подскажите по подключению линеек

изобретатель » 07 мар 2014, 22:47

Самое интересное, народ не верит! А всего-то подключить линейку к регулируемому БП и понаблюдать характер изменения прямого напряжения на разных токах.

Нет ничего невозможного, если хорошо подумать
http://led-str.ru

изобретатель
Scio me nihil scire
 
Сообщений: 8038
Зарегистрирован: 01 сен 2010, 10:36
Откуда: Стерлитамак
Благодарил (а): 92 раз.
Поблагодарили: 416 раз.

Re: Подскажите по подключению линеек

voxy » 07 мар 2014, 23:10

В крайнем положении регулирующего потенциометра (если случайно оказался) на выходе БП (24В) присутствует напряжение в 27 ВОЛЬТ !
….ВМЕСТО 19-20 В , как у Рубиконовских ( 21 шт.)….
Попробовал , подал 24 В — ток 0.8 А !!! Больше не стал….пробуйте сами….


voxy
Scio me nihil scire
 
Сообщений: 1213
Зарегистрирован: 11 фев 2012, 19:56
Откуда: Пенза
Благодарил (а): 449 раз.
Поблагодарили: 74 раз.

Re: Подскажите по подключению линеек

изобретатель » 07 мар 2014, 23:29

voxy писал(а):В крайнем положении регулирующего потенциометра (если случайно оказался) на выходе БП (24В) присутствует напряжение в 27 ВОЛЬТ !
….ВМЕСТО 19-20 В , как у Рубиконовских ( 21 шт.)….
Попробовал , подал 24 В — ток 0.8 А !!! Больше не стал….пробуйте сами….


Сдуру можно и х… сломать! Мультиметр в руки и вперед: выставляем без нагрузки минимальное напряжение, подключаем линейку и плавно увеличиваем напряжение.
Такую операцию удобнее производить на лабораторном БП, можно одновременно контролировать напряжение и ток, причем можно заранее выставить ограничение тока в безопасных пределах. после проверки на лабораторном питании можно смело выставлять напряжение на рабочем БП и сразу проводить монтаж на место.
Достоинство такого способа питания: подключение произвольного количества линеек в пределах мощности БП, возможность включения линеек без отключения блока от сети.
Кроме этого стабилизаторы напряжения более доступны и дешевле, чем токовые драйверы. При отсутствии блоков на 24В, можно смело применять последовательное включение двух блоков на 12В. Нет ничего невозможного, если хорошо подумать
http://led-str.ru

изобретатель
Scio me nihil scire
 
Сообщений: 8038
Зарегистрирован: 01 сен 2010, 10:36
Откуда: Стерлитамак
Благодарил (а): 92 раз.
Поблагодарили: 416 раз.

Re: Подскажите по подключению линеек

Vasya0000 » 07 мар 2014, 23:49

Напряжением питать линейки конечно интересней.

Но есть один момент. Падение напряжения в проводах.

5 метров ШВВП 2*0,75 теряют 0.2 В при подключении четырёх линеек. А десять метров 0,4 В. Соответсвенно ток например для 2835-21 снизится с с 350 до 300 мА.

Но если головой думать и сечение нужное подбирать, подобное подключение более надёжно, чем при подключении через драйвер тока (выход из строя одного диода выведет из строя всю линейку, а следом и светильник)

Vasya0000
Светодиод
 
Сообщений: 399
Зарегистрирован: 09 дек 2013, 00:10
Откуда: г. Владимир
Благодарил (а): 2 раз.
Поблагодарили: 12 раз.

Re: Подскажите по подключению линеек

voxy » 07 мар 2014, 23:49

…Сдуру можно и х… сломать! Мультиметр в руки и вперед: выставляем без нагрузки минимальное напряжение, подключаем линейку и плавно увеличиваем напряжение….

Так защита на ДУРАКА и рассчитана !!!
Какой мультиметр, какая регулировка….
Купил…подсоединил…горит классно!!!….ну и ладно….
Ой что-то запахло…


voxy
Scio me nihil scire
 
Сообщений: 1213
Зарегистрирован: 11 фев 2012, 19:56
Откуда: Пенза
Благодарил (а): 449 раз.
Поблагодарили: 74 раз.

Re: Подскажите по подключению линеек

ivdor » 07 мар 2014, 23:50

Vasya0000 писал(а):Напяжением питать линейки конечно интересней.

Но есть один момент. Падение напряжения в проводах.

5 метров ШВВП 2*0,75 теряют 0.2 В при подключении четырёх линеек. А десять метров 0,4 В. Соответсвенно ток например для 2835-21 снизится с с 350 до 300 мА.

Но если головой думать и сечение нужное подбирать, подобное подключение более надёжно, чем при подключении через драйвер тока (выход из строя одного диода выведет из строя всю линейку, а следом и светильник)

Так ведь напряжение можно отрегулировать уже после установки — тогда падение на проводах будет индиффирентно

Оно и не что-либо как и не как-либо что. А что касательно относительно — то безусловно. Оно и не надо было бы, но доведись такое дело — вот я вам и пожалуйста. Я все.

PS: используйте вышеприведенную информацию на свой страх и риск..


ivdor
Scio me nihil scire
 
Сообщений: 3851
Зарегистрирован: 29 июл 2011, 00:49
Откуда: Псков, СЗФО.
Благодарил (а): 24 раз.
Поблагодарили: 270 раз.

Re: Подскажите по подключению линеек

изобретатель » 07 мар 2014, 23:53

При поставке клиентам комплектов светильников на линейках на блоках питания помечаю установленное напряжение. Но еще ни разу не было, чтобы сами пытались регулировать напряжение.

Нет ничего невозможного, если хорошо подумать
http://led-str.ru

изобретатель
Scio me nihil scire
 
Сообщений: 8038
Зарегистрирован: 01 сен 2010, 10:36
Откуда: Стерлитамак
Благодарил (а): 92 раз.
Поблагодарили: 416 раз.

Re: Подскажите по подключению линеек

Vasya0000 » 07 мар 2014, 23:56

Один светильник в одном углу. другой в другом углу. До одного 10 метров до другого метр. Блок питания один.

Выход один подбирать соответствующее сечение провода чтобы светильники светили примерно одинаково.

Vasya0000
Светодиод
 
Сообщений: 399
Зарегистрирован: 09 дек 2013, 00:10
Откуда: г. Владимир
Благодарил (а): 2 раз.
Поблагодарили: 12 раз.


Вернуться в Питание и подключение светодиодов

Кто сейчас на форуме

Зарегистрированные пользователи: БелСвет, большой, aledpro, Alexa [Bot], АМТСвет, Baikal, Bing [Bot], Brumor, BVlad, Conroe, Светочъ, danic8560, dua3, Gench, Google [Bot], Google Adsense [Bot], Google Feedfetcher, iamoskvin, jewlight, KozhevnikovGD, Ledsvet2017, Ledsvet24, mailru, Majestic-12 [Bot], mnv, MSN [Bot], nae, Nameless, oleg7138, olegbr, Pensioner, polisty, regent, Reneo, S@shOK, serp8007, sibec, Simona, skaarjj, skal, Tchke-1965, tio, Vladimir-city, willi, Xender, Zadnitca, zQ, Пашка177, Прочнист, Василий177, Максим Орлов, Яндексбот



ledway.ru

Рекомендации по подключению светодиодных модулей. Статьи компании «ООО Люксстандарт»

1. Расчет количества модулей

Расчет приведен на примере модулей  

Размеры модулей

При установке модулей рекомендуется выдерживать следующие размеры:

Расстояния от края модуля до края буквы-3-6 см. Расстояние между модулями по длине-2-3см. (без учета крепежных петель). Максимальная ширина засветки для одного модуля 12,5 см. При необходимости обеспечения большей яркости можно устанавливать модули более плотно.


[endif]

Расстояние между акриловым лицом буквы и модулем.

Как правильно включить в электрическую цепь?

Так как яркость свечения диодов и срок службы  чувствительны к значению подаваемого к ним напряжения, советуем соблюдать наши рекомендации.


[endif]

    

Максимальное количество модулей в одной цепи – НЕ БОЛЕЕ 20 шт. Рекомендуется во все ветви цепи включать примерно равное количество модулей. СВОБОДНЫЕ КОНЦЫ ЦЕПИ НЕ ЗАМЫКАТЬ, а заизолировать!!!

 


[endif]

Допускается включение нескольких цепей модулей в звезду, как в данном примере в букве «У» или «К» При сборке изделия в цеху руководствуйтесь  следующими рекомендациями- установите модули в букву, если буква велика и вы установили больше 20 модулей- разделите их на две ветки. Подключите к цепи провод и выведите его через днище буквы. В зависимости от того, какой блок питания Вы используете, примерно поровну разделите количество букв на количество выводов блока питания (Блок 30 ВТ имеет один вывод 12 В. Блок 60ВТ-два, 150 ВТ –четыре) . Подключите к каждому из выводов блока питания рассчитанное количество букв.

2. Подбор необходимого блока питания.

Рекомендуется оставлять 20-ти процентный запас мощности блока питания. То есть мощность трансформатора = Число модулей* мощность одного модуля*1,2

Например, необходимо засветить 400 модулей. 400*0,25*1,2=120 Вт. Таким образом выбираем один блок 150 Вт.

3. Установка модулей.

Установка модулей производиться любым доступным способом — на клей или при помощи саморезов. Второй способ считается более надежным. Возможно комбинирование- приклеивание модулей  с последующей фиксацией каждого четвертого-пятого саморезами для надежности.

4. Подключение источников питания.

После установки модулей подключение блока питания производиться проводом с сечением каждой жилы не менее 0,75 мм. Не рекомендуется устанавливать блок питания на расстоянии более 5 метров от первого подключаемого модуля для избегания потерь мощности. В большие буквы блоки питания можно устанавливать прямо внутрь. Обращайте внимание на соблюдение полярности при подключении: красный провод модуля — плюсовой. Поскольку питание диодов низковольтное, рекомендуем соединение проводов производить спайкой или при помощи клеммных колодок. Последние для надежности можно дополнительно залить клеем.

6. Если все работы сделаны правильно- то смело нажимайте кнопку «ВКЛ»

 справки по телефону 

 +7 978 748 11 37
Email: [email protected] 

luxstandart.com.ua

Подключение светодиода. Схемы монтажа светодиодов

Понятия, сокращения, глоссарий.

  •  БП — блок питания.
  • SMD — устройство, излучающее свет, монтируемое на резиновой, бумажной, самоклеющейся поверхности ленты. С нанесёнными проводящими ток дорожками и миниатюрными полупроводниковыми элементами, расположенными в один или несколько рядов. А также могут быть установлены ограничивающие резисторы и конденсаторные сглаживающие фильтры. Длину ленты разрезают по специально нанесённому пунктиром месту.
  • Чип — полупроводниковый кристалл.
  • Подложка — гибкая плата с припаянными элементами.
  • СД — диод, излучатель света.
  • Клеящаяся основа — фиксирует на поверхности СД.
  • Люминофор — материал, испускающий фотоны под воздействием энергии полупроводника.
  • RGB-контроллер — прибор, с функцией инфракрасного или радиоуправляемого цвета, режимом свечения. Регулируют дистанционным пультом.
  • Samsung, Philips, LG. Брендовые производители СД.
  • Диммер — это устройство для расширения функциональных возможностей светодиодных источников. Регулирует интенсивность потока освещения, его цвет, экономит электроэнергию. Составная часть обычного выключателя.
  • Дистанционный пульт — прибор для управления одним или несколькими узлами.
  • Усилитель контроллера — устройство для передачи сигнала к диодам, обеспечивающее одинаковые цвета и яркость излучения.
  • Световой поток, обозначенный единицей люмен (лм).
  • ИК — инфракрасный контроллер.

Подключение, ошибки

Светодиод обладает многими преимуществами перед другими источниками излучения. Он экономичный, с большим эксплуатационным сроком, виброустойчивый и к тому же имеющий невеликие габариты. Однако, эти положительные качества не всегда полностью реализуются на практике. И прежде всего, из-за недостаточного понимания работы нелинейного полупроводникового прибора. Чтобы избежать этого и достичь эффективного использования, необходимо придерживаться правил.

Нельзя подсоединять светодиод напрямую к источнику.

Он подключается последовательно через резистор либо через драйвер питания, регулирующий величину тока. Неуправляемая подача быстро выведет его из строя.

Рис. 1

Не рекомендуется параллельное подключение между собой нескольких диодов к одному источнику питания. Рис. 2. Самый безобидный вариант от такого подсоединения проявится в том, что излучение света будет разной яркостью. При повреждении первого диода возрастает ток на второй, резко сокращающий сроки его эксплуатации вплоть до разрушения.
Не допускается последовательное подключение светодиода с разными параметрами тока. При этом слабо излучающий свет быстро выйдет из строя. Рис. 2

Подключение элемента неправильного сопротивления. Рис 3. Протекающий через него ток, может оказаться большим или недостаточным для оптимальной работы диода. Это приведёт к перегреву кристалла и сокращение сроков службы

Применение ограничивающего резистора недостаточной мощности, следствием которой будет его полное разрушение. Рисунок. 3.
При подключении светодиода к сети необходимо ограничить обратное напряжение. Увеличенный ток может, перегреть полупроводниковый переход, вызывающий тепловой пробой и повреждение светодиода.

Соблюдая правильность подсоединения элементов, достигают максимальной эффективности приборов в освещении и конструировании различных устройств.

Подключение лент

На схеме провода БП обозначены двумя цветами. Красный — это плюс, а синий — минусовой. Такая же маркировка применена и на потребителях электроэнергии. При подключении это правило соблюдают, в противном случае схема работать не будет

Применяя несколько лент нельзя последовательно (напрямую), припаивать их концы. Например, составляя вместе пятиметровые, стараются получить в два раза длиннее 10 м. Но необходимо учесть, что соединительные провода мелкого сечения и рассчитаны только на одну ленту. Подключая их последовательно, добавляется сопротивление, из-за чего № 2 светит с меньшей яркостью. А через № 1 протекает увеличенный от номинала ток, который приведёт к повышенному перегреву, сокращающему в разы срок службы. Рис. 5.

К выходу БП (рисунок 6) подключают провода следующей ленты № 2, минуя

дорожку № 1

 

Для уменьшения потерь напряжения, их сечение выбирают несколько больше (1,5 мм.). Длина проводов такая же, как и к ленте № 1. Схему применяют при достаточном месте для размещения БП, показанную на рисунке 7. Второй блок питания подсоединяют проводом 0,75 мм. Положительным моментом является то, что их мощность уменьшилась вдвое. При отсутствии пространства применяют схему на рис. 6. Когда задача размещения и укрепления второго источника усложняется поиском подходящего места.

Монтаж цветной ленты, усилителя и контроллера

RGB-контроллер предназначен для регулировки света. Работает при напряжении 12, 24 в. Установленная мощность 72,108,144,288 Вт, со встроенной программой управления излучением, укомплектованы дистанционным пультом. Рис. 8. Клеммы для подключения ленты обозначены: R — для регулировки красного; G — зелёного; B — синего; V+ — общий.

Сетевые разъёмы маркируют «V +», и «-V». На контакт, обозначенный плюсом, закрепляют красный, на минус — чёрный или синий провод. Подсоединения желательно не перепутать. В противном случае пульт выдаст ошибочную команду.

Дистанционный способ управления

Контроллер простой по конструкции и экономичный.
Установлена программа смены цветов. Подходит для устройства подсветки вывесок, витрин магазинов. Иногда прибор используют как простой выключатель.

Инфракрасный

Работает при условии видимости приёмника контроллера, ограниченной дистанцией до 10 м. Его функции похожи на телевизионный пульт.
Яркость излучения регулируется. Предусмотрен подбор четырёх цветов и оттенков к ним, переливание света, и дополнительное проецирование белого. Возможна установка эффекта затухания или мерцания излучения.

Радиоуправляемый

IR Контроллер регулируют радиосигналом с дистанцией до 20 метров. Зрительная видимость необязательна. Соблюдая указанное расстояние, освещение регулируют с любой комнаты. Недостаток — при утере пульта необходимо покупать полный комплект нового, так как частота радиосигнала у них разная. Конструкции пультов бывают сенсорными или кнопочными, со всеми стандартными действиями.

Работающий по WI-FI

Функционируют по тому же принципу, с любым типом пульта, как указано выше. Контроллером можно управлять через мобильный телефон.

Подключение нескольких RGB светодиодных лент

Проводящие ток дорожки имеют одинаковую длину. Соединять их последовательно нельзя, так как работать будут недолго. Существует два способа подсоединений: с одним БП и с RGB-контроллером.

Эта схема подойдёт для многоцветной ленты c 30 диодами. Но яркости будет недостаточно. Рисунок 9. При 60 штук таких же потребуется БП и в два раза мощный контроллер. Дальше рассчитываем: две ленты используют для освещения 140 Вт, контроллер для этого случая подойдёт мощностью 280 Вт, что скажется на стоимости. Место для размещения блока питания планируют при проектировании потолка. Рис. 10.
В этой схеме используют дополнительно БП и усилитель. К нему со стороны Input (вход) подключают конец ленты № 1 и к Output (выход) начало № 2. Каждый провод подсоединяют в соответствующую клемму. После подключают БП.

В результате получили: монтаж по этой схеме станет дороже, мощность и размеры блоков питания будут меньше, но зато появляется возможность подключать любое количество RGB изделий.

Общий совет по установке светодиодных узлов

Выбор комплектующих.

По статистике спросом пользуются более сотни типов лент, около 50 моделей блоков питания, до 30 диммеров и контроллеров. Для начала необходимо определить поставленные задачи. Они могут быть следующими: подсветка потолка и ниши, дополнительное освещение кухни, интерьера комнат, спальни, ванной, шкафов, баров и т. д.

  • Проверка качества контактов на ленте. Они имеют вид четырёх проводков, припаянных к торцу платы.
  • Места припайки не всегда бывают прочным.
  • Проверяют соединения, изолируют их. Оторванный может вызвать замыкание.

Для надёжности заделывают новые, длинные с обжимными наконечниками и усиленные термоусадочной трубкой диаметром 10 мм. Одев её на контакты светодиодной ленты, аккуратно нагревают. При этом избегают попадания горячего воздуха на полупроводник. Размягчённая трубка уменьшается в размере, прижимая контакты, изолируя и улучшая прочность соединения. Такая подготовка к монтажу обеспечивается длительный срок использования.

Наличие инструмента и комплектующих изделий. Для устройства нужно иметь: провода, трубки, фен, ножницы, паяльник и сопутствующие материалы.

Есть и более простой вариант решения. Можно приобрести готовый набор для монтажа светодиодных устройств. В его состав входят: ленты, блоки питания, контроллер, диммер, крепёж, разъёмы, провода. Кроме того, перечень содержимого набора дополняется пожеланиями заказчика.
Место монтажа ленты очищают, обезжиривают. Потом со стороны клеевого слоя снимают защитную плёнку и нажатием закрепляют к подготовленной плоскости.

Виды СД лент

Все составляющие её элементы размещены на самоклеющейся основе. Отличие между ними — это тип используемого светодиода. Светодиод припаян к плоскости ленты. Самые применяемые два: SMD 3020 и такой же 5050. Сокращённое обозначение в переводе прочитывается как устройство, монтируемое на поверхности. Цифры указывают размер светодиодов в миллиметрах. Конструкция первого состоит из одного кристалла, второго — из трёх штук. Последний излучает более яркий свет в 2,5 раза. Для сравнения: светодиод SMD 5050 даёт поток в 12 лм, а типа 3020 излучает только 4,5.

Цвет свечения обуславливается свойством использованного полупроводникового материала. Каждый проецирует характерный свет. Распространён зелёный, красный и такие как жёлтый, синий. Но на практике существует излучение белого света, хотя в природе таких материалов нет. Однако, для его получения используют синий диод, продуцирующий ультрафиолет. Для этого на его поверхность наносят тонкий слой люминофора. Под его воздействием материал излучает белый светом. Это покрытие прибора имеет недостаток, проявляющееся со временем. За которое слой выгорает, свечение становится синеватым, яркость снижается. Поэтому лента белого цвета недолговечная, сила потока после года эксплуатации, может, уменьшиться на 40%. А действительным сроком службы СД считают время, за которое он потускнеет на 30% с момента первого включения.

Существует второй вариант получения белого оттенка. Для этого в корпусе светодиода установленных размеров (смотри выше) размещают не более трёх кристаллов. Из которых каждый излучает свой природный оттенок. Он бывает синим или красным и, наконец, зелёным. Если смешать их, то в результате получится белый. Срок использования такого диода будет намного дольше.

Собранная из них конструкция и размещённая на материале с клейкой поверхностью, называют RGB-лентой. И ещё один плюс. Так как каждый кристалл раздельно подключён к источнику питания, тогда они излучают свой цвет. Поэтому ленту подсоединяют четырьмя проводами. Из которых три идут на каждый кристалл и один общий для всех.

Такая конструкция позволяет регулировать световую окраску с помощью пульта управления. Так, для общего освещения включают белый, для медитации и расслабления — зелёный, для приятного ужина — красный. Есть ещё особенность ленты: яркость свечения зависит от количества СД на один метр, что повлечёт увеличение её стоимости.

Подборка диодов и расчёт БП

СД ленту подключают к блоку питания напряжением 24, 12 или 6 вольт. Их потребность в мощности приведена в таблице.
Светодиод марки SMD Мощность (Вт.) Количество сд (шт.)
3528                               4,8                               60
3528                               7,2                              120
3528                               16,0                             240
5050                               7,2                               30
5050                               14,0                             60
5050                                25,0                            120

Сначала уточняют, сколько потребляет 1 м ленты. Например, две 5-и метровые используют 72 ватта. Эксплуатационный запас блока должен иметь 30%. Для работы длиной в два раза большей типа 5050 c 30 светодиодами необходимо выбрать БП мощностью 93,6 ватта.

Возможные варианты выбора БП

Существуют основные типы этого устройства.

  • Герметичный, компактный в корпусе из пластика. Защищён от влаги. Предел его мощности 75 ватт. Для двух лент необходимы 2 блока питания по 50 Вт. Из-за небольших размеров БП используют при монтаже интерьерной подсветки.
  • Такой же тип в алюминиевом корпусе. Его 100 Вт мощности достаточно для эксплуатации двух лент. Имеет больший вес (1 кг) и габариты. Подходит к подсветке уличных указателей. Защищён от дождя, солнечных лучей, колебаний температуры, мороза.
  • Открытый БП. При 100 Вт мощности обладает большим весом и размерами. Редко используют для подсветки стен и потолков из-за сложности найти свободное место. Устанавливают в отдельном шкафу. Стоимость более низкая.

Недостатки СД лент

  1. Длина ограничивается пятью метрами. Это связано с трудностью выдержать равномерную яркость во всех элементах конструкции.
  2. Хрупкость и ломкость проводящих ток дорожек, изготовленных из фольги или меди. Радиус изгиба — не менее 25 мм.
  3. Необходимость усиления отдельных мест, соединений, изоляции контактов.
  4. Используя устройства светодиодных лент, потребляющих ток выше 80 мА, предусматривают дополнительные приспособления для охлаждения.
  5. Относительно высокая стоимость.

Достоинства светодиодных лент

  1. Экономное потребление электроэнергии.
  2. Срок службы от 5 до 13 лет, превышающей традиционные источники света.
  3. За счёт гибкости конструкции ленте придают любую форму.
  4. Возможность увеличивать (подобрать) длину, добавляя шести или десятиметровыми кусками (по 3 или 5 диодов в каждом).
  5. Потребляемая электроэнергия используется на излучение света, а не на подогрев прибора.
  6. Нулевое мерцание и отсутствие ультрафиолета.
  7. Устойчиво работает при колебаниях сетевого напряжения. Функционирует через блок питания при изменениях в пределах 130—160 вольт.
  8. Широкий выбор световой гаммы сохраняется во весь период эксплуатации.
  9. Простота монтажа.
  10. Производители гарантируют качество светодиодных лент.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *