Ибп схема – СХЕМА BACK UPS

Содержание

СХЕМА BACK UPS

   Источник бесперебойного питания, или как в простонародье его называют ЮПС (BACK UPS) — это по сути повышающий преобразователь и зарядное устройство в одном корпусе. Устройство очень полезное, особенно для владельцев ПК. Устройство может автономно питать компьютер, если по каким-то причинам внезапно выключили электричество. К сожалению, встроенный аккумулятор не позволяет питать компьютер в течении долгого времени, поскольку его емкость ограничена 7-ю амперами (в некоторых мощных моделях стоит АКБ до 15-20А). Перейдем к самому аккумулятору. 

BACK UPS - аккумулятор в схеме

   В источниках бесперебойного напряжения используется закрытый гелиевый или кислотный аккумулятор. Встроенный аккумулятор рассчитан обычно на емкость от 7 до 8 Ампер/час, напряжение — 12 вольт. Аккумулятор полностью герметичен, это позволяет использовать устройство в любом состоянии. Помимо аккумулятора, внутри можно разглядеть громадный трансформатор, в данном случае на 400-500 ватт. Трансформатор работает в двух режимах —

 1) как повышающий трансформатор для преобразователя напряжения.

 2) как понижающий сетевой трансформатор для зарядки встроенного аккумулятора. 

   При работе в обычном режиме нагрузка питается отфильтрованным напряжением сети. Для подавления электромагнитных и помех во входных цепях используются фильтры. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. BACK UPS класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых производителями Back-UPS находится в диапазоне 250-1200 ВА. Схема источника бесперебойного напряжения BACK UPS достаточно сложна. В архиве вы можете скачать большой сборник принципиальных схем, а ниже приведены несколько уменьшенных копий — клик для увеличения. 

BACK UPS - аккумулятор в схеме

BACK UPS - аккумулятор в схеме

BACK UPS - аккумулятор в схеме

BACK UPS - аккумулятор в схеме

BACK UPS - аккумулятор в схеме

   Тут можно встретить специальный контроллер, который отвечает за правильную работу устройства. Контроллер активирует реле, когда сетевое напряжение отсутствует и если бесперебойник включен, то он будет работать как преобразователь напряжения. Если напряжение в сети снова появляется, то контролер отключает преобразователь и устройство превращается в зарядное устройство. Емкость встроенного аккумулятора может хватать до 10 — 30 минут, если, разумеется, устройство питает компьютер. Подробнее почитать про работу и назначение узлов бесперебойника можно почитать в этой книге. 

Плата печатная схемы BACK UPS

   BACK UPS может быть использован в качестве резервного источника питания, вообще рекомендуется иметь каждому дому по бесперебойнику. Если бесперебойный ИП предназначен для бытовых потребностей, то желательно выпаять с платы сигнализатор, он напоминает, что устройство работает как преобразователь, напоминание писком он делает в каждые 5 секунд, а это надоедает. На выходе преобразователя чистые 210-240 вольт 50 герц, но что касается формы импульсов, там явно не чистый синус. BACK UPS может питать любую бытовую технику, в том числе и активную, разумеется, если мощность устройства позволит этого.

el-shema.ru

Конструкция и ремонт ИБП фирмы APC.

Подробности
Категория: Источники питания

     Удивляет полное отсутствие информации о таких распространенных приборах, как источники бесперебойного питания. Мы прорываем информационную блокаду и приступаем к публикации материалов по их устройству и ремонту. Из статьи Вы получите общее представление о существующих типах бесперебойников и более подробное, на уровне принципиальной схемы, – о наиболее распространенных моделях Smart-UPS.

   Надежность работы компьютеров во многом определяется качеством электрической сети. Последствиями таких перебоев электропитания, как скачки, подъемы, спады и потеря напряжения, могут оказаться блокировка клавиатуры, потеря данных, повреждение системной платы и пр. Для защиты дорогостоящих компьютеров от неприятностей, связанных с силовой сетью, используют источники бесперебойного питания (ИБП). ИБП позволяет избавиться от проблем, связанных с плохим качеством электропитания или его временным отсутствием, но не является долговременным альтернативным источником электропитания, как генератор.

   ИБП делятся на три основных класса: Off-line (или stand-by), Line-interactive и On-line. Эти устройства имеют различные конструкции и характеристики.  Блок-схема ИБП класса Off-line приведена на рис. 1.  При работе в нормальном режиме нагрузка питается отфильтрованным напряжением электросети. Для подавления электромагнитных и радиочастотных помех во входных цепях используются фильтры EMI/RFI Noise на металло-оксидных варисторах. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей.

   Форма его выходного напряжения – прямоугольные импульсы положительной и отрицательной полярности с амплитудой 300 В и частотой 50 Гц. ИБП класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых фирмой APC ИБП класса Оff-line модели Back-UPS находится в диапазоне 250…1250 ВА, а модели Back-UPS Pro – в диапазоне 280…1400 ВА.  Блок-схема ИБП класса Line-interactive приведена на рис. 2. Так же, как и ИБП класса Off-line, они ретранслируют переменное напряжение электросети в нагрузку, поглощая при этом относительно небольшие всплески напряжения и сглаживая помехи.
   Входные цепи используют фильтр EMI/RFI Noise на металло-оксидных варисторах для подавления электромагнитных и радиочастотных помех. Если в электросети произошла авария, то ИБП синхронно, без потери фазы колебания, включает инвертор для питания нагрузки от батарей, при этом синусоидальная форма выходного напряжения достигается фильтрацией ШИМ-колебания. Схема использует специальный инвертор для подзарядки батареи, который работает и во время скачков сетевого напряжения. Диапазон работы без подключения батареи расширен за счет использования во входных цепях ИБП автотрансформатора с переключаемой обмоткой. Переход на питание от батареи происходит, когда напряжение электросети выходит за границы диапазона.
   Мощность выпускаемых фирмой APC ИБП класса Line-interactive модели Smart-UPS  составляет 250…5000 ВА.

Рис. 1. Блок-схема ИБП класса Off-line

Рис. 2. Блок-схема ИБП класса Line-interactive

Рис. 3. Блок-схема ИБП класса On-line

   Блок-схема ИБП класса On-line приведена на рис. 3. Эти ИБП преобразуют переменное входное напряжение в постоянное, которое затем с помощью ШИМ-инвертора преобразуется снова в переменное со стабильными параметрами. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения равно нулю. За счет инерционного звена постоянного тока, каким является батарея, происходит изоляция нагрузки от аномалий сети и формируется очень стабильное выходное напряжение. Даже при больших отклонениях входного напряжения ИБП продолжает питать нагрузку чистым синусоидальным напряжением с отклонением не более ±5% от устанавливаемого пользователем номинального значения. ИБП класса On-line фирмы АРС имеют следующие выходные мощности: модели Matrix UPS – 3000 и 5000 ВА, модели Symmetra Power Array – 8000, 12 000 и 16 000 ВА. Модели Back-UPS не используют микропроцессор, а в моделях Back-UPS Pro, Smart-UPS, Smart/VS, Matrix и Symmetria микропроцессор используется.

   Наибольшее распространение получили устройства: Back-UPS, Back-UPS pro, Smart-UPS, Smart-UPS/VS.
  Такие устройства, как Matrix и Symmetria, используются в основном для банковских систем.
   В этой статье рассмотрим конструкцию и схему моделей Smart-UPS 450VA…700VA, применяемых для питания персональных компьютеров (ПК) и серверов.
   ИБП Smart-UPS 450VA…700VA и Smart-UPS 1000VA…1400VA имеют одинаковую электрическую схему и отличаются емкостью батарей, количеством выходных транзисторов в инверторе, мощностью силового трансформатора и габаритами. Рассмотрим параметры, характеризующие качество электроэнергии, а также терминологию и обозначения. Проблемы с электропитанием могут выражаться в виде:
• полного  отсутствия  входного  напряжения –blackout;
• временного отсутствия или сильного падения напряжения, вызванного включением в сеть мощной нагрузки (электромотора, лифта и т.п.) – sag или brownout;
• мгновенного и очень мощного повышения напряжения, как при ударе молнии – spike;


Рис. 4. Структурная схема моделей Smart-UPS и Smart-UPS/VS
• периодического повышения напряжения, длящегося доли секунды, вызванного, как правило, изменениями нагрузки в сети – surge.
   В Росси провалы, пропадания и скачки напряжения как вверх, так и вниз составляют приблизительно 95% отклонений от нормы, остальное – шумы, импульсные помехи (иголки), высокочастотные выбросы.

   В качестве единиц измерения мощности используются Вольт-Амперы (ВА, VA) и Ватты (Вт, W). Они отличаются коэффициентом мощности PF (Power Factor):
W = VA х PF.
   Коэффициент мощности для компьютерной техники равен 0,6…0,7. Число в обозначении моделей ИБП фирмы АРС означает максимальную мощность в ВА.
   Например, модель Smart-UPS 600VA имеет мощность 400 Вт, а модель 900VA – 630 Вт.
   Структурная схема моделей Smart-UPS и Smart UPS/VS показана на рис. 4. Сетевое напряжение поступает на входной фильтр ЕМ/RFI, служащий для подавления помех электросети. При номинальном напряжении электросети включены реле RY5, RY4, RY3 (контакты 1, 3), RY2 (контакты 1, 3), RY1, и входное на пряжение проходит в нагрузку. Реле RY3 и RY2 используются для режима подстройки выходного напряжения BOOST/TRIM. К примеру, если напряжение сети увеличилось и вышло за допустимый предел, реле RY3 и RY2 подключают дополнительную обмотку W1 последовательно с основной W2. Образуется автотрансформатор с коэффициентом трансформации
K = W2 / (W2 + W1)
меньше единицы, и выходное напряжение падает. В случае уменьшения сетевого напряжения дополнительная обмотка W1 реверсируется контактами реле RY3 и RY2. Коэффициент трансформации
K = W2 / (W2 — W1)
становится больше единицы, и выходное напряжение повышается. Диапазон регулировки составляет ±12%, величина гистерезиса выбирается программой Power Chute. При пропадании напряжения на входе выключаются реле RY2…RY5, включается мощный ШИМ-инвертор, питающийся от батареи, и в нагрузку поступает синусоидальное напряжение 230 В, 50 Гц.
   Многозвенный фильтр подавления помех электросети состоит из варисторов МV1, МV3, МV4, дросселя L1, конденсаторов С14…С16 (рис. 5). Трансформатор СТ1 анализирует высокочастотные составляющие напряжения сети. Трансформатор СТ2 является датчиком тока нагрузки. Сигналы с этих датчиков, а также датчика температуры RTh2 поступают на аналого-цифровой преобразователь IC10 (ADC0838) (рис. 6).
 Трансформатор Т1 является датчиком входного напряжения. Команда на включение устройства (АС–ОК) подается c двухуровневого компаратора IC7 на базу Q6. Трансформатор Т2 – датчик выходного напряжения для режима Smart TRIM/BOOST. С выводов 23 и 24 процессора IC12 (рис. 6) сигналы BOOST и TRIM подаются на базы транзисторов Q43 и Q49 для переключения реле RY3 и RY2 соответственно.
   Сигнал синхронизации по фазе (PHAS-REF) с вывода 5 трансформатора T1 поступает на базу транзистора Q41 и с его коллектора на вывод 14 процессора IC12 (рис. 6).
   В модели Smart-UPS используется микропроцессор IC12 (S87C654), который:
• контролирует наличие напряжения в электросети. Если оно пропадает, то микропроцессор подключает мощный инвертор, работающий от батареи;
• включает звуковой сигнал для уведомления пользователя о проблемах с электропитанием;
• обеспечивает безопасное автоматическое закрытие операционной системы (Netware, Windows NT, OS/2, Scounix и Unix Ware, Windows 95/98), сохраняя данные через двунаправленный коммутационный порт при наличии установленной программы Power Chute plus;
• автоматически корректирует падения (режим Smart Boost) и превышения (режим Smart Trim) напряжения электросети, доводя выходное напряжение до безопасного уровня без перехода на работу от батареи;


Рис. 5. Входные цепи


Рис. 6. Включение процессора


Рис. 7. Выходной инвертор

Краткое описание дефекта  Возможная причина Способ отыскания и устранения неисправности

ИБП не включается

 Не подключены батареи Подключить батареи
Плохая или неисправная батарея, мала ее емкость Заменить батарею. Емкость заряженной батареи можно проверить лампой дальнего света от автомобиля (12 В, 150 Вт)
Пробиты мощные полевые транзисторы инвертора В этом случае на выводах батареи, подключенной к плате ИБП, нет напряжения. Проверить омметром и заменить транзисторы. Проверить резисторы в цепях их затворов.
Заменить IC16
Обрыв гибкого кабеля, соединяющего дисплей Эта неисправность может быть вызвана замыканием выводов гибкого кабеля на шасси ИБП. Заменить гибкий кабель, соединяющий дисплей с основной платой ИБП.Проверить исправность предохранителя F3 и транзистора Q5
Продавлена кнопка включения Заменить кнопку SW2
 ИБП включается только от батареи  Сгорел предохранитель F3  Заменить F3. Проверить исправность транзисторов Q5 и Q6
 ИБП не стартует. Светится
индикатор замены батареи
 Если батарея исправна, то ИБП неверно отрабатывает программу  Сделать калибровку напряжения батареи при помощи фирменной программы от APC
 ИБП не включается в линию  Оторван сетевой кабель или нарушен контакт  Соединить сетевой кабель. Проверить омметром
исправность пробки-автомата. Проверить соединение
шнура «горячий-нейтраль»
 Холодная пайка элементов платы  Проверить исправность и качество паек элементов L1, L2 и особенно Т1
 Неисправны варисторы  Проверить или заменить варисторы MV1…MV4
 При включении ИБП происходит сброс нагрузки  Неисправен датчик напряжения Т1  Заменить Т1. Проверить исправность элементов:D18 … D20, C63, C10
 Мигают индикаторы дисплея  Уменьшилась емкость конденсатора С17  Заменить конденсатор С17
 Вероятна утечка конденсаторов  Заменить С44 или С52
 Неисправны контакты реле или элементы платы  Заменить реле. Заменить IС3 и D20. Диод D20 лучше заменить на 1N4937
 Перегрузка ИБП  Мощность подключенного оборудования превышает номинальную  Уменьшить нагрузку
 Неисправен трансформатор Т2   Заменить Т2
 Неисправен датчик тока СТ1  Заменить СТ1. Сопротивление более 4 Ом указывает на неисправность датчика тока.
 Неисправна IС15  Заменить IС15. Проверить напряжение –8 В и 5 B. Проверить и при необходимости заменить: IС12, IС8, IС17, IС14 и мощные полевые транзисторы инвертора. Проверить обмотки силового трансформатора
 Не заряжается батарея Неверно работает программа ИБП  Откалибровать напряжение батареи фирменной программой от АРС. Проверить константы 4, 5, 6, 0. Константа 0 критична для каждой модели ИБП. Проверку константы делать после замены батареи.
Вышла из строя схема заряда батареи Заменить IС14. Проверить напряжение 8 В на выв. 9 IС14, если его нет, то заменить С88 или IС17
Неисправна батарея Заменить батарею. Емкость заряженной батареи можно проверить лампой дальнего света от автомобиля (12 В, 150 Вт)
Неисправен микропроцессор IС12 Заменить IС12
При включении ИБП не стартует, слышен щелчок Неисправна схема сброса Проверить и заменить неисправные элементы: IC11, IC15, Q51…Q53, R115, C77
Дефект индикаторов Неисправна схема индикации Проверить и заменить неисправные Q57…Q60 на плате
 ИБП не работает в режиме On-line  Дефект элементов платы  Заменить Q56. Проверить исправность элементов: Q55, Q54, IС12. Неисправна IС13, или ее придется перепрограммировать. Программу можно взять с исправного ИБП
 При переходе на работу от батареи ИБП выключается и включается самопроизвольно Пробит транзистор Q3  Заменить транзистор Q3

Таблица 3. Типовые неисправности ИБП Smart-Ups 450VA…700VA

• контролирует заряд батареи, тестирует ее реальной нагрузкой и защищает ее от перезаряда, обеспечивая непрерывную зарядку;
• обеспечивает режим замены батарей без отключения питания;
• проводит самотестирование (каждые две недели или по нажатию кнопки Power) и выдает предупреждение о необходимости замены батареи;
• индицирует уровень подзарядки батареи, напряжения в сети, нагрузки ИБП (количество подключенного к ИБП оборудования), режим питания от батареи и необходимость ее замены.
   В микросхеме памяти EEPROM IC13 хранятся заводские установки, а также калиброванные установки уровней сигналов частоты, выходного напряжения, границ перехода, напряжения зарядки батареи.
   Цифро-аналоговый  преобразователь  IC15 (DAC-08CN) формирует на выводе 2 эталонный синусоидальный сигнал, который используется как опорный для IC17 (APC2010).
   ШИМ-сигнал формируется IC14 (APC2020) совместно с IC17. Мощные полевые транзисторы Q9…Q14, Q19…Q24 образуют мостовой инвертор.
   Во время положительной полуволны ШИМ-сигнала открыты Q12…Q14 и Q22…Q24, а Q19…Q21 и Q9…Q11 закрыты. Во время отрицательной полуволны открыты Q19…Q21 и Q9…Q11, а Q12…Q14 и Q22…Q24 закрыты. Транзисторы Q27…Q30, Q32, Q33, Q35, Q36 образуют двухтактные драйверы, формирующие сигналы управления мощными полевыми транзисторами, имеющими большую входную емкость. Нагрузкой инвертора является обмотка трансформатора, она подключается проводами W5 (желтый) и W6 (черный). На вторичной обмотке трансформатора формируется синусоидальное напряжение 230 В, 50 Гц для питания подключенного оборудования.
   Работа инвертора в «обратном» режиме используется для зарядки батареи пульсирующим током во время нормальной работы ИБП.
   ИБП имеет встроенный слот SNMP, который позволяет подключать дополнительные платы для расширения возможностей ИБП:
• адаптер Power Net SNMP, поддерживающий прямое соединение с сервером на случай аварийного закрытия системы;
• расширитель интерфейса ИБП, обеспечивающий управление до трех серверов;
• устройство  дистанционного  управления Call-UPS, обеспечивающее удаленный доступ через модем.
   В ИБП имеется несколько напряжений, необходимых для нормальной работы устройства: 24 В, 12 В, 5 В и -8 В. Для их проверки можно воспользоваться табл. 2. Измерять сопротивление с выводов микросхем на общий провод следует при выключенном ИБП и разряженном конденсаторе С22. Типовые неисправности ИБП Smart-Ups 450VA…700VA и способы их устранения приведены в табл. 3.

Добавить комментарий

radiofanatic.ru

Ups Электрическая Схема — tokzamer.ru

Потребуется ремонт или замена платы зарядного устройства ИБП. В этом случае на чувствительных электронных компонентах компьютера возникают импульсные напряжения.


Далее переходим к разработке функциональной схемы ИБП и алгоритма ее работы.

В источниках бесперебойного напряжения используется закрытый гелиевый или кислотный аккумулятор.
Не включается. ИБП(UPS) Powercom BNT-400AP. Ремонт платы, замена батареи

Трансформатор СТ2 является датчиком тока нагрузки.

SmartUPS оборудован еще и датчиком реактивной составляющей выходного тока.

К примеру, если напряжение сети увеличилось и вышло за допустимый предел, реле RY3 и RY2 подключают дополнительную обмотку W1 последовательно с основной W2. Данная схема ИБП традиционно называется схемой с двойным преобразованием энергии.

Однако, здесь есть две особенности. На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до В.


Q3 и Q Как отмечено в [1], Windows при завершении работы компьютера блокирует COM-порт и программа не может управлять 4 ногой порта.

Не включается. Доп. дефект — не заряжается АКБ. ИБП(UPS) CyberPower Value 1500E-B

Новое на сайте

Если аккумулятор был полностью разряжен, ряд моделей бесперебойников в момент включения могут индицировать неисправность аккумулятора, однако по мере набора им заряда индикация прекратится. Кольцо следует предварительно обмотать лакотканью, а затем намотать две обмотки по 10 витков провода диаметром 0,55…0,70 мм. Этот выход микропроцессора является выходом с открытым коллектором рис. Когда напряжение в сети становится таким маленьким, что выпрямитель уже не может обеспечить полноценную работу инвертора, аккумуляторная батарея заменяет выпрямитель и питает инвертор требующимся ему постоянным током.

Кроме того, прерванная печать — это всего лишь один испорченный лист бумаги.

Далее переходим к разработке функциональной схемы ИБП и алгоритма ее работы. Компьютер питается от сети переменного тока.

Неисправности и ремонт Основная неисправность источника бесперебойного питания, с которой приходится сталкиваться, связана с тем, что бесперебойник не переходит в автономный режим.


На сайте APC указано, что сигнал должен действовать в течении 1 секунды, однако экспериментальная проверка показала, что UPS реагирует на сигнал немедленно.

Этот разрыв является следствием использования механических переключателей.

Трансформатор СТ1 анализирует высокочастотные составляющие напряжения сети.
UPS DLD 600 RIELLO схема силовой части

Источники бесперебойного питания

При соблюдении же правил эксплуатации бесперебойника все его обслуживание сведется к своевременной замене аккумуляторов.


Если аккумулятор был полностью разряжен, ряд моделей бесперебойников в момент включения могут индицировать неисправность аккумулятора, однако по мере набора им заряда индикация прекратится. Павел Негробов. Их нагрузочная способность до 50 мА, 40 В.

Контроллер активирует реле, когда сетевое напряжение отсутствует и если бесперебойник включен, то он будет работать как преобразователь напряжения.

Функционирует устройство следующим образом: Пусть входное напряжение В в норме. Схема кабеля B Когда пропадает внешнее питание отключили свет, например на линии Line Fail является высокий уровень.

Драйверы ключей Драйверы ключей, являются заказными микросхемами, выпускаемыми APC. Исходя из анализа схем ИБП, можно сделать вывод о том, что в чистом виде нельзя применить ни одну из рассмотренных схем, так как требуемое входное напряжение на контроллере — постоянное 24 В.


SW1 размещается на задней панели UPS рядом с выходными клеммами. Во вpемя pаботы в этом pежиме также пpоисходит заpядка аккумулятоpных батаpей UPS. Кольцо следует предварительно обмотать лакотканью, а затем намотать две обмотки по 10 витков провода диаметром 0,55…0,70 мм.

Кроме того, база транзистора Q46 соединена портом P0. Одновременно они более чувствительны к перезаряду, что может произойти при установке в ИБП батареи емкостью меньше, чем рассчитано. И на входе ИБП тоже должен потреблять переменный ток, поскольку он питается от той же электрической сети. Для формирования этого напряжения используется автогенератор, создающий импульсы, которые затем выпрямляются и сглаживаются рис. Для этого необходимо выключить SW1.

Для проверки этого подключите вольтметр к клеммам аккумулятора работающего ИБП и отключите его от розетки. Этот конденсатор установлен параллельно выходу UPS рис. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Эти микросхемы формируют сигналы для управления силовыми транзисторами инвертора. ЭДС, наводимая в этой обмотке, либо суммируется с сетевым напряжением, либо вычитается из него, в результате чего и происходит либо повышение, либо понижение выходного напряжения.
IMD1500AP сгорел после установки наших АКБ. Ремонт ИБП Powercom

Гаджеты / электроника

Подробнее почитать про работу и назначение узлов бесперебойника можно почитать в этой книге. Как Вы можете видеть, ИБП при всей своей неоспоримой пользе не требует каких-либо особых навыков для подключения, а при некорректной работе первичная его диагностика достаточно проста.

Первую проблему без использования довольно сложных схем решить невозможно, а предлагаемое в данной статье простое устройство решает вторую проблему — при обесточивании нагрузки UPS выключается автоматически. Взаимодействующий с сетью ИБП постоянно следит за напряжением: его величиной и формой. Коэффициент мощности для компьютерной техники равен 0,

Для проверки этого подключите вольтметр к клеммам аккумулятора работающего ИБП и отключите его от розетки. Заводская установка этого напряжения В.

Hикакой стабилизации напpяжения не пpоисходит. Он включен в схему феррорезонансного ИБП вместо автотрансформатора с отводами в схеме ИБП, взаимодействующего с сетью. При переходе на питание от батарей ИБП формирует на этом выводе лог. Если разобраться, она очень похожа на предшествующую схему.

Читайте дополнительно: Как подсоединить двухклавишный выключатель

Кольцо следует предварительно обмотать лакотканью, а затем намотать две обмотки по 10 витков провода диаметром 0,55…0,70 мм. Сигнал фазы опорной синусоиды снимается с выхода операционного усилителя TL — IС8 конт.

Если напряжение в сети снова появляется, то контролер отключает преобразователь и устройство превращается в зарядное устройство. Рисунок 1. Я взял готовый трансформатор подходящих габаритов, так как между батареей UPS и его передней стенкой довольно мало места см. Далее переходим к разработке функциональной схемы ИБП и алгоритма ее работы.

Инвертор строится по схеме мостового преобразователя рис. Для формирования этого напряжения используется автогенератор, создающий импульсы, которые затем выпрямляются и сглаживаются рис. Коэффициент мощности для компьютерной техники равен 0, На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до В.

Зарядка Поскольку встроенные в UPS аккумуляторы автоматически поддерживаются в заряженном состоянии, нет необходимости в их дополнительной зарядке. Модели BKI и BKI имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом. У скачкообразного изменения напряжения несколько причин. Своими коллекторами транзисторы нагружены на выходной трансформатор.
Схема электроснабжения с ИБП, стабилизатором и генератором

tokzamer.ru

РЕМОНТ БЕСПЕРЕБОЙНИКА

   Источник бесперебойного питания довольно сложное устройство, которое условно можно разделить на два блока — это преобразователь 12В в сетевое 220В, и зарядное устройство выполняющее обратную функцию: 220В на 12В для подзарядки аккумулятора. В большинстве случаев ремонт бесперебойника очень проблемный и дорогостоящий. Но пробовать всё-же стоит — конечно всегда есть шанс на халяву в виде сгоревшего предохранителя:) 

бесперебойник APC500

Передняя панель АРС500

Розетки и гнёзда АРС-500

   У знакомого на фирме выкинули нерабочий бесперебойник модели APC 500. Но прежде чем пустить его на запчасти, решил попробовать его оживить. И как оказалось не зря. Прежде всего меряем напряжение на аккумуляторной гелевой батарее. Для функционирования бесперебойника но должно быть в пределах 10-14В. Вольтаж в норме, так что проблема с аккумулятором отпадает.

аккумулятор питания бесперебойника APC500

проверка напряжения батареи бесперебойника

   Теперь осмотрим саму плату и померяем питание в ключевых точках схемы. Родной принципиальной схемы бесперебойника APC500 не нашёл, но вот кое что похожее. Для лучшей чёткости скачайте полноценную схему здесь. Проверяем мощные олевые транзисторы — норма. Питание на электронную управляющую часть источника бесперебойного питания поступает с небольшого сетевого трансформатора на 15В. Меряем это напряжение до диодного моста, после, и после стабилизатора 9В. 

транзисторы бесперебойника APC 500

   А вот и первая ласточка. Напряжение 16В после фильтра входит в микросхему — стабилизатор, а на выходе всего пару вольт. Заменяем её на аналогичную по вольтажу модель и воссстанавливаем питание схемы блока управления. 

блок управления упс

микросхема питания платы бесперебойника APC 500

   Бесперебойник начал трещать и жужжать, но на выходе 220В по прежнему не наблюдается. Продолжаем внимательный осмотр печатной платы.

Общий вид печтоной платы АРС500

печатная плата бесперебойника модели APC 500

   Ещё одна проблема — одна из тонких дорожек перегорела и пришлось заменить её тонкой проволочкой. Вот теперь устройство бесперебойного питания APC500 заработало без проблем.

ремонт сгоревшей дорожки в упс арс500

   Испытывая в реальных условиях, пришёл к выводу, что встроенная пищалка сигнализатор отсутствия сети орёт как дурная, и не мешало бы её немного утихомирить. Полностью выключать нельзя — так как будет не слышно состояния аккумулятора в аварийном режиме (определяется по частоте сигналов), а вот сделать тише можно и нужно.

уменьшение громкости пищалки в ИБП

   Это достигается включением резистора на 500-800 Ом последовательно со звукоизлучателем. И напоследок несколько советов владельцам бесперебойников. Если он иногда отключает нагрузку, возможно проблема в блоке питания компьютера с «подсохшими» конденсаторами. Подключите UPS ко входу заведомо исправного компа и посмотрите — прекратятся ли срабатывания. 

блок управления бесперебойником APC500

   Бесперебойник иногда неверно определяет ёмкость свинцовых батарей показывая статус ОК, но стоит только ему переключится на них, как они внезапно садятся и нагрузка «выбивается». Убедитесь, что клеммы заходят плотно, а не болтаются. Не отключайте его надолго от сети, лишая возможности держать аккумуляторы на постоянной подзарядке. Не допускайте глубоких разрядов батарей, оставляя по меньшей мере 10% емкости, после чего следует отключать бесперебойник до восстановления питающего напряжения. Хотя бы раз в три месяца устраивайте «тренировку», разряжая батарею до 10% и опять заряжая аккумулятор до полной ёмкости.

   Форум по ремонту бесперебойников

   Обсудить статью РЕМОНТ БЕСПЕРЕБОЙНИКА


radioskot.ru

Схемотехника зарядного устройства для ИБП on-line. Часть 5 / Habr

Часть 1
Часть 2
Часть 3
Часть 4.1
Часть 4.2
Пролог

И снова здрасьте… Всех с прошедшим Новым годом и с другими наступающими праздниками! Настало время вытащить морду из оливье наконец-то приступить к частям нашего цикла, в которых будет описана схемотехника силовых узлов. Мое хорошее настроение

После анализа статьи, посвященной коду под STM32, я понял — зря потратил время, уровень читателей и многих комментаторов как я понял достаточный для самостоятельного написания кода, поэтому смысла в дальнейших разборах не вижу. Все моменты с кодом будут ограничены описанием алгоритма и подробной блок-схемой, все желающие сами смогут написать программку под свой МК, да хоть под ардуину. Правда не стоит огорчаться тем, кто хотел повторить сей девайс в первозданном виде — прошивку в виде .hex вы всегда можете получить у меня в личке, а так же заказать уже прошитый микроконтроллер по цене стоимости камня и почтовых расходов. На этом хорошие новости закончились…


Теперь о данной части — она будет посвящена DC-DC преобразователю 310В -> 48В. То есть мы рассмотри не весь зарядник, а именно преобразователь. Выпрямитель и ККМ будет отдельной частью, т.к. функционально они у меня выполнены отдельным модулем на отдельной плате.
Топология по которой построен данный преобразователь (или блок питания) — «косой мост». Изначально я хотел оставить вариант полного моста без изменений на фоне пром. варианта, но достаточно большое количество товарищей высказались по поводу сложности Н-моста, его дороговизны и низкой повторяемости на таких мощностях. Подумал я и решил применить мою некогда любимую топологию, которую ценил за ее высокую повторяемость. По топологии «косого моста«, кстати, построены многие сварочные инверторы с токами до 200-250А. Учитывая, что на данном этапе по работе проектирую сварочный полуавтомат, то дополнительно погонять такое решение вдвойне интересно.

И так — поехали….

Драйвер для однотактного прямоходового преобразователя

Наш блок питания или зарядник (называйте как хотите) — прямоходовый. До этого в статьях про организацию дежурного питания мы столкнулись в flayback‘ом, но как известно данная топология годится лишь при мощностях до 300 Вт, в преобразователях более мощных уже необходимо применять «прямоходовые» топологии. Думаю из названия и предыдущих статей вы уже поняли, что различия лишь в моменте передачи энергии: flayback передает энергию во вторичную цепь на обратном ходе (когда силовой ключ закрыт), forward’ы (прямоходы) же передают в нагрузку энергию в момент открытия ключей.
Более подробно о принципе работы «косого моста» можно вычитать в гугле или умных книгах, вкратце же я сейчас попытаюсь объяснить сам на пальцах. Кстати об умных книгах!

Настоятельно советую ознакомиться с предложенной статьей, она на английском, но даже с нулевыми знаниями и словарем/переводчиком смысл понимает легко. Данная статья рассказывает о принципах работы «косого моста», а так же о его совместной работы с ККМ (PFC). Чего-то более доходчивого в таком объеме я не встречал. Куча схем со стрелками протекания тока добавляют наглядное восприятие, в общем читаем:

Статья о работе косого моста и особенностях PFC

Еще один монументальный документ, что интересно создавался он как рекламный, но первая половина, а это 40+ страниц посвящены отлично изложенной теории с менее отличным матаном и что для многих думаю критично — все на русском:

Чудо книга

Теперь перейдем от слов к делу и рассмотрим схему и разберем принцип работы драйвера-генератора для однотактного прямоходового преобразователя


Рисунок 1 — Принципиальная схема генератора и драйвера для однотактного DC-DC

Как видите по схеме я всегда стремлюсь к здравому минимализму. И найти то решение, которое удовлетворяет трем самым важным требованиям:
а) надежность
б) простота
в) повторяемость

В схеме данного драйвера все до безумия просто и надежно. Что мы видим на схеме:

1) Защита по току (от КЗ в том числе) для ЗУ реализована на трансформаторе тока. Данный метод не обладает высокой точностью, в данном случае он имеет точность +- 1А. Но этого более чем достаточно, чтобы не убить АКБ и обеспечить им долгую работу. О том как как работает защита по току и как рассчитать трансформатор тока чуть ниже;
2) Обратная связь по напряжению выполнена все на том же решение, что мы применяли в статье с дежурным питание — TL431 + оптрон PC817. Точность +- 0.5 В обеспечивается легко, в теории можно и точнее, но надо «побороть» слишком большую постоянную времени, то есть придется обойти большие емкости и дроссель на выходе. Имеет ли это смысл? В данном случае определенно нет;
3) Сам генератор ШИМа реализованный на микросхеме UC3845, разбор ее работы далее;
4) Непосредственно драйвер, управляющий силовыми ключами, реализованный на оптотранзисторе — HCPL3120. Хотя на самом деле там не один транзистор, а комплементарная пара.
Немного о гальванической развязке

Хоть наша схема драйвера и проста, но надежность ее работы мы обязаны обеспечить, а так же если все таки ключи «вылетели», то хотя бы обеспечить выживание драйвера. Это позволит в самом худшем случае просто произвести ремонт за 20-30 минут.
Все это нам может дать гальваническая развязка управляющих, измерительных и силовых цепей друг от друга. Более подробно я рассказывал о развязке в предыдущих статьях и теперь я думаю вы поняли зачем нам надо было несколько каналом дежурного питания на 15В. Один канал запитывает схему генерации, то есть микросхемы UC3845. Второй канал запитывает силовые ключи и «горячую» часть оптронов.
Еще у нас есть измерительная часть драйвера, которую тоже необходимо изолировать. Обратная связь по напряжение если помним имеет в своей структуре PC817, которая обеспечивает развязку вторичных цепей с 48 В от цепи питания драйвера. В цепи измерения тока гальваническая развязка самая что ни есть классическаятрансформатор тока.

Прошу обратить внимание! В данной схеме имеется аж 3 разные «земли»! Поэтому случайно не объедините их! Конечно если объединить — не взорвется и будет работать, но цепи не будут иметь гальваническую развязку и в случае поломки или ошибки при сборке сгорит все что можно.

Трансформатор тока

Трансформатор тока — это измерительный трансформатор, предназначенный для преобразования тока до значений, которые нам удобно измерять. Это если вкратце для общего понимания, подробнее мощно прочитать в википедии или других более солидных источниках.

Собственно для чего нам нужен этот трансформатор… Так уже получилось, что микросхемы серии UC38xx имеют встроенный компаратор для реализации защиты по току, и этот компаратор вырубает генерацию (скважность становятся 0%, все остальное работает) при подаче напряжения 1В. Дальше я расскажу на какую ногу этот вольт надо подавать, а пока нам необходимо преобразовать 20А в 1В.
А пока сначала бежим читать статейку неизвестно мне лично автора, но она мне понравилась своей простотой и правильностью результата:
Рассчет трансформатора тока

Теперь используя приведенные там расчеты мы применим к нашей схеме.

Дано:
а) Ток в силовой линии 16А номинальный
б) Выставляем ток защиты 30А — т.к. у нас заявлена работа при 200% перегрузке в течение 20 минут. Надо выполнять коль обещал!
в) Количество витков в первичной обмотке — 1.
г) напряжение создаваемое трансформированным током — 1 В.

В схеме нагрузкой для ТТ служат два резистора R2 и R3, резисторы R6 и R7 не устанавливаются! Это на случай если вы не найдете резисторы 10 Ом и захотите пересчитай свой ТТ и при этом не пришлось менять плату.


Рисунок 2 — Исходная формула и данные


Рисунок 3 — Рассчитывает по великому закону всемогущего Ома сопротивление нашей нагрузки. У меня это два резистора по 10 Ом


Рисунок 4 — Получаем последние данные для намотки вторичной обмотки


Рисунок 5 — Проверяем размерность полученных данных. Не обязательно, но у меня привычка еще с института осталась — рефлекс.

Осталось посчитать какая же мощность выделится на нагрузке нашего трансформатора тока (далее ТТ). Ток там хоть и не значительный, но спокойно может превысить номинальный, а лишний узел с потенциалом «сгореть» нам не нужен. У нас в параллели 2 резистора 1206, а это значит что максимальная мощность, которую они могут рассеивать 1 Вт (0,5 Вт каждый).


Рисунок 6 — Расчет показал, что выделенная тепловая мощность на нагрузке не превышает 1 Вт

Теперь надеюсь все понял как легко в пару формул рассчитать трансформатор тока для реализации защиты!

Немного о материалах и изготовление:

Для намотки желательно использовать провод 0,2 — 0,6 мм, т.к. кольцо на котором мы будет наматывать не очень габаритное и чтобы уместить 150 витков сильно большое сечение нам противопоказано. Я использую провод сечением 0,335 мм и проблем не встречал, так же он должен быть эмалированный.

Сердечник применить можно любой тороидальный, т.к. ток минимальный, то насыщение тут не грозит. Я использую обычно кольца из феррита 2000НМ и размерами К28/16/9. Сильно мелкое не рекомендую, т.к. для того, чтобы уместить 150 витков вам понадобится мотать проводом 0,1 мм. Это в ручную тяжело и создает лишние проблемы.

Так же для тех, у кого нет проблем с деньгами может (и я советую именно этот вариант) использовать уже готовые датчики тока компании Honeywell. Цены на них порядка 700-1000р, но они линейные и обладают высокой точностью.
Пример датчика тока
Чип и Дип — дорогущий магазин, не покупайте там такие штуки. Но параметрический поиск и каталоги там удобные))

Оптотранзисторные драйверы

Данные оптроны служат для реализации гальванической развязки ШИМа от генератора до IGBT ключей. Так же они выполняют функции драйвера до 2А пикового тока, т.к. на выходе имеют комплементарную пару. В своих блоках я всегда использую HCPL3120. Почему они? Да просто контора их закупает, они надежные и отлично работают на частотах до 125 кГц. Перейдем к даташиту…
Скачать даташит HCPL3120


Рисунок 7 — Структурная схема оптрона HCPL3120

Думаю принцип работы оптрона всем известен — подали сигнал на светодиод с одной стороны, он осветил фототранзисторы, которые открылись и пропустили ток. Внутри две эти части не связаны электрически, только световым потоком. Этим и обеспечивается гальваническая развязка.

Генератор для однотактного DC-DC

Микросхему UC3845 для генератора выбрал из-за наличия возможности реализовать обратную связь и по току и по напряжению. Начнем с даташита и структурной схемы…
Даташит на UC3845

Рисунок 8 — Структурная схемы генератора

1) Вспоминаем нашу защиту от превышения тока, помните про тот самый 1 В? Так вот — при подачи напряжение 1В на ногу 3 (в корпусе DIP-8) срабатывает защита и БП отключается ровно до момента пока ток не нормализуется, например, устранится КЗ. Внутри микросхемы как вы видите стоит компаратор под названием «Current Sense Comparator«, вот он как раз решает, что при превышение 1В на его входе должна остановиться генерация ШИМа, а точнее скважность должна равняться 0%. Думаю тут понятно.

2) Как работает обратная связь по напряжению я рассказывал в предыдущих статьях, тут лишь особенность укажу. Формально вывод 2 — вход компаратора, но чтобы он выдавал ошибку и уменьшал скважность необходимо на его инверсный вход (ногу «-«) подавать напряжение менее чем на «+», то есть меньше 2,5В. Нам же надо ровно наоборот, а т.к. прямой вход компаратора («+») не доступна нам, то будем сразу подавать на его выход, то есть ногу 1.
При превышение напряжения на выходе нашего ЗУ выше 57В, именно столько необходимо для полной зарядки АКБ, открывается оптрон и подает лог. 0 на ногу 1. На инверсном входе компаратора датчика тока «Current Sense Comparator» становится напряжение равное 0В, на его прямом входе есть положительное напряжение с датчика тока и поэтому компаратор выдает лог.1, тем самым опять же уменьшая скважность ШИМ.

Фух, этот пункт был сильно мудреный для новичка, поэтому советую его все таки вкурить.

3) Времязадающая цепочка построена на R10C5, именно она определяет на какой частоте будет работать генератор ШИМа. Стоит запомнить, что частота ШИМа на ноге 6 будет в 2 раза ниже, чем частота генератора. То есть если вы хотите ШИМ 60 кГц, то времязадающую цепочку надо считать как 120 кГц!

Пожалуй с генератором, обратными связями и драйвером все… ах да, для тех кто не читал или читал и не понял: Предельный ток регулируется резистором R12, а выходное напряжение регулируется резистором R9.


Силовая часть DC-DC преобразователя 310 -> 48 В

Томить не буду, сразу выложу схему, а дальше уже разбираться будем что и куда:

Рисунок 9 — Силовая часть мощного ЗУ по топологии «косой мост»

Причину выбора данной топологии я описывал уже: простота, повторяемость, надежность, цена. Мощность ЗУ рассчитывается так, чтобы оно могло отдавать номинальный ток в нагрузку + заряжать АКБ. Представим такую ситуацию: собрали ИБП, а батареи давно стоят и разряжены. Мы включаем ИБП и нагружаем его нагрузкой 3 кВт (однокомнатная квартира), а батареи то разряжены и их надо зарядить! Да еще и желательно побыстрее, вдруг свет отключат? Поэтому надо еще взять запас в 500 Вт, а лучше в 1 кВт для такого случая, чтобы работа на максимальной нагрузке и заряд АКБ могли идти одновременно не в ущерб чему либо.
Думаю суть поняли… теперь о напряжение: 14,2В — это напряжение на полностью заряженном гелевом АКБ. У нас их 4, получаем для поддержания полного заряда надо настроить ЗУ на напряжение 14,2 * 4 = 56,7В. Мы настраиваем на 56-67В. Такое напряжение не будет уменьшать ресурс работы АКБ и будет поддерживать их в заряженном состояние (в реальности 97-98%).

Общее:

1) Трансформатор выбран из материала 3С90 и габаритами E70x33x32. Это сердечник с огромным запасом, в сварочных инвертора на 200А используют всего лишь E65 и меньше. Но стоит помнить что в сварочных инверторах ПВ работы не 100% и там не бывает пусковых токов. Именно для компенсации последних нам нужен такой мощный сердечник. Если верить расчетам, его габаритная мощность 11 кВт. Я выжимал 10 кВт с ПВ 30% (30% времени работает и 70% охлаждается).
Так же хочу отметить чем ограничено ПВ — сечением проводов. При нагрузке 600% кратковременной обмотки не успевают нагреваться, поэтому не критично. Вот если не оставить запас габаритной мощности трансформатора хотя бы 200%, то он успеет все таки уйти в насыщение.

Теперь простенький расчет трансформатора проведем:

Рисунок 10 — Данные для намотки трансформатора

Программа для расчетов все от того же автора «Старичок», надеюсь он мне простит ссылки на него)) Скачать можно с моего облака:
Скачать программу Forward

2) Еще одна неотъемлемая часть — выходной дроссель. Он выполнен на кольцах из «распыленки» (прессованного железа), размеры и название материала можно увидеть в окне расчетов. Стоит обратить внимание, что дроссель намотан на 2-х склеенных кольцах!

Рисунок 11 — Расчет выходного дросселя

Ток в 80А — номинальный, напряжение до и после дросселя мы берем из результатов расчета трансформатора, оттуда же и необходимую минимальную индуктивность для режима неразрывного тока.

3) IGBT транзисторы выбраны на 600В и 40А. Этого более чем достаточно, смысла покупать ключи на 1200В нету, при правильной проектировки выбросы не убьют транзисторы. 40А — ток предельный выбран с запасом для обеспечения длительного перегруза в 200%.

4) Диоды, которые размагничивают обмотки D1 и D3 — на 1200В и 20А. В данной топологии применение этих диодов позволяет избежать размагничивающей обмотки, если обратите внимание ее описание присутствует в результатах расчета трансформатора, но мы туда не смотрим.

Защита силового транзистора

Городить сильно мудрую схемотехнику не стал из соображений, что применил IGBT, а не полевики — первые более живучие. Два главных врага побеждены: выбросы и КЗ. Про защиту по току я уже рассказал, теперь немного защите от выбросов.

Хорошую теорию о выбросах доходчиво изложили в одной интересной статье, осмелюсь привести тут ссылку на нее, надеюсь автор не против?
Добротная статья от kdekaluga

Теперь к нашей схеме:

Рисунок 12 — Реализация защиты от выбросов

Первым делом необходимо защитить затвор, т.к. IGBT унаследовали от полевиков по мимо всего прочего еще и «нежность». Питание драйверов у нас 15 В, поэтому супрессор нам нужен на 18 В! Почему именно такой? Да все как всегда просто — это такой же стабилитрон только намного быстрее в случаем если его номинальное напряжение пробоя будет, например, 14В, то он обрежет все что выше: после него будет 14В, а не 15. На оставшийся 1В — супрессор будет греться. 18В же является номинальным безопасным напряжением для затвора и это больше напряжения питания, ну и конечно же потому, что такие супрессоры есть и легко доступны))

Теперь надо вспомнить, что первичная обмотка это все таки индуктивность, а значит есть ЭДС самоиндукции, которая может легко убить даже IGBT транзистор, поэтому мы применяем опять же супрессор, только уже на 440В. Теперь при превышение напряжения между коллектором и эмиттером более 440В (в реальностях раньше на 390-420В) супрессор будет «пробиваться» и пропускать напряжения до 440В, то есть наше рабочее, а все что выше будет рассеивать на себе в виде тепла.

Надеюсь вы поняли смысл работы данного компонента и вопросов не осталось, а если остались, то комментарии и личка ждет вас. Сейчас же традиционные схемы печатных плат:


Рисунок 13 — Схема печатной платы для драйвера. Полигоны удалены для наглядности


Рисунок 14 — Схема печатной платы для силовой части. Полигоны не нужны для лучшего охлаждения проводников.

Оооочень сильно прошу обратить внимание! В силовой части печатная плата изготавливается из фольгированного текстолита с толщиной медного слоя 210 мкм!!! Если возьмете тоньше, то необходимо увеличивать толщину дорог! Знайте, что стандартный текстолит имеет напыление меди всего 18 мкм. Обязательно это учтите, чтобы потом не удивляться пожару.

Файлы с PCB проектами плат


Эпилог

На сегодня все! В следующей части я расскажу о корректоре мощности (ККМ или PFC), приведу его схемы и подробнее расскажу о его работе. Так как если о топологиях импульсным источников питания теория в интернете в достаточно количество, то о ККМ ничего сильно путного для начинающих не видел, поэтому принципу работы уделю активное внимание.

Так после статьи о ККМ — будет часть посвященная испытаниям зарядного устройства уже с корректором! Ибо они по сути одно целое, это я по своей прихоти разбил их на 2 платы. Исходя из этого видео испытаний и фото буду после 2-х статей. В качестве испытаний варил электродом 3 мм и током 75-80А, правда пока без корректора. В общем увидите))

Ну и как в «Крутом пике» продолжение следует!..

Часть 6

habr.com

1.2 Схемы построения ибп

Для начала рассмотрим методы построения источников бесперебойного питания. Существует несколько способов построения ИБП.

ИБП с двойным преобразованием энергии (англ. — Double conversion UPS). Основная идея этой схемы действительно очень проста. Компьютер питается от сети переменного тока. Значит на выходе ИБП должен выдавать переменный ток. И на входе ИБП тоже должен потреблять переменный ток, поскольку он питается от той же электрической сети. Но внутри ИБП должно быть постоянное напряжение, потому что оно необходимо для питания аккумуляторной батареи.

Рисунок 1.1 — ИБП с двойным преобразованием энергии.

Таким образом получаем нашу первую схему источника бесперебойного питания. Вся мощность, потребляемая ИБП от сети, сначала преобразуется из переменного тока в постоянный с помощью выпрямителя. После этого в действие вступает преобразователь постоянного тока в переменный — инвертор, обеспечивающий на выходе ИБП необходимое переменное напряжение.

Аккумуляторная батарея находится в цепи постоянного тока, между выпрямителем и инвертором. Если в сети нормальное напряжение, выходного тока выпрямителя хватает для работы инвертора и для подзаряда батареи.

Когда напряжение в сети становится таким маленьким, что выпрямитель уже не может обеспечить полноценную работу инвертора, аккумуляторная батарея заменяет выпрямитель и питает инвертор требующимся ему постоянным током. Инвертор, в свою очередь, продолжает, как ни в чем ни бывало, подавать напряжение к компьютеру.

Но замена выпрямителя батареей не совсем полноценна: батарея может питать инвертор только ограниченное время, которое зависит от накопленного ею заряда и мощности нагрузки. Как правило, это время исчисляется минутами или десятками минут.

Данная схема ИБП традиционно называется схемой с двойным преобразованием энергии. Эта схема называется еще схемой on-line. Современные ИБП с двойным преобразованием энергии построены намного сложнее приведенной схемы.

ИБП с переключением (англ. — standby UPS или off-line UPS). Попытаемся использовать приятные моменты, когда напряжение в электрической сети «нормальное» (не разбираясь сейчас, что это значит). В это время компьютер можно напрямую питать от электрической сети, не теряя энергию на два не нужных сейчас преобразования. А инвертор мы запустим в момент сбоя электрической сети (когда напряжение перестанет быть «нормальным»), и он будет работать от батареи.

Рисунок 1.2 — ИБП с переключением

Когда в сети нормальное напряжение, компьютер (или другая нагрузка ИБП) работает непосредственно от сети. В это время маломощный выпрямитель подзаряжает батарею ИБП. Если напряжение становится «ненормальным» или совсем исчезает, показанный на схеме переключатель срабатывает, включается инвертор, и ИБП начинает питать нагрузку от своей батареи.

ИБП с переключением имеет высокий КПД, поскольку при нормальной работе потребляет только энергию, необходимую для питания своей схемы и, если батарея разряжена, то для ее подзаряда.

Может быть самым серьезным из недостатков является то, что при переключении ИБП с режима работы от батареи на режим работы от сети, на выходе ИБП могут возникать скачки напряжения. При неблагоприятной фазе напряжения в момент переключения блок питания компьютера не сможет их погасить. В этом случае на чувствительных электронных компонентах компьютера возникают импульсные напряжения. Сами по себе они не опасны, но в сочетании с другими помехами в принципе могут быть причиной сбоя при работе компьютера.

У скачкообразного изменения напряжения несколько причин.

Во время работы от батареи, напряжение на выходе ИБП с переключением несинусоидальное (оно имеет вид чередующихся прямоугольным импульсов с паузами).

Во время переключения (которое занимает от 2 до 20 миллисекунд для разных моделей ИБП) на выходе ИБП отсутствует напряжение. Следовательно, имеется небольшой разрыв в напряжении, питающем компьютер.

Почти единственная функция ИБП с переключением — поддержание работы компьютера, когда в сети нет напряжения. Но он не может эффективно взаимодействовать с электрической сетью и следить за отсутствием искажений сетевого напряжения, а также регулировать напряжение, когда оно становится слишком маленьким или чересчур большим.

Упрощенная блок-схема ИБП, взаимодействующего с сетью, представлена на рисунке 1.3.

Если разобраться, она очень похожа на предшествующую схему. Инвертор этого ИБП постоянно подключен к нагрузке. Кроме того, в данной схеме появился автотрансформатор. У этого автотрансформатора есть дополнительные отводы, к которым может быть подключена нагрузка при работе ИБП от сети. В результате напряжение на выходе ИБП иногда становится не таким, как на входе. С помощью автотрансформатора с отводами ИБП регулирует напряжение (увеличивает выходное напряжение, когда напряжение на входе мало и уменьшает напряжение на выходе, если входное напряжение слишком повысилось).

Рисунок 1.3- ИБП, синхронизованный с сетью.

Взаимодействующий с сетью ИБП постоянно следит за напряжением: его величиной и формой. Для этого управление ИБП, взаимодействующего с сетью, поручено микропроцессору. Обычно микропроцессор нагружают множеством дополнительных функций, не связанных непосредственно со слежением за сетью и управлением, и некоторые из этих ИБП становятся довольно «умными»: Они могут регистрировать напряжение в электрической сети, следят за временем и частотой, запоминают свои аварийные сообщения, включаются по расписанию и т.д.

Работает ИБП, взаимодействующий с сетью, примерно так же, как и ИБП с переключением. Когда в сети «нормальное» напряжение, он питает нагрузку от сети. Если напряжение отсутствует или искажено, то инвертор мгновенно начинает питать нагрузку, разряжая батарею, а входной переключатель ИБП размыкается.

Если напряжение в сети есть, но заметно меньше (или больше) нормы, то взаимодействующий с сетью ИБП переключает отводы автотрансформатора и регулирует напряжение, не переключаясь на батарею.

Как и ИБП с переключением, ИБП, взаимодействующий с сетью, имеет высокий КПД и некоторые другие преимущества.

Принципиальным, но не самым важным, недостатком этой схемы (как и ИБП с переключением) является разрыв электропитания в момент переключения на работу от батареи и обратно. Этот разрыв является следствием использования механических переключателей. Время их срабатывания довольно мало (несколько миллисекунд), но отлично от нуля.

Феррорезонансный ИБП в какой-то степени является разновидностью ИБП, взаимодействующих с сетью. Тем не менее его обычно выделяют в отдельную группу ИБП. Дело в том, что в схему этого ИБП введен элемент, принципиально меняющий его работу, и давший название этому прибору.

Это феррорезонансный трансформатор. Он включен в схему феррорезонансного ИБП вместо автотрансформатора с отводами в схеме ИБП, взаимодействующего с сетью.

Он стабилизирует напряжение на выходе ИБП. Это позволяет работать в широком диапазоне сетевых напряжений без переключения на батарею. Нет никаких переключений и внутри самого ИБП (феррорезонансный трансформатор регулирует напряжение, не нуждаясь в переключении отводов).

Рисунок 1.4 — Феррорезонансный ИБП.

Исходя из анализа схем ИБП, можно сделать вывод о том, что в чистом виде нельзя применить ни одну из рассмотренных схем, т.к. требуемое входное напряжение на контроллере – постоянное 24 В. Следовательно, в ИБП можно будет отказаться от инвертора и подавать на контроллер сразу постоянное напряжение. Благодаря отказу от инвертора итоговый коэффициент полезного действия повысится.

При проектировании ИБП в классическом виде, кпд системы был бы ниже, ввиду двух дополнительных преобразований:

— из постоянного напряжения в переменное в ИБП;

— из переменного в постоянное в блоке питания контроллера.

Далее переходим к разработке функциональной схемы ИБП и алгоритма ее работы.

studfile.net

Как подключить ИБП к сети? ➔ Схемы подключения источников бесперебойного питания на Newet.ru

Чтобы определить, как подключить ИБП к электронному оборудованию правильно и без ошибок, необходимо сначала разобраться с особенностями конструкции и принципом работы этих устройств. Источники бесперебойного питания предназначены для автономного электропитания компьютерной техники, отопительных котлов, рабочих станций, телекоммуникационных систем, контрольно-измерительной аппаратуры, средств автоматизации техпроцессов и различного электрооборудования при возникновении проблем с централизованной электросетью.

В случае сбоя или отключения сети бесперебойник автоматически переключает нагрузку на питание от аккумуляторных батарей. Дополнительно современные ИБП защищают подключенное оборудование от скачков напряжения, шумов, помех, отклонений частоты, выбросов, гармонических искажений. Благодаря этому обеспечивается высокая эффективность работы электроаппаратуры, продлевается срок ее службы.

Способы подсоединения ИБП к электросети

Существует три основных типа бесперебойников в зависимости от схемы подключения ИБП к сети:

  1. Резервные. В нормальном режиме устройства обеспечивают питание нагрузки непосредственно от первичной электросети. При возникновении проблем с электроснабжением ИБП переключает потребителей на электропитание от аккумуляторных батарей. Данная схема отличается рядом недостатков. К ним относится достаточно большое время задержки между появлением неполадок в сети и переключением на автономное снабжение, а также невысокий уровень фильтрации возмущений и помех. Поэтому резервная схема подключения источника бесперебойного питания подходит только для защиты малочувствительного некритичного оборудования. Ее можно применять, например, для бытовой техники и домашних ПК. Преимущества устройств — невысокая стоимость, низкая шумность в нормальном режиме, высокий КПД.
  2. Интерактивные. Такие бесперебойники оснащаются ступенчатым стабилизатором на выходе из электроцепи. Он обеспечивает корректировку характеристики выходного напряжения, фильтрацию высоковольтных скачков. Их быстродействие выше, чем у резервных ИБП, но при этом использование стабилизатора снижает общий КПД системы. Интерактивные модели можно применять для защиты бытовой и офисной техники, файловых серверов, маршрутизаторов, аппаратуры локальных вычислительных сетей.
  3. Онлайн. Этот вариант подключения ИБП к сети использует схему двойного преобразования. Питание потребителей в нормальном режиме осуществляется не напрямую от электросети, а через аккумуляторы бесперебойника. Входное переменное напряжение подается на выпрямитель, который преобразует его в постоянное. Оно заряжает батарею и поступает в инвертор, который выполняет обратное преобразование постоянного напряжения в переменное. В результате потребитель получает высококачественный электроток с чистой синусоидой, отсутствием помех и возмущений. Основное преимущество онлайн ИБП заключается в мгновенном реагировании на отключение первичной сети. Это позволяет использовать его для крайне чувствительного оборудования.

Особенности подключения оборудования

Рассмотрим последовательность действий и правильную схему подключения источника бесперебойного питания на примере системы автономного электроснабжения газового котла. Котельное оборудование характеризуется повышенной чувствительностью к электропитанию, поэтому требует особо внимательного подхода при подсоединении ИБП.

Этапы работ:

  1. Подключаем бесперебойник к аккумуляторам. При подсоединении батареи необходимо, чтобы устройство было в выключенном состоянии. Коммутацию рекомендуется осуществлять проводами двух цветов — красного для клеммы «+» и черного для «-». Не все модели ИБП оснащены защитой от переполюсовки, поэтому крайне важно соблюдать правильную полярность. Если батарей несколько, то предварительно следует соединить их между собой. Для этого используются стандартные перемычки или медный провод.
  2. Подключаем сетевой кабель к ИБП и включаем устройство. Проверяем значение напряжения на дисплее. Если все в порядке, отключаем бесперебойник и подключаем к нему котел.
  3. Снова подаем напряжение и проверяем показания на экране.
  4. Если мощность источника бесперебойного питания слишком большая для подключения его в обычную розетку, придется прокладывать отдельную линию от распределительного щита и устанавливать отдельные автоматические выключатели.
  5. Имитируем отключение электроэнергии. Для этого выключаем фазный автомат в электрощитке.
  6. Проверяем показания на дисплее бесперебойника, тестируем работу электророзжига котла.

Правила установки ИБП

  • источник бесперебойного питания рекомендуется устанавливать в помещении с постоянной температурой 18-25оС. Слишком высокие или низкие температуры приводят к падению емкости АКБ и сокращению срока службы устройства;
  • при подключении ИБП к сети нужно, чтобы не только фаза, но и нейтраль разрывалась с источником электропитания при срабатывании защиты. Для этого необходимо создать дополнительную шину нейтрали в обход дифавтомата или УЗО. При этом ноль от щита должен сначала идти на ИБП, а затем распределяться на потребителей;
  • нужно обеспечить хорошую вентиляцию внутренних компонентов ИБП. Между устройством и стеной/потолков должен быть зазор 200-400 мм;
  • нельзя ставить бесперебойник рядом с водопроводными или газовыми трубами, под вентилями, местами соединения трубопроводов;
  • устройство обязательно нужно заземлять через розетку с заземлением или через отдельный винт;
  • не допускается параллельное подключение ИБП и электросети к потребителю — необходимо использовать только последовательное соединение;
  • запрещено заряжать аккумуляторы от внешнего зарядного устройства, если батареи подключены к бесперебойнику.

При подключении ИБП к сети важно сначала подсоединять защитный проводник РЕ и нейтраль, а только потом фазу.

newet.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о