Бп 12 10 схема – Блок питания БП 12/5

Содержание

Блок питания БП 12/5

Блок питания предназначен для питания бытовых магнитофонов, радиоприемников и диктофонов, работающих от автономных источников постоянного тока, и выпускается в двух модификациях:

  1. БП 12/5 — с выходным напряжением 12 В и мощностью около 5 Вт;
  2. БП 9/2 — с выходным напряжением 9 В и мощностью около 2 Вт.

В приводимых ниже технических данных цифры в скобках указаны для блока типа БП 9/2, вне скобок — для БП 12/5.

I. Комплектность поставки

  1. Блок питания БП 12/5 (БП 9/2) — 1 шт.
  2. Запасные предохранители: ПМ ­— 0,15 А — 1 шт.ПМ — 0 25 А — 1 шт. ПМ — 1 (0,5) А — 1 шт.
  3. Техническое описание — 1 шт.
  4. Упаковочная коробка — 1 шт.

II. Технические характеристики

Блок питания представляет собой стабилизированный источник постоянного напряжения, выполненный на 3-х транзисторах, и обеспечивает высокую стабильность выходного напряжения.

Напряжение питающей сети, В: 127/220±10%.

Номинальное выходное напряжение, В: 12 (9).

Номинальный ток нагрузки. А: 0,30 (0,15).

Максимальный ток нагрузки, А: 0,48 (0,22).

Допускаемое отклонение выходного напряжения при номинальном токе нагрузки, %: ±2.

Допускаемое отклонение выходного напряжения при максимальном токе нагрузки, %: 22.

Напряжение пульсаций при номинальном токе нагрузки не более %: 0,5.

Потребляемая мощность от сети, Вт (не более): 10 (8).

Габаритные размеры блока, мм: 142X58,5X74.

Масса, г: 780 (660).

III. Работа с блоком питания

Установите переключатель напряжения сети в соответствующее положение, проверив при этом соответствие предохранителя напряжению сети. Для сети 220 В — 0,15 А, для сети 127 В — 0,25 А. Вставьте вилку сетевого шнура блока питания в розетку сети. При этом должна загореться индикаторная лампа.

Вставьте разъем для подключения к нагрузке в соответствующее гнездо магнитофона, радиоприемника или диктофона.

Убедитесь в наличии на выходе блока питания пробным включением магнитофона, а также при помощи индикаторов, уставленных на питаемой радиоаппаратуре (при наличии последних). По окончании работы выньте вилку сетевого шнура из розетки сети.

Будьте осторожны — в блоке питания имеется опасное для жизни переменное напряжение 220 В.

Во избежание несчастных случаев нельзя включать блок в сеть при снятой крышке корпуса.

Перед заменой предохранителей в блоке питания не забудьте вынуть вилку из розетки электросети.

Не применяйте самодельные предохранители, это может вывести блок питания из строя.

Не оставляйте неработающий блок питания включенным в сеть.

Эксплуатация блоков питания при максимальном токе нагрузки допускается только кратковременная, а именно — для магнитофонов в режиме ускоренной перемотки ленты.

При длительной эксплуатации ток нагрузки не должен превышать номинального значения.

IV. Гарантийные обязательства

Срок гарантии — 1 год со дня продажи для изделий в обычном исполнении, и 1,5 года для изделий со Знаком качества.

Гарантия действительна при наличии на руководстве отметки магазина о дате продажи, а также при соблюдении правил хранения и эксплуатации, изложенных в настоящем руководстве и технических условиях ЛЩ3.215.030 ТУ.

При отсутствии отметки магазина о дате продажи, срок гарантии исчисляется со дня выпуска блока заводом.

Претензии к качеству блоков, реализуемых в комплекте с магнитофонами, радиоприемниками и другими радиоаппаратами, предъявляются к изготовителям этих аппаратов.

Схема БП 12/5

Архив с схемой в большем разрешении — https://yadi.sk/d/4qMOj-gZrfrjN.

abees.ru

Мощный блок питания 12 вольт с максимальной нагрузкой до 10 Ампер | РадиоДом


Мощный 12 вольтовый блок питания, описываемый в этой статье, на сегодняшний день имеет большую востребованность, это связано с тем, что очень много различной аппаратуры и электронных устройств требуют стабилизированного, 12 вольтового питания с большим током потребления до 10 Ампер. Это такие потребители как мощные светодиодные ленты, автомобильные магнитолы которые используются в стационарных условиях, радиолюбительские конструкции и различные электрические инструменты.

Схема 12 вольтового блока питания очень проста, так как для стабилизации напряжения и хорошей фильтрации помех, используется интегральный стабилизатор на микросхеме КР142ЕН8Б. Для увеличения выходного тока применён мощный биполярный транзистор
TIP3055
, падение напряжения на транзисторе в пределах 0,5 вольта, компенсируется диодом VD2, включенным в цепь средней ножки стабилизатора, тем самым поднимая напряжение на выходе микросхемы на нужные нам пол вольта.
Важным элементом 12 вольтового блока питания является понижающий трансформатор, так как схема рассчитана на большой ток, он должен обладать параметрами не ниже следующих : напряжением на вторичной обмотке от 12 до 18 вольт и выходным током не менее 10 Ампер. Микросхему можно заменить на L7812ABV, MC7812BT или LM7812CT, транзистор устанавливается любой марки, с током коллектора не менее 15 Ампер. Конденсаторы применённые в схеме рассчитаны на напряжение от 25 V, диодный мост на ток не менее 10 Ампер, VD2 заменяется практически любым кремниевым диодом.


radiohome.ru

Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А)

Для экономии электроэнергии, увеличения срока службы радиоаппаратуры и повышения безопасности её использования целесообразно ограничивать время работы различных аппаратов от электросети 230 В переменного тока. Для реализации такой функции потребуется таймер, который после истечения заданного времени обесточит подключенную к нему нагрузку.

Конструкция, о которой пойдёт речь, представляет собой два различных устройства, электрически соединённые вместе — аналоговый таймер и импульсный блок питания.

К выходу таймера можно подключить и другие аппараты, рассчитанные на питание от напряжения сети 230 В, например, блоки питания оргтехники, видеопроигрыватели, энергосберегающие электролюминесцентные и светодиодные осветительные лампы, зарядные устройства, мобильные телевизоры, фоторамки.

Возможно также подключение к этому таймеру обычных трансформаторных БП, сетевых электропаяльников, ламп накаливания и другой нагрузки, потребляющей мощность до 30 Вт.

Этот таймер особенно удобно применять на железнодорожном и автотранспорте для ограничения времени работы потребителей электроэнергии, работающих от преобразователей напряжения постоянного тока в 230 В переменного тока, что экономит ресурс бортовых и резервных аккумуляторов и снижает нагрузку на автономные генераторы напряжения.

Схема реле времени

Принципиальная схема реле времени, которое отключает питание нагрузки спустя заданное время, показана на рис. 1. Сердцем таймера является отечественная интегральная микросхема КР512ПС10, представляющая собой RC-генератор и управляемый делитель частоты, изготовлена по КМОП-технологии, содержит 801 интегральный элемент [1, 2].

Эта микросхема редко используется в радиолюбительских конструкциях, а между тем, на её основе можно быстро и легко разрабатывать и изготавливать различные стабильные таймеры на любой вкус для очень широкого круга задач [3 — 6].

Особенностью таймеров, построенных с применением микросхем КР512ПС10, является возможность получения стабильных выдержек большой длительности, что обычно невозможно получить с помощью традиционных таймеров, время выдержки в которых задаётся с помощью RC зарядной-разрядной цепи — стабильное время выдержки таких таймеров редко превышает несколько десятков минут.

Время выдержки этого таймера можно установить в диапазоне от 1 до 10 часов. Напряжение сети поступает на элементы устройства через замкнутые контакты выключателя SA1, предохранитель FU1 (плавкий или высоковольтный самовосстанавливающийся) и дроссель L1. Дроссель L1 — «особенный», он не только входит в состав помехоподавляющего фильтра L1RU1C1, но и защищает диодный мост VD1, полевой транзистор VТ1 от вероятных бросков тока в момент подачи напряжения на подключенный в качестве нагрузки импульсный источник питания.

Бросок тока, который может достигать десятков ампер, происходит из-за зарядки в БПИ конденсаторов помехоподавляющего фильтра и зарядки конденсаторов фильтра выпрямленного сетевого напряжения.

К сожалению, не во всех промышленных и самодельных БПИ установлены резисторы или терморезисторы, ограничивающие пусковой ток включения. Чтобы дроссель L1 эффективно выполнял функцию ограничения пускового тока включения нагрузки, его обмотка должна иметь сопротивление в несколько единиц Ом.

Напряжение питания управляющих узлов таймера формируется с помощью цепочек R7VD3 и R8VD4. Светящийся светодиод HL2 сигнализирует о подключении таймера к сетевой розетке. Для управления мощным высоковольтным полевым транзистором VТ1 используется напряжение +9,5… 12В, которое формируется стабилитроном VD5.

Микросхема DD1 питается напряжением +4,9…5,1 В, которое задаётся стабилитроном VD6.

При включении напряжения питания таймера счётчики DD1 сбрасываются благодаря цепи сброса C2R1. На выходе 9 DD1 появляется лог. 0, открывается VТ2, открывается VТ1, на нагрузку поступает напряжение питания переменного тока. DD1 включена как генератор-делитель частоты на 3686400 (2048*30*60). Соответственно, чтобы время выдержки составило 1 час (низкий уровень на выв.

9 DD1, частота RC генератора должна быть 512 Гц. Когда после окончания действия импульса сброса генератор DD1 отработает 1843200 тактов, низкий уровень на выв. 10 DD1 сменится на высокий, счётчики DD1 остановятся.

Рис.1. Принципиальная схема таймера для нагрузок с напряжением 220В.

На выв. 9 DD1 установится логическая 1, VT2, VT1 закроются, нагрузка будет обесточена, HL1 погаснет. Вывод 9 микросхемы КР512ПС10 выполнен по схеме с открытым стоком. Резистор R2 уменьшает вероятность повреждения DD1 при разряде через кнопку пуска SB1 статического электричества, потенциал тела человека в движущемся транспорте может превышать 50 кВ. Диоды VD2 и VD7 уменьшают вероятность повреждения полевого транзистора VТ1.

Время выдержки задают с помощью переменного резистора R4, при левом по схеме положении движка переменного резистора R4 частота генератора будет 512 Гц, а при правом, когда сопротивление R4 максимально, частота уменьшится до 50…51 Гц, время выдержки таймера составит около 10 часов.

Для запуска или перезапуска таймера необходимо кратковременно замкнуть и разомкнуть контакты кнопки SB1. Отсчёт начнётся с момента размыкания контактов. Кратковременные (до нескольких десятков минут) отключения напряжения сети 230 В не приведут к сбросу счётчиков DD1.

Это означает, что не произойдёт самопроизвольного перезапуска таймера после его остановки. Если отключение напряжения сети произошло до отработки таймером времени выдержки, то работа счётчиков и генератора DD1 будет возобновлена после включения напряжения сети.

Таймер был изготовлен на монтажной плате размером 55×38 мм, монтаж навесной, слаботочные цепи выполнены проводом МГТФ-0,03. Навесной монтаж в компактной конструкции с сетевым питанием значительно снижает вероятность самовозгорания монтажной платы из-за наличия близко расположенных печатных дорожек с большой разностью потенциалов, ввиду отсутствия таковых.

Также удешевляется и ускоряется процесс изготовления несложной конструкции. Корпус таймера — пластмассовая коробка размером 60x45x40 мм (без выступа и штырей) от сетевого адаптера — активная вилка.

Схема импульсного блока питания

Принципиальная схема импульсного блока питания, используемого совместно с таймером, показана на рис. 2. Это восстановленная по печатной плате схема источника питания промышленного изготовления типа FJ-SW1210X, который ранее использовался для питания «автомобильного» телевизора от сети переменного тока.

Обозначения дополнительно установленных деталей начинаются с цифры «1». Схема блока питания относительно стандартная. Напряжение сети переменного тока поступает на мостовой диодный выпрямитель D1 — D4 через помехоподавляющие дроссели 1L1, 1L2, терморезистор RT1 и плавкий предохранитель FUSE. Конденсатор С102 сглаживает пульсации выпрямленного напряжения.

На мощном высоковольтном полевом транзисторе Q102 собран узел преобразователя напряжения. Демпфирующая цепочка реализована на D107, R102, С103. Резистор R105 — датчик тока Q102.

При росте тока через открытый переход Q102, растёт напряжение на выводах резистора R105. Когда оно становится выше 0,7 В, Q1 открывается и шунтирует затвор — исток Q102. Полевой транзистор закрывается.

Резистор R101 нужен для запуска преобразователя после подачи напряжения питания. Стабилитрон ZD1 защищает полевой транзистор от пробоя изоляции затвора. На интегральной микросхеме ІС3 реализован узел стабилизации выходного напряжения, которое задаётся резисторами R202, R201.

Чем больше сопротивление R202, тем выше выходное напряжение блока питания.

Если по различным причинам выходное напряжение БП стремиться увеличиться, то растёт ток через светодиод оптрона ІС1. Это приводит к увеличению тока через фототранзистор оптрона, что приводит к открыванию Q101, таким образом осуществляется стабилизация напряжения на выходе БП.

При неисправности цепи стабилизации возможен мгновенный выход из строя диода Шоттки D201. Конденсаторы С201 и С203 сглаживают пульсации выпрямленного напряжения 12 В. Конденсатор С202 предотвращает самовозбуждение ІС1. Светодиод HL1 светит при наличии напряжения на выходе БП.

Рис.2. Принципиальная схема импульсного блока питания на напряжение 12В и ток 1,2А.

Детали и конструкция

Постоянные резисторы могут быть типа С1-4, С1-10, С1-14, С2-23, МЯТ, РПМ и аналогичные соответствующей мощности. Переменный резистор R4 предпочтительнее применить малогабаритный импортный. При использовании отечественного следует учитывать, что «наши» переменные резисторы могут иметь отклонение более 40 % от указанного на корпусе номинала, что усложнит настройку.

Автор применил импортный переменный резистор сопротивлением 99,2 кОм от узла настройки на канал от телевизора-радиоприёмника «Siesta». Ось применённого резистора пластмассовая, на неё надета регулировочная ручка из полистирола.

Дисковый варистор MYG10-471 можно заменить на FNR-10K471, FNR-14K471, INR14D471, INR14D511. Все дроссели малогабаритные промышленного изготовления от компьютерных устройств.

Если сопротивление обмотки дросселя L1 будет меньше 4 Ом, то последовательно с ним нужно включить проволочный резистор мощностью 2 Вт, если больше 7…8 Ом, то, возможно, придётся уменьшить максимальную мощность подключаемой нагрузки. Конденсаторы С1, С3 — С6 — высоковольтные керамические. Конденсатор С8 — SMD, устанавливают как можно ближе к выводам питания DD1.

Оксидные конденсаторы — импортные аналоги К50-68. Конденсатор С7 — плёночный К73-17, К73-24 или импортный аналог.

Диодный мост G2SBA60 рассчитан на ток 2А и напряжение 600 В, можно заменить на GBL06, RBV-406FI, G2SB60, или, например, на четыре выпрямительных диода 1N5406, КД226Г,1 N4006, КД243Ж, КД247Д. Этими же диодами можно заменить диоды 1N4005, 1N4007. Вместо диода FR107 подойдёт UF4007, FR157, FR207, FM207. Диод Шотки SR360 можно заменить на SR306 или MUR460, UF5403, FR303G, SRP300J.

Диод 1SS176S можно заменить на любой из серий 1 N914, 1 N4148, КД512,КД521, КД522.

Стабилитрон GZS12Z можно заменить на 1N4742A, BZV55C-12, TZMC-12 или отечественный 2С212Ц, КС212Ц. Вместо стабилитрона BZV55C-18 подойдёт 1N4746A, TZMC-18. Стабилитрон GZC5.1Z можно заменить на 1N4733A, BZV55C-5V1, TZMC-5V1.

Можно попробовать установить на место VD6 отечественный стабилитрон 2С151Т1. При установке на место ZD1 и, или VD5 отечественных стабилитронов, можно получить неработающую конструкцию или повредить из-за перегрева мощные полевые транзисторы.

Светодиоды RL30-CB744D синего цвета свечения и RL30-DR344S красного — с повышенной светоотдачей. Можно заменить любыми аналогичными, например, из серий КИПД21, КИПД40, КИПД66, L-1513.

Одним из таких светодиодов можно заменить АЛ307К. Вместо оптрона РС817 подойдёт любой четырёхвыводный РС817, PS817S, PS2501-1, РС814, РС120, РС123SFH617А-2, LTV817.

Транзистор 2SA1266 можно заменить на любой из серий SS9015, ВС557, КТ3107, КТ6112. Вместо КТС9013 может работать любой из ВС547, SS9013, SS9014, 2SC1815, КТ3102, КТ645, КТ6111.

Основное требование к VT2 — малый обратный ток коллектора. Полевой транзистор VT1 при мощности нагрузки до 30 Вт работает без теплоотвода. При мощности нагрузки 16 Вт (лампа накаливания) падение напряжения на открытом канале сток-исток не превышает 50 мВ, а с нагрузкой 60 Вт не более 200 мВ. Вместо 2SK1118 можно установить BUZ40B, IRFP450, IRF450, TSD2M450V, КП787А.

Лучшим вариантом на место VT1 будет современный полевой транзистор SPP20N60S5 или STW20NB50, MTW20N50E, SPW47N60C3. Вместо полевого транзистора SSS6N60A подойдёт SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, 2SK2562, P4NK60ZFP. При монтаже полевых транзисторов их необходимо защищать от пробоя статическим электричеством.

Кнопка SB1 любая малогабаритная со свободно разомкнутыми контактами без фиксации положения с пластмассовым толкателем. Если у кнопки есть металлическая обойма, то её соединяют с «минусом» VD1. Этим уменьшается вероятность негативного воздействия на DD1 разряда статики при приближении пальца к толкателю кнопки.

Вместо клавишного выключателя KCD-2011 подойдёт MR21, SWA206A, KCD1-101. Вместо микросхемы TL431A подойдёт любая в корпусе ТО-92 из LM431ACZ, AZ431, AN1431T.

Налаживание

Первичную настройку таймера производят без его подключения к сети. Для этого, через резистор 820 Ом на стабилитрон VD5, соблюдая полярность, подают напряжение 15 В постоянного тока. После чего, установив движок R4 в левое по схеме положение, подбором С7 устанавливают частоту генератора 512 Гц.

Затем производят градуировку шкалы переменного резистора, нанося на корпусе таймера цветные метки. Значения частоты генератора для каждого часа выдержек указаны в таблице.

F, Гц. 512 256 171 128 102 85 73 64 59 51
Т, Час. 1 2 3 4 5 6 7 8 9 10

Для каждой метки шкалы сверлом 1,2 мм высверливают небольшое углубление, которое заполняется каплей цветного лака для ногтей. Таким образом, получается долговечная шкала. Затем, отсоединив источник питания постоянного тока, при отключенной нагрузке на таймер подают напряжение сети. Проверяют напряжение на VD5, VD6.

Если при светящемся HL1 напряжение на VD5 меньше 9 В, а на VD6 меньше 4,8 В, то, возможно, были применены или некачественные стабилитроны, или конденсаторы С9, С10 с большим током утечки, или дефектный экземпляр DD1. Если всё нормально, к таймеру можно подключить нагрузку.

Для удобства проверки работоспособности устройства вывод 12 DD1 можно временно подключить к выв. 13, тем самым, подав на него уровень логического 0. Тогда таймер будет отсчитывать не часовые, а минутные интервалы.

Бутов А.Л. РК-2016-03.

Литература:

  1. Бирюков С. Генератор-делитель частоты КР512ПС10. — Р2000, № 1, стр. 51, 52.
  2. Новаченко И. В., Телец В.А., Редькина Л.И., Краснодубец А.Ю. Микросхемы для бытовой радиоаппаратуры., 1992, стр. 105- 110.
  3. Зуев Е., Бутов А. «Вечерний свет». — Р2002, № 5, стр. 33, 34.
  4. Иванов А. Реле указателя поворотов на КР512ПС10. — Р1993, № 7, стр. 35.
  5. Иванов А. Генератор прямоугольных импульсов инфранизкой частоты на КР512ПС10. — Р1991, № 12, стр. 32.
  6. Бирюков С. Применение микросхемы КР512ПС10. — Р2000, № 8, стр. 44.
  7. Бутов А. Двуполярный блок питания с таймером. — РК2014, № 10, стр. 13- 15.
  8. Бутов А. Универсальное реле времени на полевых транзисторах. — РК2002, № 10, стр. 30 — 32.

www.qrz.ru

Еще один блок питания, 12 Вольт 30 Ампер и 360 Ватт

На самом деле данный обзор является лишь промежуточным шагом к тестам более мощных блоков питания, которые уже в пути ко мне. Но я подумал, что данный вариант также нельзя оставлять без внимания, потому и заказал его для обзора.

Буквально несколько слов об упаковке.
Обычная белая коробка, из опознавательных знаков только номер артикула, все.

При сравнении с блоком питания из предыдущего обзора выяснилось, что обозреваемый просто немного длиннее. Обусловлено это тем, что обозреваемый БП имеет активное охлаждение, потому при практически том же объеме корпуса мы имеем мощность в полтора раза больше.
Размеры корпуса составляют — 214х112х50мм.

Все контакты выведены на один клеммник. Назначение контактов выбито штамповкой на корпусе блока питания, такой вариант немного надежнее чем наклейка, но хуже заметен.
Крышка закрывается с заметным усилием и прочно фиксируется в закрытом состоянии. При открывании обеспечивается полный доступ к контактам. Иногда у БП встречается ситуация, когда крышка не открывается полностью, потому теперь я этот момент проверяю обязательно.

1. На корпусе блока питания присутствует наклейка с указанием базовых параметров, мощности, напряжения и тока.
2. Также присутствует переключатель входного напряжения 115/230 Вольт, который в наших сетях является лишним и не всегда безопасным.
3. Блок питания выпущен почти год назад.
4. Около клеммника присутствует светодиод индикации работы и подстроечный резистор для изменения выходного напряжения.

Сверху располагается вентилятор. Как я писал в предыдущем обзоре, мощность 240-300 Ватт является максимальной для блоков питания с пассивным охлаждением. Конечно есть безвентиляторные БП и на большую мощность, но встречаются они гораздо реже и стоят весьма дорого, потому введение активного охлаждения преследует цель сэкономить и сделать блок питания дешевле.

Крышка фиксируется шестью небольшими винтами, но при этом и сама по себе сидит плотно, корпус алюминиевый и также как у других БП выполняет роль радиатора.

В качестве сравнения приведу фото рядом с БП мощностью 240 Ватт. Видно что в основном они одинаковы, и по сути 360 Ватт Бп отличается от своего младшего собрата только наличием вентилятора и некоторыми небольшими коррективами связанными с большей выходной мощностью.

Например силовой трансформатор у них имеет одинаковый размер, а вот выходной дроссель у обозреваемого заметно больше.
Общая черта обоих БП — весьма свободный монтаж и если у БП с пассивным охлаждением это оправданно, то при наличии активного охлаждения размер корпуса можно было смело уменьшить.

Перед дальнейшей разборкой проверка работоспособности.
Исходно на выходе напряжение немного завышено относительно заявленных 12 Вольт, хотя по большому счету это не имеет никакого значения, меня больше интересует диапазон перестройки и он составляет 10-14.6 Вольта.
В конце выставляю 12 Вольт и перехожу к дальнейшему осмотру.

Как ни странно, но емкость входных конденсаторов совпадает с указанной на их корпусе 🙂
Емкость каждого из конденсаторов 470мкФ, суммарная около 230-235мкФ, что заметно меньше рекомендуемых 350-400 которые необходимы блоку питания мощностью 360 Ватт. По хорошему должны быть конденсаторы с емкостью хотя бы 680мкФ каждый.

Выходные конденсаторы имеют суммарную емкость в 10140мкФ, что также не очень много для заявленных 30 Ампер, но часто такую емкость имеют конденсаторы и у фирменных БП.

Транзисторы и выходные диоды прижаты к корпусу через теплораспределительную пластину, в качестве изоляции выступает только теплопроводящая резина.
Обычно в более дорогих БП применяется колпачок из более толстой резины, который полностью закрывает компонент и если для выходных диодов он особо не нужен, то вот для высоковольтных транзисторов явно не помешал бы. Собственно по этому я советую в целях безопасности заземлять корпус БП.
Теплораспределительные пластины прижаты к алюминиевому корпусу, но термопаста между ними и корпусом отсутствует.

После случая с одним из блоков питания я теперь всегда проверяю качество прижима силовых элементов. Здесь с этим проблем нет, впрочем обычно проблем со сдвоенными элементами и не бывает, чаще сложности когда мощный элемент один и прижат Г-образной скобой.

Вентилятор самый обычный, с подшипниками скольжения, но почему-то на напряжение 14 Вольт.
Размер 60мм.

Разбираем дальше.
Плата держится на трех винтах и элементах крепления силовых компонентов. Снизу корпуса присутствует защитная изолирующая пленка.

Фильтр довольно стандартен для подобных БП. Входной диодный мост имеет маркировку KBU808 и рассчитан на ток до 8 Ампер и напряжение до 800 Вольт.
Радиатор отсутствует, хотя при такой мощности уже желателен.

1. На входе установлен термистор диаметром 15мм и сопротивлением 5 Ом.
2. Параллельно сети присутствует помехоподавляющий конденсатор класса Х2.
3. Помехоподавляющие конденсаторы имеющие непосредственную связь с сетью установлены класса Y2
4. Между общим проводом выхода и корпусом БП установлен обычный высоковольтный конденсатор, но в этом месте его достаточно так как при отсутствии заземления он подключен последовательно с конденсаторами класса Y2, показанными выше.

ШИМ контроллер KA7500, аналог классической TL494. Схема более чем стандартна, производители просто штампуют одинаковые БП, которые отличаются только номиналами некоторых компонентов и характеристиками трансформатора и выходного дросселя.
Выходные транзисторы инвертора также классика недорогих БП — MJE13009.

1. Как я писал выше, входные конденсаторы имеют емкость 470мкФ и что интересно, если конденсаторы имеют изначально непонятное название, то чаще емкость указана реальная, а если подделка, например Rubicong, то чаще занижена. Вот такое вот наблюдение. 🙂
2. Магнитопровод выходного трансформатора имеет размеры 40х45х13мм, обмотка пропитана лаком, правда весьма поверхностно.
3. Рядом с трансформатором присутствует разъем для подключения вентилятора. Обычно в описании подобных БП указывают автоматическую регулировку оборотов, на самом деле ее здесь нет. Хотя вентилятор меняет обороты в небольших пределах в зависимости от выходной мощности, просто это скорее побочный эффект. При включении вентилятор работает очень тихо, а на полную мощность выходит при токе около 2.5 Ампера что составляет меньше 10% от максимальной.
4. На выходе пара диодных сборок MBR30100 по 30 Ампер 100 Вольт каждая.

1. Размеры выходного дросселя заметно больше чем у 240 Ватт версии, намотан в три провода на двух кольцах 35/20/11.
2. Как и ожидалось после предварительной проверки, выходные конденсаторы имеют емкость 3300мкФ, так как они новые, то в сумме показали не 9900, а 10140мкФ, напряжение 25 Вольт. Производитель, известный всем noname.
3. Токовые шунты для схемы защиты от КЗ и перегрузки. Обычно ставят одну такую «проволочку» на 10 Ампер тока, соответственно здесь БП 30 Ампер и три такие проволочки, но мест 7, потому предположу что есть похожий вариант но с током в 60 Ампер и меньшим напряжением.
4. А вот и небольшое отличие, компоненты отвечающие за блокировку при пониженном выходном напряжении перенесли ближе к выходу, хотя при этом сохранили даже позиционные месте согласно схеме. Т.е. R31 в схеме БП 36 Вольт соответствует R31 в схеме БП 12 Вольт, хотя находятся в разных местах на плате.

При беглом взгляде я бы оценил качество пайки на твердую четверку, все чисто, аккуратно.

Пайка довольно качественная, на плате в узких местах сделаны защитные прорезы.

Но «ложка дегтя» все таки нашлась. Некоторые элементы имеют непропай. Место особенно несущественно, важен сам факт.
В данном случае плохая пайка была обнаружена на одном из выводов предохранителя и конденсатора цепи защиты от снижения напряжения на выходе.
Исправить дело нескольких минут, но как говорится — «ложки нашлись, а осадочек остался».

Так как схему подобного БП я уже чертил, то в данном случае просто внес коррективы в уже существующую схему.
Кроме того я выделил цветом элементы, которые изменены.
1. Красным — элементы которые меняются в зависимости от изменения выходного напряжения и тока
2. Синим — изменение номиналов этих элементов при неизменной выходной мощности мне непонятно. И если с входными конденсаторами отчасти понятно, они были указаны как 680мкФ, но реально показывали 470, то зачем увеличили в полтора раза емкость С10?
В схеме есть ошибка, С10 имеет емкость 3.3мкФ, а не 330нФ.

С осмотром закончили, переходим к тестам, для этого я использовал привычный «тестовый стенд», правда дополненный Ваттметром.
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ваттметр, обзора нет.
7. Ручка и бумажка.

На холостом ходу пульсации практически отсутствуют.

Небольшое уточнение к тесту. На дисплее электронной нагрузки вы увидите значения токов заметно ниже чем я буду писать. Дело в том, что нагрузка аппаратно умеет нагружать большими токами, но программно ограничена на уровне в 16 Ампер. В связи с этим пришлось сделать «финт ушами», т.е. откалибровать нагрузку на двукратный ток, в итоге 5 Ампер на дисплее равны 10 Ампер в реальности.

При токе нагрузки 7.5 и 15 Ампер блок питания вел себя одинаково, полный размах пульсаций в обоих случаях составил около 50мВ.

При токах нагрузки 22.5 и 30 Ампер пульсации заметно выросли, но при этом были на одном уровне. Рост уровня пульсаций был при токе около 20 Ампер.
В итоге полный размах составил 80мВ.
Отмечу очень хорошую стабилизацию выходного напряжения, при изменении тока нагрузки от нуля до 100% напряжение изменилось всего на 50мВ. Причем с ростом нагрузки напряжение растет, а не падает, что может быть полезным. В процессе прогрева напряжение не изменялось, что также является плюсом.

Результаты теста я свел в одну табличку, где показана температура отдельных компонентов.
Каждый этап теста длился 20 минут, тест с полной нагрузкой проводился два раза для термопрогрева.
Крышка с вентилятором вставлялась на место, но не привинчивалась, для измерения температуры я ее снимал не отключая БП и нагрузку.
<img src=»https://img.mysku-st.ru/uploads/images/02/55/13/2017/03/06/fd8210.jpg» alt=»» rel=»lbox» />

В качестве дополнения я сделал несколько термограмм.
1. Нагрев проводов к электронной нагрузке при максимальном токе, также через щели в корпусе видно тепловое излучение от внутренних компонентов.
2. Самый большой нагрев имеют диодные сборки, думаю если бы производитель добавил радиатор как это сделано в 240 Ватт версии, то нагрев существенно снизился.
3. Кроме того большой проблемой был отвод тепла от всей этой конструкции, так как суммарная рассеиваемая мощность всей конструкции составила более 400 Ватт.
<img src=»https://img.mysku-st.ru/uploads/images/02/55/13/2017/03/06/75c9d4.jpg» alt=»» rel=»lbox» />
Кстати насчет отвода тепла. Когда я готовил тест, то больше боялся что нагрузке тяжело будет работать при такой мощности. Вообще я проводил уже тесты на такой мощности, но 360-400 Ватт это предельная мощность которую моя электронная нагрузка может рассеивать длительно. Кратковременно же она без проблем «тянет» и 500 Ватт.
Но проблема вылезла в другом месте. На радиаторах силовых элементов у меня установлены термовыключатели рассчитанные на 90 градусов. Один контакт у них припаян, а второй припаять не получилось и я применил клеммники.
При токе 15 Ампер через каждый выключатель эти контакты начинали довольно сильно нагреваться и срабатывание происходило раньше, пришлось принудительно охлаждать еще и эту конструкцию. А кроме того пришлось частично «разгрузить» нагрузку подключением к БП нескольких мощных резисторов.

Но вообще выключатели рассчитаны максимум на 10 Ампер, потому я и не ожидал от них нормальной работоспособности при токе в 1.5 раза больше их максимума. Теперь думаю как их переделать, видимо придется делать электронную защиту с управлением от этих термовыключателей.

А кроме того теперь у меня появилась еще одна задача. По просьбе некоторых читателей я заказал для обзора блоки питания мощностью 480 и 600 Ватт. Теперь думаю чем их лучше нагружать, так как такую мощность (не говоря о токах до 60 Ампер), моя нагрузка точно не выдержит.

Как и в прошлый раз я измерил КПД блока питания, этот тест я планирую проводить и в дальнейших обзорах. Проверка проходила при мощности 0/33/66 и 100%

Вход — Выход — КПД.
5.2 — 0 — 0
147,1 — 120,3 — 81,7%
289 — 241 — 83,4%
437,1 — 362 — 82,8%

Что можно сказать в итоге.
Блок питания прошел все тесты и показал довольно неплохие результаты. В плане нагрева есть даже заметный запас, но выше 100% я бы не советовал его нагружать. Порадовала весьма высокая стабильность выходного напряжения и отсутствие зависимости от температуры.
К тому что не очень понравилось я отнесу безымянные входные и выходные конденсаторы, огрехи пайки некоторых компонентов и посредственную изоляцию между высоковольтными транзисторами и радиатором.

В остальном блок питания самый обычный, работает, напряжение держит, сильно не греется.

На этом все, как обычно жду вопросов.

www.kirich.blog

Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

www.110volt.ru

САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В

   Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей — всё это можно вытащить из старой техники, как импортной, так и советской.


Принципиальная схема БП (уменьшенная)

   Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение. 


   Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах. 


   Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор. 


   Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП. 


   На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики — с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! Автор: Игорь.

   Форум по схемам простейших БП

   Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В




radioskot.ru

Снова блок питания, на этот раз 24 Вольта, 20 Ампер и 480 Ватт

По большому счету блоки питания друг от друга особо ничем не отличаются, но в этот раз все пошло по другому, отличалось многое, и об этом я и расскажу, выделяя ключевые моменты, думаю что это будет полезно.
Постараюсь сделать обзор коротким, ну или по крайней мере не очень длинным 🙂

Отличия начались еще с упаковки. Для начала в коробке было специальное «окошко», через которое видно наклейку с наименованием БП, удобно.
Во вторую очередь оказалось, что БП запаян в пленку, что также раньше мне не встречалось.

Внешне блок питания практически не отличается от предыдущей модели мощностью 360 Ватт, те же размеры, такая же решетка вентилятора.

В своих обзорах я практически всегда показываю фото клеммника. Начал я так делать после комментария, где мне писали что бывают БП, где крышка не открывается полностью, и вот мне тоже попался такой блок. Позже выяснилось, что это можно исправить, но «из коробки» крышка полностью не открывалась, неудобно.

Маркировка клемм не в виде наклейки, а проштампована на крышке. Также сделана предупреждающая надпись около вентилятора.
Крышка довольно тонкая, в одном месте ее даже продавило.

Как водится, есть и резистор для подстройки выходного напряжения, а также светодиод индикации работы.
Блок питания промаркирован как S-480-24. Выходной ток 20 Ампер. Я наверное никогда не пойму, зачем БП маркируют как LED Power supply, при чем здесь светодиоды если Бп универсальный, видимо так они лучше продаются.
Присутствует предупреждающая наклейка, а также переключатель 110/220 Вольт.
Выпущен БП в конце 2016 года, можно сказать что свежий.

Когда я снял крышку, то на некоторое время даже завис 🙂 Ну наконец то что-то отличное от уже набивших оскомину классических БП на базе TL494. Внутри практически пусто, как говорится -это жжж.. неспроста.
Корпус также немного отличается, обычно крышка крепится на шести винтах, в данном случае два винта и пара выступов вверху.

Чтобы было лучше понятно разницу между «классическим» БП и этим, я сделал пару фото в сравнении с предыдущим БП 12 Вольт 360 Ватт.

Первым делом осмотр крепления силовых элементов. И хотя если транзисторы или диоды стоят парами, то 99% что проблем не будет, я все равно продолжаю осматривать крепеж.
Транзисторы и диоды прижаты планками к алюминиевому корпусу. Но теплораспределительных пластинок нет, т.е. силовые элементы просто прижаты к самому корпусу.
Замечаний нет, все ровно и аккуратно, даже накидали теплопроводящей пасты, сначала может показаться что ее уж слишком много, но на самом деле под элементами остался совсем тонкий слой.

Если внимательно посмотреть на второе фото, то можно заметить маркировку на печатной плате, судя по которой плата проектировалась для БП мощностью 360 Ватт.

Охлаждает начинку вентилятор диаметром 60мм. По ощущениям довольно производительный, впрочем об этом говорит и соотношение мощности к его размеру. Шумит не очень сильно, но заметно.

Первым же тестом идет измерение диапазона регулировки выходного напряжения.
1. Исходно БП был настроен на чуть большее чем 24 Вольта напряжение.
2. Минимально можно выставить около 14 Вольт, но работает БП в таком режиме нестабильно, пришлось переключить тестер в режим отображения минимальных и максимальных значений. Судя по всему БП в таком режиме недогружен, ШИМ контроллеру не хватает питания и он делает постоянный рестарт.
3. Стабильно БП начинает работать ближе к напряжению в 20 Вольт.
4. Максимально получилось выставить около 27 Вольт.
5. Выставляем штатные 24 Вольта и замечаем две вещи. Регулировка довольно грубая, непонятно зачем сделали регулировку аж от 14 Вольт, вполне могли урезать диапазон до 20-27, было бы более плавно.
6. Но проблема в другом, по мере прогрева выходное напряжение немного «плывет» вверх, это можно заметить по параметру МАХ и времени рядом.

Раз уж измерял напряжение, то попутно измерил емкость входных и выходных конденсаторов.
Входные имеют суммарную емкость в 313 мкФ, что маловато для мощности 480 Ватт, с выходными картина не лучше, около 7000мкФ, тоже хотелось бы больше. Но как я неоднократно указывал, у брендовых БП емкость выходных конденсаторов примерно такая же при подобных характеристиках БП.

Вот теперь можно спокойно разобрать и посмотреть, какие отличия нам приготовили китайские инженеры.

Первый «сюрприз» ждал меня практически сразу. Еще при разборке я обратил внимание, что мест для винтов крепления платы пять, а самих винтов всего четыре. Но отсутствовал не средний, как обычно, а угловой.
Забегая немного вперед, скажу, винт нашелся когда я случайно стукнул плату уже ближе к концу осмотра, предположительно он был под трансформатором. Непорядок.

На входе блока питания установлен фильтр от помех, поступающих со стороны блока питания в сеть. Фильтр набран в типичной для подобных БП конфигурации.

1. Перед фильтром установлен предохранитель и пара термисторов для ограничения пускового тока. Иногда меня спрашивают, а зачем отмечают в таких БП фазу и ноль. Дело в том, что в БП один предохранитель и стоит он обычно по линии фазы, соответственно при выходе БП из строя электроника не только обесточится, а и не будет под потенциалом фазы.
2. Дальше идет помехоподавляющий конденсатор и двухобмоточный дроссель, намотанный довольно толстым проводом.
3. Все помехоподавляющие конденсаторы, которые влияют на безопасность, применены правильного Y2 типа. В фильтре использован только один простой высоковольтный конденсатор, но его применение не снижает уровень безопасности.
4. Диодный мост набран из четырех диодов 1N5408, что на мой взгляд не очень хорошо при таких мощностях, спасает ситуацию только активное охлаждение. Зато рядом видно место под установку конденсатора. На это место можно установить конденсатор на напряжение 400-450 Вольт и он будет «помогать» уже установленным.

Необычно выглядят четыре фильтрующих конденсатора вместо привычных двух. На корпусе значок известной фирмы, но не обольщайтесь, это не фирменные конденсаторы. Внешне это заметно по кривизне термоусадки вверху корпуса.
Заявленная емкость фильтра 470мкф, включение 2S2P, реальная емкость 313мкФ, я не думаю что реальные фирменные конденсаторы имели бы такой разброс, да и сам габарит говорит за себя.

Что интересно, трансформатор применен примерно того же размера, что и в предыдущем БП 360 Ватт. Но работает обозреваемый БП на частоте в 2 раза больше, чем у предыдущего.

1. В этот раз применены полевые транзисторы, а не привычные по предыдущим обзорам, биполярные. Транзисторы IRFP460, но судя по внешнему виду транзисторы отличаются, что может говорить об их БУшности, потому как на нормальном производстве обычно транзисторы из одной партии, не говоря о внешнем виде.
2. Примерно та же картина и с выходными диодыми сборками. Обе имеют маркировку 43CTQ100, но при этом разные внешне.
3. Выходной дроссель намотан в четыре провода и имеет относительно небольшой размер, особенно в сравнении с предыдущими моделями БП, которые я обозревал.
4. Выходные конденсаторы неизвестного производителя, напряжение 35 Вольт, емкость 2200мкФ.

Выходной помехоподавляющий дроссель привычно отсутствует, да и вообще в мощных БП (по крайней мере китайских) попадается крайне редко.
Рядом с конденсаторами находится мощный резистор, «благодаря» которому при прогреве «уползает» выходное напряжение.

Обычно в обзорах я осматриваю печатную плату и чаще всего пишу — плата чистая, пайка аккуратная, но не в этом случае, здесь все наоборот.

Но кроме всего прочего меня удивила разводка печатной платы. Чаще всего рекомендуется размещать силовые узлы как можно ближе друг к другу. А если сказать точнее, то — связанные силовые узлы.
В данном случае мы видим кучу длинных дорожек идущих от силовых транзисторов к трансформатору, параллельно им идет дорожка питания, а также общий провод. На мой личный взгляд такое решение не очень правильно и чревато большими помехами в радиоэфире. Ситуацию спасает только полностью металлический корпус блока питания, который рекомендуется заземлить.

Выходная часть большей частью представляется из себя полностью залуженные полигоны, что правильно при таких токах.
Но если посмотреть чуть ниже, то мы увидим жменьку радиодеталей, это элементы цепи обратной связи, с другой стороны платы, сразу над ними, расположен нагрузочный резистор (нарисовал на фото), который ощутимо греется. Нагрев влияет на компоненты и напряжение «плывет», не помогают даже точные резисторы. В данном случае это не страшно, так как уход небольшой, но он есть. Перфекционисты могут просто поднять резистор над платой и попутно уменьшить нагрев стоящего рядом электролитического конденсатора.

А вот за резисторы под сетевым фильтром спасибо. Мало того что резисторы стоят как минимум парами, а в цепи питания ШИМ контроллера так вообще 4 штуки. Так еще и присутствуют резисторы до диодного моста и после. Первые разряжают входной помехоподавляющий конденсатор, вторые, конденсаторы фильтра питания.

БП собран на базе популярного ШИМ контроллера UC2845, потому получается, что БП однотактный. Еще одно важное отличие, так как предыдущие были на базе TL494. По сути оба ШИМ контроллера разработаны примерно в одно время, потому на данный момент являются самыми классическими среди применяемых в БП. Данная особенность является плюсом, так как такие БП проще в ремонте.

Не обошлось и без косяков. Вообще китайский БП и косяки, братья навек, меняется только уровень.
В данном случае сразу был обнаружен неприпаянный вывод снаббера одного из выходных диодов, не очень хорошо.
Кроме этого по всей плате видны мелкие шарики припоя, а также следы от пайки в ванне. Данные следы могут либо вообще не повлиять, либо просто выгореть при первом включении и также никак не повлиять, либо вывести БП из строя. Исправляеются недоработки очень просто, но технолог на производстве явно получает свою зарплату зря, если он там вообще есть.

Блок питания с такой схемотехникой я еще не обозревал, потому вдвойне было интересно начертить его схему. Если на фото кажется что деталей в нем совсем мало, то глядя на схему такое ощущение пропадает.

Дальше я разбил схему на условные узлы, цвета могут быть малоконтрастны, извините, выбор небольшой.
1. Красный — силовая высоковольтная (горячая) часть
2. Синий — выходная низковольтная (холодная) часть, узел обратной связи и схема питания вентилятора.
3. Зеленый — ШИМ контроллер и его штатная обвязка.
4. Оранжевый — предположительно узел плавного старта и защиты от КЗ на выходе.
5. Неизвестный мне цвет — диод около трансформатора, узел защиты от насыщения трансформатора.

Номиналы и позиционные обозначения в большинстве соответствуют реальности, но номиналы некоторых SMD конденсаторов указаны ориентировочно, так как я не выпаивал их из платы.

Данный БП построен по однотактной прямоходовой (Forward) схемотехнике, тогда как более распространенные маломощные однотактные БП строятся по однотактной обратноходовой (Flyback).
На блок схеме я выделил цветом узлы прямоходового преобразователя (справа), которых нет в схеме обратноходового (слева). В прямоходовом добавлен диодов, дроссель и одна из обмоток трансформатора включена в обратной полярности (это важно).
Кроме того есть еще одно отличие, в случае прямоходовой схемы у сердечника трансформатора не делают зазор, который обязателен в обратноходовой схеме.

Прямоходовая схемотехника (особенно однотактная) очень похожа на классический понижающий (stepdown) преобразователь.
В обоих схемах входной ключ «накачивает» выходной дроссель, а в паузе через диод отдает энергию в нагрузку. Только в случае прямоходомого БП в роли ключа выступает как сам транзистор, так и трансформатор и один из выходных диодов.
Покажу сходные узлы, они обозначены одним цветом для наглядности. Думаю что теперь понятно, почему выше я писал, что фильтрующего выходного дросселя в этом БП нет, потому как тот что установлен является накопительным. Закорачивать этот дроссель категорически нельзя.

Обычно прямоходовая схема используется при больших мощностях, а обратноходовая при малых. Обусловлено это тем, что у обратноходовой схемы трансформатор имеет зазор и размеры трансформатора начинают становиться существенными, кроме того контролировать выбросы труднее и схема может работать менее стабильно.

Но у прямоходовых мощных схем также хватает сложностей. В данном случае в схему добавлен дополнительный диод и обмотка трансформатора. Эта цепь необходима для защиты трансформатора от насыщения при нештатных ситуациях (например КЗ в нагрузке). В цветном варианте схемы этот узел отмечен «неизвестным цветом».
Цитата, описывающая этот узел, взята отсюда (внимание, возможна навязчивая реклама).

Данная схема имеет несколько существенных недостатков. Во-первых, работа с однополярными токами в обмотках трансформатора требует мер по снижению одностороннего намагничения сердечника. Во-вторых, при размыкании ключа энергия, накопленная в индуктивности намагничения трансформатора, не может «разрядиться» самостоятельно, поскольку все выводы трансформатора «повисают в воздухе». В этом случае возникает индуктивный выброс — повышение напряжения на силовых электродах ключевого транзистора, что может привести к его пробою. В-третьих, короткое замыкание выходных клемм преобразователя обязательно выведет силовую часть из строя, следовательно, требуются тщательные меры по защите от КЗ.

Недостаток, связанный с намагничением сердечника однополярными токами, присущ всем однотактным схемам, и с ним успешно бо-рятся введением немагнитного зазора. Для борьбы с перенапряжениями используется дополнительная обмотка, «разряжающая» индуктивный элемент в фазе холостого хода током г3, как показано на рисунке

Дабы не перегружать читателей ненужной информацией, завязываю с теорией и перехожу к практике, а точнее к тестам.

Тестовый стенд стандартен для моих обзоров и состоит из:
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ваттметр, обзора нет.
7. Ручка карандаш и бумажка.

Уже на холостом ходу присутствуют небольшие пульсации, в данном случае некритичные.

Для теста использовалась комбинация из резисторов и электронной нагрузки.
1. Сначала было подключено два резистора, которые обеспечивали ток нагрузки около 4.8 Ампера, электронная нагрузка добавляла нагрузку до 5 Ампер.
Пульсации на мой взгляд великоваты для 25% нагрузки.
2. Та же пара резисторов с током 4.8 Ампера + 5.2 на электронной, в сумме 10 Ампер.
Пульсации более 100мВ, выходное напряжение немного поднялось, что хоть и является побочным эффектом, но в данном случае полезным.

1. Два резистора 4.8 Ампера + 10.2 на электронной, в сумме 15 Ампер.
Пульсации выросли, причем довольно существенно. На осциллографе выставлено 50мВ на клетку, щуп в положении 1:1, дальше можете посчитать сами.
Выходное напряжение еще немного поднялось.
2. В дополнение к двум нагрузочным резисторам добавил третий, в сумме получилось 7.2 Ампера + электронная 12.8, в сумме 20 Ампер ток нагрузки.
Пульсации еще выросли и стали очень ощутимыми, на установленном пределе измерения еле хватает экрана оциллографа.
Выходное напряжение также немного поднялось, но отмечу один момент. Выше я писал, что по мере прогрема напряжение растет, в процессе теста напряжение стояло жестко. Колебания если и были, то в пределах одного последнего знака. Т.е. подняли ток нагрузки, напряжение поднялось и не меняется до следующего шага теста, так что здесь плюс.

Измерение КПД стало уже неотъемлемой частью моих тестов БП, не обошел я вниманием и этот экземпляр, тем более что он имеет другую схемотехнику.
В итоге у меня вышло:
Вход — Выход — КПД.
7.1 — 0 — 0
144 — 120 — 83,3%
277 — 240 — 86,6%
414 — 360 — 86,9%
556 — 480 — 86,3%

На мой взгляд КПД находится на довольно приличном уровне, лучше чем у предыдущих БП, обзоры которых я делал.

Теперь по поводу температуры и ее распределения между элементами.
Больше всего нагревается входной диодный мост и трансформатор, но в обоих случаях температура находится далеко от критичной, потому я вполне могу сказать, что БП мог бы выдать и 550-600 Ватт. Особенно отмечу низкую температуру силовых транзисторов, они не прогревались выше 52 грудсов даже при максимальной мощности.
Тест проходил стандартно, 20 минут прогрев на 25% мощности, потом 20 минут на 50% и т.п. Общее время теста составило около полтора часа так как последний тест я решил немного продлить.
По большому счету не имело значения сколько бы я тестировал этот БП, так как термопрогрев у устройств с активным охлаждением наступает очень быстро и что через 20 минут, что через час, температура будет почти неизменной. У БП с пассивным охлаждением это время гораздо больше, потому я стараюсь тестировать их дольше.

Но не обошлось и без одной не очень приятной мелочи, свойственной блокам питания с активным охлаждением. Дело в том, что нормальная температура компонентов сохраняется в основном благодаря постоянному току воздуха внутри корпуса. Когда я снимал крышку для тестов, то отмечал быстрый рост температуры. К сожалению данная особенность свойственна всем БП имеющим активное охлаждение и при нагрузке выше 50% с остановленным вентилятором обычно заканчивается печально.

Чаще всего такое происходит из-за перегрева силового трансформатора. Я частенько отмечаю важность контроля температуры именно трансформатора, так при нагреве выше определенной температуры феррит теряет свои свойства.
Если объяснить «на пальцах», то происходит следующее:
Представьте себе насос (транзисторы инвертора), схему управления (ШИМ контроллер), баллон (трансформатор) и клапан (выходные диоды).
Насос качает воду (допустим) в баллон, потом пауза, выходной клапан сливает воду, потом цикл повторяется.
Чем больше нужна мощность, тем больше воды мы качаем в баллон. Но тут происходит перегрев, объем нашего баллона уменьшается раз в 5, но схема управления этого не знает и пытается качать как и раньше. Так как баллон стал меньше, то насос начинается работать с большой перегрузкой, а дальше два варианта, либо лопнет баллон, либо сгорит насос. Так как баллон очень крепкий, то выгорает насос, чаще всего унося с собой и схему управления и предохранитель.
Потому важно следить не за транзисторами, температура которых можно достигать и 150 градусов, а за трансформатором, у которого предел 110-120 градусов.

Блок питания не имеет контроля работы вентилятора и термозащиты, потому в случае его остановки (пыль, заклинивание), скорее всего сгорит. Такая ситуация с многими блока питания и потому важно следить за состоянием системы охлаждения.

На фото видно рост температуры трансформатора, где буквально за 20 секунд она поднимается с 92 градусов до 100 при снятой крышке. На самом деле температура изначально была ниже, просто она успела подрасти пока я открыл крышку и делал первое фото.

Зато в процессе теста нагрузочные резисторы грелись от души, температура около 250 градусов даже при обдуве, температура электронной нагрузки была существенно ниже, хотя на ней рассеивалось почти в 2 раза больше. Зато после последжних тестов у моей нагрузки в итоге подгорел один из термовыключателей и она норовила выключиться гораздо раньше чем достигала перегрева, никак не займусь новой версией.

Выводы.
Не буду расписывать преимущества и недостатки, а постараюсь дать выжимку из того, что я увидел.
Блок питания прошел тест под полной нагрузкой, нагрев был в пределах нормы и даже ниже ее, что дает возможность предположить нормальную работы и при заметно больших мощностях.
Но вот качество изготовления сильно хромает, также расстраивает заниженная емкость входных и низкое качество выходных конденсаторов. Данное устройство больше похоже на конструктор для сборки нормального БП, но укомплектованный абы как.

Получается что с одной стороны ругать не хочется, ведь БП работает, и работает нормально, с другой мелочи в виде капелек припоя, выпадающего винтика и т.п. требуют «доработки напильником».

Магазин дал купон для обзора — S480power, с ним цена выходит $22.99. На мой личный взгляд, даже с такими недоработками цена вполне адекватна, если не страшит перспектива проверки и доработки, то вполне нормально. Если хотите вариант купил и пользуйся, то лучше взять Менвелл, но цена будет выше. Купон будет действовать две недели.

На этом все, как обычно жду вопросов, а также комментариев. Ну а меня ждет блок питания мощностью 600 Ватт.

www.kirich.blog

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *