Схема строения счетчика электрической энергии – Электрический счетчик – подключение, устройство, принцип работы

Содержание

Электрический счетчик – подключение, устройство, принцип работы

Электрический счетчик – это измерительный прибор, предназначенный для учета количества израсходованной потребителем электроэнергии. Измеряется потребляемая электрическая мощность в кВт×час или А×час.

Электрический счетчик Меркурий 200

По принципу действия и устройству электрические счетчики бывают: электромеханические, гибридные и электронные (статические), показан на фотографии.

Как самостоятельно выбрать счетчик для дома

Несмотря на кажущуюся сложность выбора для замены или установки нового электрического счетчика, домашнему электрику будет сделать это просто, если ознакомиться с основными критериями выбора.

Типы счетчиков по принципу работы

До недавних пор для учета расхода электроэнергии устанавливались только индукционные механические (электромеханические) счетчики. В них, потребляемый ток протекает через измерительную катушку медного провода, возбуждая магнитное поле. Это поле, воздействуя на диск, заставляет его вращаться со скоростью пропорциональной величине потребляемого тока. Через систему шестеренок вращательное движение передается на счетное устройство.

Электрические счетчики

На смену электромеханическим счетчикам пришли гибридные, которые встречаются в двух конструктивных исполнениях: Индукционный электронный и Электронный механический.

В индукционном электронном счетчике, как и в механическом, имеется катушка, вращающая диск. Вращаясь, он воздействует на сенсор, который вырабатывает импульсы, поступающие на электронное устройство с цифровым дисплеем.

В электронном механическом счетчике все наоборот. Датчиком тока служит твердотельный элемент, как в статическом счетчике, а счетное устройство установлено механическое, как в индукционном счетчике.

В настоящее время вышеупомянутые счетчики вытесняются современными

статическими счетчиками, не имеющие механических деталей. В качестве датчиков расхода электроэнергии в них применяется твердотельный электронный элемент, с которого сигнал подается на электронный блок с цифровым дисплеем.

Выбор счетчика по принципу работы

В таблице приведены основные технические характеристики счетчиков учета электрической энергии. Для установки в квартире или доме подойдет любой из них. Поэтому при выборе нужно исходить из объема и времени суток потребления электроэнергии.

Если в ночное время электроэнергия потребляется в незначительных объемах, то лучшим выбором будет Индукционный механический или Индукционный электронный счетчик, так как недорогой, надежный, долговечный и практически не потребуется нести затраты на его ремонт.

Стоит отметить, что индукционные счетчики, в отличии от электронных имеют меньшую чувствительность, и если ток потребления мал, например, включен только на зарядку сотовый телефон, то счетчик считать не будет.

Хотя Статические счетчики в два раза дороже и менее надежны, но если в ночное время суток потребляется более 30% электроэнергии, то они быстро себя окупают и дают хорошую экономию, так как в них заложена функция тарификации. Это когда есть возможность вести учет потребляемой электроэнергии в ночное и дневное время отдельно. Стоимость ночной электроэнергии существенно ниже.

Поставляющие электроэнергию компании тоже заинтересованы в установке статических электронных счетчиков по причине избыточных мощностей в ночное время и исключения снижения показаний индукционных счетчиков с помощью магнитов и укладкой в горизонтальное положение.

На основании вышеизложенного можно сделать вывод, что для частного жилья подойдет однофазный двухпроводный электрический счетчик любого принципа работы, рассчитанный на напряжение 220 В и ток 60 А

(максимальная мощность определяется умножением величины тока на напряжение и составит 13,2 кВт).

Мощность потребления электроприборами

Теоретическую максимальную мощность, которая будет потребляться в случае включения одновременно всех электроприборов в квартире не сложно подсчитать по данным приведенной в таблице. Для этого нужно сложить мощности всех имеющихся электроприборов. Но так

ydoma.info

Назначение электрического счетчика

К электросчетчикам, стоящим в каждой квартире, все давно привыкли. По их показаниям мы определяем, сколько электроэнергии «сожгли» и какую сумму должны заплатить энергетикам. Но если пользоваться этими устройствами умеют почти все, то выбрать подходящий прибор для установки или замены устаревшего сможет не каждый.

Тем не менее подобрать счетчик электроэнергии совсем несложно – достаточно разобраться в том, какие они бывают и чем отличаются друг от друга.

Назначение и принцип работы

Электрический счетчик предназначен для учета пройденного через него количества электроэнергии, которая измеряется в Вт/ч (ватт в час). Иными словами, по показаниям счетчика вы узнаете, сколько должны заплатить энергетикам за использованную электроэнергию.

Поскольку 1 Вт – единица не особо большая, в быту принято применять ее с кратной приставкой «кило», а количество электроэнергии в киловаттах, умноженных на часы (1 кВт/ч = 1000 Вт/ч). Практически все бытовые электросчетчики переменного тока оперируют именно такой величиной.

Разберемся, как работает счетчик. Независимо от типа все приборы учета используют принцип магнитной индукции, которая тем сильнее, чем выше питающее напряжение и ток, протекающий через прибор. Что касается типов электросчетчиков, то их три варианта:

  1. Механические. Их еще называют индукционными. Имеют две катушки – токовую и напряжения. В поле катушек помещен металлический (обычно алюминиевый) диск, в котором наводятся вихревые токи, заставляющие этот диск вращаться. Чем выше питающее напряжение и ток, тем сильнее поле и выше скорость вращения диска. Учет электроэнергии в этом случае производится при помощи механического счетного устройства – колесиков и шестеренок, связанных с диском.
  2. Электронные. В этих конструкциях тоже используются ток и напряжение, но их величины преобразуются в импульсы, количество которых в единицу времени зависит от потребляемой энергии. Эти импульсы поступают на электронную схему подсчета, данные заносятся в память и выводятся на цифровой дисплей.
  3. Электронно-механические. Количество энергии в этих устройствах также преобразуется в импульсы, но последние поступают на шаговый двигатель, приводящий в действие обычное механическое счетное устройство.

Слева направо: механический (индукционный), электронный и электронно-механический счетчик электроэнергии

Преимущества и недостатки типов

Несмотря на одно назначение, счетчики различных типов сильно различаются не только по конструкции, но и по функционалу. 

Для того чтобы правильно выбрать прибор учета в каждой конкретной ситуации, необходимо эти различия знать:

  1. Механические. Просты по конструкции, долговечны, имеют невысокую стоимость. К недостаткам можно отнести однотарифность, низкую точность, плохую защиту от саботажа (краж), невозможность дистанционного управления и передачи данных. Устанавливаться они должны строго вертикально и не любят пыли, поскольку начинают неизбежно «врать».
  2. Электронные и электронно-механические. Имеют широкий функционал, высокую точность, хорошую защиту от саботажа. Возможны многотарифность, накопление и дистанционная передача данных, учет реактивной энергии. Поверять такие устройства нужно не чаще чем раз в 4-15 лет. К недостаткам чисто электронных типов можно отнести невозможность их работы при минусовых температурах (замерзает ЖК-дисплей).

Основные критерии выбора

На сегодняшний день ассортимент электросчетчиков настолько широк, что несложно и потеряться. Различные типы и мощности, классы точности, цены, в конце концов. Но выбирать все равно придется самому, поскольку консультироваться не у кого. Энергетикам и продавцам безразличны ваши расходы и проблемы.

Главное – им удобно и выгодно. Советоваться с соседом тоже бесполезно – велика вероятность, что он не разбирается в этом вопросе, но никогда в этом не признается. В лучшем случае посоветует то, что сам купил.

Выбор по типу

Тут сразу стоит оговориться – несмотря на всю привлекательность механических электросчетчиков, приобретать их не стоит. Ни новых, ни подержанных. Во-первых, их точность и защита от саботажа не отвечают сегодняшним требованиям энергетических компаний, и электрики просто откажутся его устанавливать. Даже если вы произведете установку такого устройства своими силами (дело нехитрое для любого рядового электромонтера-самоучки), то вам его никто не опломбирует.

Ну а если все-таки получится, то нет никакой гарантии, что через месяц-два все это не всплывет, и вас не попросят сменить механическое устройство на электронное.

Во-вторых, такой счетчик, даже полностью исправный, просто не пройдет очередную поверку по точности. Оставшийся выбор невелик – электронный или электронно-механический. Если вы живете в холодной климатической зоне или собрались устанавливать прибор учета на улице (в частных домах такое требование не редкость), то не стоит брать устройство с электронным дисплеем.

Все они выполнены по технологии ЖК и уже при нулевой температуре тухнут, хотя, отогревшись, полностью восстанавливают работоспособность.

В остальном электронный от электронно-механического лично для вас отличается лишь более высокой стоимостью.

Функционал счетчика

На функциональность стоит обратить особое внимание, поскольку от этого напрямую зависит ваш бюджет. Сделав неправильный выбор, вы либо сильно переплатите за бесполезные для вас, но весьма дорогостоящие функции, либо будете вынуждены через год-два, а то и сразу же покупать новое устройство. На что стоит обратить внимание:

  • Многотарифность. Электросчетчик может считать количество энергии в одном режиме, а может переключаться между двумя и более тарифами. Если ваш поставщик поддерживает, к примеру, ночной тариф, и вы можете этим воспользоваться, то имеет смысл взять многотарифный прибор. Но если тариф один или ночью вы предпочитаете спать, а холодильник все равно работает круглые сутки, то смысла переплачивать за эту функцию нет. Не нужен он и в том случае, если разница между ночным и дневным тарифами невелика – установка более дорогого устройства просто не окупится.
  • Дистанционная передача данных. Тут тоже все упирается в возможности и требования поставщика энергии. Если он снимает показания дистанционно, а не использует для этой цели контролеров, то может потребовать установку счетчика с возможностью дистанционного управления. Кстати, по этой же линии электросеть сможет отключить вашу квартиру или дом за неуплату. Для вас, конечно, эта функция бесполезна, но прежде чем идти в магазин, стоит уточнить у энергетиков, не является ли дистанционная передача показаний обязательной.

Количество фаз

Существуют однофазные и трехфазные приборы учета. Первые нередко называют двухфазными, но это неверно – таких счетчиков не существует, поскольку сетей с двумя фазами просто нет. Если ваша квартира получает питание по двум проводам, то достаточно обычного однофазного электросчетчика. Но если вы пользуетесь трехфазным оборудованием, то придется купить многофазный прибор, хотя он и стоит много дороже.

Номинальная мощность

Тут выбор зависит от потребляемой вами мощности. Если у вас обычная квартира, то общая мощность электроприборов едва ли будет превышать 10 кВт. При напряжении в 220 В это будет соответствовать току в 45 А.

В этом случае счетчика на 50-60 А (указывается на корпусе и в сопроводительной документации) более чем достаточно. Если вы решаете вопрос, какой электросчетчик лучше поставить в частный дом, в котором несколько бойлеров и даже есть своя мастерская, то, возможно, ответом на него будет стоамперный прибор учета.

Этот счетчик выдерживает ток до 50 А и может работать с нагрузкой, потребляющей до 11 кВт

Погрешность измерения

Согласно существующим правилам, погрешность измерения приборами учета не должна превышать 2%. Именно по этой причине энергетики в обязательном порядке осуществляют замену механических счетчиков электронными. Сегодня существуют приборы с погрешностью и 2, и 1.5, и 1 и даже 0.5%.

Во-первых, чем выше точность, тем дороже счетчик. Во-вторых, чем выше погрешность прибора, тем ниже его чувствительность. Если, к примеру, счетчик с точностью 2-2.5% не «увидит» зарядное устройство вашего мобильника, то высокоточный прибор не только посчитает электроэнергию, потраченную компьютером или телевизором в ждущем режиме, но и может реагировать на ток утечки в электропроводке!

Вполне понятно, какой счетчик электроэнергии лучше поставить в квартире — с максимально допустимой энергетиками погрешностью. Он и стоит дешевле, и платить за электроэнергию вы будете чуть меньше.

Чудо-приборы с пультами ДУ

Как это ни дико выглядит, но в Интернете и даже в реальных магазинах можно встретить электросчетчик… с пультом дистанционного управления. При помощи этого пульта вы можете дистанционно останавливать прибор или заставлять считать по другому тарифу.

На пороге контролер? Одно нажатие на брелок в кармане, и счетчик в норме. Не жизнь, а малина! Трудно сказать, как организации, клепающие такую продукцию, сосуществуют с законом, да это и не суть важно. Вопрос в другом: нужен лично вам такой прибор учета или нет?

Как заявляет производитель, и счетчики, и пломбы на них внешне ничем не отличаются от оригинальных. Но по заявлениям самих работников энергонадзора, они эти счетчики вычисляют влет. Причем как визуально, так и при помощи специальной аппаратуры, умещающейся в кармане. Штрафы в нашей стране за хищение электроэнергии жуткие – можете сами узнать в том же Интернете.

В случае вашего «провала» энергетики снимут с вас последние штаны и, в общем, будут не так уж и неправы. Но предположим, что электрики шутят и выявить подобный прибор не в состоянии.

Средний межповерочный интервал электросчетчика – 5 лет. По истечении этого срока у вас два варианта. Первый – нужно этот счетчик у самого себя украсть, написать заявление о хищении и отправляться в магазин за новым.

Промежуток времени между «кражей» и установкой нового прибора энергетиками вам придется, ясное дело, сидеть без света. Ну и если полиция найдет вора, то он (то есть вы) будет отвечать за ложное заявление. Второй вариант – сдать это чудо техники на поверку. Но если электрики не имеют права вскрывать кожух электросчетчика, то поверочная организация разберет его до винтика и ваш волшебный выключатель, конечно, вычислит.

Все это безобразие будет отражено в протоколе поверки, сам протокол сперва попадет в руки вашим поставщикам электроэнергии, а после и в суд. Суд, в свою очередь, накрутит по полной программе, так что штраф за 5 лет хищений вы будете выплачивать полжизни. Вот и думайте – покупать такой счетчик, который, кстати, стоит раза в 2-3 дороже обычного, или не стоит.

Стоимость электросчетчика

Имеется в виду нормальный законопослушный прибор, а не со встроенными особенностями типа пультов ДУ. Тут все будет зависеть от количества фаз, типа счетчика и его функционала. Самый простой однотарифный электронно-механический однофазный счетчик стоит относительно немного – в районе 700-800 р.

Но практически любая дополнительная функция повышает стоимость весьма существенно. Второй тариф, к примеру, запросто может эту сумму удвоить.

Смена механики на электронный дисплей – еще процентов 20 стоимости. За самый же навороченный, четырехтарифный, да еще и с дистанционной передачей данных прибор с вас могут затребовать 2000 р. и более. Это столько же, сколько стоит обычный трехфазный.

Из всего вышесказанного несложно сделать вывод – к выбору электросчетчика нужно подходить максимально ответственно. Любая невостребованная вами функция – немалая копеечка, выброшенная на ветер. А как говорится, если нет разницы, зачем платить больше?

Смотрите также:
  • Дизельные тепловые пушки
  • Чем отделать фундамент деревянного дома снаружи?
  • Тепловая пушка для обогрева гаража
  • Мобильный теплый пол
  • Какой фундамент нужен на болотистой почве?
  • Теплый пол под линолеум
  • chudoogorod.ru

    устройство и разновидности агрегатов, как правильно подключить прибор учета электроэнергии

    Подключение трехфазного счетчикаТрехфазный счетчик — прибор для измерения расхода электроэнергии в сети переменного тока напряжением 380 В. Однофазные счетчики применяются в сетях 220 В в офисных и жилых помещениях. Приборы, работающие в трехфазной сети, устанавливаются на крупных промышленных предприятиях. С применением мощного электрооборудования все чаще они используются в электрических магистралях частных и загородных домов.

    Виды приборов

    Трехфазные электросчетчики разделяются по типам подключения и измеряемых величин, разновидности конструкций. По способу подсоединения к электрической сети они делятся на 2 вида. К ним относятся:

    1. Прямое подключение — приборы устанавливаются непосредственно в сети 220 или 380 В. Они обладают способностью пропускать мощность до 60 кВт и максимальный ток — до 100 А. Подключение осуществляется проводами сечением от 1,5 до 2,5 мм².
    2. Косвенное подсоединение — счетчики подключаются через трансформаторы и используются в сетях высокого напряжения. Чаще они используются на крупных производственных территориях.

    Конструктивно приборы бывают индукционными и электронными. В индукционных аппаратах отсчет происходит благодаря вращению токопроводящего диска под действием магнитного поля от катушек.

    Такие агрегаты называются еще электромеханическими. Количество оборотов диска прямо пропорционально количеству израсходованной электрической энергии. У этих счетчиков есть ряд недостатков:

    • отсутствие дистанционного снятия показаний;
    • большая погрешность;
    • однотарифность;
    • возможность использования неучтенной электроэнергии.

    Все чаще им на замену приходят электронные приборы, в которых напряжение действует на твердотельные элементы, преобразующих аналоговые сигналы в импульсы.

    Виды трехфазных счетчиков

    К преимуществам электронных счетчиков относятся: многотарифность, дистанционное снятие показаний, длительный срок службы, высокая точность измерений.

    Конструктивные особенности и принцип действия

    Трехфазный прибор отличается от однофазного способностью работать в сетях, где номинальная мощность составляет от 15 кВт и выше. Они считаются многофункциональными агрегатами, так как могут применяться как в бытовых сетях, так и для контроля работы трехфазных электродвигателей. В конструкцию прибора входят:

    • Конструкция трехфазного счетчикаразборный корпус;
    • две обмотки: токовая, напряжения;
    • алюминиевый диск;
    • магнит для остановки диска;
    • червячная передача;
    • счетный механизм.

    Между двумя электромагнитами располагается алюминиевый диск. Токовый магнитопровод подсоединяется последовательно, а электромагнит напряжения — параллельно. При включении счетчика по обмоткам проходит ток, который вызывает переменные магнитные потоки.

    Они пронизывают диск и образуют индукционные вихревые токи, которые взаимодействуют с потоками и заставляют диск вращаться. Через червячную передачу происходит периодичное вращение счетного механизма.

    Основными элементами электронного прибора считаются: трансформаторы тока и напряжения, преобразователь, контроллер, клеммы. Преобразователь получает аналоговые сигналы с датчиков тока и превращает их в цифровые импульсы.

    Импульсы поступают в контроллер и на дисплее отображаются цифры, показывающие текущее значение электроэнергии.

    Трехфазные счетчики подключаются как к трехпроводным схемам, так и четырехпроводным. Приборы способны хранить всю информацию с привязкой ко времени.

    Популярные модели

    Наиболее популярными считаются многотарифные трехфазные счетчики. Существует множество электронных моделей, выпускаемые российскими производителями. К ним относятся:

    1. Популярные модели трехфазных счетчиков Меркурий 236 ART-02 RS 100 A — прибор предназначен для учета активной и реактивной электроэнергии при прямом подключении. Обладает устройством для длительного хранения информации и ее передачи в центр сбора. Учет показаний осуществляется по 4 тарифам.
    2. Нева 303 1S0 5—100 A — комбинированное устройство, которое может применяться как в однофазных, так и трехфазных сетях. Дисплей дополнительно оборудован светодиодным индикатором.
    3. Энергомер ЦЭ 6803 В/1 — однотарифный счетчик, который устанавливается на DIN-рейку. Максимальная сила тока для прямого подключения составляет 100 А. Продукция выпускается ставропольским акционерным обществом.
    4. Агат 3−1.50.5 — электронный многотарифный прибор с цифровой индикацией от московских производителей. В конструкцию встроен интерфейс связи IRDA. Счетчик оснащен защитой от распространенных приемов хищения электроэнергии. Срок службы — 32 года.

    Можно еще отметить механические и электронные модели счетчиков от российских компаний Матрица, Омрон, Каскад и др.

    Схема подключения

    Чтобы подключить трехфазный счетчик, необходимо наличие вводного выключателя с тремя или четырьмя контактами. Не рекомендуется использовать три однополюсные автомата, так как в них защитное отключение происходит не одновременно. Клеммы прибора подключаются слева направо:

    • 1 и 2 — вход и выход первой фазы;
    • 3 и 4 — вторая фаза;
    • 5 и 6 — подключение третьей фазы;
    • 7 и 8 — точки подсоединения нулевого провода.

    Схема подключения трехфазного счетчикаЗаземляющий провод обычно выводится через отдельную колодку. Перед началом монтажа нового счетчика следует отключить вводный автомат. Если крепление старого счетчика не подходит, то предварительно с помощью дрели просверливаются новые монтажные отверстия. Затем с помощью самонарезающих шурупов счетчик устанавливается на специальную площадку.

    Некоторые модели монтируются непосредственно на DIN-рейку электрического щита. После проверки надежности крепления прибора осуществляется последовательное соединение проводов слева направо. После подсоединения проводов включается автомат, и счетчик проверяется на нагрузку.

    Для регистрации и опломбирования прибора приглашается соответствующий специалист.

    220v.guru

    Схема электрическая счетчика

    Электрический счетчик, точнее — счетчик расхода электрической энергии является специальным прибором, предназначенным для учета потребляемой нагрузкой электрической энергии. По своей технической идее он представляет из себя комбинацию измерителя потребляемой электрической энергии с отображающим показания счетным механизмом. Различают электрические счетчики для измерения энергии постоянного или переменного тока. Счетчики электроэнергии переменного тока бывают однофазными и трехфазными. По принципу действия электрические счетчики могут быть индукционными и электронными.

    Краткая история создания электрического счетчика

    В 1885 году итальянцем Галилео Феррарисом (1847-1897) было сделано интересное наблюдение вращения сплошного ротора в виде металлического диска или цилиндра под воздействием двух не совпадающих по фазе полей переменного тока. Это открытие послужило отправной идеей для создания индукционного двигателя и одновременно открыло возможность разработки индукционного счетчика.

    Первый счетчик такого типа был создан в 1889 году венгром Отто Титуцем Блати, который работал на заводе «Ганц» (Ganz) в Будапеште, Венгрия. Им был запатентована идея электрического счётчика для переменных токов (патент, выданный в Германии, № 52.793, патент, полученный в США, № 423.210).

    В таком устройстве Блати смог получить внутреннее смещение фаз практически на 90°, что позволило счетчику отображать ватт-часы достаточно точно. В электросчетчике этой модели уже применялся тормозной постоянный магнит, обеспечивавший широкий диапазон измерений количества потребляемой энергии, а также был использован регистр циклометрического типа.

    Дальнейшие годы ознаменовались многими усовершенствованиями, проявившимися в уменьшении веса и размеров прибора, расширении диапазона допустимых нагрузок, компенсации изменения величины коэффициента нагрузки, значений напряжения и температуры. Было существенно снижено трение в опорах вращающегося ротора счетчика с помощью замены шарикоподшипниками подпятников, позже применили двойные камни и магнитные подшипники. Значительно увеличился срок стабильной эксплуатации счетчика за счет повышения технических характеристик тормозной электромагнитной системы и неприменения масла в опорах ротора и счетном механизме. Значительно позже для промышленных потребителей был создан трехфазный индукционный счетчик, в котором применили комбинацию из двух или трех систем измерения, установленных на одном, двух или даже трех отдельных дисках.

    Схема для подключения счетчика индукционного типа

    Схема электрическая принципиальная счетчика индукционного типа в общем случае предельно проста и представляет собой две обмотки (тока и напряжения) и клеммную колодку, на которую выведены их контакты. Условная схема, по которой подключается однофазный электрический счетчик, в стандартном электрощите многоквартирных домов имеет следующий вид:

    Здесь фазу «А» обозначает линия желтого цвета, фазу «В» — зеленого, фазу «С» – красного, нулевой провод «N» – линии синего цвета, проводник для заземления «PЕ» — линия желто-зеленого цвета. Пакетный выключатель в настоящее время часто заменяют более современным двухполюсным автоматом с защитой от перегрузки. Следует отметить, что между схемой подключения счетчика индукционного типа и аналогичной схемой подключения электронного счетчика принципиальных различий нет.

    Условная схема для подключения электрического счетчика в трехфазной четырехпроводной сети напряжением 380 вольт имеет вид:

    Здесь цветовые обозначения аналогичны предыдущей схеме подключения счетчика для однофазной сети.

    Важно соблюдать прямой порядок чередования фаз трехфазной сети на колодке контактов счетчика. Определить его можно с помощью фазоуказателя или прибора ВАФ. В прямом порядке чередование фаз напряжений производится так: АВС, ВСА, САВ (если идти по часовой стрелке). В обратном порядке чередование фаз напряжений производится так: АСВ, СВА, ВАС. При этом создается дополнительная погрешность и возникает самоход ротора индукционного счетчика для активной энергии. В электрическом счетчике реактивной энергии обратный порядок чередования фаз нагрузки и напряжений приводит к вращению ротора в обратном направлении.

    Схема электрических соединений однофазного индукционного электрического счетчика

    На схеме линии красного цвета обозначают фазный провод и токовую катушку, а синего цвет — нулевой провод и катушку напряжения.

    Схема электрических соединений трехфазного счетчика индукционного типа при прямом включении в четырехпроводной сети напряжения 380 вольт:

    Здесь: фазу «А» обозначает желтый цвет, фазу «В» — зеленый, фазу «С» — красный, нулевой провод «N» — синим цвет; L1, L2, L3 – обозначают токовые катушки; L4, L5, L6 — обозначают катушки напряжения; 2, 5, 8 – контакты напряжения; 1, 3, 4, 6, 7, 9, 10, 11 – контакты для подключения внешней электропроводки к трехфазному счетчику.

    Принцип действия и устройство индукционного электросчетчика

    Токовая обмотка, включенная последовательно с потребителем электроэнергии, имеет малое число витков, которые намотаны толстым проводом, соответствующим номинальному току данного счетчика. Это обеспечивает минимум ее сопротивления и внесения погрешности измерения тока.

    Обмотка напряжения, включенная параллельно нагрузке, имеет большое количество витков (8000 — 12000), которые намотаны тонким проводом, что уменьшает потребляемый ток холостого хода счетчика. Когда к ней подключено переменное напряжение, а в токовой обмотке течет ток нагрузки, через алюминиевый диск, являющийся ротором, замыкаются электромагнитные поля, наводящие в нем так называемые вихревые токи. Эти токи взаимодействуют с электромагнитным полем и создают вращающий момент, приводящий в движение подвижный алюминиевый диск.

    Постоянный магнит, создающий магнитный поток через диск счетчика, создает эффект тормозного (противодействующего) момента.

    Неизменность скорости вращения диска достигается при балансе вращающего и тормозного усилий.

    Количество оборотов ротора за час будет пропорциональным израсходованной энергии, что эквивалентно тому, что значение установившейся равномерной скорости вращения диска является пропорциональным потребляемой мощности, если вращающий момент, воздействующий на диск, адекватен мощности потребителя, к которому подключен счетчик.

    Трение в кинематических парах механизма индукционного счетчика создает появление погрешностей в измерительных показаниях. Особенно значительно влияние трения на малых (до 5-10% от номинального значения) нагрузках для индукционного счетчика, когда величина отрицательной погрешности может составлять 12 — 15%. Для сокращения влияния сил трения в индукционном счетчике используют специальное устройство, которое называется компенсатор трения.

    Существенный параметр счетчика электрической энергии переменного тока — порог чувствительности прибора, который подразумевает значение минимальной мощности, выраженной в процентах от номинального значения, при котором ротор счетчика начинает устойчиво вращаться. Другими словами, порог чувствительности – это минимальный расход электроэнергии, который счетчик в состоянии зафиксировать.

    В соответствии с ГОСТом, значение порога чувствительности для индукционных счетчиков различных классов точности, должно составлять не больше 0,5 — 1,5%. Уровень чувствительности задается значением компенсирующего момента и момента торможения, который создается специальным противосамоходным устройством.

    Принцип работы электронного счетчика

    Индукционные счетчики расхода электрической энергии при всей их простоте и невысокой стоимости обладают рядом недостатков, в основе которых находится использование механических подвижных элементов, имеющих недостаточную стабильность параметров при долгосрочной эксплуатации прибора. Электронный счетчик электроэнергии лишен этих недостатков, имеет низкий порог чувствительности, более высокую точность измерения потребляемой энергии.

    Правда, для построения электронного счётчика требуется применение узкоспециализированных интегральных микросхем (ИС), которые могут выполнять перемножение сигналов тока и напряжения, формировать полученную величину в виде, удобном для обработки микроконтроллером. Например, микросхемы, преобразующие активную мощность — в значение частоты следования импульсов. Общее число полученных импульсов, интегрируемых микроконтроллером, является прямо пропорциональным потребляемой электроэнергии.

    Блок-схема электронного счетчика

    Не менее важным для полноценной эксплуатации электронного счетчика является наличие всевозможных сервисных функций, таких как удаленный доступ к счётчику для дистанционного контроля показаний, определение дневного и ночного потребления энергии и многие другие. Применение цифрового дисплея позволяет пользователю программно задавать различные форматы вывода сведений, например, отображать на дисплее информацию о количестве потреблённой энергии за определенный интервал, задавать различные тарифы и тому подобное.

    Для выполнения отдельных нестандартных функций, например, согласования уровней сигналов, потребуется применение дополнительных ИС. В настоящее время начат выпуск специализированных микросхем — преобразователей мощности в пропорциональную частоту — и специализированные микроконтроллерные устройства, имеющие подобный преобразователь на одном кристалле. Но, чаще всего, они слишком дорогостоящи для применения в коммунально-бытовых устройствах индукционных счётчиков. Поэтому многими мировыми производителями микроконтроллеров разрабатываются специализированные недорогие микросхемы, специально предназначенные для подобного применения.

    Какой вид имеет схема электрическая принципиальная счетчика по простейшему цифровому варианту на наиболее недорогом (менее доллара) 8-разрядном микроконтроллере компании Motorola? В рассматриваемом решении осуществлены все минимально обязательные функции устройства. Оно основано на применении недорогой ИС, преобразующей мощность в частоту импульсов типа КР1095ПП1 и 8-разрядного микроконтроллерного устройства MC68HC05KJ1. При такой архитектуре счетчика микроконтроллеру необходимо суммировать получаемое число импульсов, отображать информацию на дисплее и осуществлять защиту устройства в различных нештатных режимах. Описываемый счётчик в действительности является цифровым функциональным аналогом имеющихся механических счётчиков, приспособленным для дальнейшего усовершенствования.

    Схема электрическая принципиальная простейшего цифрового счетчика электроэнергии

    Сигналы, эквивалентные значениям напряжения и тока в сети, получаются от датчиков и подаются на вход преобразователя. Микросхема осуществляет перемножение входных сигналов, формируя мгновенное значение потребляемой мощности. Это значение поступает на микроконтроллер, преобразуется в ватт-часы. По мере накопления данных изменяются показания счётчика на ЖКИ. Наличие частых сбоев напряжения электропитания устройства приводит к необходимости применения EEPROM для обеспечения сохранности показаний счётчика. Поскольку сбои напряжения питания являются наиболее распространенной нештатной ситуацией, подобная защита требуется в любом электронном счётчике.

    Схема электрическая принципиальная счетчика (цифровой вычислитель) приведена ниже. Через разъём X1 присоединяется напряжение сети 220 В и электропотребитель. Датчики напряжения и тока формируют сигналы, поступающие на микросхему КР1095ПП1 преобразователя, имеющего оптронную развязку частотного выхода. Ядром счётчика является микроконтроллер MC68HC05KJ1 производства компании Motorola, производимый в 16-выводном корпусе (корпус DIP или SOIC) и оснащенный 1,2 Кбайтом ПЗУ и 64 байтом ОЗУ. Для сохранения накопленного количества потребленной энергии во время сбоев по питанию применяется EEPROM с малым объёмом памяти 24С00 (16 байт) от компании Microchip. Дисплеем служит 7-сегментный 8-разрядный ЖКИ, который управляется любым недорогостоящим микроконтроллером, обменивающимся с центральным микроконтроллером данными по протоколам SPI или I2C и подключенный через разъём Х2.

    Заложенный алгоритм работы счетчика потребовал менее 1 Кбайт памяти и меньше половины из всех портов ввода/вывода на микроконтроллере MC68HC05KJ1. Его технических возможностей достаточно для того, чтобы дополнить счетчик некоторыми сервисными функциями, например, возможностью объединения счётчиков в локальную сеть через интерфейс RS-485. Эта возможность позволяет получать данные о потребленной энергии в сервисный центр и дистанционно отключать электричество, если потребителем не внесена оплата. Сетью, содержащей такие счётчики можно оснастить жилой многоквартирный дом. Все показания счетчиков по сети будут дистанционно поступать в диспетчерский пункт.

    Практический интерес представляет применение семейства 8-разрядных микроконтроллеров с кристаллом, содержащим встроенную FLASH-память. Это позволяет его программировать прямо на собранной плате. Это также обеспечивает защищённость от взлома программного кода и удобство обновления ПО без выполнения монтажных работ.

    Цифровой вычислитель для электронного счетчика электроэнергии

    Более интересным представляется вариант электронного счётчика электроэнергии без применения внешней EEPROM и дорогостоящего внешнего энергонезависимого ОЗУ. В этом случае можно при возникновении аварийной ситуации фиксировать показания и другую служебную информацию во внутренней FLASH-памяти микроконтроллера. Это дополнительно обеспечивает требуемую конфиденциальность данных, что нельзя обеспечить, если применяется внешний кристалл, не защищённый от несанкционированного доступа посторонних лиц. Такой электронный счётчик электроэнергии с любым уровнем сложности и функциональности можно создать с применением микроконтроллера компании Motorola из семейства HC08 с FLASH-памятью, встроенной в основной кристалл.

    Осуществление перехода на цифровые дистанционные автоматические средства учёта и контроля расхода электроэнергии является вопросом времени. Технические и потребительские достоинства таких систем являются очевидными. Стоимость их будет неизменно уменьшаться. И даже в случае применения простейшего микроконтроллера такой электронный счётчик электроэнергии обладает очевидными преимуществами: высокая надёжность вследствие полного отсутствия подвижных деталей; миниатюрность; возможность выпуска счетчика в корпусе с учётом особенностей интерьера в современных жилых домах; увеличение интервала поверок в несколько раз; высокая ремонтопригодность и предельная простота в обслуживании и эксплуатации. Даже небольшие дополнительные аппаратные и программные затраты в простейшем цифровом счётчике могут дополнить его рядом сервисных функций, принципиально отсутствующих у всех механических электросчетчиков, например, применение многотарифного начисления оплаты за потребляемую энергию, возможность реализации автоматизированного учёта и управления потреблением электроэнергии.

    Смотрите также схемы:

    Регулятор освещения Электронный термометр Электрическая печи Стабилизатор напряжения Схема электрическая телевизора

    elektronika-muk.ru

    Электрический счетчик энергии. Общие сведения

    Нет никакой тайны в том, что электрическая энергия нуждается в учете. Эта задача возлагается на электрический счетчик. Измеряется электроэнергия в киловатт-часах – это означает, что электроприбор, имеющий потребляемую мощность 1000 Вт должен проработать один час, чтобы потратить 1 кВт-ч.

    В наше время, перенасыщенное всевозможной электротехнической (и не только) продукцией, многообразие всевозможных моделей и видов электросчетчиков может ввести в ступор рядового покупателя. Счетчики на нашем рынке есть любые – обычные механические, электронные (цифровые), гибридные, просто навороченные и супер-точные.

    Функциональность современных счетчиков также впечатляет – помимо обычного измерения мощности они могут учитывать тарифы на электроэнергию и параметры окружающей среды, отслеживать качество электроэнергии, а также имеют возможность удаленного доступа.

       Электрический счетчик

    В данной статье мы постараемся осветить некоторые вопросы, возникающие при выборе и подключении электросчетчика. Поскольку тема очень обширная, ряд узких вопросов может оказаться не затронутым. Поэтому не помешает лишний раз заглянуть в ПУЭ, Глава «Учет электроэнергии». Для продолжения темы нам предварительно нужно как-то разделить все счетчики на группы (типы, виды) по их различным характеристикам. Другими словами надо разобраться с классификацией электросчетчиков.

    Основные характеристики счетчиков

    Разделим все счетчики электроэнергии по их различным признакам:

    По принципу работы (конструктивному исполнению):
    • Индукционные
    • Электронные
    По типу электросети:
    • Однофазные
    • Трехфазные

       В свою очередь трехфазные счетчики различаются:

    • По способу включения в сеть — прямого (непосредственного) включения и трансформаторного включения (косвенное и полукосвенное включение)
    • По роду измеряемой мощности — счетчики активной мощности и счетчики реактивной мощности
    По количеству тарифов: 
    • однатарифные
    • многотарифные
    По классу точности
    По типу интерфейса связи (для электронных счетчиков)

    Различие по типу электросети

    Основное различие счетчиков заключается во втором пункте, а именно, для какой электросети они разработаны – для однофазной или трехфазной. Электрический счетчик однофазный используются в однофазных двухпроводных сетях напряжением 0,4/ 0,23 кВ. Основное их применение – учет расхода электроэнергии в квартирах или частных домах. Изготавливаются счетчики на напряжение 220 (или 127) вольт, номинальный ток — 5, 10, 20, 40, 60 А. Устанавливаются счетчики на вводе и размещаются в этажных (квартирных) щитах.

    Электрический счетчик трехфазный предназначен для трехфазных трехпроводных или четырехпроводных сетей. И если с однофазными счетчиками все просто и понятно, то трехфазные приборы требуют расширенного описания, поскольку они используются в электроустановках, работающих на трехфазном токе. Трехфазные счетчики прямого (непосредственного) включения подсоединяются к сети напрямую, без дополнительных приборов – трансформаторов тока. Номинальный ток изготовляемых счетчиков прямого включения — 5, 10, 20, 30, 50, 100А.

    Учет потребленной энергии определяется путем вычитания первоначального показания электросчетчика (Пн) из конечного показания (Пк):

    Э = Пк — Пн

    Однако бывают ситуации, когда электроустановка потребляет значительный ток и счетчик прямого включения такой ток через себя пропустить не сможет. Поэтому в таких случаях используют подключение электросчетчиков через измерительные трансформаторы тока (ТТ). Основное назначение ТТ – уменьшить ток до таких значений, при которых счетчик будет нормально функционировать. Расчет потребленной энергии здесь определяется также вычитанием начальных показаний из конечных и дополнительно – умножением полученной разницы показаний на коэффициент трансформации (Кт) трансформаторов тока:

    Э = (Пк — Пн)*Кт

    Определить какой коэффициент трансформации у ТТ можно по данным на шильдике самого трансформатора. Например, надпись 150/5 на ТТ означает, что первичная обмотка данного трансформатора рассчитана на ток 150А, а вторичная на 5А. Из этого соотношения мы и получаем коэффициент трансформации, равный 30. Другими словами — ТТ уменьшает первичный ток в 30 раз.

    Конструктивное исполнение счетчиков

    По своей конструкции, или сказать по-другому, по типу измерительной системы счетчики разделяются на индукционные (механические) и электронные. Соответственно устройство электросчетчика может быть как относительно простым (обычный механический), так и весьма сложным – в случае с электронным счетчиком.

    Индукционный счетчик — принцип его работы основан на воздействии магнитного поля неподвижных катушек, по обмоткам которых протекает ток, на подвижный элемент – диск. Вращение диска мы и наблюдаем в стеклянном окошке счетчика. При этом количество оборотов диска пропорционально расходу электроэнергии. Такие счетчики отличаются низкой стоимостью, а также достаточно высоким качеством и надежностью.

    Среди минусов можно отметить:

    • Плохая (почти никакая) защита от воровства электроэнергии
    • Относительно низкий класс точности (высокая погрешность)
    • Низкая функциональность (опциональность)

    Электронный (цифровой) счетчик – современное средство учета электроэнергии.

    Несмотря на высокую (по сравнению с механическим счетчиком) стоимость такие счетчики обладают хорошими техническими параметрами и приличными сервисными функциями.

    Характерные признаки:

    • Высокий класс точности
    • Долговечность, отсутствие подвижных деталей
    • Увеличенный межповерочный интервал
    • Возможность реализации многотарифной системы учета
    • Возможность создания автоматизированной системы учета потребляемой энергии (АСКУЭ)
    • Наличие внутренней памяти для хранения информации по потребленной электроэнергии

    Работает электронный счетчик по принципу преобразования активной мощности в последовательность импульсов, которые подсчитывает специальный микроконтроллер. При этом количество импульсов прямо пропорционально потребляемой (измеряемой) электроэнергии.

    Класс точности

    Класс точности электрического счетчика — это его погрешность измерения. Если сказать точнее – наибольшая допустимая относительная погрешность, выражаемая в процентах. Сейчас повсеместно происходит замена устаревших счетчиков на более современные модели. В первую очередь это связано именно с неудовлетворительным классом точности старых электросчетчиков, а также с возросшими электрическими нагрузками. В связи с этим все счетчики с классом точности 2,5 должны быть заменены на счетчики с классом точности 2,0 (или 1,0).

    Существующие классы точности:

    • Счетчики активной энергии — 0,2; 0,5; 1,0; 2,0
    • Счетчики реактивной энергии — 1,5; 2,0 и 3,0

    Немного о поверке счетчиков

    Электрический счетчик, как и многие измерительные приборы, нуждается в периодической поверке (калибровке). Правильнее было бы сказать – подлежит обязательной поверке. Основная цель такой процедуры – подтверждение правильности (достоверности) измерений и возможности дальнейшего использования прибора по назначению. Поверка осуществляется в аккредитованной государством метрологической организации в установленные сроки.

    Существует такая характеристика электросчетчика как межповерочный интервал (МПИ) – это интервал времени, после окончания которого требуется очередная поверка счетчика. Теоретически — чем больше интервал, тем выше качество прибора. Начальная (первичная) поверка проводится на заводе-изготовителе и указывается в паспорте электросчетчика – с этой даты начинается отсчет МПИ.

    Сроки поверки:

    • Индукционный однофазный счетчик – 16 лет
    • Электронный – от 8 до 16 лет
    • Трехфазный счетчик – от 6 до 8 лет, современные электронные модели могут иметь МПИ 16 лет
    • Счетчики с классом точности 0,5 – 4 года

    На этом пока все. Следующая статья будет продолжением темы, и там мы разберемся со схемами подключения электросчетчиков.

     

    Смотрите также по этой теме:

       Схемы подключения счетчиков электроэнергии.

       Электронные счетчики и система АСКУЭ. Дистанционный учет электроэнергии.

     

    Будем рады, если подпишетесь на наш Блог!

    [wysija_form id=»1″]

    powercoup.by

    мир электроники — Устройство цифрового электросчетчика

    раздел Интересное из мира электроники
    материалы в категории

    Ещё несколько лет назад контроль потребления и сбережение электроэнергии не были столь актуальны. Всех вполне устраивали цены на электроэнергию и соответствующая система её учёта на базе электромеханических (индукционных) счётчиков. Принцип их работы основан на подсчёте количества оборотов диска, вращающегося в бегущем магнитном поле. Частота вращения пропорциональна мощности, а количество оборотов — потребляемой электроэнергии. Такие счётчики просты, надёжны и дёшевы.

        При переходе России на рыночные отношения, у поставщиков электроэнергии возникла проблема контроля и управления её потреблением. В свою очередь, потребитель заинтересован в том, чтобы не переплачивать. В результате, стало необходимо увеличение сервисных функций счётчиков. Поставщикам необходим оперативный доступ ко всей информации о количестве проданной электроэнергии на данный момент и дистанционный контроль. Потребитель заинтересован в экономии электроэнергии за счёт использования различных тарифов (дневной, ночной и так далее) и в удобном способе оплаты. Альтернатива этому — применение электронных платежей, вплоть до установления картридеров непосредственно в сами счётчики для оплаты.

        Современные механические счётчики не могут справиться с поставленными задачами, при условии оптимального соотношения цена/качество. Поэтому необходим новый подход к системам учёта электроэнергии и проведения платежей.

        В настоящее время, при стремительном развитии микроэлектроники и снижении цен на электронные компоненты, цифровые системы управления постепенно вытесняют своих аналоговых конкурентов. Это, в первую очередь обусловлено большим разнообразием микроконтроллеров и резким снижением их стоимости. Одно из главных преимуществ цифровых систем управления на базе микроконтроллеров — это гибкость и многофункциональность, достигаемые не аппаратно, а программно, не требуя дополнительных материальных затрат. Переход на микроконтроллерное управление счётчиков электрической энергии имеет ряд преимуществ, в первую очередь, повышение точности и надёжности, а так же многофункциональность, достигаемая за счёт малых аппаратных затрат.

        В зависимости от требований, современные цифровые счётчики должны в любой момент времени оперативно передавать требуемые данные по различным каналам связи на диспетчерские пункты энергоснабжающих предприятий для оперативного контроля и экономических расчётов потребления электроэнергии.

        Для расчёта электрической энергии, потребляемой за определённый период времени, необходимо интегрировать во времени мгновенные значения активной мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени. На этом принципе работает любой счётчик электрической энергии.

    Принципиальная схема электромеханического счётчика

     

    Устройство цифрового счётчика электрической энергии (рис. 2) требует специализированных ИС, способных производить перемножение сигналов и предоставлять полученную величину в удобной для микроконтроллера форме. Например, преобразователь активной мощности — в частоту следования импульсов. Общее количество пришедших импульсов, подсчитываемое микроконтроллером, прямо пропорционально потребляемой электроэнергии.

    Принципиальная схема цифрового счетчика электроэнергии

     Не менее важную роль играют всевозможные сервисные функции, такие как дистанционный доступ к счётчику, к информации о накопленной энергии и многие другие. Наличие цифрового дисплея, управляемого от микроконтроллера, позволяет программно устанавливать различные режимы вывода информации, например, выводить на дисплей информацию о потреблённой энергии за каждый месяц, по различным тарифам и так далее.

        Для выполнения некоторых нестандартных функций, например, согласования уровней, используются дополнительные ИС. Сейчас начали выпускать специализированные ИС — преобразователи мощности в частоту — и специализированные микроконтроллеры, содержащие подобные преобразователи на кристалле. Но, зачастую, они слишком дороги для использования в коммунально-бытовых индукционных счётчиках. Поэтому многие мировые производители микроконтроллеров разрабатывают специализированные микросхемы, предназначенные для такого применения.

        Перейдём к анализу построения простейшего варианта цифрового счётчика на наиболее дешёвом (менее доллара) 8-разрядном микроконтроллере Motorola. В представленном решении реализованы все минимально необходимые функции. Оно базируется на использовании недорогой ИС преобразователя мощности в частоту импульсов КР1095ПП1 и 8-разрядного микроконтроллера MC68HC05KJ1 (рис. 3). При такой структуре микроконтроллеру требуется суммировать число импульсов, выводить информацию на дисплей и осуществлять её защиту в различных аварийных режимах. Рассматриваемый счётчик фактически представляет собой цифровой функциональный аналог существующих механических счётчиков, приспособленный к дальнейшему усовершенствованию.

    Основные узлы простейшего цифрового счетчика электроэнергии

     

    Сигналы, пропорциональные напряжению и току в сети, снимаются с датчиков и поступают на вход преобразователя. ИС преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера, преобразующего его в Вт·ч и, по мере накопления сигналов, изменяющего показания счётчика. Частые сбои напряжения питания приводят к необходимости использования EEPROM для сохранения показаний счётчика. Поскольку сбои по питанию являются наиболее характерной аварийной ситуацией, такая защита необходима в любом цифровом счётчике.

        Алгоритм работы программы (рис. 4) для простейшего варианта такого счётчика довольно прост. При включении питания микроконтроллер конфигурируется в соответствии с программой, считывает из EEPROM последнее сохранённое значение и выводит его на дисплей. Затем контроллер переходит в режим подсчёта импульсов, поступающих от ИС преобразователя, и, по мере накопления каждого Вт·ч, увеличивает показания счётчика.

    Алгоритм работы цифрового счетчика

    При записи в EEPROM значение накопленной энергии может быть утеряно в момент отключения напряжения. По этим причинам значение накопленной энергии записывается в EEPROM циклически друг за другом через определённое число изменений показаний счётчика, заданное программно, в зависимости от требуемой точности. Это позволяет избежать потери данных о накопленной энергии. При появлении напряжения микроконтроллер анализирует все значения в EEPROM и выбирает последнее. Для минимальных потерь достаточно записывать значения с шагом 100 Вт·ч. Эту величину можно менять в программе.

        Схема цифрового вычислителя показана на рис. 5. К разъёму X1 подключается напряжение питания 220 В и нагрузка. С датчиков тока и напряжения сигналы поступают на микросхему преобразователя КР1095ПП1 с оптронной развязкой частотного выхода. Основу счётчика составляет микроконтроллер MC68HC05KJ1 фирмы Motorola, выпускаемый в 16-выводном корпусе (DIP или SOIC) и имеющий 1,2 Кбайт ПЗУ и 64 байт ОЗУ. Для хранения накопленного количества энергии при сбоях по питанию используется EEPROM малого объёма 24C00 (16 байт) фирмы Microchip. В качестве дисплея используется 8-разрядный 7-сегментный ЖКИ, управляемый любым недорогим контроллером, обменивающийся с центральным микроконтроллером по протоколу SPI или I2C и подключаемый к разъёму Х2.

        Реализация алгоритма потребовала менее 1 Кбайт памяти и менее половины портов ввода/вывода микроконтроллера MC68HC05KJ1. Его возможностей достаточно, чтобы добавить некоторые сервисные функции, например, объединение счётчиков в сеть по интерфейсу RS-485. Эта функция позволит получать информацию о накопленной энергии в сервисном центре и отключать электричество в случае отсутствия оплаты. Сетью из таких счётчиков можно оборудовать жилой многоэтажный дом. Все показания по сети будут поступать в диспетчерский центр.

        Определённый интерес представляет собой семейство 8-разрядных микроконтроллеров с расположенной на кристалле FLASH-памятью. Поскольку его можно программировать непосредственно на собранной плате, обеспечивается защищённость программного кода и возможность обновления ПО без монтажных работ.

    Цифровой вычислитель для цифрового счетчика электроэнергии

      Ещё более интересен вариант счётчика электроэнергии без внешней EEPROM и дорогостоящей внешней энергонезависимой ОЗУ. В нём можно при аварийных ситуациях фиксировать показания и служебную информацию во внутреннюю FLASH-память микроконтроллера. Это к тому же обеспечивает конфиденциальность информации, чего нельзя сделать при использовании внешнего кристалла, не защищённого от несанкционированного доступа. Такие счётчики электроэнергии любой сложности можно реализовать с помощью микроконтроллеров фирмы Motorola семейства HC08 с FLASH-памятью, расположенной на кристалле.

        Переход на цифровые автоматические системы учёта и контроля электроэнергии — вопрос времени. Преимущества таких систем очевидны. Цена их будет постоянно падать. И даже на простейшем микроконтроллере такой цифровой счётчик электроэнергии имеет очевидные преимущества: надёжность за счёт полного отсутствия трущихся элементов; компактность; возможность изготовления корпуса с учётом интерьера современных жилых домов; увеличение периода поверок в несколько раз; ремонтопригодность и простота в обслуживании и эсплуатации. При небольших дополнительных аппаратных и программных затратах даже простейший цифровой счётчик может обладать рядом сервисных функций, отсутствующих у всех механических, например, реализация многотарифной оплаты за потребляемую энергию, возможность автоматизированного учёта и контроля потребляемой электроэнергии.

    Источник: http://kazus.ru/

    radio-uchebnik.ru

    Схемы подключения счетчиков электроэнергии

    4.1 Схема подключения однофазного счетчика

    Начнем с однофазного счетчика.

    Устройство электросчетчика представлено измерительной системой, состоящей из токовой обмотки и обмотки напряжения, а также винтовых зажимов (клемм) для подключения проводов.

    Назначение контактных зажимов:

    • Зажим 1 — входной фазный провод

    • Зажим 2 — выходной фазный провод

    • Зажим 3 — входной нулевой провод

    • Зажим 4 — выходной нулевой провод

    Винт напряжения предназначен для отключения обмотки напряжения при поверке электросчетчика.

    Рассмотрим функциональную схему подключения электросчетчика. Она не является какой-то конкретной схемой (например, квартирного щита), а служит исключительно для понимания логики включения счетчика в сеть. Поэтому здесь не приводятся номиналы выключателей и сечения проводников.

    Распределение электроэнергии начинается с вводного двухполюсного автомата, который выполняет функцию защиты счетчика и отходящих линий, а также в качестве устройства отключения счетчика при ремонте или замене.

    Рисунок 1 — Схема однофазного счетчика.

    Рисунок 2 — Однолинейная схема

    Распределение электроэнергии начинается с вводного двухполюсного автомата, который выполняет функцию защиты счетчика и отходящих линий, а также в качестве устройства отключения счетчика при ремонте или замене.

    Однако в реальной жизни вводной автомат может быть установлен за счетчиком (по ходу электроэнергии). Делается это с целью ограничения доступа к счетчику.

    После автомата фазный (L) и нулевой (N) проводники подключаются к соответствующим входным зажимам счетчика — 1 и 3.

    Выход счетчика (нагрузка) — это зажимы 2 (L) и 4 (N). От этих зажимов проводники подключаются к противопожарному УЗО, после которого электроэнергия распределяется по однополюсным автоматическим выключателям, а нулевой рабочий проводник заводится на общую нулевую шину.

    Это самое общее описание, которое не затрагивает другие технические детали — например, параметры отходящих линий, выбор номиналов вводного автомата и УЗО.

    4.2 Схема подключения трёхфазного счетчика

    Как уже упоминалось, трехфазные счетчики используются в электроустановках, спроектированных для работы на трехфазном токе.

    Еще одно место установки таких счетчиков — ВРУ жилого дома (или учреждения) — там используется однофазный ток, но на вводе имеются три фазы.

    Поскольку трехфазные счетчики имеют несколько разновидностей, то и схем подключения несколько.

    Виды трехфазных счетчиков:

    • Счетчики прямого (непосредственного) включения

    • Счетчики полукосвенного включения

    • Счетчики косвенного включения.

    Разберем схему подключения счетчика прямого включения и пару схем для счетчиков полукосвенного включения, схему косвенного включения счетчиков в сети.

    Прямое включение счетчика.

    Самое простое подключение, напоминающее схему включения однофазного счетчика. Различие только в большем количестве контактных зажимов у трехфазного прибора.

    Рисунок 3 — Трехфазный счетчик прямого включения

    Назначение контактных зажимов:

    • Зажим 1 — входной провод фазы А

    • Зажим 2 — выходной провод фазы А

    • Зажим 3 — входной провод фазы В

    • Зажим 4 — выходной провод фазы В

    • Зажим 5 — входной провод фазы С

    • Зажим 6 — выходной провод фазы С

    • Зажим 7 — входной нулевой провод

    • Зажим 8 — выходной нулевой провод

    Максимальный ток выпускаемых счетчиков прямого включения — 100А. Это значит, что использовать такой счетчик мы сможем только в электроустановке, потребляющей мощность до 60 кВт.

    При такой мощности значение протекающего тока через счетчик будет близко к предельному и составит порядка 92 А:

    studfile.net

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о