Схема электрозадвижки – схема подключения, установка и управление

Содержание

схема подключения, установка и управление

Современный монтаж запорной арматуры, в подавляющем большинстве случаев, ведется с применением электрозадвижки для трубопроводов. Особенно в системах трубопроводов воды, нефти и газа. Связано это с тем, что механические задвижки в современных условиях уже морально устарели. А возможность перекрывать поток через трубопровод дистанционно, гораздо удобней, экономичней и быстрее, чем непосредственное перекрывание вентиля. Это дает возможность строить сложные автоматизированные системы управления потоками жидкости или газа в разных направлениях промышленности или водоснабжения.

Принцип работы электрозадвижки

В конструктивном исполнении существует несколько видов задвижек:

  1. Клиновые. Плоская заглушка перекрывает поток перпендикулярно, как бы вбивается клин.
  2. Поворотные. Заслонка располагается в самой трубе и при ее повороте поток перекрывается.
  3. Параллельные. Делятся на одно- или двух кольцевые. Поток перекрывается после опускания дисков в специальные углубления.
  4. Шланговые. Затвор осуществляется путем сильного сжатия шланга.

В большинстве случаев при работе электропривода используется клиновое исполнение задвижек

Чтобы из механической задвижки сделать задвижку с электроприводом, достаточно к существующей конструкции добавить асинхронный двигатель и червячный редуктор. Вращение вала передается на редуктор, который приводит в движение задвижку.

Рис. 1: Червячный редуктор

Использование электропривода позволяет дистанционно управлять процессом отпирания/запирания заглушек, что получило широкое применение во многих сферах.

Рис. 2: Внешний вид электрозадвижки

В зависимости от параметров системы на конечный выбор конструкции электрозадвижки будет влиять следующие факторы:

  • агрессивность среды потока
  • рабочее давление в системе
  • условия окружающей среды
  • необходимые системы защиты и безопасности.

Электрозадвижка всегда дублируется в механическом исполнении на случаи отсутствия питания. Для переключения на ручной режим на месте расположения трубопровода и задвижки выносят элементы управления переключением на ручной режим работы.

Блок схема устройства электрозадвижки показана на рис. 3.

Рис.3: Блок схема управления задвижкой

Приводы оснащаются концевым выключателем с помощью которого регистрируются положения задвижки и поступают сигналы в систему управления по достижении ей крайних положений. Муфта ограничения крутящего момента позволяет обезопасить трубопровод от повреждений при заклинивании задвижки или попадании в место перекрытия посторонних предметов, предотвращает повреждение всей системы.

Электрическая схема подключения электрозадвижки в общем виде без системы контроля датчиков давления или сложной системы управления электроприводом выглядит следующим образом:

Рис. 4: Электрическая схема подключения электропривода

На данной схеме сигналы с концевых выключателей останавливают работу двигателя, и задвижка находится или в состоянии «открыто» или «закрыто».

Материалы изготовления электрозадвижек

Изготавливаются задвижки из следующих видов металлов:

  • Латунь
  • Бронза
  • Сталь
  • Чугун

Наибольшее распространения получили исполнения из стали из чугуна, как наиболее надежные в работе способные прослужить достаточно долго без нареканий, что и является основным критерием выбора. Исполнения из бронзы и латуни зачастую используются в специфических системах трубопроводов, где значения выбора материала изготовления задвижек имеет большое значение.

В чем преимущество использования электрозадвижек?

Очевидным преимуществом использования электрозадвижек является возможность дистанционного управления системой, особенно это получило распространение на пожарных водопроводах. В это входит не только понятия открывание и запирание потоков, но и регистрация нештатных ситуаций и предотвращение аварийных ситуаций. Стоимость электрозадвижки хоть и выше, чем стандартной механической, но получаемые преимущества быстро окупают все расходы в процессе эксплуатации.

Также обеспечиваются другие преимущества:

  • возможность монтажа трубопроводов в труднодоступных местах, где не будет необходимости постоянно осуществлять управление системой непосредственно на трубопроводе.
  • быстрое реагирования на текущую ситуацию.
  • значительно более быстрое отпирание/запирание больших диаметров труб, в сравнении с ручными задвижками.
  • возможность построения сложных трубопроводных систем, в том числе автоматических без участия оператора.

Классификация задвижек с электроприводом.

С распространением использования запорной арматуры в начале 19 века была разработана и принята таблица фигур запорной арматуры. В ней были установлены ряд правил для более легкого и удобного чтения и обозначение различных исполнений запорной арматуры. Так как задвижка — это только один из видов запорной арматуры имеет смысл указать как будет выглядеть маркировка задвижек с электроприводом, на примере 30с941нж.

Рис. 5: Задвижка 30с941нж

«30» – обозначает непосредственно тип арматуры, а именно задвижки.

«с» – обозначает материал из которого изготовлен корпус запора, в данном случае сталь углеродистая.

«9» – тип используемого привода, в данном случае электромоторный.

«41» – обозначает номер изделия на заводе-изготовителе.

«нж» – материал уплотнителя, нержавеющая сталь.

Остальные типы маркировки указаны на рис. 6.

Рис. 6: Таблица фигур запорной арматуры

Другим важным параметром при выборе задвижки является DN (или ДУ). DN принятый современный стандарт обозначения условного прохода. ДУ (диаметр условный) устаревшее название, постепенно выходящее из оборота. Условный проход обозначает внутренний диаметр трубы, выраженный в миллиметрах. Например, DN50 (или ДУ50) обозначает трубу с внутренним диаметром в 50 мм. Условным размер называют не случайно, т.к. при изготовлении труб выдержать точные размеры внутреннего диаметра не имеет экономического смысла, поэтому он может в небольших пределах варьироваться, однако считать этот размер точным нельзя.

Не менее важным является параметр PN (или РУ) обозначающий предел давления, при котором обеспечена нормальное функционирование устройства. Например, PN15 означает, что данное изделие гарантирует функционирование при давлении в системе в 15 Бар.

Соответственно в зависимости от исполнения задвижки и диаметра трубы на котором она будет использоваться осуществляется подбор типа электропривода к данной задвижке. Разница в использовании электропривода на трубу с ДУ50 и ДУ600 очевидна, поэтому на один и тот же тип задвижки может выбираться разный электропривод.

Из отечественных изготовителей приводов самыми распространенными являются изделия заводов ОАО «ЗЭиМ» и ОАО «Тулаэлектропривод». Наибольшее распространения получили двигатели серии ПЭМ-А11 использующиеся на самые распространенные размеры труб от ДУ50 до ДУ150.

Виды электрозадвижек и систем управления

По системам управления электроприводами различают несколько типов:

  • Многооборотные. Элекрозадвижки способные запирать поток не только в двух положениях открыто/закрыто, а с возможностью контроля потока еще в нескольких промежуточных положениях.
  • Взрывозащитные. Системы с усиленной конструкцией на случай возникновения нештатных ситуаций. Используются в основном в системах с взрывоопасными жидкостями. В основном нефтяной, химической и газовой промышленности.
  • Интегрированные. Задвижки, оборудованные системой датчиков контроля состояния потока. Способные в автоматическом режиме менять положение задвижке в зависимости от текущей ситуации в арматуре.

Правила установки и регулировки

Перед началом установки задвижки в обязательном порядке необходимо убедиться в ее корректной работе. Для этого клин необходимо нанести смазку на силиконовой основе, если она отсутствует, то пролить обычной водой. Потом необходимо провести ее до состояния закрытия и вернуть в открытое состояния до упора. Убедившись, что проверка на работоспособность задвижки прошла успешно на полном цикле в ручном режиме и при работе электропривода. Убедитесь, что в трубопроводе отсутствуют посторонние предметы и приступайте к ее монтажу. Если выяснится, что заслонка не работает после монтажа это приведет не только к экономическим, но и моральным неудобствам.

Также до установки убедитесь, что изделие вам подходит по всем параметрам, если с ДУ будет трудно ошибиться, то вот значение PN обязательно необходимо проверить. Этот параметр должен обязательно соответствовать условиям эксплуатации.

Крепление задвижки к ответному фланцу должно осуществляться болтами определенного диаметра, в зависимости от ДУ оно меняется. Их значения приведены в таблице ниже.

Рис. 7: Таблица рекомендованных диаметров болтов для крепления задвижек в зависимости от значений диаметра трубы и давления в системе

Количество болтов крепления и их расположения фланцевых отверстий должны соответствовать ГОСТ 12821. Далее устанавливаете электропривод и производится окончательная установка и монтаж систем управления.

Срок службы и рекомендации по эксплуатации

Гарантийный срок стандартных задвижек составляет 2 года, срок службы – 10 лет. Средний ресурс не менее 2500 циклов. При верно выбранном значении PN и бережной эксплуатации изделия без чрезвычайных ситуаций прибор может прослужить исправно гораздо дольше. Крайне не рекомендуется обслуживать изделие персоналу не обученном работе, настройке и эксплуатации задвижек. В случае если в системе возможны запредельные значения давления, необходимо установить в ней опоры или компенсаторы.

Нельзя использовать арматуру в качестве опоры для трубопровода, это сильно уменьшает срок эксплуатации прибора. Запрещено менять набивку сальника или осуществлять его до набивку.

znatoktepla.ru

2.3.2. Электрическая схема управления задвижкой

Для
управления задвижками применяется
реверсивный электропривод. Задвижки с
электрическим приводом широко применяются
в схемах управления паровых и водогрейных
котлов. Их устанавливают на трубопроводах
сетевой воды до и после котла, газопроводе
и мазутопроводе к котлу, трубопроводах
обвязки насоса питательной воды, на
напорном трубопроводе сетевой воды.

Для
примера рассмотрим схему управления
электроприводом задвижки на напорном
трубопроводе сетевой воды (рис. 2.22)
[9]. В схеме применен реверсивный магнитный
пускатель, состоящий из двух контакторов
КМ1,
КМ2
и электротеплового реле КК.
Схемой предусматривается ручное и
автоматическое управление электроприводом.
В ручном режиме нажатием на кнопку
управления SB1
подается напряжение на катушку КМ1
магнитного
пускателя открытия задвижки. При
достижении запорным органом полного
открытия конечный выключатель SQ1
разрывает цепь питания катушки магнитного
пускателя, и электропривод останавливается.
Закрытие задвижки осуществляется дом
нажатием на кнопку управления SB2.

Останов
электропривода при закрытии задвижки
осуществляется муфтой предельного
момента SQ5.
При достижении необходимой плотности
при закрытии задвижки момент вращения,
развиваемый электроприводом, становится
больше номинального значения, и муфта
предельного момента воздействует на
конечный выключатель SQ5,
который, срабатывая, кратковременно
размыкает свой контакт. Цепь катушки
КМ2
магнитного пускателя разрывается, и
электропривод останавливается. Для
прекращения действия ошибочно поданной
команды, а также для

кратковременно
остановки задвижки в промежуточном
положении в схеме предусматривается
установка кнопки управления SB3
(Стоп).

Рис.
2.22. Принципиальная электрическая схема
управления

электроприводом
задвижки на напорном трубопроводе се-
тевой воды

При
включении магнитным пускателем
электропривода на открытие задвижки
блок-контактом контактораКМ1
размыкается цепь катушки контактора
КМ2,
и наоборот, то есть в схеме предусмотрена
электрическая блокировка, исключающая
возможность одновременного включения
обеих катушек реверсивного магнитного
пускателя. Сигнальные лампы HL1,
HL2
и HL3
сигнализируют
соответственно полное открытие, полное
закрытие запорного органа и срабатывание
муфты предельного момента. Ключ SA,
установленный в цепях сигнальных ламп
HL1
и HL2,
обеспечивает эксплуатацию щита
автоматизации с нормально погашенными
сигнальными лампами.

В
автоматическом режиме открытие и
закрытие задвижки осуществляется
контактами К1
реле дистанционного управления К1
насоса сетевой воды
(см. рис.
2.27). При пуске электродвигателя насоса
задвижка открывается и после его
отключения закрывается.

2.3.3. Электрическая схема управления

циркуляционными
насосами

Циркуляционные
насосы устанавливают в ЦТП для горячего
водоснабжения. Они поддерживают
требуемую температуру и давление воды
у водоразборных точек.

Для
примера рассмотрим электрическую схему
управления циркуляционными насосами
(рис. 2.23), устанавливаемыми на ЦТП для
циркуляции горячей воды контура системы
теплопотребления (см. рис. 3.1-3.3 [10]).

Принцип
работы схемы
.
Перед включением насосов в работу подают
напряжение в силовую цепь и цепь
управления насосными агрегатами
автоматическими выключателями QF1,
QF2
и SF.
Выбор рабочего насоса осуществляется
переключателем SA.
При выборе рабочим насоса НЦ1
переключатель
SA
устанавливают в положение I.
Подается напряжение на катушку реле
управления К1,
которое срабатывает и своим замыкающим
контактом К1
(1-13)
подает
напряжение на катушку магнитного
пускателя КМ1.
Магнитный пускатель срабатывает и
своими силовыми контактами
КМ1
включает
электродвигатель М1
насоса НЦ1.
Одновременно блок-контактом КМ1(1-21)
подается
напряжение на сигнальную лампу HL1
«Нормальная
работа насоса НЦ1».

Рис.
2.23. Принципиальная электрическая схема
управления

циркуляционными
насосами

Если
по какой-либо причине остановился насосНЦ1,
то срабатывает реле перепада давления
SP
и своим замыкающим контактом SP
(1-25) подает напряжение на катушку реле
времени КТ,
которое с задержкой времени замыкает
свой контакт КТ
(1-27) и подает напряжение на реле КА
для срабатывания
автоматического включения резерва
(АВР), которое обеспечивает автоматическое
включение резервного насоса НЦ2.
Это происходит следующим образом. Реле
КА
срабатывает и своим размыкающим контактом
КА (3-5)
снимает напряжение с катушки реле
управления К1,
а замыкающим контактом КА
(3-7) подает напряжение на катушку
промежуточного реле К2.
Реле К2
срабатывает и замыкающим контактом К2
(1-17) подает напряжение на катушку
магнитного пускателя КМ2,
который силовыми контактами КМ2
включает в работу
электродвигатель
М2
насоса НЦ2.
Одновременно загорается сигнальная
лампа HL2
«Нормальная работа насоса НЦ2»,
включается звонок громкого боя НА
и загорается сигнальная лампа HL3
«АВР
включена». Замыкающим контактом КА
(1-27) шунтируется замыкающий контакт КТ.
Сигнализацию можно отключить нажатием
на кнопку управления SB
(27-29).

При
выборе рабочим насоса НЦ2
переключатель SA
устанавливают в положение II.
Тогда рабочим будет насос НЦ2,
а резервным насос НЦ1.

В
схеме предусмотрены все виды защит
силовой цепи и цепи управления.
Максимальная защита осуществляется
автоматическими выключателями QF1,
QF2
и SF,
защита от перегрузки тепловыми
расцепителями автоматических выключателей
QF1,
QF2
и электротепловыми реле КК1
и КК2.,
нулевая защита магнитными пускателями
КМ1 и
КМ2.

studfiles.net

Схема управления электрозадвижкой в КИП и А

Схема управления электрозадвижкой в КИП и А

Программа КИП и А

Здесь представлены наиболее простые схемы управления электрозадвижками, применяемые в КИП и А на основе концевых (путевых) выключателей.

Внимание! Так как схемы работают под напряжением 220 ⁄ 380 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.

Схема управления электрозадвижкой в простейшем случае представляет собой блок концевых (путевых) выключателей, связанных с кнопками управления и электормагнитными реле (пускателями). В большинстве случаев содержит блокировочный выключатель ручного упрвления (КБР).

Может содержать токовое реле выключения (мгновенное выключение при превышении уставки тока) и телеметрический указатель положения задвижки. В данной статье не рассматриваются.

На рисунках 1 и 2 изображены две схемы управления задвижками. В первой используются четыре концевых выключателя для управления электродвигателем и лампочками сигнализации положения задвижки, во второй — два.

Общими элементами являются:

  K1 — электромкгнитное реле (пускатель, далее реле) открытия;

  K2 — электромкгнитное реле закрытия;

  SB1 — кнопка «Открыть»;

  SB2 — кнопка «Закрыть»;

  SB3 — кнопка «Стоп»;

  E1 — лампа, индицирующая открытие задвижки «Открыта»;

  E2 — лампа, индицирующая закрытие задвижки «Закрыта»;

  S6 — тепловое реле, выключающее электродвигатель при повышение тока нагрузки — заклинивание задвижки, редуктора, исчезновении одной фазы.

  S1 — контакт КБР, является предохранительным выключателем схемы управления электрозадвижкой. Когда задвижка переведена на ручное управление блокирует цепи управления электрозадвижки, предотвращая случайное включение ее с пульта управления, чтобы не пострадал технологический персонал и т.д.

  S2 — S5 — контакты концевых (путевых) выключателей, управляемые кулачковым механизмом блока, жестко механичекски связанным с управляемой задвижкой.

  K1.3 — K1.5, K2.3 — K2.5 — силовые контакты реле K1 и K2, подающие напряжение 380 Вольт на электродвигатель.


Рис. 1. Схема управления электрозадвижкой с четырьмя концевыми выключателями

Принцип действия

Когда электрозадвижка находится в среднем положении, в выключенном ручном режиме, то фаза «C» проходит через контакты стоповой кнопки SB3, замкнутый контакт КБР (S1) и конечные выключатели S2 и S3 на контакты кнопок SB1 и SB2 (соответственно: открыть, закрыть).

При нажатии кнопки SB1 «Открыть», срабатывает реле K1 и самоподхватывается через контакты K1.1. Через его силовые контакты K1.2 — K1.5 подается напряжение на электродвигатель M1, задвижка начинает открываться до тех пор, пока не нажата кнопка SB3 «Стоп» или кулачковый механизм блока концевых выключателей не разомкнет контакт S2, отвечающий за останов задвижки в положении «Открыта». При достижении этого положения, т.е. задвижка в положении «Открыта», контакт выключателя S4 должен замкнуться (выставляется соответствующим кулачком в блоке концевых выключателей), ламочка E1, индицирующая открытое положение задвижки начинает гореть. Дальнейшие попытки нажать кнопку «Открыть» ни к чему не приводят, т.к. контакты конечника S2 разомкнуты и напряжение на кнопку SB1 «Открыть» не подается. Зато, на кнопку SB2 «Закрыть» поступает напряжение через контакты S3, при ее нажатии задвижка закрывается.

Аналогичным образом осуществляется и механизм закрытия задвижки. Если она находится в среднем или открытом положении, в выключенном ручном режиме, то фаза «C» проходит через контакты стоповой кнопки SB3, замкнутый контакт КБР (S1) и конечный замкнутый выключатель S3 на кнопку SB2 «Закрыть». При ее нажатии срабатывает и самоподхватывается через контакты K2.1 реле K2, напряжение через его силовые контакты подается на двигатель M1 (с обратным включением фаз «B» и «C») и задвижка начинает закрываться до тех пор, пока не будет нажата кнопка SB3 «Стоп» или не разомкнется концевой выключатель S3, настроенный на размыкание при достижении задвижкой закрытого состояния. Также загорается лампа E2, показывающая, что задвижка закрыта. Для этого должен быть правильно выставлен толкатель кулачкового механизма, отвечающий за замыкание контакта выключателя S4.

Нормальнозамкнутые контакты реле K1.2 и K2.2 размыкаются разнонаправленно при срабатывании соответсвующего реле, тем самым предотвращая одновременное включение обоих реле, что привело бы к межфазному замыканию.

Достоинства схемы

Конечник S1 (КБР), включен непосредственно в цепь блока контаков путевых выключателей S2-S5, что позволяеят выполнить монтаж цепей управления задвижки от щита управления 5-жильным кабелем.

Недостатки

В этой схеме управления электрозадвижкой задействованы четыре концевых выключателя блока концевиков, — два на отключение цепей управления, два на включение лампочек индикации, что требует установки каждого концевика отдельно. Но если по технологии требуется, чтобы лампочки индикации конечнго положения загорались раньше, чем это положение достигнуто, то это может быть и достоинстом.


Рис. 2. Схема управления электрозадвижкой с двумя концевыми выключателями

Принцип действия

Аналогичен предыдущей схеме, за исключением, того что контакты S1 КБР вынесены за пределы блока концевых выключателей, т.е. фаза «C» подается непосредственно на контакты S2 и S3. Это позволяет обойтись двумя концевыми выключателями, используя их нормальноразомкнутые контакты для включения лампочек положения задвижки. Это очень удобно, так как лампочки загораются только в тот момент, когда действительно сработал тот или иной конечный выключатель.

Достоинства схемы

Как уже было сказано выше, лампочки индикации задвижки загораются только в тот момент, когда действительно сработал тот или иной конечный выключатель.

Недостатки

Если требуется подключить S1 (КБР), то при монтаже блока концевых выключателей на задвижке в кабеле потребуется две дополнительных жилы. То есть в кабеле должно быть не меньше семи жил.

 

www.axwap.com

Как осуществляется управление задвижкой, с примером схемы

Ниже представляется автоматическое управление задвижкой. Задвижка — это элемент запорной арматуры, главная задача которой является открытие или закрытие затворного механизма:

Всем известно, что посредством задвижки перекрывается движение воды, нефтепродуктов, сыпучих материалов, газа и химических растворов в трубопроводах. В зависимости от конструкции, различают 3 вида задвижек: клиновые, клинкерные и фланцевые задвижки. Приводы для управления задвижкой отличаются в зависимости от среды управляющего органом и делятся на гидравлические, пневматические и электрические приводы. Задвижки с электрическим приводом нашли наибольшее применение ввиду своей простоты подключения.

 Кинематическая схема управления задвижкой.

Управление задвижкой осуществляется дистанционно через электрические приводы, которые преобразуют вращение вала двигателя на поступательное движение запорного механизма. Наиболее актуально подобное управление на трубопроводах большого диаметра и применяется в нефтяной и газовой отрасли.

Обратить внимание. Редукторы являются основным передаточным элементом движения от двигателя на винт задвижки.

Редукторы червячные марки РМО и РММ предназначены для управления полно оборотной запорной арматурой. Они уменьшают входное усилие и снижают обороты электродвигателя до необходимых значений. Имеют расширенный спектр посадочных соединений и могут монтироваться с двигателем в любом положении.

При работе двигателя (15) от червячной шестерни происходит вращение червяка (12) вместе с винтом: меняются обороты и, соответственно, открывается или закрывается запорный механизм. Одновременно с вращением червяка команда передается через кулачковые муфты (13) на микровыключатели (11), которые запускают и останавливают двигатель.

Электрическая схема управления

Во время открытия запорного механизма, происходит поворот кулачков, и они переключают контакты выключателя КВО. Во время закрытия запорного механизма команда через кулачки передается на микровыключатель КВЗ

Электрической схемой предусмотрено три вида управления: дистанционное, ручное и автоматическое управление.

Дистанционная схема срабатывания задвижки

Путевое (дистанционное) управление подразумевает собой команды с пульта, поданные оператором с определенного расстояния. Чтобы производить манипуляции с кнопками на пульте, нужно предварительно установить переключатели в режим дистанции.

Для чего нужно включить автомат 1ПУ в состояние «дистанционный», переключатель 2ВБ в состояние «включить», а выключатель 1ВБ в положение «выключить». Включается пульт управления тумблером В. Для открывания задвижки диспетчеру нужно включить тумблер 1КУ, соответственно, срабатывает реле 1РП, затем включается пускатель ПО. Запускается электродвигатель и открывается запорный механизм задвижки.

При поднятии затвора до конечного положения, включается микровыключатель КВО, подается команда на пускатель ПО, и двигатель выключается. В это же время замыкается контакт КВО2, дающий команду на лампу сигнализации ЛО диспетчеру. Закрытие затвора происходит аналогично представленной схеме, только от тумблера 2КУ.

Схема сигнализации

Для эффективного функционирования сигнализации в цепочке применен способ полярности. Он представляется в том, что при использовании диода полупроводников приборы делаются восприимчивыми к движению тока. А это значит, что в одном проводе может протекать ток в разных направлениях. Таким образом, попеременно включая диоды 1Д и 2Д, включается лампочка ЛО, сигнализирующая о том, что задвижка открыта. При полном закрытии задвижки, срабатывают диоды Д3 и Д4, соответственно, загорается лампочка Л3.

Автоматический режим функционирования задвижки.

При таком способе, манипуляции с запорным механизмом задвижки происходят без участия диспетчера. Чтобы добиться такого режима, необходимо тумблер 1ПУ поставить в состояние «автомат», включатель ВК в состояние «включить», а переключатель 1ВБ в состояние «выключить».

При этом режиме все взаимосвязано: расход компонента в трубе, его уровень, давление и в зависимости от этих параметров подается команда на пульт управления и соответственно, затем на задвижку. С контролирующей панели подается команда через замыкание контактов 1РК или 2РК на реле 1РП или 2 РП. Затем пускатели исполняют заданный режим на поднятие или опускание задвижки.

Контроль над приборами, как и в предыдущем случае, происходит по лампам сигнализации ЛО и Л3.

Привод от гидравлики

Иногда для регулирования запорной арматурой оправдывается применение гидравлических приводов. Это бывает при следующих условиях:

  • Плавное регулирование подачи штока гидроцилиндра, при этом значительное передаваемое усилие. Востребованы на газопроводах и нефтепроводах, где трубы большого диаметра;
  • Небольшие габаритные размеры и масса;
  • Поступательное движение штока. Не надо преобразовывать кинетическую энергию;
  • Более простая схема автоматизации процесса управления задвижкой

Иметь в виду. Ко всем достоинствам следует добавить большой ход штока, что актуально для больших клиновых задвижек, где ход запирающего механизма равен диаметру трубы.

Пневматические приводы

Иногда из-за специфики производства требуется ускоренное движение затвора задвижки, а гидравлические приводы не могут этого обеспечить. В таких случаях используется сжатый воздух или пар. При этом пневматические приводы применяются как для полного закрытия (открытия), так и для регулирования затворов.

При небольших перемещениях запорного механизма задвижки, применяется мембранный элемент привода. Мембрана делается из резины толщиной 5 мм с основой из ткани, и опирается на металлическую шайбу (грибок). Эта шайба приходится опорной площадкой для штока, который двигается в одну сторону под действием воздуха, а в другую – под действием пружины.

Иногда привод работает без пружины, — в обе стороны под действием воздуха. Для задвижек, где перемещение запора значительное, применяются пневматические приводы с поршневой группой. В этих случаях для создания компрессии на поршнях установлены чугунные кольца или резиновые кольца.

Несмотря на автоматизацию работы, часто применяется ручное управление. Это испытанный и проверенный способ оправдывает себя при редком пользовании задвижкой. Такое управление осуществляется посредством вращения вентиля или рукоятки через вращающийся винт на движение запирающего механизма.

trubadelo.ru

Схема подключения и управления задвижки с электроприводом

Задвижка с электроприводом – это трубопроводная арматура, в которой запор перемещается под углом 900 по отношению к оси потока рабочей среды.

Задвижка BETRO с электроприводом

Электрический привод в этом устройстве приводит в действие запорный механизм.

Cодержание статьи

Применение арматуры

Стальная задвижка с электроприводом (диаметр ДУ50) используется в системах водоснабжения. Электропневматическую задвижку ВВ 32 монтируют в насосы, смесители и канализационные системы. Шкаф управления осуществляет контроль входящего электричества и работу затворного устройства.

Электроприводное запорное устройство ДУ100 широко используется в системах переработки сточных вод и магистралях, транспортирующих питьевую воду.

Реечные стальные задвижки с электроприводом устанавливают в том случае, когда необходима полная автоматизация погружных насосов. В этом случае задвижка с пневмоприводом обеспечивает точную регулировку скорости потока рабочей среды и ее давление.

Клиновая задвижка с электроприводом

Шкаф управления создает предельно точные сигналы для корректной работы арматуры. Помимо этого, реечные устройства с электроприводом, используемые постоянно, осуществляют регулирование количества потребляемой воды. На затворный механизм может устанавливаться дистанционная колонка, которая будет выполнять управление потоком рабочей среды.

Реечные задвижки имеют стальной прямоугольный корпус с перемещающимся по направляющим шибером. Внизу шибера прикреплена зубчатая рейка, сопряженная с шестерней. Приводной вал соединен с редуктором.

Разновидности электроприводных задвижек

Электроприводная стальная клиновая задвижка 30с941нж в системах орошения или пожаротушения с высокой степенью точности контролирует уровень подачи среды в соответствии с заданным первоначально режимом.

Может использоваться в системах транспортировки жидкости и газа – пар, газ, нефть и нефтепродукты. Клиновая задвижка может эксплуатироваться в трубопроводах с температурой рабочей среды до +4250С.

Стальная задвижка с условным ДУ80 позволяет распределять нагрузку в автоматическом режиме во время использования скважины. После установки в систему перекачки или добычи воды задвижки ДУ50, в накопительную емкость можно стабильно подавать фиксированный объем воды.

Колонка ДУ значительно упрощает управление арматурой. Устройство стальной арматуры подразумевает минимальное количество энергопотерь.

Колонка – это специальное устройство, которое предназначено для дистанционного управления операциями закрывания или открывания задвижки, установленной на глубине. В зависимости от того, каким типом привода оснащена колонка, бывают два типа устройства:

  1. Колонка с ручным управлением.
  2. Колонка с электроприводом.

Клиновая задвижка 30с941нж помимо отличных технических характеристик, еще и стоит недорого – средняя цена на такую арматуру колеблется в диапазоне 4-5$.

Колонка управления задвижкой

Стальная задвижка 30ч906бр – это автоматизированный запорно-регулирующий узел, который осуществляет открытие или закрытие арматуры посредством электропривода. Стандартные задвижки ДУ200 подают два вида команд – «закрыть/открыть».

Широкое распространение этой модели электроприводных задвижек обеспечила простота управления механизмом. Стоит электроприводная стальная арматура 30ч906бр с условным ДУ50, ДУ80 – ДУ200 несколько дороже, чем клиновая задвижка 30с941нж – 25-35$.

Клиновая задвижка 30с964нж предназначена для установки в системы транспортировки воды, газа, нефти, масла с температурой рабочей среды до +3000С. Управляется клиновая арматура при помощи электропривода. Также есть возможность ручного управления.

Стальная клиновая задвижка 30с964нж монтируется на трубопровод посредством фланцевого способа соединения. Исключение составляет вентиль с условным ДУ 1000/800, которая снабжается патрубками под приварку. Клиновая арматура устанавливается на горизонтальном трубопроводе электроприводом вверх.

Особенности задвижек с электроприводом

Технические характеристики электроприводной арматуры, в зависимости от того, какая электрическая принципиальная схема используется, позволяют иметь три варианта управления:

  1. Дистанционный режим (используется колонка для управления вручную).
  2. Автоматический режим (используется шкаф управления электроприводом).
  3. Режим наладки.

Схема-чертеж электрической колонки управления задвижкой

Схема различий изделий определяется исходя из следующих параметров:

  1. Тип управления – дистанционный или местный вид привода.
  2. Способ крепления на задвижке – штепсельный разъем или сальниковый ввод.
  3. Конструкция, тип и размер привода.

Задвижки ДУ50, ДУ 80, ДУ 100 – полнопроходные, то есть диаметр самой арматуры совпадает с диаметром трубопровода. Это соответствие обеспечивает максимально надежное соединение и герметичность перекрытия потока рабочей среды.

Однако эта особенность создает достаточно узкую сферу применения устройства: его устанавливают только в тех трубопроводах, в которых требуется полное перекрытие рабочего вещества. Если выполнить операцию «открыть», то проход будет открыт полностью.

Нельзя использовать запорные устройства для регулировки напора или скорости течения потока воды, поскольку могут сформироваться гидравлические удары, которые выведут оборудование из строя.

Шкаф управления приводом обеспечивает управление устройством в режиме «автомат» или «ручной», контролирует уровень напряжения в сети, а также формирует пакеты данных о состоянии задвижки.

Узел задвижки и электро колонки, готовый к монтажу

Шкаф управления используется в самых разных системах: водозаборах, пожарных установках или насосных станциях.

Достоинства и недостатки арматуры с электроприводом

Запорные устройства с электрическим приводом имеют ряд положительных качеств:

  • они устойчивы к воздействию коррозийных процессов;
  • арматура обладает малым гидравлическим сопротивлением;
  • стальные задвижки имеют высокий класс прочности и надежности, а также высокую частоту вращения электропривода;
  • схема подключения требует небольшое количество расходного материала: нужны всего два кабеля;
  • для работы может использоваться колонка ДУ50;
  • шкаф управления приводом отвечает за несанкционированные перепады напряжения;
  • простота в эксплуатации и обслуживании.

Из недостатков можно выделить следующие пункты:

  • для подключения необходим шкаф, поскольку электропривод должен подключаться к постоянному источнику питания;
  • некоторые модели имеют слабую сопротивляемость потоку рабочего вещества;
  • если в качестве уплотнителей используются материалы низкого качества, то не исключена разгерметизация устройства.

Особенности выбора и монтажа арматуры с электрическим приводом

При выборе арматуры учитывают ее эксплуатационные характеристики и условия эксплуатации. К ним относится температура рабочей среды и схема уровня давления в трубопроводе. Необходимо также обратить внимание на пропускную способность устройства, а также на то, что потребуется шкаф управления электроприводом.

Задвижка шиберная ножевая с электроприводом типа открыть/закрыть

Так, например, для бытового применения, этот параметр может быть минимальным. Диаметр запорной арматуры (ДУ 50, ДУ 80 и т. д.) должен соответствовать диаметру трубопровода.

При установке нельзя допускать, чтобы трубопровод оказывал на запор изгибающее или растягивающее усилие. Под задвижкой оборудуют платформу, которая избавит входные патрубки устройства от нагрузок.

Процедуру подключения арматуры необходимо осуществлять, строго придерживаясь инструкции к изделию, ориентиром также должна служить схема трубопроводной магистрали.

Также вы можете подробнее прочитать про шиберные ножевые задвижки.

Установка электропривода на арматуру (видео)

Другие похожие статьи по теме:



trubypro.ru

Автоматизация электропривода задвижки

Представляя собой широко известный регулирующий орган, задвижка применяется в качестве запорной арматуры для того, чтобы перекрыть движение пара, газа или жидкости по трубопроводам.

Схема привода задвижек.

По конструкции различают 3 типа задвижек: клинкетные, конические и кольцевые.

Клинкетные задвижки получили наибольшее практическое применение, они служат для того, чтобы перекрывать проход жидкости в трубе при помощи плоского затвора, который входит в поток перпендикулярно текущей жидкости.

Автоматизация электропривода задвижки

Схема электропривода с электромеханической муфтой.

Задвижки, как правило, выполняют 2 команды: закрыть или открыть трубопровод в зависимости от состояния управляемых органов (насосов или вентиляторов) и от изменения контролируемых параметров (уровня, давления, температуры, расхода и т.п.).

Гидроприводом, электроприводом и пневмоприводом можно на расстоянии осуществлять управление задвижкой. В основном при автоматизации задвижки пользуются электроприводом благодаря простоте управления.

Асинхронный двигатель является электроприводом задвижки, выходной вал которого соединен с червячным редуктором, а выходная шестерня червячного редуктора входит в зацепление с выходным винтом задвижки.

Во время работы электродвигателя затвор вместе с винтом опускается или поднимается, закрывая либо открывая задвижку. Выходная шестерня редуктора через промежуточный редуктор передает вращение ряду дисков с кулачками. Во время открытия задвижки кулачки поворачиваются вправо и переключают контакты микровыключателя КВО. Во время закрытия задвижки кулачки поворачиваются влево и переключают контакты микровыключателя КВЗ. Диски с кулачками расположены таким образом, что во время полного открытия задвижки происходит срабатывание выключателя КВО, а во время полного закрытия — выключателя КВЗ.

Электрическая принципиальная схема управления электроприводом задвижки предусматривает 3 режима управления: дистанционный, автоматический и наладочный.

Дистанционный режим используется при управлении электроприводом на расстоянии, к примеру, с диспетчерского пульта. Для подготовки данного режима устанавливается переключатель управления 1ПУ в положение “Дистанционный”, тумблер 2ВБ в положение “включен”, тумблер 1ВБ в положение “выключен”. На диспетчерский пульт управления питание подается выключателем В.

Схема функционирования

Электрическая схема привода.

Для того чтобы осуществить команду “открыть задвижку”, оператору нужно нажать кнопку 1КУ, тем самым включить реле 1РП. При этом, реле 1РП, включившись, замыкает в цепи питания катушки пускателя ПО свой открытый контакт, а это способствует включению последнего. Одновременно с включением ПО происходит включение электродвигателя и открывается задвижка.

Когда задвижка достигает крайнего положения, происходит нажатие концевого микровыключателя КВО, а его замкнутый контакт КВО1, размыкаясь, производит выключение пускателя ПО (электродвигатель задвижки выключается), тем временем разомкнутый контакт КВО2, замыкаясь, производит включение сигнальной лампочки ЛО, которая извещает оператора о том что задвижка открыта.

Аналогично описанному сценарию происходит команда “закрыть задвижку” при помощи кнопки 2КУ. Когда задвижка закрывается полностью, загорается лампочка ЛЗ.

Для функционирования цепи сигнализации применен полярный признак образования сигналов. Принцип полярного выбора заключен в том, что с использованием полупроводникового диода аппаратуру можно сделать чувствительной к направлению тока. Для того чтобы получить ток или другое направление, на объекте управления и на пульте управления применяется по 2 полупроводниковых диода, осуществляющих полное избирание и однополупериодное выпрямление, таким образом по одному проводу передается 2 сигнала. Так, если задвижка открыта полностью, протечка тока происходит через диод 1Д, 2Д, при этом загорается лампочка ЛО. Если задвижка полностью закрыта, протечка тока происходит через диоды 3Д, 4Д, загорается лампочка ЛЗ.

Схема автоматического режима

Таблица модификаций с электроприводом.

Автоматический режим происходит без участия оператора. Чтобы подготовить автоматический режим, необходимо установить переключатель управления 1ПУ в положение “Автомат”, выключатель ВК в положение «включен», тумблер 1ВБ в положение “выключен”, а тумблер 2ВБ в положение “включен”.

В зависимости от величин контролируемых параметров (расход, уровень и т.п.) со схемы контроля через замыкание контактов 1РК или 2РК подается соответствующая команда, что способствует включению реле 1РП или 2РП. Магнитные пускатели ПО или ПЗ получают и выполняют соответствующие команды открыть или закрыть задвижку.

Выполнение команды управления, как и в дистанционном, в автоматическом режиме контролируется по загоранию сигнальных ламп ЛО и ЛЗ.

Наладочный режим предусмотрен для того, чтобы опробовать работу задвижки электроприводом после ремонтных работ или монтажа. Для подготовки данного режима необходимо установить тумблер 1ВБ в положение “включено”. Напряжение питания в схему управления подается включением автоматического выключателя АВ. Для того чтобы выполнить команду “открыть задвижку”, необходимо нажать кнопку 4КУ, при этом к магнитному пускателю открытия задвижки ПО поступает питание.

Схема устройства клиновой задвижки.

Включаясь, ПО делает в схеме следующие изменения:

  1. Замыкает его замыкающий (открытый) контакт ПО1 в цепи самоблокировки (с целью запоминания команды).
  2. Размыкает размыкающий (закрытый) контакт ПО2 в цепи взаимной блокировки (с целью предотвращения подачи ложной команды).
  3. Замыкает в цепи электродвигателя 3 силовых контакта ПО3, а электродвигатель, включаясь переносит задвижку вверх.

Когда задвижка открывается полностью, кулачок диска нажимает на выключатель КВО, замкнутый контакт которого при этом размыкается, а пускатель ПО выключается. Контакты пускателя ПО возвращаются в свое исходное состояние, отключается электродвигатель, а задвижка останавливается.

Чтобы выполнить команду “закрыть задвижку”, следует нажать кнопку 5КУ, при этом к магнитному пускателю закрытия задвижки ПЗ подается питание. Аналогично рассмотренной выше команде происходит схема выключения электродвигателя, изменяется направление вращения (режим реверса). Происходит закрытие задвижки. Электродвигатель выключается при помощи размыкания контакта микровыключателя КВЗ.

В схеме управления предусмотрены следующие виды защиты

Схема щита управления.

Кнопка ЗКУ служит для аварийного выключения электродвигателя.

  1. Защита минимального напряжения (нулевая защита) — это защита, которая срабатывает при полном исчезновении напряжения сети или его значительном понижении, что исключает возможность самозапуска электродвигателя, если внезапно восстановится напряжение, осуществляется с помощью магнитных пускателей или электромагнитных реле напряжения.
  2. Электрическая блокировка. Данная защита достигается посредством включения размыкающего контакта пускателя ПО в цепи питания пускателя ПЗ и наоборот. Соответственно, пока пускатель ПО включен, цепь питания пускателя ПЗ будет разомкнутой, а запустить пускатель ПЗ одновременно с магнитным пускателем ПО невозможно.
  3. Защита электродвигателя от перегрузки при заклинивании задвижки: производится путем размыкания контактов микровыключателя муфты предельного момента ВМ, введенного в общую цепь питания обеих катушек пускателей.
  4. Максимальная защита — это защита электродвигателя от большой кратковременной перегрузки и от токов короткого замыкания. Осуществляется при помощи плавких предохранителей или электромагнитных расцепителей автоматических выключателей.

Устройство защиты и управления электропривода задвижки без использования концевых выключателей ПКП1:

  • ПКП1Т — контролирует положения задвижки по току, потребляемому электроприводом, и времени ее перемещения;
  • ПКП1И — контролирует положения задвижки по периоду импульсов, которые поступают с датчика, расположенного на ее валу, и числу оборотов вала.

Назначение

Прибор ПКП1 предназначен для того, чтобы управлять затворами и задвижками в системе «Водоканал», а также для того, чтобы обеспечивать защиту их механизмам и электроприводам в случае заклинивания без использования концевых выключателей.

Схема насосной станции.

Главные функции:

  • автоматическое выключение электропривода при достижении задвижкой крайнего положения без использования концевых выключателей;
  • индикация и контроль текущего положения задвижки в %;
  • остановка управления приводом и выдача сигнала «Авария» во время проскальзывания механизмов электропривода или заклинивания задвижки;
  • ПКП1 обладает двумя выходными реле для того, чтобы управлять задвижкой, двумя реле — для того, чтобы имитировать концевые выключатели и реле для аварийной сигнализации.

Помимо этого, по желанию заказчика в ПКП1 может быть вмонтирован модуль интерфейса сообщения с ЭВМ RS-485 или модуль, который формирует унифицированный токовый сигнал (4-20 мА), пропорциональный степени открытия задвижки.

Программирование. Настройка на объекте.

Для того чтобы настроить прибор на объекте, с помощью чертежа задаются временные параметры хода задвижки и способы определения концевых положений.

Если известен рабочий ток двигателя электропривода, нужно задать параметры защитного выключения. Заданные параметры будут сохранены в энергонезависимой памяти устройства и останутся неизменными при отключении питания. Программируется прибор с помощью кнопок, расположенных на передней панели.

В целях предотвращения несанкционированного доступа к изменениям параметров установлена защита.

dekormyhome.ru

Схема подключения задвижки с электроприводом

В водо- и газоснабжении, в нефтегазовой, химической отрасли для управления потоком жидкости или газа применяются задвижки с электроприводом.

Электропривод приводит в действие механизм, перекрывающий или открывающий задвижку. Использование электрического управления позволяет легко реализовать автоматику управления.

В качестве простейшей автоматики, осуществляющей переключение между двумя состояниями (либо «закрыто», либо «открыто»)можно применить электроконтактный манометр.

Такой манометр имеет две регулируемые стрелки минимального и максимального значения. При достижении стрелки одного из двух величин давления происходит замыкание общего провода с выводом min или max.

Рис. 1

Для примера рассмотрим подключение электропривода задвижки ГЗ-А.

Данный электропривод многооборотный, питается трехфазным переменным током. ГЗ-А содержит цепи управления дистанционной сигнализацией, которые для наглядности не будем рассматривать в примере.

Управлять работой схемы будет электроконтактный манометр типа ДМ. В качестве коммутационных элементов применим магнитные пускатели ПАЕ третьей величины с четырьмя контактами, работающими на замыкание и с двумя – на размыкание, из размыкающих контактов задействуем только один (Рис. 2).

Рис. 2

Допустим, в начальный момент задвижка находится в закрытом положении. При снижении давления жидкости или газа манометр замыкает провод фазы С через контакт min, и нормально замкнутый контакт КПЗ3 на якорь пускателя ПО, а по цепи от нейтрального провода –  через конечный выключатель положения «открыто» КВО и муфтовой выключатель МВО. Магнитный пускатель ПО обходит цепь манометра ДМ замыкая контакт КПО2. Для исключения срабатывания цепи запуска закрытия задвижки, ПО блокирует пускатель ПЗ, разрывая цепь питания размыкающими контактами КПО3. При полном открытии задвижки размыкается контакт КВО и схема обесточивается.

При достижении максимального давления замыкается вывод max манометра ДМ. На пускатель закрытия ПЗ через контакты манометра и нормально замкнутый контакт КПО3 подключается к фазе С с одной стороны, а с другой – через контакты закрытия концевика КВ3 и муфтового выключателя МВЗ – к нулевому проводу. ПЗ замыкает цепь питания своего якоря контактами КПЗ2, обеспечивая полный цикл закрытия задвижки. Контакты П3 включают электропривод на реверс, обратным, по сравнению с контактами ПО, подключением фазовых проводов А и С. При полном закрытии задвижки схема ПЗ обесточивается концевым выключателем КВЗ.

Муфтовые выключатели предназначены для защиты двигателя при высоком крутящем моменте вала. Повторное замыкание контактов МВО и МВЗ происходит при обратном вращении двигателя.

Электроконтактный манометр типа ДМ способен коммутировать до 0,5 А, что обеспечивает прямое подключение пускателей ПАЕ, якоря которых потребляют при включении максимум 0,25 А при напряжении 127 В. Коммутируемая контактной группой пускателя максимальная нагрузка составляет 17кВт, а для включения электропривода достаточно мощности в 0,18кВт. На практике рекомендуется включать цепи управления магнитным пускателем через промежуточные реле (Рис. 3) для предотвращения обгорания контактов манометра.

Рис. 3

При использовании промежуточных реле количество задействованных контактов магнитных пускателе (ПО и ПЗ) сокращается до трех. Каждое промежуточное управляют двумя контактами, работающими на замыкание (для обхода цепи питания электроконтактного манометра и включения якоря контактора) и одним на размыкание (для предотвращения срабатывания цепи обратного хода двигателя). В остальном схема аналогична приведенной на Рис. 3.

Реже встречаются задвижки с однофазным электроприводом.

Рассмотрим автоматику управления электроприводом SP0. Данный электропривод интересен тем, что питание электродвигателя в минимальной комплектации отключается самим приводом при достижении крайних состояний – положений «открыто» и «закрыто».

Допустим, что задвижка закрыта (Рис. 4). При замыкании манометром фазового провода через вывод min и нормально замкнутые контакты кв реле времени РВ срабатывает промежуточное реле РПО. Это реле замыкает свою цепь питания контактами ко2, включает магнитный пускатель ПО контактами ко1 и подключает нулевой провод к реле времени РВ через контакты ко3. При полностью открытой задвижке конечный выключатель S3 подключает вывод 20 к выводу 22, замыкая линию фазы и включая реле времени. Через промежуток времени, определяемый реле РВ, контакт кв размыкает питание всей схемы открытия.

Схема управления закрытием задвижки аналогична рассмотренной схеме – при достижении верхнего предела давление манометр включает промежуточное реле РПЗ и пускатель ПЗ, также замыкается нулевой провод на реле времени. При полном закрытии задвижки замыкаются выводы 23 и 26 через переключатель S4, запуская реле времени. Через размыкание общего контакта кв обесточивается схема закрытия.

Включение реле времени необходимо для компенсации инерционности электроконтактного манометра. Без задержки возможно многократное срабатывание схемы до размыкания выводов min или max от общего провода.

Рис.4

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о