Блоки питания схемы: Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Содержание

Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

 

Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок .


-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …

 

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.

Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

 

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы.

Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.

Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317.

Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.

По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения . ..
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).

Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0. 1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …

В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …

Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности.

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …

Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …

Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …

Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …

Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …

Как раньше делали радиосхемы и электронные устройства? Радиолюбители сами изготавливали печатные платы и сами паяли каждую деталь, но времена меняются и теперь соединив пару-тройку покупных …

Построить нерегулируемый лабораторный блок питания на несколько различных напряжений можно на основе двойного триггера D-типа (микросхема CD4013) и старого блока питания ATX, взятого из любого …

Если у вас завалялись в радиозакромах пару транзисторов 2N3055 с радиаторами, блок питания и китайский цифровой вольтметр — возможно собрать из всего этого такую нужную …

Как сделать простейший блок питания и выпрямитель

Как сделать простейший блок питания и выпрямитель

В этой статье ЭлектроВести расскажут вам как сделать простейший блок питания и выпрямитель.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

  • Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
  • Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1. 5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1. 5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что Служба безопасности Украины обнаружила в режимных помещениях Южно-Украинской атомной электростанции компьютерную технику, которая использовалась для майнинга криптовалют. По данным следствия, из-за несанкционированного размещения компьютерной техники произошло разглашение сведений о физической защите атомной электростанции, что является государственной тайной. К майнингу криптовалют, возможно, были причастны служащие части Национальной гвардии Украины, охраняющие АЭС.

По материалам: electrik.info.

Устройство и схема простого блока питания — Интернет-журнал «Электрон» Выпуск №5

Для питания различных электронных устройств нам в большинстве случаев необходимо постоянное напряжение определенной величины. Для этого кроме батареек и аккумулятором мы можем использовать вторичные источники напряжения, так называемые блоки питания, функция которых заключается в том, что бы преобразовать сетевое переменное напряжение в постоянное напряжение необходимой величины.

Если рассмотреть схему простейшего блока питания, то увидим, что она состоит из трансформатора Т1, диодного моста D1 и сглаживающего конденсатора С1.

Трансформатор Т1 необходим для преобразования переменного (в данном случае сетевого) напряжения в более низкое переменное напряжение. Кроме того трансформатор осуществляет гальваническую развязку между напряжением сети и выходным напряжением блока питания.

Одним из параметров трансформатора является коэффициент трансформации, который показывает во сколько раз трансформатор увеличит или уменьшит выходное напряжение, то есть напряжение на вторичной обмотке.

В простейшем случае коэффициент трансформации — это отношение напряжения на первичной обмотке к напряжению на вторичной обмотке в режиме холостого хода, то есть без нагрузки.

Например, если мы подключаем первичную обмотку в сеть 220 вольт, а на вторичной имеем 12 вольт, то коэффициент трансформации равен 220/12

Далее неотъемлемой частью простого блока питания является диодный мост, который выпрямляет переменное напряжение, поступающее на его вход, то есть преобразует его в постоянное. Параметры диодного моста зависят от тока нагрузки, который вы хотите получить на выходе блока питания. Поэтому для моста подбирают диоды, чтобы такой параметр как обратное напряжение диода Uобр было больше напряжения, поступающего на мост, а прямой ток диода Iпр был больше тока нагрузки самого блока питания.

И третьим элементом нашего блока питания является сглаживающий конденсатор, который предназначен для уменьшения пульсаций постоянного напряжения на выходе блока питания. Его емкость влияет на величину пульсаций выходного постоянного напряжения.

Рассмотрим работу простейшего блока питания.

На вход трансформатора, то есть на первичную обмотку, поступает сетевое напряжение 220 вольт. Трансформатор преобразует сетевое напряжение в необходимое нам переменное напряжение. Для простоты объяснения возьмет напряжение на вторичной обмотки равное 12 вольт.

Далее переменное напряжение со вторичной обмотки поступает на выпрямительный диодный мост, собранный из четырех диодов по схеме двухполупериодного выпрямителя.

Диодный мост преобразует (выпрямляет) переменное синусоидальное напряжение в постоянное напряжение. Диоды работают попарно для положительной и отрицательной полуволны переменного напряжения.

По сути, напряжение с диодного моста имеет большие пульсации с частотой 100 герц (для сети частотой 50 герц) и будет отрицательно влиять на работу питаемого этим блоком устройства.

Поэтому для уменьшения пульсаций параллельно положительному и отрицательному выводам блока питания устанавливают сглаживающий конденсатор. Конденсатор накапливает заряд во время нарастания напряжения на выходе диодного моста и отдает этот заряд в нагрузку во время спада полуволны напряжения, тем самым поддерживая выходное напряжение близко к номинальному значению.

Здесь стоит сказать, что для того, что бы конденсатор не вышел из строя его рабочее напряжение должно в как минимум в два раза превышать напряжения в цепи, то есть на выходе блока питания.

Ниже вы можете посмотреть результаы моделирования простейшего блока питания на основе мостового выпрямительного моста в програме Multisim.

Целью данной статьи является познакомить вас с принципом работы простейшего блока питания. Как рассчитать и собрать свой блок питания мы рассмотрим в следующих выпусках журнала ЭЛЕКТРОН.

Лабораторный блок питания 0-30В 3А

Вниманию читателя представлена схема полноценного лабораторного блока питания с регулировкой выходного напряжения и тока, а также с защитой от короткого замыкания на выходе. Данный лабораторный блок может полезно служить в качестве источника питания для запуска, проверки и ремонта различных устройств или для зарядки различных аккумуляторов. Лабораторный блок может обеспечить выходным током до 3А и напряжением до 30В.

Технические характеристики

Напряжение питания (AC) ….. ~12÷24В

Собственный ток потребления ….. менее 10мА

Выходной ток ….. 10мА÷3А

Схема лабораторного блока питания

Принцип работы схемы

Питание схемы двухполярное. Основное плечо (положительное) выпрямляется диодным мостом VD2, второе плечо (отрицательное), которым питаются ОУ U1 и U3, выпрямляется диодами VD1 и VD4. Также отрицательное плечо имеет стабилизацию -5.6В, которая обеспечивается стабилитроном VD5. Служит отрицательное плечо для более точной работы при низких входных напряжениях операционных усилителей (меньше 1В). Если на входе ОУ потенциал 0.2В относительно GND, то относительно отрицательной шины он будет уже 5. 8В, что обеспечит меньшую погрешность и меньшие пульсации при усилении.

Источник опорного напряжения выполнен на операционном усилителе U2. За счет положительной обратной связи, организованной резистором R12, ОУ самовозбуждается. На его выходе начинает происходить рост напряжения до тех пор, пока на инвертирующем и неинвертирующем входах уровень сигналов не сравняется. Это произойдет тогда, когда на выходе U2 напряжение достигнет 11.2В. На входах в этот момент, за счет резистивных делителей, будет по 5.6В. Потенциал 11.2В будет опорным и стабильным (неизменным) при изменении входного напряжения.

Регулировка напряжения лабораторного блока осуществляется с помощью переменного резистора RV2, который включен как потенциометр. Изменяя положение его ползунка, происходит деление опорного потенциала на неинвертирующем входе U3. На инвертирующий вход U3 через делитель R21R15 подается напряжение с выхода лабораторного блока питания. Изменяя опорное напряжение, будет происходить изменение выходного напряжения U3, которое поступает на эмиттерный повторитель. Эмиттерный повторитель состоит из транзисторов VT3 и VT4 включенных по схеме Дарлингтона, для увеличения коэффициента усиления. Транзистор Дарлингтона регулирует выходное напряжение лабораторного блока питания.

Ограничение по току лабораторного блока питания осуществляется потенциометром RV1. Потенциометр задает уровень опорного потенциала на неинвертирующем входе U1. На инвертирующий вход подается потенциал с датчика тока, в роли которого выступает шунт R20R23. Операционный усилитель U1 включен как компаратор. Когда на датчике тока а, следовательно, и на инвертирующем входе U1, напряжение станет больше чем на неинвертирующем входе, тогда на выходе U1 появиться отрицательный потенциал, который через диод VD7 поступит на 3 вывод U3, изменив его опорный потенциал. Таким образом, ограничение тока лабораторного блока питания обеспечивается через регулировку напряжения. Также отрицательный потенциал поступит на базу VT1 через делитель R4R5 и транзистор откроется, потечет коллекторный ток через резистор R3 и светодиод VD3, который засветится, обозначив включение режима ограничения тока.

 

 

Защита от КЗ срабатывает через ограничение по току. Резистор R11, включенный в делитель напряжения R8, RV1 и R11, не позволит задать большой порог срабатывания (более 3А) компаратора U1 даже при максимальном сопротивлении потенциометра RV1. Я установил шунт R20R23 общим сопротивлением 0.75Ома, поэтому ток КЗ у меня ограничивается в пределе 2.8 Ампер. Для уменьшения тока короткого замыкания нужно увеличить сопротивление R20R23.

Подстроечным резистором RV3 выставляется ноль на выходе лабораторного блока.

Компоненты лабораторного блока питания

Все номиналы компонентов указаны на схеме. Операционные усилители можно заменить на TL081, LM741.

Элементы VT3, VT4 и VD2 необходимо установить на радиатор. Если корпус ЛБП пластиковый, то изолировать элементы от теплоотвода нет необходимости. Если корпус металлический, то изолировать обязательно, так как коллекторы, а значит и фланцы VT3 и VT4 соединены с положительной шиной питания.

Площадь поверхности теплоотвода будет зависеть от выходного тока, при котором будет эксплуатироваться лабораторный блок питания. Так при эксплуатации его на токах до 3А необходим радиатор с площадью поверхности 600см2. Также, чем больше разность между входным и выходным напряжениями, тем больше тепла будет рассеиваться на силовом транзисторе.

Выбор трансформатора

К выбору трансформатора для этого лабораторного блока нужно отнестись ответственно.

Напряжение вторичной обмотки не должно превышать 24В переменного тока. Связано это с максимальным напряжением питания операционных усилителей TL071 (TL081), которое находится в пределах ±18В (для однополярного напряжения +36В). Выпрямленное напряжение на конденсаторе C3 (без нагрузки) будет в 1.41 раз больше переменного. Так для трансформатора с вторичной обмоткой 24В выпрямленное напряжение будет приблизительно +34В. Также по схеме видно, что минусовые выводы питания операционных усилителей U1 и U3 соединены не с общей шиной, а с отрицательным плечом -5. 6В, которое организовано элементами VD1, VD4, R6, C4 и VD5. Таким образом, питание U1 и U3 осуществляется от +39.5В относительно отрицательного плеча, что уже на пределе возможностей TL071 и TL081. При нагрузке блока питания напряжение просядет, но все же…

Поэтому, выходное напряжение трансформатора для данного лабораторного блока ни в коем случае не должно превышать 24В переменного тока, входное не должно быть ниже 12В, так как опорный потенциал на выходе U2 равен удвоенному напряжению стабилитрона VD6 (5.6В), то есть 11.2 Вольта.

Выходной ток трансформатора должен соответствовать выходной нагрузке лабораторного блока. Если он будет эксплуатироваться на токах до 3А, то и ток вторичной обмотки должен быть не ниже 3А.

Печатная плата лабораторного блока питания СКАЧАТЬ


Какие есть схемы блоков питания для компьютера и ноутбука с описанием

Во время ремонта блока питания компьютера нужна схема, на которую можно ориентироваться. А если же вы ничего не понимаете в схемотехнике, то в этой статье найдете подробное описание всех узлов БП.

Общие схемы

Естественно, каждый блок питания для компьютера имеет собственную схему, поэтому рассмотреть стоит общие примеры. Но даже с ними будет куда сподручнее!

Блока питания стандарта ATX

АТХ блок питания в компьютере сейчас можно встретить наиболее часто. Так как они доминанты на рынке, скорее всего в вашем системном блоке стоит именно такой.

Вот так выглядит структурная схема компьютерных блоков питания типа АТХ.

Состоит она из:

  1. Сетевого фильтра. В него поступает электричество из розетки.
  2. Двухпозиционный выключатель. Это — кнопка, находящаяся сзади, она отвечает за запуск блока. Присутствует не всегда.
  3. Выпрямитель. Это — диодный мост, который преобразует переменное напряжение в постоянное.
  4. Высоковольтный фильтр. Набор силовых конденсаторов, гасящих остаточные импульсы.
  5. Ключ. Размыкает и замыкает цепь.
  6. Трансформатор. Он понижает напряжение до необходимых 12 и 5 вольт. Вот так выглядит распиновка штекера АТХ блока питания от компьютера.

Отдельно стоит знать о распиновке. Цветами обозначаются электрические линии (3,3, 5 и 12 вольт). Если необходимо запустить блок питания компьютера без материнской платы, можно воспользоваться перемычкой. Если замкнуть любой зеленый (PS ON) и черным (СОМ), БП запустится самостоятельно. Нужна лишь дополнительная нагрузка — в виде дисковода.

Для примера, вот принципиальная схема бп для компьютера на 350w.

Блоки питания ноутбуков

Зарядное устройство от ноутбука устроено намного проще, в сравнении с компьютерным. Вот принципиальная схема, которая во всех БП одинаковая (читается слева направо):

  1. Сначала поступает сетевое напряжение.
  2. Входит в трансформатор, который понижает его до 12 вольт (иногда до 18). На схеме изображен понижающий Tr на 28 микрогенри.
  3. После идет блок конденсаторов. Они выпрямляют напряжение, глушит импульсы и помехи.
  4. Далее идет диодный мост, преобразующий переменное напряжение и постоянное.
  5. Перед выходом установлен фильтр, гасящий последние помехи и искажения.

Импульсный блок питания из сгоревшей лампочки

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

 

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.

     

  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

 

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

 

Вернуться наверх к меню

 

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

 

Вернуться наверх к меню

 

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

 

Импульсный трансформатор для блока питания.

 

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

 

Ёмкость входного фильтра и пульсации напряжения.

 

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

 

Вернуться наверх к меню

 

Блок питания мощностью 20 Ватт.

 

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Вернуться наверх к меню

 

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

 

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

 

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

 

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

 

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

 

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

 

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

 

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

 

1. Мостовая схема.

2. Схема с нулевой точкой.

 

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

 

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

 

100 / 5 * 0,4 = 8(Ватт)

 

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

 

100 / 5 * 0,8 * 2 = 32(Ватт).

 

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

 

Вернуться наверх к меню

 

Как правильно подключить импульсный блок питания к сети?

 

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

 

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

 

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

 

Будьте осторожны, берегитесь ожога!

 

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

 

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

 

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

 

Источник http://oldoctober.com/

Цепи питания

| Практические аналоговые полупроводниковые схемы

Существует три основных типа источников питания: нерегулируемый (также называемый грубой силой ), линейный регулируемый и импульсный . Четвертый тип схемы источника питания, называемый с регулируемой пульсацией , представляет собой гибрид между схемами «грубой силы» и «переключением» и заслуживает отдельного раздела.

Нерегулируемый

Нерегулируемый источник питания — самый примитивный тип, состоящий из трансформатора , выпрямителя и фильтра нижних частот .Эти источники питания обычно демонстрируют много пульсаций напряжения (т.е. быстро меняющуюся нестабильность) и другие «шумы» переменного тока, накладываемые на мощность постоянного тока. Если входное напряжение изменяется, выходное напряжение будет изменяться пропорционально. Преимущество нерегулируемых поставок в том, что они дешевы, просты и эффективны.

Линейно регулируемые

Линейный стабилизированный источник питания — это просто «грубый» (нерегулируемый) источник питания, за которым следует транзисторная схема, работающая в «активном» или «линейном» режиме, отсюда и название линейный стабилизатор .(Это очевидно в ретроспективе, не так ли?) Типичный линейный регулятор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и он просто сбрасывает любое избыточное входное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузку. Это чрезмерное падение напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, транзисторная схема потеряет стабилизацию, что означает, что она не сможет поддерживать постоянное напряжение. Он может только снизить избыточное напряжение, но не восполнить недостаток напряжения в цепи грубой силы.Следовательно, вы должны поддерживать входное напряжение как минимум на 1–3 вольт выше желаемого выходного напряжения, в зависимости от типа регулятора. Это означает, что эквивалент мощности минимум от 1 до 3 вольт, умноженный на ток полной нагрузки, будет рассеиваться схемой регулятора, генерируя много тепла. Это делает источники питания с линейной регулировкой неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.

Переключение

Импульсный регулируемый источник питания («переключатель») — это попытка реализовать преимущества схем с прямым и линейным регулированием (компактность, эффективность и дешевизна, но также «чистое» стабильное выходное напряжение). Импульсные источники питания работают по принципу выпрямления входящего напряжения сети переменного тока в постоянное, преобразования его в высокочастотный прямоугольный переменный ток через транзисторы, работающие как переключатели включения / выключения, повышая или понижая это напряжение переменного тока с помощью легкого трансформатор, затем выпрямляет выход переменного тока трансформатора в постоянный ток и фильтрует конечный выход. Регулировка напряжения достигается путем изменения «рабочего цикла» инверсии постоянного тока в переменный на первичной стороне трансформатора. Помимо более легкого веса из-за меньшего размера сердечника трансформатора, коммутаторы имеют еще одно огромное преимущество перед двумя предыдущими конструкциями: этот источник питания типа может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в России. мир; они называются «универсальными» источниками питания.Обратной стороной коммутаторов является то, что они более сложны и из-за своей работы имеют тенденцию генерировать много высокочастотных «шумов» переменного тока в линии электропередачи. Большинство коммутаторов также имеют на своих выходах значительные пульсации напряжения. У более дешевых типов этот шум и пульсации могут быть такими же сильными, как и для нерегулируемого источника питания; Такие бюджетные коммутаторы не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение, и есть «универсальные» входные возможности. Дорогие переключатели не имеют пульсаций и имеют почти такой же низкий уровень шума, как и некоторые линейные переключатели; эти переключатели обычно столь же дороги, как и линейные источники питания.Причина использования дорогого коммутатора вместо хорошего линейного в том, что вам нужна универсальная совместимость с энергосистемой или высокая эффективность. Высокая эффективность, легкий вес и небольшие размеры — вот причины, по которым импульсные источники питания почти повсеместно используются для питания цифровых компьютерных схем.

Регулируемая пульсация

Источник питания с пульсационной стабилизацией является альтернативой линейно регулируемой проектной схеме: источник питания «грубой силы» (трансформатор, выпрямитель, фильтр) составляет «входной конец» схемы, но транзистор работает строго в его включенном состоянии. В режиме выключения (насыщение / отсечка) мощность постоянного тока передается на большой конденсатор по мере необходимости для поддержания выходного напряжения между высокой и низкой уставкой.Как и в переключателях, транзистор в стабилизаторе пульсаций никогда не пропускает ток, находясь в «активном» или «линейном» режиме в течение значительного промежутка времени, что означает, что очень мало энергии будет потрачено впустую в виде тепла. Однако самым большим недостатком этой схемы регулирования является необходимое присутствие некоторой пульсации напряжения на выходе, поскольку напряжение постоянного тока изменяется между двумя уставками управления напряжением. Кроме того, частота пульсаций напряжения изменяется в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию постоянного тока.Цепи регулятора пульсаций, как правило, немного проще схемы переключателя, и им не нужно обрабатывать высокие напряжения в линии питания, с которыми должны работать переключающие транзисторы, что делает их более безопасными в эксплуатации.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Базовая таблица источников питания переменного и постоянного тока

Позвольте электронам сами дать вам ответы на ваши собственные «практические проблемы»!

Ноты:

По моему опыту, студентам требуется много практики с анализом цепей, чтобы стать профессионалом.С этой целью инструкторы обычно предоставляют своим ученикам множество практических задач, над которыми нужно работать, и дают ученикам ответы, чтобы проверить их работу. Хотя этот подход позволяет студентам овладеть теорией схем, он не дает им полноценного образования.

Студентам нужна не только математическая практика. Им также нужны настоящие практические схемы построения схем и использование испытательного оборудования. Итак, я предлагаю следующий альтернативный подход: ученики должны построить свои собственные «практические задачи» с реальными компонентами и попытаться математически предсказать различные значения напряжения и тока. Таким образом, математическая теория «оживает», и учащиеся получают практические навыки, которых они не приобрели бы, просто решая уравнения.

Другая причина для использования этого метода практики — научить студентов научному методу : процессу проверки гипотезы (в данном случае математических предсказаний) путем проведения реального эксперимента. Студенты также разовьют реальные навыки поиска и устранения неисправностей, поскольку они время от времени допускают ошибки при построении схем.

Выделите несколько минут времени со своим классом, чтобы ознакомиться с некоторыми «правилами» построения схем, прежде чем они начнутся.Обсудите эти проблемы со своими учениками в той же сократической манере, в которой вы обычно обсуждаете вопросы рабочего листа, а не просто говорите им, что они должны и не должны делать. Я не перестаю удивляться тому, насколько плохо студенты понимают инструкции, представленные в типичном формате лекции (монолог инструктора)!

Примечание для тех инструкторов, которые могут жаловаться на «потраченное впустую» время, необходимое студентам для построения реальных схем вместо простого математического анализа теоретических схем:

Какова цель студентов, посещающих ваш курс?

Если ваши ученики будут работать с реальными схемами, им следует по возможности учиться на реальных схемах. Если ваша цель — обучить физиков-теоретиков, обязательно придерживайтесь абстрактного анализа! Но большинство из нас планирует, чтобы наши ученики что-то делали в реальном мире с образованием, которое мы им даем. «Потраченное впустую» время, потраченное на создание реальных схем, принесет огромные дивиденды, когда им придет время применить свои знания для решения практических задач.

Кроме того, когда студенты создают свои собственные практические задачи, они учатся выполнять первичные исследования , тем самым давая им возможность продолжить свое образование в области электрики / электроники в автономном режиме.

В большинстве наук реалистичные эксперименты намного сложнее и дороже, чем электрические схемы. Профессора ядерной физики, биологии, геологии и химии просто хотели бы, чтобы их студенты применяли передовую математику в реальных экспериментах, не представляющих угрозы безопасности и стоящих меньше, чем учебник. Они не могут, но вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставит ваших учеников практиковать математику на множестве реальных схем!

100+ Принципиальная схема блока питания с печатной платой

Вы ищете много схем блока питания, верно?

Потому что различные электронные проекты должны использовать их в качестве источника энергии.

Но иногда может понадобиться сэкономить время и почерпнуть идеи.

Кроме того, они просты в сборке и дешевы.

Сначала взгляните на:

3 источник питания для электронных устройств

Давайте познакомимся с тремя наиболее типичными типами источников питания.
Типы 1 # Аккумулятор
Многие схемы потребляют мало энергии. Так что он может питаться от батареек.

Это маленький и простой в использовании в любом месте. Но обычно они низкого напряжения.

Таким образом…

Они лучше всего подходят для слаботочных устройств.

Но для большой нагрузки. Что нам использовать?

Лучше подойдут аккумуляторные батареи. Для многократного использования много раз, чтобы сэкономить деньги.

Мне нравится, когда мои дети ими пользуются. Потому что для него это безопасно.

Тип 2 # Solar

Мы можем использовать его как солнечную энергию напрямую в нашей цепи.

Но…

Нам нравится использовать солнечное зарядное устройство для аккумуляторной батареи.

Например…

Мой сын любит делать солнечный свет.

Тип 3 # Линия переменного тока

Мы используем линию переменного тока, в основном это адаптер переменного тока, как блок питания. Они компактнее и проще в использовании, чем аккумулятор.

Мы можем применять их для различных выходных напряжений и токов.

Когда мы в доме. мы должны использовать их вместо батарей и солнечных батарей, это сэкономит нам деньги.

Внимание:

Мы должны использовать его осторожно. Безопасность прежде всего! Это много полезно, но может и убить!

Зачем нужен линейный блок питания?

Есть много видов цепей питания.Но все их можно разделить на две группы.

  • Линейный источник питания
  • Импульсный источник питания

Как работает линейный?

Во-первых, напряжение переменного тока подается на силовой трансформатор для повышения или понижения напряжения.

Затем преобразовано в постоянное напряжение.

И далее, применительно к цепи регулятора системы.

Поддерживает напряжение и ток нагрузки.

Но…

Как работает импульсный источник питания

Без трансформатора — он преобразует мощность переменного тока напрямую в постоянное напряжение без трансформатора.

И…

Высокая частота — это постоянное напряжение преобразуется в высокочастотный сигнал переменного тока.

Затем схема регулятора внутри производит желаемое напряжение и ток.

Линейные импульсные блоки питания постоянного тока VS

В таблице ниже сравниваются различные параметры линейной и импульсной формы.

Благодарности: CR Источник питания Tekpower 30V 5A на Amazon

Мне нравится линейный источник питания.

Почему?

Это…

  • простая принципиальная схема
  • тихий
  • высокостабильный, прочный и тяжелый
  • низкий уровень шума, пульсации, задержки и электромагнитных помех

Какой тип переключения прямо противоположный.
ОБНОВЛЕНИЕ: Теперь я также люблю импульсные источники питания постоянного тока
Читайте также: Как это работает
Вы можете полюбить это со мной.

Изучение источников питания

Я знаю, что вы не хотите терять время, хотите быстро создать схему питания. Но ждать. Если вы новичок.

Следует хотя бы раз изучить его принципы работы. Чтобы уменьшить количество ошибок и правильно выбрать схему Я хочу легко увидеть вашу жизнь.

8 Верхние схемы питания

На нашем сайте есть очень много схем питания.Мы не можем показать вам все. Таким образом, для экономии вашего времени смотрите списки ниже.

1 # Первый источник переменного тока постоянного тока, LM317

Вы можете настроить выходное напряжение от 1,25 В до 30 В при 1,5 А. Мне это нравится. Потому что… Это просто и дешево.

Подробнее: LM317 Блок питания

Например, вы можете использовать его вместо батареи 1,5 В.

Читайте также: См. Распиновку LM317 и способы использования

2 # Простой фиксированный стабилизатор постоянного тока


Вы часто смотрите на эту схему во многих устройствах.Это довольно старая схема, но очень полезная.

Потому что… Это очень просто: всего , один транзистор , стабилитрон , и резистор. Выходное напряжение зависит от стабилитрона.

Например…

Вам нужно питание 12 В, вы используете стабилитрон 12 В. Ты это можешь. Я верю тебе!

Продолжить чтение »

3 # 78xx регулятор напряжения — круто! Фиксированный стабилизатор

5V, 6V, 9V, 10V, 12V 1A от IC 7805,7806,7809,7812


Это популярный фиксированный стабилизатор постоянного тока на 1A, простой и дешевый.

Например…

Если вам необходимо питание 5V 1A для цифровой схемы. Обычно здесь используется LM7805. Продолжить чтение »

Также: Изучите распиновку цепи 7805 и многое другое

4 # Простой регулируемый регулятор на 3А, LM350

Регулируемый регулятор напряжения LM350

Иногда мне нужно использовать источник переменного напряжения 3А.

Но…

LM317 не может мне легко помочь.

В скором времени мы используем LM350 Источник переменного тока .

Это лучшая линейная [электронная почта] Выходное напряжение от 1,25 В до 25 В.

5 # 0–30 В, регулируемый источник постоянного тока 3 А

Мы редко используем ток 3 А, который позволяет регулировать выходное напряжение от 0 до 30 В.

Это лучший выбор.

Он использует LM723 в качестве известной ИС регулятора.

А вот схема современного дизайна, полная защита, чем у LM350T.
Продолжить чтение »

6 # Переменный источник питания, 0-50 В при 3 А

Если вам нужно использовать выходное напряжение более 30 В или отрегулируйте 0 В до 50 В.

Можно использовать. У них есть ключевые компоненты, LM723, и транзистор 2SC5200 более высокого напряжения.

Также полная защита от перегрузки.

Читать дальше »

7 # Собрать блок питания 12В 2А с помощью молотка

Если торопитесь, а печатной платы нет. Эта идея может быть хорошей. Вы можете легко и недорого построить адаптер 12В 2А.

С помощью молотка и улитки по деревянной доске. Кроме того, чтобы узнать больше.

8 # 15V Двойное питание для предусилителя

Если вам нужно использовать много цепей с OP-AMP.

Например, предусилитель с регулятором тембра и др. Им необходимо использовать источник питания +/- 15 В.

У нас есть для вас 3 схемы схем. Читать дальше >>

Цепей много в категориях: Блоки питания.

Прочие цепи линейного питания

Регулятор постоянного напряжения: 1,5 В, 3 В, 6 В, 9 В, 12 В

Низкое напряжение

Источники питания 5 В Цифровые источники питания

9 В

Низкое падение напряжения

Просто и идеи

Схема регулируемого источника питания

Что такое регулируемый источник питания? Проще говоря, это блок питания, который может регулировать выходное напряжение или ток. Но он по-прежнему имеет те же характеристики, что и фиксированный регулируемый источник питания. Он будет поддерживать стабильное напряжение при любой нагрузке.

Менее 1 А
2 А Выходной ток
3 А Выходной ток
Высокий ток (5 А вверх)
Высокое напряжение (100 В вверх)

Двухканальный регулятор и несколько напряжений

Бестрансформаторный

Источник постоянного тока

Режим переключения Цепи питания

Это импульсные блоки питания постоянного тока.Быть идеями по созданию проектов или инструментов. Потому что они имеют небольшие размеры и дешевле линейных блоков питания.

На моем сайте появляется много схем. Пока друзья не сказали, что сложно увидеть схемы или проекты так, как он хочет.

Особый импульсный источник питания постоянного тока очень полезен. В приведенном ниже списке представлены идеи по созданию отличного источника питания, небольшого размера и позволяющего сэкономить деньги. Для применения или обучения.

Итак, я собираю эти схемы для удобства доступа к интересующим меня проектам.Кроме того, они могут быть полезны и для вас.

Примеры схем

Регулятор режима переключения
Преобразователь постоянного тока в постоянный

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Источники питания | Скамья, программируемая, 12 В

Блоки питания

Что такое блоки питания?

Источники питания — это в основном компоненты, которые обеспечивают питание по крайней мере одной электрической нагрузки, и они обычно интегрированы в устройство, которое они питают.Они также обычно преобразуют один тип электроэнергии в другой — в большинстве случаев из переменного (переменного тока) в постоянный (постоянный). Однако некоторые модели действительно преобразуют различные формы энергии, такие как солнечная или химическая энергия, в электрическую энергию.

Источники питания также называются блоками питания, блоками питания и адаптерами питания.

Почему следует осторожно выбирать источник питания?

Если вы хотите, чтобы ваша система работала оптимально, вам нужно позаботиться о фундаменте.Основа, так сказать, всей операции.

Электроэнергия является основой буквально любой электронной системы, будь то небольшое домашнее хобби или большое промышленное использование. Электроника не может работать без какой-либо формы питания, и источники питания являются самим источником этой энергии.

Поэтому очень важно, чтобы вы понимали характеристики хорошего блока питания и элементы, которые следует искать, чтобы найти лучший для вашей ситуации. Посмотрите на их тип, марку и модель.Знайте разницу между блоком питания переменного тока и блоком питания постоянного тока и выясните, с каким из них ваша система будет работать лучше всего.

Чтобы быть более конкретным, изучите различные варианты преобразования источника питания. Ознакомьтесь с различными типами источников питания; скамейки, программируемые, регулируемые, нерегулируемые, линейные, переключатели и тд.

Нужно распаковать много информации, это правда, но поверьте нам, когда мы говорим, что это того стоит.

Сравнение источников питания

Для начала давайте рассмотрим несколько способов сравнения различных источников питания.Опять же, нужно учесть несколько элементов. Сейчас мы рассмотрим три:

  • Регулируемый и нерегулируемый

  • Линейные и коммутационные

  • переменного и постоянного тока

Регулируемые и нерегулируемые Источники питания переменного и постоянного тока

могут быть либо регулируемыми, либо нерегулируемыми источниками питания. Самая большая разница между ними — их способность подавать постоянное напряжение на нагрузку.Регулируемые блоки питания вполне на это способны. Нерегулируемые источники питания не могут.

Если вы выберете неправильный тип источника питания, вы потенциально можете нанести непоправимый ущерб системе или устройству, которое питаете. Вы также можете потратить впустую энергию и заплатить слишком много, если будете использовать более мощный юнит, чем это строго необходимо.

Мы утверждаем, что выбор между регулируемым и нерегулируемым источником питания так же важен, как и выбор возможностей напряжения.

Нерегулируемые блоки питания

Нерегулируемые источники питания способны обеспечивать ожидаемую мощность при заданном токе. Однако полученный выходной сигнал не всегда отражает фактическое выходное напряжение. Более того, напряжение в нерегулируемом источнике питания выходит, когда на выходе мощности присутствует пульсация напряжения.

Нерегулируемые источники питания — это простые и недорогие варианты, которые подходят для небольших жилых помещений. Однако имейте в виду, что они обеспечивают неравномерное напряжение.

Более того, нерегулируемые источники питания не способны к резкому увеличению или уменьшению потока без конденсатора, чтобы предотвратить резкие колебания напряжения. Это означает, что изменения в токовой нагрузке и входном напряжении приведут к несогласованному или нечистому выходу из источника питания.

Плюсы:

Минусы:

Регулируемые блоки питания С другой стороны, блоки питания

имеют дополнительный регулятор напряжения, способный уменьшить пульсации напряжения для обеспечения чистого, равномерного выхода.Помимо этого, у них есть все те же части, что и у нерегулируемого источника питания, что означает, что они также способны обеспечивать ожидаемый выход при заданном токе.

Самая большая разница между регулируемым источником питания и нерегулируемым источником питания заключается в том, что выходной сигнал регулируемого источника питания является стабильным и неизменным. В отличие от нерегулируемой модели, доставка отражает фактическое выходное напряжение независимо от входа или потребления.

По этой причине регулируемые источники питания идеально подходят для деликатной электроники, требующей единообразия.

Плюсы:

  • Бесперебойная и стабильная доставка

  • Выход отражает фактическое выходное напряжение, указанное в списке

  • Добавлен стабилизатор напряжения для устойчивого выхода

  • Согласованный

  • Эффективный

Минусы:

Линейное и переключение

Большинство регулируемых источников питания также способны преобразовывать мощность постоянного тока в мощность переменного тока. Такие модели преобразователей бывают линейными, переключаемыми или аккумуляторными. Но источники питания на батарейках — это в значительной степени переключаемые преобразователи, поэтому вам действительно нужно только сравнить линейные источники питания с переключаемыми (или переключаемыми) источниками питания.

Линейные блоки питания

Линейные источники питания намного проще и понятнее, чем импульсные или импульсные источники питания. Они также выделяют намного больше тепла.

В линейных источниках питания также используются трансформаторы для преобразования входного переменного тока в выходной постоянный ток.Они очень тихие и менее требовательны, чем импульсные блоки питания, что делает их отличным выбором для проектов, требующих минимальной или низкой мощности. Однако они довольно тяжелые и громоздкие. Они редко бывают портативными.

Общие области применения линейных источников питания включают лабораторные работы, связь и медицинские нужды.

Плюсы:

Минусы:

Импульсные источники питания

Импульсные блоки питания или импульсные блоки питания немного сложнее, чем их аналоги.К тому же они намного шумнее. Однако они намного холоднее линейных источников питания и намного более портативны.

Для эффективного регулирования выходного напряжения в импульсных источниках питания используется процесс, называемый изменением ширины импульса (PWM). Это позволяет им работать при более низкой температуре без ущерба для эффективности или гибкости. Фактически, импульсные источники питания известны своим универсальным применением, способным адаптироваться к широкому спектру функций.

Однако из-за высокочастотного шума импульсные источники питания не рекомендуются для лабораторий или медицинских работ.Импульсные источники питания в основном используются в авиации, кораблях, производстве и мобильных станциях.

Плюсы:

  • Эффективный

  • Легкий и компактный

  • Охладитель, работает при низкой температуре

  • Гибкость, позволяет использовать несколько приложений

Минусы:

Переменный ток и постоянный ток

Наконец, вы должны подумать, требуется ли в вашей ситуации источник переменного тока (AC) или постоянного тока (DC).На всякий случай вы всегда можете спросить профессионала, но даже базовые знания обоих типов помогают.

Вот что вам следует знать:

Блоки питания переменного тока

Как следует из названия, источники питания переменного тока характеризуются волнами переменного тока, создаваемыми генераторами переменного тока, в частности, различными областями магнитной полярности внутри генераторов переменного тока. Также стоит отметить, что мощность переменного тока на самом деле является стандартным форматом электрического вывода для розеток, что делает его довольно распространенным.

Источники питания переменного тока

обеспечивают электрические токи, которые периодически меняются в зависимости от определенных параметров. Они могут двигаться как в положительном, так и в отрицательном направлении. Когда электрический ток положительный, он создает поток вверх. Когда он отрицательный, он падает.

Это создает очень отчетливое волнообразное движение, и именно это движение дает мощности переменного тока преимущество перед мощностью постоянного тока.

Мощность переменного тока может распространяться дальше, чем мощность постоянного тока. Его также очень легко создать.Вы часто встретите этот формат в торговых точках в коммерческих зданиях, небольших устройствах, таких как настольные лампы, и бытовой технике, например холодильниках и посудомоечных машинах.

Преимущества переменного тока:

Источники питания постоянного тока

В то время как мощность переменного тока определяется его волнообразным движением, источники питания постоянного тока генерируют токи, которые движутся по прямой, неизменной линии — отсюда и название.

Электроны в постоянном токе фиксированы и неизменны. Они поступают от генераторов переменного тока, оборудованных коммутаторами, которые специально создают прямую энергию.Электропитание постоянного тока также может генерироваться выпрямителями, которые способны преобразовывать переменные токи в постоянные.

Постоянство питания постоянного тока действительно делает его лучшим выбором для портативных устройств и чувствительной электроники. Большинство батарей являются источниками питания постоянного тока. Конвертеры созданы специально для преобразования мощности переменного тока из розеток в полезную мощность постоянного тока.

Подумайте о зарядных устройствах для портативных компьютеров. Они часто поставляются с преобразователями питания, преобразующими переменный волновой выходной ток вашей розетки в более линейный, постоянный ток, с которым действительно может справиться ваш ноутбук.Высокие и низкие значения переменного тока могут повредить хрупкие компоненты внутри портативных устройств, поэтому более стабильный ток предпочтительнее.

Другие приложения включают смартфоны, фонарики и некоторые электромобили нового поколения.

Преимущества постоянного тока:

  • Последовательный и стабильный

  • Легко преобразовать из AC

Но что касается преобразования, как преобразователи — и некоторые блоки питания — преобразуют мощность переменного тока в мощность постоянного тока?

Вот краткий обзор:

Преобразование переменного тока в постоянный

Рассмотрим выход переменного тока из розетки.

Как мы упоминали ранее, постоянно меняющийся характер тока может быть вредным для большинства портативных электронных устройств. Допустим, вы хотите зарядить свой смартфон. Вашему смартфону требуется стабильный постоянный ток для безопасной зарядки аккумулятора.

Преобразователь или блок питания забирает переменный ток из стенной розетки и преобразует его в нерегулируемый постоянный ток, одновременно снижая напряжение через входной силовой трансформатор. Напряжение выпрямлено, но все еще немного колеблется. Он проходит через конденсатор (обычно в импульсных источниках питания) для «сглаживания».”

Внутри конденсатора создается резервуар энергии. Этот пул затем подается на нагрузку при дальнейшем падении напряжения. Когда это происходит, поступающая энергия расходуется, эффективно сглаживая напряжение еще больше и устраняя «пики» или скачки тока. Осталась гладкая линейная линия, которая движется только в одном направлении.

Теперь, когда у вас есть хорошее представление о том, как работают разные блоки питания и для чего лучше всего подходят разные типы, вы готовы углубиться в детали! После того как вы определили источник питания или источники питания, которые лучше всего подходят для вашего проекта, вы можете провести дальнейшее исследование, используя более конкретные и последовательные термины.

А если вы ищете источники питания самого высокого качества по выгодной цене, ознакомьтесь с полным списком источников питания для специалистов по схемам. От программируемых источников питания до линейных и импульсных источников питания — вы обязательно найдете здесь модель, которая точно соответствует вашим характеристикам.

Источники питания | Electronics Club

Блоки питания | Клуб электроники

Трансформатор | Выпрямитель | Сглаживание | Регулятор | Двойные расходные материалы

Следующая страница: Преобразователи

См. Также: AC / DC | Диоды | Конденсаторы

Типы источников питания

Есть много типов источников питания.Большинство из них предназначены для преобразования сети переменного тока высокого напряжения. к подходящему низковольтному источнику питания для электронных схем и других устройств. Источник питания можно разбить на серию блоков, каждый из которых выполняет определенную функцию.

Например, регулируемое питание 5 В:

  • Трансформатор — понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
  • Выпрямитель — преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
  • Smoothing (Сглаживание) — сглаживает постоянный ток от сильного колебания до небольшого.
  • Регулятор
  • — устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.

Источники питания, изготовленные из этих блоков, описаны ниже со схемой и графиком их выхода:

Только трансформатор

Низковольтный выход переменного тока подходит для ламп, нагревателей и специальных двигателей переменного тока. Это , а не , подходящий для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.

См .: Трансформатор


Трансформатор + выпрямитель

Регулируемый выход постоянного тока подходит для ламп, нагревателей и стандартных двигателей.Это , а не , подходящий для электронных схем, если они не содержат сглаживающий конденсатор.

См .: Трансформатор | Выпрямитель


Трансформатор + выпрямитель + сглаживание

На выходе smooth DC наблюдается небольшая пульсация. Он подходит для большинства электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание


Трансформатор + Выпрямитель + Сглаживающий + Регулятор

Регулируемый выход постоянного тока очень плавный, без пульсаций.Подходит для всех электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание | Регулятор



Трансформатор

Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшими потерями мощности. Трансформаторы работают только с переменным током, и это одна из причин, по которой в сети используется переменный ток.

Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасно высокого напряжения в сети. напряжение (230 В в Великобритании) на более безопасное низкое напряжение.

Трансформаторы расходуют очень мало энергии, поэтому выходная мощность (почти) равна мощности на входе. Обратите внимание, что при понижении напряжения ток увеличивается.

Входная катушка называется первичной , а выходная катушка — вторичной . Между двумя катушками нет электрического соединения, вместо этого они связаны переменное магнитное поле создается в сердечнике из мягкого железа трансформатора. Две линии в середине символа схемы представляют сердечник.

Rapid Electronics: трансформаторы

Обозначение схемы трансформатора

Передаточное число

Отношение числа витков на каждой катушке, называемое соотношением витков , определяет соотношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) катушке, которая подключена к питающей сети высокого напряжения. и небольшое количество витков на вторичной (выходной) катушке для обеспечения низкого выходного напряжения.

Передаточное число = Вп = Np
VS Ns
Выходная мощность = мощность в
Vs
Vs

Vp = первичное (входное) напряжение
Np = количество витков первичной катушки
Ip = первичный (входной) ток

Vs = вторичное (выходное) напряжение
Ns = количество витков вторичной катушки
Is = вторичный (выходной) ток


Выпрямитель

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный. Мостовой выпрямитель является наиболее важным, и он производит двухполупериодный переменный DC. Двухполупериодный выпрямитель также можно сделать всего из двух диодов, если используется трансформатор с центральным отводом, но сейчас этот метод редко используется, поскольку диоды стали дешевле. Можно использовать одиночный диод в качестве выпрямителя, но он использует только положительные (+) части волны переменного тока для создания полуволны и переменного постоянного тока.

Мостовой выпрямитель

Мостовой выпрямитель может быть выполнен с использованием четырех отдельных диодов, но он также доступен в пакеты, содержащие четыре необходимых диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительную, так и отрицательную части). Чередующиеся пары диодов проводят, это переключает соединения, поэтому переменные направления переменного тока преобразуются в одно направление постоянного тока.

1,4 В используется в мостовом выпрямителе, потому что на каждом диоде 0,7 В при проводке, и всегда есть два диоды проводящие, как показано на схеме.

Мостовые выпрямители

рассчитаны на максимальный ток, который они могут пропускать, и максимальное обратное напряжение, которое они могут выдержать.Их номинальное напряжение должно быть не менее трех -кратного среднеквадратичного напряжения источника питания. поэтому выпрямитель может выдерживать пиковые напряжения. Пожалуйста, смотрите страницу Диоды для более подробной информации, включая изображения мостовых выпрямителей.

Rapid Electronics: мостовые выпрямители

Мостовой выпрямитель

Выход: двухполупериодный переменный постоянный ток
(с использованием всей волны переменного тока)

Выпрямитель одинарный диод

Один диод можно использовать в качестве выпрямителя, но он дает полуволны переменного постоянного тока, которые имеют промежутки когда переменный ток отрицательный. Трудно сгладить это достаточно хорошо, чтобы питать электронные схемы, если они не требуется очень небольшой ток, поэтому сглаживающий конденсатор существенно не разряжается во время промежутков. Пожалуйста, обратитесь к странице Диоды для некоторых примеров выпрямительных диодов.

Rapid Electronics: Выпрямительные диоды

Выпрямитель одинарный диод

Выход: полуволна переменного тока
(с использованием только половины переменного тока)


Сглаживание

Сглаживание выполняется электролитическим конденсатором большой емкости. подключен к источнику постоянного тока, чтобы действовать как резервуар, подающий ток на выход, когда изменяющееся напряжение постоянного тока от выпрямитель падает.На диаграмме показаны несглаженный изменяющийся постоянный ток (пунктирная линия) и сглаженный постоянный ток (сплошная линия). Конденсатор быстро заряжается около пика переменного постоянного тока, а затем разряжается по мере подачи тока на выход.

Обратите внимание, что сглаживание значительно увеличивает среднее напряжение постоянного тока почти до пикового значения. (1,4 × значение RMS). Например, выпрямляется переменный ток 6 В RMS. до полной волны постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до максимального значения, что дает 1.4 × 4,6 = 6,4 В постоянного тока.

Неидеальное сглаживание из-за небольшого падения напряжения конденсатора при его разряде, давая небольшую пульсацию напряжения . Во многих цепях пульсация составляет 10% от напряжения питания. напряжение является удовлетворительным, и приведенное ниже уравнение дает необходимое значение для сглаживающего конденсатора. Конденсатор большего размера даст меньше пульсаций. При сглаживании полуволны постоянного тока емкость конденсатора должна быть увеличена вдвое.

Rapid Electronics: электролитические конденсаторы

Сглаживающий конденсатор, C, для пульсации 10%:

С = 5 × Io
Vs × f

где:
C = сглаживающая емкость в фарадах (Ф)
Io = выходной ток в амперах (A)
Vs = напряжение питания в вольтах (V), это пиковое значение несглаженного постоянного тока.
f = частота сети переменного тока в герцах (Гц), в Великобритании это 50 Гц.



Регулятор

ИС регулятора напряжения доступны с фиксированными (обычно 5, 12 и 15 В) или переменное выходное напряжение.Они также рассчитаны на максимальный ток, который они могут пропускать. Доступны регуляторы отрицательного напряжения, в основном для использования с двумя источниками питания. Большинство регуляторов включают автоматическую защиту от чрезмерного тока («защита от перегрузки»). и перегрев («тепловая защита»).

Многие микросхемы стабилизаторов напряжения имеют 3 вывода и выглядят как силовые транзисторы, например, регулятор 7805 + 5V 1A, показанный справа. В них есть отверстие для крепления при необходимости радиатор.

Rapid Electronics: регулятор 7805

Фотография регулятора напряжения © Рапид Электроникс

Стабилитрон

Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон, подключенный в обратном направлении , как показано на схеме.Стабилитроны имеют номинальное напряжение пробоя Vz и Максимальная мощность Pz (обычно 400 мВт или 1,3 Вт).

Резистор ограничивает ток (как светодиодный резистор). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, и его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.

Дополнительную информацию о стабилитронах см. На странице «Диоды».

Rapid Electronics: стабилитроны

стабилитрон
a = анод, k = катод

Выбор стабилитрона и резистора

Это шаги для выбора стабилитрона и резистора:

  1. Напряжение стабилитрона Vz — необходимое выходное напряжение
  2. Входное напряжение Vs должно быть на несколько вольт больше Vz
    (это необходимо для небольших колебаний Vs из-за пульсации)
  3. Максимальный ток Imax — это требуемый выходной ток плюс 10%
  4. В стабилитроне Pz определяется максимальный ток: Pz> Vz × Imax
  5. Сопротивление резистора : R = (Vs — Vz) / Imax
  6. Номинальная мощность резистора : P> (Vs — Vz) × Imax

В примере показано, как использовать эти шаги для выбора стабилитрона и резистора с подходящими значениями и номинальной мощностью.

Например

Если требуемое выходное напряжение 5 В и выходной ток 60 мА:

  1. Vz = 4,7 В (ближайшее доступное значение)
  2. Vs = 8V (на несколько вольт больше, чем Vz)
  3. Imax = 66 мА (ток плюс 10%)
  4. Pz> 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
  5. R = (8 В — 4,7 В) / 66 мА = 0,05 кОм = 50,
    выберите R = 47
  6. Номинальная мощность резистора P> (8 В — 4.7 В) × 66 мА = 218 мВт, выберите P = 0,5 Вт

Двойные расходные материалы

Для некоторых электронных схем требуется источник питания с положительным и отрицательным выходами, а также нулевое напряжение (0 В). Это называется «двойным источником питания», потому что это похоже на два обычных источника питания, соединенных вместе, как показано на схеме.

Двойные источники питания имеют три выхода, например, источник питания ± 9 В имеет выходы + 9 В, 0 В и -9 В.

Rapid Electronics: блоки питания


Следующая страница: Преобразователи | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Веб-сайт размещен на Tsohost

Основы питания

Детали блока питания

В идеале, блок питания постоянного тока (обычно называемый блоком питания), получающий питание от сети переменного тока, выполняет ряд задач:

  • 1.Он изменяет (в большинстве случаев снижает) уровень подачи до значения, подходящего для управления цепью нагрузки.
  • 2. Он вырабатывает постоянный ток от сети (или линии) синусоидального переменного тока.
  • 3. Он предотвращает появление переменного тока на выходе источника питания.
  • 4. Это гарантирует, что выходное напряжение поддерживается на постоянном уровне, независимо от изменений:
  • а. Напряжение питания переменного тока на входе питания.
  • г. Ток нагрузки, поступающий с выхода источника питания.
  • г. Температура.

Для этого базовый блок питания имеет четыре основных этапа, показанных на рис. 1.0.1

Рис. 1.0.1 Блок-схема источника питания

Источники питания

за последнее время значительно повысили надежность, но, поскольку они должны выдерживать значительно более высокие напряжения и токи, чем любая или большая часть цепей, которые они питают, они часто наиболее подвержены отказу любой части электронной системы.

Современные источники питания также значительно усложнились и могут обеспечивать очень стабильные выходные напряжения, контролируемые системами обратной связи.Многие цепи питания также содержат автоматические цепи безопасности для предотвращения опасного перенапряжения или перегрузки по току.

Силовые модули на Learnabout-electronics поэтому знакомят с многими методами, используемыми в современных источниках питания, изучение которых важно для понимания электронных систем.

Предупреждение

Если вы планируете построить или отремонтировать источник питания, особенно тот, который питается от сети (линейного) напряжения, модули источника питания на этом сайте помогут вам понять, сколько часто встречающихся схем работает.Однако вы должны понимать, что напряжения и токи, присутствующие во многих источниках питания, в лучшем случае опасны и могут присутствовать даже при отключении источника питания! В худшем случае высокое напряжение, присутствующее в источниках питания, может, а время от времени, УБИТЬ.

Информация, представленная на этом сайте, не только даст вам квалификацию для безопасной работы с источниками питания. Вы также должны обладать навыками и оборудованием для безопасной работы и полностью осознавать местные проблемы здоровья и безопасности.

Пожалуйста, действуйте ответственно, автор этой информации и владельцы этого сайта не несут никакой ответственности или обязательств за любой ущерб или травмы, причиненные людям или любым третьим лицам, имуществу или оборудованию в результате использования или неправильного использования информации, представленной на веб-сайты learnabout-electronics.

Основные принципы проектирования источников питания для печатных плат

Одним из самых фундаментальных законов физики является Закон сохранения энергии, который можно резюмировать следующим образом:

«В замкнутой системе энергия не может быть создана или уничтожена, а только изменить форму.”

В принципе, это можно интерпретировать как изолированную систему, которая не взаимодействует с какой-либо внешней силой, сохраняет постоянный уровень внутренней энергии. Эта предпосылка послужила катализатором для многих схем построения самоподдерживающихся энергетических систем, которые могли бы работать вечно. Пока что полностью изолировать систему так, чтобы не было накопления или потери энергии, оказалось трудным. Это означает, что системы, требующие энергии, необходимо периодически подзаряжать, как и мы.

Требуется подзарядка

Цепи питания являются источником подзарядки электронных систем и печатных плат.Некоторые платы содержат подсхемы питания; однако обычно печатные платы также служат в качестве источников питания. Эти платы на самом деле являются преобразователями, поскольку они преобразуют входной источник энергии в выход, который соответствует требованиям нагрузки, системы или схемы. Независимо от требований к источнику и нагрузке, всегда важно сделать сборку вашей платы неотъемлемой частью макета печатной платы для вашего дизайна. Во-первых, давайте обсудим различные типы цепей питания, а затем определим основы проектирования источников питания, которые следует применять при их разработке.

Типы плат электропитания

Являясь преобразователями или мостами между входным электрическим источником и электронной нагрузкой, цепи питания можно классифицировать в одну из групп в таблице ниже.

Типы цепей питания

Выходы

Выход переменного тока Выход постоянного тока
Вход переменного тока Изоляция, преобразователь частоты Выпрямитель
Вход постоянного тока Инвертор Преобразователь постоянного тока в постоянный

Как показано выше, схемы источника питания в основном используются для изменения энергии из одного состояния в другое, переменного в постоянный или наоборот, для изменения уровней, повышения или понижения напряжения или частоты.Источники питания AC-AC также могут использоваться для изоляции входных цепей от выходов. В дополнение к перечисленным выше типам цепи питания можно разделить на регулируемые и нерегулируемые. К регулируемым источникам питания относятся устройства для поддержания уровня выходного напряжения. Эти регуляторы напряжения отсутствуют в нерегулируемых источниках питания, а выходная мощность зависит от входа и изменения тока нагрузки.

Цепи питания также классифицируются по принципу действия. Двумя основными рабочими типами являются линейный и переключаемый или переключаемый.

Линейный источник питания

Пример схемы линейного источника питания

Линейный источник питания, указанный выше, используется для преобразования сетевого входа переменного тока, первичной стороны трансформатора TR1, в постоянный ток для распределения. Эта схема включает стабилизатор напряжения IC1, который будет обеспечивать постоянное напряжение независимо от нагрузки R1. Этот линейный источник питания демонстрирует базовую работу этих схем, которые могут иметь множество различных конфигураций. Линейные источники питания обычно используются в системах с низким энергопотреблением.Преимуществами являются простота, невысокая стоимость, надежность и низкий уровень шума; однако они неэффективны, что вызывает большую озабоченность в приложениях с более высокой мощностью.

Импульсный источник питания

Альтернативой использованию линейного источника питания является импульсный источник питания или SMPS, показанный на рисунке ниже.

Пример схемы блока питания SMPS

Блок питания SMPS содержит схему переключения; например, транзистор T1 выше, который преобразует выпрямленный постоянный ток из мостовой схемы B1 в высокочастотный переменный ток.Уровень частоты определяется или устанавливается управляющим сигналом, который включает и выключает транзистор. В приведенной выше схеме выходной сигнал сглаживается или регулируется LC-фильтром перед подачей на нагрузку R1. Как правило, схемы SMPS более сложны, чем линейные источники питания, и переключение вызывает шум, который может создавать электромагнитные помехи, которые могут повлиять на маршрутизацию трассировки во время разводки печатной платы. Однако эти источники питания более эффективны и могут использовать меньшие компоненты, чем линейные источники питания.SMPS чаще всего используются в цифровых системах.

Основы проектирования источников питания

При проектировании SMPS или платы линейного источника питания есть общие проблемы. К ним относятся тепловые характеристики, электромагнитные помехи или шум, а также в зависимости от веса меди уровня мощности. Еще одно важное соображение — это конструкция фильтра блока питания. Хотя ваши конкретные требования к конструкции будут диктовать конкретный выбор конструкции, существуют общие основы проектирования источников питания для печатных плат, которым следует всегда следовать, как указано ниже.

  • Оптимизируйте свой дизайн фильтрации

Производительность вашей схемы фильтрации зависит от выбора соответствующих значений компонентов фильтра, индуктивности, емкости и сопротивления. Поскольку фактические доступные значения компонентов могут не совпадать с расчетными значениями, вам следует использовать комбинацию значений компонентов, которая обеспечивает наилучший отклик, определенный посредством моделирования.

  • Выберите соответствующую массу меди

Токи блока питания могут быть довольно высокими; Следовательно, необходимо убедиться, что ширина дорожек, толщина или вес меди могут выдерживать необходимые токи.Также важно убедиться, что ваша компоновка соответствует допускам зазоров, установленным правилами DFM вашего контрактного производителя (CM).

  • Подберите выбранный материал к типу плиты

Для цепей большой мощности убедитесь, что ваша плата может выдерживать уровни температуры, которые будут генерироваться путем выбора материалов с подходящим коэффициентом теплового расширения (CTE). Для ИИП, если это высокоскоростная конструкция, такие свойства, как диэлектрическая постоянная, dk, коэффициент рассеяния, df, диэлектрические потери, потери в проводнике, Ploss, становятся важными и должны определять ваш выбор материала.

  • Убедитесь, что ваша плата имеет достаточное рассеивание тепла

Одна, если не самая большая проблема для плат блока питания — это отвод избыточного тепла. Очень важно, чтобы ваша конструкция включала адекватные методы рассеивания тепла. Например, использование термопрокладок и радиаторов. Напротив, для сборки печатной платы также важно, чтобы ваша плата имела соответствующее тепловое сопротивление, чтобы можно было достичь хорошего качества паяных соединений.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *