Микросхема или не – , , , -, — » :

Содержание

Микросхема 74266

74266

Описание

Микросхема 74266 содержит четыре отдельных логических элемента ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ с двумя входами каждый. Выходы имеют открытый коллектор.

Работа схемы

Все четыре логических элемента ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ микросхемы 74266 можно использовать независимо друг от друга.

Когда сигнал высокого уровня присутствует только на одном из входов микросхемы 74266, на выходе логического элемента формируется напряжение низкого уровня. Если же на оба входа подается напряжение высокого или низкого уровня, то на выходе формируется напряжение высокого уровня.

Логический элемент микросхемы 74266 можно использовать в качестве цифрового компаратора, в котором на выходе устанавливается напряжение высокого уровня при поступлении на входы сигналов одного и того же логического уровня. Если же на входы приходят сигналы разных логических уровней, то на выходе создается напряжение низкого уровня. Логический элемент может также работать как управляемый инвертор, поскольку напряжение высокого уровня на входе позволяет всегда передавать сигнал, подаваемый на второй вход, без изменения. И наоборот, напряжение низкого уровня на одном входе позволяет передавать на выход инвертированное значение напряжения со второго входа.

Выходы с открытым коллектором микросхемы 74266 дают возможность использовать микросхему в качестве 4-разрядного компаратора.

Применение

Реализация логической операции ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ, формирование и проверка на чётность-нечётность; сумматор/вычитатель, логические компараторы. Производится следующая номенклатура микросхем: 74LS266.

Технические данные

Тип микросхемы 74LS266
Максимальное выходное напряжение, В 5,5
Время задержки прохождения сигнала, нс 18
Ток потребления, мА 8
Состояние микросхемы 74266

Входы Выход
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

www.microshemca.ru

Цифровые микросхемы. Логический элемент НЕ (INV)

Всем доброго времени суток! Как дом строят из кирпичей, так и цифровые устройства состоят из простых элементов – цифровых микросхем. Наиболее простые из них – логические элементы (или вентили, gates). В одной микросхеме может содержаться только строго определённое количество логических элементов, их может быть или 1, или 2, или 3, или 4, или 8 в одной микросхеме. Соответственно каждый логический элемент может иметь

от 1 до 12 входов и 1 выход. При этом связь между входами и выходом соответствует таблице истинности. Логические элементы относятся к так называемым комбинационным микросхемам, и у них отсутствует какая-либо внутренняя память.

Достоинством логических вентилей является высокое быстродействие и небольшая потребляемая мощность, но на их основе довольно трудно реализовать сложную функциональность, поэтому чаще всего они используются в качестве дополнения к более сложным цифровым микросхемам или микроконтроллерам.

Логический элемент НЕ (Hex Inverters)

Начнём с наиболее простого из логических элементов – логического элемента НЕ (INV) или как его ещё называют инвертора. Как понятно из названия инвертор применяется для инвертирования, то есть изменения уровня сигнала (например, на вход поступает логическая «1», а на выходе получаем логический «0»). Как самый простой из логических элементов инвертор содержит всего один вход и один выход. Инверторы могут быть с тремя типами выходов:

2С, ОК или с Z – состоянием. Как указывалось в этой статье логический элемент НЕ имеет следующую таблицу истинности:


Таблица истинности логического элемента НЕ
ВходВыход
01
10

На принципиальных схемах логические элементы НЕ (инверторы) имеют следующее обозначение



Обозначения логических элементов НЕ (Hex Inverters): ANSI (слева) и DIN (справа).

Микросхемы инверторов содержат обычно шесть логических элементов НЕ (INV) и обозначаются префиксом ЛН (например, К155ЛН1, К561ЛН2). Как говорилось ранее, для ТТЛ микросхем с выходом ОК необходим выходной нагрузочный резистор (pull-up). Величина которого рассчитывается очень просто: R > U/IOL, где U – напряжение источника питания, к которому подключается резистор.

Применение инверторов

Обычно, элементы НЕ применяются для преобразования уровней сигнала (из высокого в низкий или из низкого в высокий уровень). Второе предназначение – увеличения нагрузочной способности (буферизации) с инвертирование выходов более сложных микросхем. Например, когда сигнал с выхода микросхемы необходимо подать на несколько других, а выходной ток недостаточен.

Но существует и несколько нестандартных применений инверторов: построение генераторов и в случае, когда необходимо создать задержку сигнала.



Схема генератора на логических элементах НЕ

Схемы генераторов представляют собой обыкновенные RC-генераторы, но характеристики можно рассчитать только приблизительно, так как она зависит от напряжения питания и типа применённой микросхемы. Частота генератора будет равна

[math]f \approx \frac{1}{2RC}[/math]

Генераторы данного типа можно применять там, где не важна стабильность частоты, а важен лишь факт генерации импульсов. Более

стабильные по частоте генераторы получаются, если вместо конденсатора применить кварцевый резонатор.



Схема кварцевого генератора на логических элементах НЕ

Довольно часто в цифровых схемах необходимо получит некоторую задержку сигнала, в этом случае инверторы могут пригодиться, на большую задержку рассчитывать не приходится (примерно до 100 нс). Для получения задержки сигнала инверторы соединяют последовательно.



Схема для создания задержки сигнала на инверторах

Величину задержки можно рассчитать приблизительно по сумме задержек входного и выходного сигналов (t

PLH и tPHL) для данной микросхемы. Например, для четырёх инверторов величину задержки можно оценить по формуле

[math]t_{З} = 2t_{PLH} + 2t_{PHL}[/math]

но необходимо учитывать, что значения реальных задержек сильно отличаются от тех что даны в справочнике (в справочнике даны максимальные величины, а реальные могут обличаться более, чем в 2 раза).

Более значительные величины задержки сигнала можно получить, используя интегрирующие RC-цепи, но и здесь нельзя точно говорить о величине задержки, потому что разные типы цифровых микросхем срабатывают при разном уровне сигнала и разных напряжениях питания.



Схема для создания задержки сигнала c интегрирующей цепью

Ниже приведена таблица некоторых семейств микросхем, которые имеют в своём составе инверторы

СерияНомер микросхемы
ЛН1ЛН2ЛН3ЛН5ЛН6ЛН7ЛН8ЛН10
К1556НЕ6НЕ(ОК)6НЕ(ОК)6НЕ(ОК)6НЕ(Z)6НЕ(Z)
К5556НЕ6НЕ(ОК)6НЕ(Z)
КР15336НЕ6НЕ(ОК)6НЕ(Z)6НЕ6НЕ(ОК)
К5616НЕ(Z)6НЕ6НЕ(Z)
КР15546НЕ
КР15646НЕ6НЕ(Z)

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Selhozpro.Ru » Логические элементы и их электрические аналоги

Из журнала «Радио»

Логических элементов, работающих как самостоятельные цифровые микросхемы малой степени интеграции и как компоненты микросхем более высокой степени интеграции, можно насчитать несколько десятков. Но здесь мы поговорим лишь о четырех из них — о логических элементах И, ИЛИ, НЕ, И-НЕ. Элементы И, ИЛИ и НЕ — основные, а И-НЕ является комбинацией элементов И и НЕ.

Что представляют собой эти «кирпичики»  цифровой техники, какова логика их действия? Сразу уточним: напряжение от 0 до 0,4В, т. е. соответствующее уровню логического 0, мы будем называть напряжением низкого уровня, а напряжение более 2,4В, соответствующее уровню логической I,-напряжением   высокого уровня. Именно такими уровнями напряжения на входе и выходе логических элементов и других микросхем серии К155 принято характеризовать их логические состояния и работу.

Условное графическое обозначение логического элемента И показано на Рис–1,а. Его условным символом служит знак «&», стоящий внутри прямоугольника; этот знак заменяет союз «и»в английском языке. Слева — два (может быть и больше) логических входа – X1 и X2, справа — один выход Y. Логика действия элемента такова: напряжение высокого уровня появляется на выходе лишь тогда, когда сигналы такого же уровня будут поданы на все его входы

Элемент И — умножение

Разобраться в логике действия логического элемента И поможет  его  электрический аналог (Рис–1, б), составленный из последовательно соединенных источника питания GB (например, батареи 3336), кнопочных переключателей SB1, SB2 любой конструкции и лампы накаливания HL (МНЗ,5-0,26). Переключатели имитируют электрические сигналы на входе аналога, а нить лампы индицирует уровень сигнала на выходе. Разомкнутое состояние контактов переключателей соответствует напряжению низкого уровня, замкнутое- высокого уровня. Пока контакты кнопок не замкнуты (на обоих входах элемента напряжение низкого уровня), электрическая; цепь аналога разомкнута и лампа, естественно, не светит. Нетрудно сделать другой вывод: лампа накаливания на выходе элемента И включается только после того, как контакты обеих кнопок SB1 и SB2 окажутся замкнутыми В этом и заключается логическая связь между входными и выходными сигналами элемента И.

Теперь взгляните на Рис–1,в. На нем изображены временные диаграммы электрических процессов, дающие достоверное представление о работе логического элемента И. На входе X1 сигнал появляется первым. Как только такой же сигнал будет и на входе Х2, тут же появляется сигнал и на выходе Y, который существует до тех пор, пока на обоих входах имеются сигналы, соответствующие напряжению высокого уровня.

О состоянии и логической связи между входными и выходным сигналами элемента И дает представление так называемая таблица состояний (Рис–1, г), напоминающая таблицу умножения. Глядя на нее, можно сказать, что сигнал высокого уровня на выходе элемента будет только тогда, когда сигналы такого же уровня появятся на обоих его входах. Во всех других случаях на выходе элемента будет напряжение низкого уровня, т. е. соответствующее логическому 0

Элемент ИЛИ

Условный символ логического элемента ИЛИ — цифра 1 внутри прямоугольника (Рис–2, а). У этого элемента, как и у элемента И, может быть два и больше входов. Сигнал на выходе Y, соответствующий напряжению высокого уровня, появляется при подаче такого же сигнала на вход X1, или на вход Х2, или одновременно на оба входа. Чтобы убедиться в таком действии элемента ИЛИ, проведите опыт с его электрическим аналогом (Рис–2, б).

Лампа накаливания HL на выходе аналога будет включаться всякий раз, когда окажутся замкнутыми контакты или кнопки SB1, или SB2, или одновременно обеих (всех) кнопок Закрепить в памяти электрическое свойство элемента ИЛИ помогут временные диаграммы его работы (Рис–2,в) и таблица состояний (Рис–2,г), определяющая     логическую связь между входными и выходным сигналами.

Элемент НЕ 

Условный символ логического   элемента   НЕ — тоже цифра 1 в прямоугольнике Рис–3,а. Но у него один вход и один. выход. Небольшой кружок,  которым  начинается линия связи  выходного сигнала, символизирует логическое отрицание на выходе элемента  На языке цифровой техники НЕ означает, что этот элемент является инвертором-  электронным устройством, выходной сигнал которого противоположен входному. Иначе говоря, пока на входе элемента НЕ действует сигнал низкого уровня, на его выходе будет сигнал высокого уровня, и наоборот.

Электрический аналог элемента НЕ можно собрать по схеме,  представленной на Рис– 3, б. Электромагнитное реле К, срабатывающее при напряжении батарея GB, должно быть выбрано с группой замкнутых контактов. Пока контакты кнопки SB1 разомкнуты, обмотка реле обесточена, его контакты К остаются замкнутыми и, следовательно, лампа HL светит. При нажатии на кнопку ее контакты замыкаются, имитируя появление входного сигнала высокого уровня, в результате чего реле срабатывает. Его контакты, размыкаясь, разрывают цепь питания лампы HL-погасая, она символизирует появление на выходе сигнала низкого уровня. Попробуйте начертить самостоятельно временные диаграммы работы элемента НЕ и составить его таблицу состоянии — они должны получиться такими же, как приведенные на Рис–3, в, г.

Элемент И–НЕ 

Как мы уже говорили, логический элемент И-НЕ является комбинацией элементов И и НЕ. Поэтому на его графическом обозначении (Рис–4, а) есть знак «&»и кружок на линии выходного сигнала, символизирующий логическое отрицание. Выход один, а входов два и больше.

Разобраться в принципе действия такого логического элемента цифровой техники вам поможет его электрический аналог, собранный по схеме на Рис–4,б. Электромагнитное реле К, батарея GB и лампа накаливания HL такие же, как в аналоге элемента НЕ. Последовательно с обмоткой реле включите две кнопки (SB1 и SB2), контакты которых будут имитировать входные   сигналы. В исходном состоянии, когда контакты кнопок разомкнуты, лампа светит, символизируя сигнал высокого уровня на выходе. Нажмите на одну из кнопок во входной цепи.

Как на это реагирует индикаторная лампа? Она продолжает светить. А если нажать на обе кнопки? В этом случае электрическая цепь, образованная батареей питания обмоткой реле и контактами кнопок, оказывается замкнутой, реле срабатывает и его контакты К, размыкаясь, разрывают вторую цепь аналога-лампа гаснет. Эти опыты позволяют сделать вывод: при сигнале низкого уровня на одном или на всех входах элемента И-НЕ (когда контакты входных кнопок аналога разомкнуты) на выходе действует сигнал высокого уровня, который изменяется на сигнал низкого уровня при появлении таких же сигналов на всех входах элемента (контакты кнопок аналога замкнуты). Такой вывод подтверждается диаграммами работы и таблицей состояний, показанными на Рис–4, в, г. Обратим внимание на следующий факт: если входы элемента И-НЕ соединить вместе и подать на них сигнал высокого уровня, на выходе элемента будет сигнал низкого уровня. И наоборот, при подаче на объединенный вход сигнала низкого уровня на выходе элемента будет сигнал высокого уровня. В этом случае элемент И-НЕ, как, вероятно, вы уже догадались, становится инвертором, т. е. логическим элементом НЕ. Это свойство элемента И-НЕ очень широко используется в приборах и устройствах цифровой техники.

Элемент ИЛИ–НЕ

Элемент исключающий ИЛИ

Автоколебательный мультивибратор

При ёмкости конденсатора С = 1мкФ и изменении R от 0 до 1,5 ком. частота колебаний изменится от 300Гц до 10 кГц.

 

Ждущий мультивибратор

Изменением ёмкости и сопротивления изменяют длительность вырабатываемых импульсов.

Длительность запускающего импульса должна быть меньше длительности формируемого.

Сопротивление должно быть от 100 Ом до 2,2 к.

Триггер Шмитта

Это спусковое устройство с двумя устойчивыми состояниями. Из одного состояния в другое устройство переходит под действием входного сигнала.

Ещё он преобразует подаваемое на вход переменное напряжение синусоидальной формы в напряжение прямоугольной формы такой же частоты. Срабатывает при определённой амплитуде входного сигнала.

R S — триггер

При 0 на S и 1 на R, триггер находится в единичном состоянии. 1 на S  и 0 на R, триггер в нулевом состоянии. Если на оба входа подать 0, на выходах будет 1. Это противоречит логике его действия и считается недопустимым. 1 на обеих входах не изменит первоначального состояния триггера.

D – триггер

D – Вход приёма цифровой информации.

C – Вход тактовых импульсов синхронизации.

0 – на входе R – триггер в нулевом состоянии.

0 – на входе S – триггер в единичном состоянии.

Логика работы D – триггера в режиме приёма информации следующая: если на входе D – 1,  то по фронту тактового импульса на входе С – триггер устанавливается в единичное состояние, если на входе D – 0, то по фронту тактового импульса на входе С – триггер устанавливается в нулевое состояние.

На спады синхронизирующих импульсов D – триггер не реагирует. Каждое изменившееся состояние триггера означает запись в его память принятой информации.

Работа D – триггера в счётном режиме.

В счётном режиме триггер делит частоту входного сигнала на 2. Выполняет функцию двоичного счётчика.

 

J K – триггер

По входам R и S, он работает как RS триггер. Входы J и K – управляющие, каждый из них имеет по три входа объединённые по схеме 3И. С – вход тактовых импульсов. В режиме приёма и хранения информации он служит входом тактовых импульсов, в счётном режиме – информационным входом.

J K – триггер, работает по спаду тактовых импульсов.

Поворотный механизм инкубатора »

selhozpro.ru

Цифровые микросхемы. Типы логики, корпуса

РадиоКот >Обучалка >Цифровая техника >Основы цифровой техники >

Цифровые микросхемы. Типы логики, корпуса

Ну сначала скажем так: микросхемы делятся на два больших вида: аналоговые и цифровые. Аналоговые микросхемы работают с аналоговым сигналом, а цифровые, соответственно – с цифровым. Мы будем говорить именно о цифровых микросхемах.

Точнее даже, мы будем говорить не о микросхемах, а об элементах цифровой техники, которые могут быть «спрятаны» внутри микросхемы.

Что это за элементы?

Некоторые названия вы слышали, некоторые, может быть – нет. Но поверьте, эти названия можно произносить вслух в любом культурном обществе – это абсолютно приличные слова. Итак, примерный список того, что мы будем изучать:

  • Триггеры
  • Счетчики
  • Шифраторы
  • Дешифраторы
  • Мультиплексоры
  • Компараторы
  • ОЗУ
  • ПЗУ

Все цифровые микросхемы работают с цифровыми сигналами. Что это такое?

Цифровые сигналы – это сигналы, имеющие два стабильных уровня – уровень логического нуля и уровень логической единицы. У микросхем, выполненных по различным технологиям, логические уровни могут отличаться друг от друга.

В настоящее время наиболее широко распространены две технологии: ТТЛ и КМОП.

ТТЛ – Транзисторно-Транзисторная Логика;
КМОП – Комплиментарный Металл-Оксид-Полупроводник.

У ТТЛ уровень нуля равен 0,4 В, уровень единицы – 2,4 В.
У логики КМОП, уровень нуля очень близок к нулю вольт, уровень единицы – примерно равен напряжению питания.

По-всякому, единица – когда напряжение высокое, ноль – когда низкое.

НО! Нулевое напряжение на выходе микросхемы не означает, что вывод «болтается в воздухе». На самом деле, он просто подключен к общему проводу. Поэтому нельзя соединять непосредственно несколько логических выводов: если на них будут различные уровни – произойдет КЗ.

Кроме различий в уровнях сигнала, типы логики различаются также по энергопотреблению, по скорости (предельной частоте), нагрузочной способности, и т.д.

Тип логики можно узнать по названию микросхемы. Точнее – по первым буквам названия, которые указывают, к какой серии принадлежит микросхема. Внутри любой серии могут быть микросхемы, произведенные только по какой-то одной технологии. Чтобы вам было легче ориентироваться — вот небольшая сводная таблица:

  ТТЛ ТТЛШ КМОП Бастродейств. КМОП ЭСЛ
Расшифровка названия Транзисторно-Транзисторная Логика ТТЛ с диодом Шоттки Комплиментарный Металл-Оксид Полупроводник   Эмиттерно-Согласованная Логика
Основные серии отеч. микросхем К155
К131
К555
К531
КР1533  
К561
К176
КР1554
КР1564
К500
КР1500
Серии буржуйских микросхем 74 74LS
74ALS
CD40
H 4000
74AC
74 HC
MC10
F100  
Задержка распространения, нС 10…30 4…20 15…50 3,5..5 0,5…2
Макс. частота, МГц 15 50..70 1…5 50…150 300…500
Напряжение питания, В 5 ±0,5 5 ±0,5 3…15 2…6 -5,2 ±0,5
Потребляемый ток (без нагрузки), мА 20 4…40 0,002…0,1 0,002…0,1 0,4
Уровень лог.0, В 0,4 0,5 < 0,1 < 0,1 -1,65
Уровень лог. 1, В 2,4 2,7 ~ U пит ~ U пит -0,96
Макс. выходной ток, мА 16 20 0,5 75 40

 

Наиболее распространены на сегодняшний день следующие серии (и их импортные аналоги):

  • ТТЛШ – К555, К1533
  • КМОП – КР561, КР1554, КР1564
  • ЭСЛ – К1500

Цифровые схемы рекомендуется строить, используя микросхемы только одного типа логики. Это связано именно с различиями в логических уровнях цифровых сигналов.

Тип логики выбирают, в основном, исходя из следующих соображений:

— скорость (рабочая частота)
— энергопотребление
— стоимость

Но бывают такие ситуации, что одним типом никак не обойтись. Например, один блок должен иметь низкое энергопотребление, а другой – высокую скорость. Низким потреблением обладают микросхемы технологии КМОП. Высокая скорость – у ЭСЛ.

В этом случае понадобятся ставить преобразователи уровней.

Правда, некоторые типы нормально стыкуются и без преобразователей. Например, сигнал с выхода КМОП-микросхемы можно подать на вход микросхемы ТТЛ (при учете, что их напряжения питания одинаковы). Однако, в обратную сторону, т.е., от ТТЛ к КМОП пускать сигнал не рекомендуется.

Микросхемы выпускаются в различных корпусах. Наиболее распространены следующие виды корпусов:


DIP
(Dual Inline Package )

Обычный «тараканчик». Ножки просовываем в дырки на плате – и запаиваем.

Ножек в корпусе может быть 8, 14, 16, 20, 24, 28, 32, 40, 48 или 56.

Расстояние между выводами (шаг) – 2,5 мм (отечественный стандарт) или 2,54 мм (у буржуев).

Ширина выводов около 0,5 мм

Нумерация выводов – на рисунке (вид сверху). Чтобы определить нахождение первой ножки, нужно найти на корпусе «ключик».



SOIC
(Small Outline Integral Circuit)

Планарная микросхема – то есть ножки припаиваются с той же стороны платы, где находится корпус. При этом, микросхема лежит брюхом на плате.

Количество ножек и их нумерация – такие же как у DIP .

Шаг выводов – 1,25 мм (отечественный) или 1,27 мм (буржуазный).

Ширина выводов – 0,33…0,51



PLCC
(Plastic J-leaded Chip Carrier)

Квадратный (реже — прямоугольный) корпус. Ножки расположены по всем четырем сторонам, и имеют J -образную форму (концы ножек загнуты под брюшко).

Микросхемы либо запаиваются непосредственно на плату (планарно), либо вставляются в панельку. Последнее – предпочтительней.

Количество ножек – 20, 28, 32, 44, 52, 68, 84.

Шаг ножек – 1,27 мм

Ширина выводов – 0,66…0,82

Нумерация выводов – первая ножка возле ключа, увеличение номера против часовой стрелки:



TQFP
(Thin Quad Flat Package)

Нечто среднее между SOIC и PLCC .

Квадратный корпус толщиной около 1мм, выводы расположены по всем сторонам.

Количество ножек – от 32 до 144.

Шаг – 0,8 мм

Ширина вывода – 0,3…0,45 мм

Нумерация – от скошенного угла (верхний левый) против часовой стрелки.


Вот так, в общих чертах, обстоят дела с корпусами. Надеюсь теперь вам станет немножко легче ориентироваться в бесчисленном множестве современных микросхем, и вас не будет вгонять в ступор фраза продавца типа: «эта микросхема есть только в корпусе пэ эл си си»…

<<—Вспомним пройденное—-Поехали дальше—>>


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Таблица истинности. Базовые логические элементы.

Так же, как и стандартные Булевы выражения, информация на входах и выходах различных логических элементов или логических схем может быть собрана в единую таблицу – таблицу истинности.

Таблица истинности дает наглядное представление о системе логических функций. В таблице истинности отображаются сигналы на выходах логических элементов при всех возможных комбинациях сигналов на их входах.

В качестве примера, рассмотрим логическую схему с двумя входами и одним выходом. Входные сигналы отметим как «А» и «В», а выход «Q». Есть четыре (2²) возможных комбинаций входных сигналов, которые можно подать на эти два входа («ON — наличие сигнала» и «OFF — отсутствие сигнала»).

Однако, когда речь идет о логических выражениях и, особенно о таблице истинности логических элементов, вместо общего понятия «наличие сигнала» и «отсутствие сигнала» используют битные значения, которые представляют собой логический уровень «1» и логический уровень «0» соответственно.

Тогда четыре возможные комбинации «А» и «В» для 2-входного логического элемента можно представить в следующем виде:

  1. «OFF» — «OFF» или (0, 0)
  2. «OFF» — «ON» или (0, 1)
  3. «ON» — «OFF» или (1, 0)
  4. «ON» — «ON» или (1, 1) 

Следовательно, у логической схемы имеющей три входа будет восемь возможных комбинаций (2³)  и так далее. Для обеспечения легкого понимания сути таблицы истинности, мы будем изучать ее только на простых логических элементах с числом входов не превышающим двух. Но, несмотря на это, принцип получения логических результатов для многовходных элементов схемы остается таким же.

Практически, таблица истинности состоит из одного столбца для каждой из входных переменных (например, А и В), и один последний столбец для всех возможных результатов логической операции (Q). Следовательно, каждая строка таблицы истинности содержит один из возможных вариантов входных переменных (например, A = 1, B = 0), и результат операции с этими значениям.

Таблица истинности

Элемент «И»

Для логического элемента «И» выход Q будет содержать лог.1, только если на оба входа («А» и «В») будет подан сигнал лог.1

Микросхемы, содержащие логический элемент «И»:

  • К155ЛИ1, аналог SN7408N
  • К155ЛИ5 с открытым коллектором, аналог SN74451N
  • К555ЛИ1, аналог SN74LS08N
  • К555ЛИ2 с открытым коллектором, аналог SN74LS09N

Элемент «ИЛИ»

Выход Q, элемента «ИЛИ», будет иметь лог.1, если на любой из двух входов или же на оба входа сразу подать лог.1


Микросхемы, содержащие логический элемент «ИЛИ»:

  • К155ЛЛ1, аналог SN7432N
  • К155ЛЛ2 с открытым коллектором, аналог SN75453N
  • К555ЛЛ1, аналог SN74LS32N

Элемент «НЕ»

В данном случае выход Q, логического элемента «НЕ», будет иметь сигнал противоположный входному сигналу.

 

Микросхемы, содержащие логический элемент «НЕ»:

  • К155ЛН1, аналог SN7404N
  • К155ЛН2 с открытым коллектором, аналог SN7405N
  • К155ЛН3, аналог SN7406N
  • К155ЛН5 с открытым коллектором, аналог SN7416N
  • К155ЛН6, аналог SN7466N

Элемент «И-НЕ»

На выходе Q элемента «И-НЕ» будет лог.1 если на обоих входах одновременно  отсутствует сигнал лог.1

Микросхемы, содержащие логический элемент «И-НЕ»:

  • К155ЛА3, аналог SN7400N
  • К155ЛА8, аналог SN7401N
  • К155ЛА9 с открытым коллектором, аналог SN7403N
  • К155ЛА11 с открытым коллектором, аналог SN7426N
  • К155ЛА12 с открытым коллектором, аналог SN7437N
  • К155ЛА13 с открытым коллектором, аналог SN7438N
  • К155ЛА18 с открытым коллектором, аналог SN75452N

Элемент «ИЛИ-НЕ»

Только если на оба входа логического элемента «ИЛИ-НЕ» подать лог.0 мы получим на его выходе Q сигнал соответствующий лог.1

Микросхемы, содержащие логический элемент «ИЛИ-НЕ»:

  • К155ЛЕ1, аналог SN7402N
  • К155ЛЕ5, аналог SN7428N
  • К155ЛЕ6, аналог SN74128N

Элемент «Исключающее ИЛИ»

В данном случае выход Q будет содержать лог.1, если на вход элемента «Исключающее ИЛИ» поданы два противоположных друг другу сигнала.

Микросхемы, содержащие логический элемент «Исключающее ИЛИ»:

  • К155ЛП5, аналог SN7486N

Подведем итог, собрав все полученные ранее результаты работы логических элементов в единую таблицу истинности:

www.joyta.ru

Справочник «Цифровые Интегральные Микросхемы»

Справочник «Цифровые Интегральные Микросхемы» [ Содержание ]

2.4.3 Микросхемы типа ЛЕ, ЛЛ

Как отмечалось в предыдущем разделе, функцию ИЛИ-НЕ можно реализовать с помощью логического элемента И-НЕ (рис. 2.8.а), переименовав его логические уровни (такой способ непрактичен) или применив специальную ИС ИЛИ-НЕ (рис. 2.13.а), где напряжение низкого уровня Н соответствует логическому нулю, а напряжение высокого уровня В-логической единице. т. е. как и в ранее приводимых ИС.


Рис. 2.13а. Принципиальная схема логического элемента

В таких элементах ТТЛ используются не один, а два многоэмиттерных транзистора VT1, VT4 и параллельное соединение двух транзисторов в фазоразделительном каскаде (VT2, VT3). Для получения инверсии добавлен обычный выходной каскад с транзистором-повторителем VT5 и ключевым транзистором VT6. Условное обозначение элемента ИЛИ-НЕ и таблица состояний для двухвходового элемента приведены в табл. 2.13,б.

Таблица состояний
Логический
элемент
ВходВыход
АBQ(/ИЛИ)
001
010
100
110

На рис. 2.14 приведена наиболее распространенная типовая схема логического элемента ИЛИ-НЕ на два входа.


Рис. 2.14. Типовая принципиальная схема элемента 2ИЛИ-НЕ

Каждый из корпусов ИС типа ЛЕ, ЛЛ содержит от двух до четырех логических элементов.

Цоколевки микросхем типа ЛЕ и ЛЛ н их условные графические обозначения даны на рис. 2.15, а основные параметры приведены в табл. 2.4.


Рис. 2.15. Условные обозначения и цоколевки микросхем типа ЛЕ и ЛЛ

Микросхема ЛЛ1 содержит четыре двухвходовых элемента ИЛИ, а ЛЛ2 — два двухвходовых элемента ИЛИ с мощным открытым коллекторным выходом.

Микросхемы ЛЕ2, ЛЕЗ имеют для каждого четырехвходового элемента вход разрешения EI (Enable input), а один из элементов ЛЕ2 имеет, кроме того, выводы расширения числа входов Р и /Р. Во время действия команды ЕI разрешается (или запрещается) прием сигнала по входу логического элемента. Для подачи такой команды на микросхему необходимо предусмотреть дополнительный вывод разрешения по входу EI. Если по этому входу запрещается прием сигналов, то он обозначается как инверсный /EI.

На рис. 2.16 показана схема организации входа разрешения, управляемого инверсной командой. Транзисторы VT1 и VT4 имеют дополнительные, объединенные эмиттеры, образующие вход /EI.


Рис. 2.11а. Принципиальная схема логического элемента с дополнительным входом разрешения EI

Если на этот вход /EI подать напряжение низкого уровня Н, то входные токи транзисторов VT1 и VT4 через переключатель S1 будут замыкаться на корпус. Поэтому основные входы А и В не смогут принять никакую комбинацию сигналов высокого и низкого уровней. На выходе Q будет зафиксировано напряжение высокого уровня независимо от уровней сигналов на входах А и В. Если на вход разрешения /EI подать сигнал высокого уровня В, то прохождение сигналов со входов А и В будет разрешено. Если входы А и В обьединить и подать на них последовательность импульсов, то на выходе Q она появится в инверсной форме.

Таблица состояний логического элемента.
ВходВыход
/EIA, B/Q
10
1
1
0
00
1
1

Среди логических элементов ИЛИ-НЕ имеются два буферных с мощными выходами — ЛЕ5, ЛЕ6. Для них допустимый ток нагрузки порядка 70 мА.


www.asvcorp.ru

Микросхемы.

Микросхемы ТТЛ (74…).

На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5…2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.

Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.

Динамические параметры микросхем ТТЛ серии

ТТЛ серия Параметр Нагрузка
Российские Зарубежные Pпот. мВт. tзд.р. нс Эпот. пДж. Cн. пФ. Rн. кОм.
К155 КМ155 74 10 9 90 15 0,4
К134 74L 1 33 33 50 4
К131 74H 22 6 132 25 0,28
К555 74LS 2 9,5 19 15 2
К531 74S 19 3 57 15 0,28
К1533 74ALS 1,2 4 4,8 15 2
К1531 74F 4 3 12 15 0,28

При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.

Взаимная нагрузочная способность логических элементов ТТЛ разных серий

Нагружаемый
выход
Число входов-нагрузок из серий
К555 (74LS) К155 (74) К531 (74S)
К155, КM155, (74) 40 10 8
К155, КM155, (74), буферная 60 30 24
К555 (74LS) 20 5 4
К555 (74LS), буферная 60 15 12
К531 (74S) 50 12 10
К531 (74S), буферная 150 37 30

Выходы однокристальных, т. е. расположенных в одном корпусе, логических элементов ТТЛ, можно соединять вместе. При этом надо учитывать, что импульсная помеха от сквозного тока по проводу питания пропорционально возрастет. Реально на печатной плате остаются неиспользованные входы и даже микросхемы (часто их специально «закладывают про запас») Такие входы логического элемента можно соединять вместе, при этом ток Ioвх. не увеличивается. Как правило, микросхемы ТТЛ с логическими функциями И, ИЛИ потребляют от источников питании меньшие токи, если на всех входах присутствуют напряжения низкого уровня. Из-за этого входы таких неиспользуемых элементов ТТЛ следует заземлять.

Статические параметры микросхем ТТЛ

Параметр Условия измерения К155 К555 К531 К1531
Мин. Тип. Макс. Мин. Тип. Макс. Мин. Тип. Макс. Мин. Макс.
U1вх, В
схема
U1вх или U0вх Присутствуют на всех входах 2 2 2 2
U0вх, В
схема
0,8 0,8 0,8
U0вых, В
схема
Uи.п.= 4,5 В 0,4 0,35 0,5 0,5 0,5
I0вых= 16 мА I0вых= 8 мА I0вых= 20 мА
U1вых, В
схема
Uи.п.= 4,5 В 2,4 3,5 2,7 3,4 2,7 3,4 2,7
I1вых= -0,8 мА I1вых= -0,4 мА I1вых= -1 мА
I1вых, мкА с ОК
схема
U1и.п.= 4,5 В, U1вых=5,5 В 250 100 250
I1вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В 40 20 50
I0вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, Uвых= 0,4 В, Uвх= 2 В -40 -20 -50
I1вх, мкА
схема
U1и.п.= 5,5 В, U1вх= 2,7 В 40 20 50 20
I1вх, max, мА U1и.п.= 5,5 В, U1вх= 10 В 1 0,1 1 0,1
I0вх, мА
схема
U1и.п.= 5,5 В, U0вх= 0,4 В -1,6 -0,4 -2,0 -0,6
Iк.з., мАU1и.п.= 5,5 В, U0вых= 0 В -18 -55 -100 -100 -60 -150

www.microshemca.ru

Learn how to write and publish your own book with expert advice at literus.net .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *