Эл схема зарядного устройства: схемы на самодельное зарядное устройство для АКБ

Содержание

схемы на самодельное зарядное устройство для АКБ

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:
  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки

АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в

АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей
    кислоты.
    Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при

эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом
    зарядки,
    чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий.

На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор,

а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ


Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ


Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А. , а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Самодельное зарядное устройство для аккумулятора автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.

Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.

Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов, идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм2.

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.

На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.

На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.

Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.

А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала вольтметра и амперметра зарядного устройства

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм2.

К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора.

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Делитель для опорного напряжения собран на резисторах R7, R8 и напряжение на выводе 4 ОУ должно быть 4,5 В. Напряжение на выводе 3 А1.1, как Вы уже поняли, должно быть равно напряжению 4,5 в случае, когда напряжение на аккумуляторе достигнет величины 15,6 В для случая тока зарядки 0,3 А. Для больших токов, напряжение будет большим и его нужно подбирать экспериментально. Более подробно этот вопрос рассмотрен в статье сайта «Как заряжать аккумулятор».

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.

Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Рассчитать время заряда аккумулятора с помощью онлайн калькулятора, выбрать оптимальный режим зарядки автомобильного аккумулятора и ознакомиться с правилами его эксплуатации Вы можете посетив статью сайта «Как заряжать аккумулятор».


Евгений 17.03.2016

Здравствуйте!
Хотелось бы узнать, работоспособны ли варианты схем на базе Вашей упрощенной схемы, представленные на рисунке. Хотелось бы обойтись тем, что имеется под рукой, минимумом деталей, ввиду срочности сборки. И какое реле можно применить?
Резистор параллельно конденсаторам приткнул — боюсь что при отключении они могут сохранять заряд и «кусаться» от вилки?
Заранее благодарен за ответ.

Александр

Здравствуйте, Евгений!
Верхняя схема на рисунке будет работать нормально. Реле можно брать любое на 12 В, и током нагрузки на контакты 10 А, хорошо подойдет реле, применяемые в автомобилях.
Резистор можно поставить, чтоб вилка не «кусалась».
Нижняя схема тоже будет работать, но ток зарядки будет гулять в больших пределах, и уменьшаться по мере зарядки аккумулятора. В этой схеме контакты К1.1 лишние. Провод от предохранителя проходит напрямую к латру.

Алекс 09.01.2017

Доброго времени суток Александр Николаевич.
От всей души поздравляю вас и вашу семью с наступившим Новым годом и Рождеством!
Случайно наткнулся на ваш сайт, когда искал схему зарядного устройства. Схема порадовала отсутствием электролитов (только в фильтре питания). Но у меня возникли вопросы …
Пока задам один, по регулятору тока в первичной обмотке. Вы применили МБГЧ и написали, что можно применять любые.

Можно ли использовать К73-15 или К73-17? Не взорвутся ли? ))) Либо их китайские аналоги CBB Металлизировало пленочные конденсаторы 4,7 µF 475j 630 V показанные на снимке?
Спасибо за ответ.

Александр

Здравствуйте, Алекс!
Вас тоже поздравляю с наступившим Новым годом и Рождеством!
Конденсатор С1 в фильтре можно и не ставить, он просто способствует более быстрому заряду аккумулятора при том же токе заряда, так как сглаживает пульсации.
Использовать К73-15 или К73-17 и любые другие можно, главное, чтобы они были рассчитаны на напряжение не менее 400 В. Китайские конденсаторы тоже подойдут.

Алексей 24.01.2018

Здравствуйте, Александр.
На фотографии ЗУ помещено в корпус блока питания, однако все надписи на лицевой панели соответствуют именно ЗУ. Значит Вы их делали сами. А каким образом это получилось?
Известный лазерно-утюжный способ что-то не очень эффективен…

Александр

Здравствуйте, Алексей!
Нарисовал в программе Визио картинку, напечатал на лазерном принтере на цветной плотной бумаге и поместил под оргстекло толщиной 1 мм и закрепил по углам четырьмя винтами.

Алексей 08.01.2021

Добрый день, подскажите, почему отключение настроено на 15,6 вольта, т.е 2,6 вольта на каждую банку. Это не многовато?

Александр

Здравствуйте, Алексей!
Напряжение на клеммах полностью заряженного аккумулятора через нескольких часов после окончания зарядки должно составлять 12,65 В. Но для того, чтобы при зарядке через аккумулятор пошел ток зарядки напряжение должно быть выше указанного, и чем больше нужен ток, тем больше должно быть напряжение зарядки. Это вытекает из Закона Ома: U=I×R.
Но внутреннее сопротивление аккумулятора зависит от его технического состояния, типа, температуры. Поэтому, если нужна высокая точность, напряжение отключения нужно подбирать под конкретный аккумулятор. Указанное напряжение 15,6 В подобрано экспериментально при зарядке нескольких аккумуляторов током 8 А. Многократная зарядка автомобильных аккумуляторов в течение более десяти лет, находившихся в разном техническом состоянии и степени заряда, подтвердила правильность выбора.
В случае величины тока зарядки меньше, напряжение отключения тоже должно быть меньше.

Сергей 31.03.2021

День добрый!
Имеется два трансформатора от одинаковых ИБП PCM SMK-600A (по 360 Вт) с напряжениями на вторичной обмотке по 12,6 В. Имеет право на жизнь ЗУ по такой схеме?

Александр

Здравствуйте, Сергей!
Да, схема будет нормально работать, но заряжать током до 2 А. Указанная в маркировке мощность ИБП относится к отдаваемой мощности в режиме источника бесперебойного питания. Расчеты показали, для зарядки штатного аккумулятора ИБП емкостью 14,2 А·Ч нужен ток около 2 А.

Электрическая схема зарядного устройства

Неуклонная тенденция развития портативной электроники практически ежедневно заставляет рядового пользователя сталкиваться с зарядкой аккумуляторов своих мобильных устройств. Будь вы владельцем мобильного телефона, планшета, ноутбука или даже автомобиля, так или иначе вам неоднократно придётся столкнуться с зарядкой аккумуляторов этих устройств. На сегодняшний день рынок выбора зарядных устройств настолько обширен и велик, что в этом многообразии довольно тяжело сделать грамотный и правильный выбор зарядного устройства, подходящего к типу используемого аккумулятора. К тому же, сегодня существуют более 20-и типов аккумуляторов с различным химическим составом и основой. Каждый из них имеет свою специфику работы заряда и разряда. В силу экономической выгоды современное производство в этой сфере сейчас сконцентрировано преимущественно на выпуске свинцово-кислотных (гелевых) (Pb), никель – металл — гидридных (NiMH), никель – кадмиевых (NiCd) аккумуляторов и аккумуляторов на основе лития – литий-ионных (Li-ion) и литий-полимерных (Li-polymer). Последние из указанных, кстати, активно используются в питании портативных мобильных устройств. Главным образом литиевые аккумуляторы заслужили популярность за счёт применения относительно недорогих химических компонентов, большого количества циклов перезаряда (до 1000), высокой удельной энергии, низкой степени саморазряда, а так же способности удерживать ёмкость при отрицательных значениях температуры.

Электрическая схема зарядного устройства литиевых аккумуляторов, применяемых в мобильных гаджетах сводится к обеспечению их в процессе заряда постоянным напряжением, превышающим на 10 – 15 % номинальное. К примеру, если для питания мобильного телефона используется литий-ионная батарея на 3,7 В., то для её заряда необходим стабилизированный источник питания достаточной мощности для поддержания напряжения заряда не выше 4,2В – 5В. Именно поэтому большинство портативных зарядных устройств, идущих в комплекте с устройством, выпускают на номинальное напряжение 5В, обусловленное максимальным напряжением питания процессора и заряда батареи с учётом встроенного стабилизатора.

Конечно, не стоит забывать и о контроллере заряда, который берёт на себя основной алгоритм заряда батареи, а так же опрос её состояния. Современные литиевые аккумуляторы, выпускаемые для мобильных устройств с малыми токами потребления, уже идут со встроенным контроллером. Контроллер выполняет функцию ограничения тока заряда в зависимости от текущей ёмкости аккумулятора, отключает подачу напряжения устройству в случае критического разряда батареи, защищает батарею в случае короткого замыкания нагрузки (литиевые батареи очень чувствительны к большому току нагрузки и имеют свойство сильно нагреваться и даже взрываться). С целью унификации и взаимозаменяемости литий-ионных аккумуляторов ещё в 1997 году компании Duracell и Intel разработали управляющую шину опроса состояния контроллера, его работы и заряда с названием SMBus. Под эту шину были написаны драйвера и протоколы. Современные контроллеры и сейчас используют основы алгоритма заряда, прописанные этим протоколом. В плане технической реализации существует множество микросхем, способных реализовать контроль заряда литиевых аккумуляторов. Среди них выделяется серия MCP738xx, MAX1555 от MAXIM, STBC08 или STC4054 с уже встроенным защитным n-канальным MOSFET транзистором, резистором определения тока заряда и диапазоном напряжения питания контроллера от 4,25 до 6,5 Вольт. При этом у последних микросхем от STMicroelectronics значение напряжения заряда аккумулятора 4,2 В. имеет разброс всего +/- 1%, а зарядный ток может достигать 800 мА, что позволит реализовать зарядку аккумуляторов ёмкостью до 5000 мА/ч.

Рассматривая алгоритм заряда литий-ионных аккумуляторов стоит сказать, что это один из немногих типов, предусматривающих паспортную возможность зарядки током до 1С (100% ёмкости аккумулятора). Таким образом, аккумулятор ёмкостью в 3000 ма/ч может заряжаться током до 3А. Однако, частая зарядка большим «ударным» током хоть и существенно сократит её время, но в то же время довольно быстро снизит ёмкость аккумулятора и приведёт его в негодность. Из опыта проектирования электрических схем зарядных устройств скажем, что оптимальным значением зарядки литий-инного (полимерного) аккумулятора является значение 0,4С – 0,5С от его ёмкости.

Значение тока в 1С допускается лишь в момент начального заряда батареи, когда ёмкость аккумулятора достигает приблизительно 70% своей максимальной величины. Примером может стать работа зарядки смартфона или планшета, когда первоначальное восстановление ёмкости происходит за короткое время, а оставшиеся проценты набираются медленно.

На практике довольно часто случается эффект глубокого разряда литиевого аккумулятора, когда его напряжение опускается ниже 5% его ёмкости. В этом случае контроллер не в состоянии обеспечить достаточный пусковой ток для набора начальной ёмкости заряда. (Именно поэтому не рекомендуется разряжать такие аккумуляторы ниже 10%). Для решения таких ситуаций необходимо аккуратно разобрать аккумулятор и отключить встроенный контроллер заряда. Далее необходимо к выводам аккумулятора подсоединить внешний источник заряда, способный выдать ток не менее 0,4С ёмкости аккумулятора и напряжение не выше 4,3В (для аккумуляторов на 3,7В.). Электрическая схема зарядного устройства для начальной стадии зарядки таких аккумуляторов может примениться из примера ниже.

Данная схема состоит из стабилизатора тока в 1А. (задаётся резистором R5) на параметрическом стабилизаторе LM317D2T и импульсном регуляторе напряжения LM2576S-adj. Напряжение стабилизации, определяется обратной связью на 4-ю ногу стабилизатора напряжения, то есть соотношением сопротивлений R6 и R7, которыми на холостом ходу выставляется максимальное напряжение зарядки аккумулятора. Трансформатор должен на вторичной обмотке выдавать 4,2 – 5,2 В переменного напряжения. Тогда после стабилизации мы получим 4,2 – 5В постоянного напряжения, достаточного для заряда вышеупомянутого аккумулятора.

Никель – металл — гидридные аккумуляторы (NiMH) чаще всего можно встретить в исполнении корпусов стандартных батареек – это формфактор ААА (R03), АА (R6), D, С, 6F22 9В. Электрическая схема зарядного устройства для NiMH и NiCd аккумуляторов должна в себя включать нижеперечисленные функциональные возможности, связанные со спецификой алгоритма заряда этого типа аккумуляторов.

У различных аккумуляторов (даже с одинаковыми параметрами) со временем меняются химические и емкостные характеристики. В итоге возникает необходимость организовывать алгоритм заряда каждого экземпляра индивидуально, поскольку в процессе зарядки (особенно большими токами, что допускают никелевые аккумуляторы) избыточный перезаряд влияет на быстрый перегрев аккумулятора. Температура в процессе заряда выше 50 градусов из-за химически необратимых процессов распада никеля полностью погубит аккумулятор. Таким образом, электрическая схема зарядного устройства должна иметь функцию контроля температуры аккумулятора. Для увеличения срока службы и количества циклов перезаряда никелевого аккумулятора желательно каждую его банку разрядить до напряжения не ниже 0,9В. током порядка 0,3С от его ёмкости. К примеру, аккумулятор с 2500 – 2700 мА/ч. разрядить на активную нагрузку током в 1А. Так же зарядное устройство должно поддерживать зарядку с «тренировкой», когда в течении нескольких часов происходит циклический разряд до 0,9В с последующим зарядом током 0,3 – 0,4С. Исходя из практики таким образом можно оживить до 30% убитых никелевых аккумуляторов, причём никель-кадмиевые аккумуляторы «реанимации» поддаются гораздо охотнее. По времени заряда электрические схемы зарядных устройств могут делиться на «ускоренные» (ток заряда до 0,7С с временем полного заряда 2 – 2,5ч.), «средней длительности» (0,3 – 0,4С – заряд за 5 – 6ч.) и «классические» (ток 0,1С – время заряда 12 – 15ч.). Конструируя зарядное устройство для NiMH или NiCd аккумулятора, так же можно воспользоваться общепринятой формулой расчёта времени заряда в часах:

T = (E/I) ∙ 1.5

где Е – ёмкость аккумулятора, мА/ч.,
I – ток заряда, мА,
1,5 – коэффициент для компенсации КПД во момент зарядки.
К примеру, время заряда аккумулятора ёмкостью 1200 мА/ч. током 120 мА (0,1С) будет:
(1200/120)*1,5 = 15 часов.

Из опыта эксплуатации зарядных устройств для никелевых аккумуляторов стоит отметить, что чем ниже зарядный ток, тем больше циклов перезаряда перенесёт элемент. Паспортные циклы, как правило, производитель указывает при зарядке аккумулятора током 0,1С с наиболее длительным временем заряда. Степень заряженности банок зарядное устройство может определять через измерение внутреннего сопротивления за счёт разницы падения напряжения в момент заряда и разряда определённым током (метод ∆U).

Итак, учитывая всё вышеизложенное, одним из наиболее простых решений для самостоятельной сборки электрической схемы зарядного устройства и в то же время обладающей высокой эффективностью является схема Виталия Спорыша, описание которой без труда можно найти в сети.

Основными преимуществами данной схемы является возможность зарядки как одного, так и двух последовательно соединённых аккумуляторов, термоконтроль заряда цифровым термометром DS18B20, контроль и измерение тока в процессе заряда и разряда, автоотключение по завершению зарядки, возможность зарядки аккумулятора в «ускоренном» режиме. Кроме того, с помощью специально написанного программного обеспечения и дополнительной платы на микросхеме — преобразователе TTL уровней MAX232 возможен вариант контроля зарядки на ПК и дальнейшей её визуализации в виде графика. К недостаткам стоит отнести необходимость наличия независимого двухуровневого питания.

Аккумуляторы на основе свинца (Pb) довольно часто можно встретить в устройствах с большим потреблением тока: автомобилях, электромобилях, бесперебойниках, в качестве источников питания различного электроинструмента. Нет смысла перечислять их достоинства и недостатки, которые можно разыскать на многих сайтах на просторах сети. В процессе реализации электрической схемы зарядного устройства для таких аккумуляторов следует различать два режима зарядки: буферный и циклический.

Буферный режим зарядки предусматривает одновременное подключение к аккумулятору и зарядного устройства, и нагрузки. Такое подключение можно наблюдать в блоках бесперебойного питания, автомобилях, ветряных и солнечных энергосистемах. При этом, во время подзаряда устройство является ограничителем тока, а когда аккумулятор набирает свою ёмкость – переходит в режим ограничения напряжения для компенсации саморазряда. В этом режиме аккумулятор выступает в роли суперконденсатора. Циклический режим предусматривает отключение зарядного устройства по завершению зарядки и его повторное подключение в случае разряда батареи.

Схемных решений по зарядке данных аккумуляторов в Интернете достаточно много, поэтому рассмотрим некоторые из них. Для начинающего радиолюбителя для реализации простого зарядного устройства «на коленках» отлично подойдёт электрическая схема зарядного устройства на микросхеме L200C от STMicroelectronics. Микросхема представляет собой АНАЛОГОВЫЙ регулятор тока с возможностью стабилизации напряжения. Из всех преимуществ, которые имеет эта микросхема – это простота схемотехники. Пожалуй, на этом все плюсы и заканчиваются. Согласно даташиту на эту микросхему, максимальный ток заряда может достигать 2А, что теоретически позволит зарядить аккумулятор ёмкостью до 20 А/ч напряжением (регулируемым) от 8 до 18В. Однако, как оказалось на практике, минусов у этой микросхемы гораздо больше, чем плюсов. Уже при зарядке 12 амперного cвинцово-гелевого SLA аккумулятора током 1,2А микросхема требует радиатор площадью не менее 600 кв. мм. Хорошо подходит радиатор с вентилятором от старого процессора. Согласно документации к микросхеме, к ней можно прикладывать напряжение до 40В. На самом деле, если подать по входу напряжение более 33В. – микросхема сгорает. Данное зарядное требует довольно мощный источник питания, способный выдать ток не менее 2А. Согласно приведённой схеме вторичная обмотка трансформатора должна выдавать не более 15 – 17В. переменного напряжения. Значение выходного напряжения, при котором зарядное устройство определяет, что аккумулятор набрал свою ёмкость, определяется значением Uref на 4-й ножке микросхемы и задаётся резистивным делителем R7 и R1. Сопротивления R2 – R6 создают обратную связь, определяя граничное значение зарядного тока аккумулятора. Резистор R2 в то же время определяет его минимальное значение. При реализации устройства не стоит пренебрегать значением мощности сопротивлений обратной связи и лучше применять такие номиналы, какие указаны в схеме. Для реализации переключения зарядного тока лучшим вариантом станет применение релейного переключателя, к которому подключаются сопротивления R3 – R6. От использования низкоомного реостата лучше отказаться. Данное зарядное устройство способно заряжать аккумуляторы на свинцовой основе ёмкостью до 15 А/ч. при условии хорошего охлаждения микросхемы.

Существенно уменьшить габариты зарядки свинцовых аккумуляторов небольшой ёмкости (до 20 А/ч.) поможет электрическая схема зарядного устройства на импульсном 3А. стабилизаторе тока с регулировкой напряжения LM2576-ADJ.

Для зарядки свинцово-кислотных или гелевых аккумуляторных батарей ёмкостью до 80А/ч. (к примеру, автомобильных). Отлично подойдёт импульсная электрическая схема зарядного устройства универсального типа представленная ниже.

Схема была успешно реализована автором этой статьи в корпусе от компьютерного блока питания ATX. В основе её элементной базы лежат радиоэлементы, большей частью взятые из разобранного компьютерного блока питания. Зарядное устройство работает как стабилизатор тока до 8А. с регулируемым напряжением отсечки заряда. Переменное сопротивление R5 устанавливает значение максимального тока заряда, а резистор R31 устанавливает его граничное напряжение. В качестве датчика тока используется шунт на R33. Реле K1 необходимо для защиты устройства от изменения полярности подключения к клеммам аккумулятора. Импульсные трансформаторы T1 и Т21 в готовом виде были так же взяты из компьютерного блока питания. Работает электрическая схема зарядного устройства следующим образом:

1. включаем зарядное устройство с отключённой батареей (клеммы зарядки откинуты)

2. выставляем переменным сопротивлением R31(на фото верхнее) напряжение заряда. Для свинцового 12В. аккумулятора оно не должно превышать 13,8 – 14,0 В.

3. При правильном подключении зарядных клемм слышим, как щёлкает реле, и на нижнем индикаторе видим значение тока заряда, которое выставляем нижним переменным сопротивлением (R5 по схеме).

4. Алгоритм заряда спроектирован таким образом, что устройство заряжает аккумулятор постоянным заданным током. По мере накопления ёмкости значение зарядного тока стремится к минимальному значению, а «дозаряд» происходит за счёт выставленного ранее напряжения.

Полностью посаженый свинцовый аккумулятор не включит реле, как и собственно саму зарядку. Поэтому важно предусмотреть принудительную кнопку подачи мгновенного напряжения от внутреннего источника питания зарядного устройства на управляющую обмотку реле К1. При этом следует помнить, что в момент нажатой кнопки защита от переполюсовки будет отключена, поэтому нужно перед принудительным пуском обратить особое внимание на правильность подключения клемм зарядного устройства к аккумулятору. Как вариант, возможен запуск зарядки от заряженного аккумулятора, а уж потом перебрасываем клеммы зарядки на требуемый посаженный аккумулятор. Разработчика схемы можно найти под ником Falconist на различных радиоэлектронных форумах.

Для реализации индикатора напряжения и тока была применена схема на pic-контроллере PIC16F690 и «супердоступных деталях», прошивку и описание работы которой можно найти в сети.

Данная электрическая схема зарядного устройства, конечно же, не претендует на звание «эталонной», но она в полной мере способна заменить дорогостоящие зарядные устройства промышленного производства, а по функциональности может даже значительно превзойти многие из них. В окончании стоит сказать, что последняя схема универсального зарядного устройства рассчитана главным образом на человека, подготовленного в радиоконструировании. Если же вы только начинаете, то лучше в мощном зарядном устройстве применить гораздо более простые схемы на обычном мощном трансформаторе, тиристоре и системе его управления на нескольких транзисторах. Пример электрической схемы такого зарядного устройства приведён на фото ниже.

Смотрите также схемы:

Зарядные устройства — полный список схем и документации на QRZ.RU

1Alinco EDC-64 Ni-Cd battery charger1012421.03.2009
2Автоматическая подзарядка аккумуляторов.3109116.06.2003
3Автоматическая подзарядка аккумуляторов. 1785726.03.2006
4Автоматическая приставка к зарядному устройству для авто аккумулятора 180116.11.2016
5Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 204316.11.2016
6Автоматическое зарядное и восстанавливающее устройство (0-10А) 284716.11.2016
7Автоматическое зарядное устройство 138216.11.2016
8Автоматическое зарядное устройство + режим десульфатации для аккумулятора 218816.11.2016
9Автоматическое зарядное устройство для кислотных аккумуляторов 172916.11.2016
10Автоматическое зарядное устройство на микросхеме К561ЛЕ5 157016.11.2016
11Автоматическое зарядное устройство с бестрансформаторным питанием 147016.11.2016
12Автоматическое импульсное зарядное устройство для аккумуляторов 12В 182116.11.2016
13Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов5445817.09.2005
14Автоматическое устройство длязарядки аккумуляторов. 1836517.09.2002
15Бестрансформаторное зарядное устройство для аккумулятора 139116.11.2016
16Бестрансформаторный блок питания большой мощности для любительского передатчика 120416.11.2016
17Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 118516.11.2016
18Бестрансформаторный блок питания с регулируемым выходным напряжением 124116.11.2016
19Бестрансформаторный стабилизированный источник питания на КР142ЕН8 108316.11.2016
20Блок питания 0-12В/300мА 109216.11.2016
21Блок питания 1-29В/2А (КТ908) 129616.11.2016
22Блок питания 12В 6А (КТ827) 148916.11.2016
23Блок питания 60В 100мА 64316.11.2016
24Блок питания Senao-5681044152011.07.2016
25Блок питания Senao-8681116160111.07.2016
26Блок питания автомобильной радиостанции (13.8В, ЗА ) 38616.11.2016
27Блок питания для аналоговых и цифровых микросхем 28916.11.2016
28Блок питания для ионизатора (Люстра Чижевского) 40416.11.2016
29Блок питания для персонального компьютера «РАДИО 86 РК» 31816.11.2016
30Блок питания для телевизора 250В 54316.11.2016
31Блок питания на ТВК-110 ЛМ 5-25В/1А 37516.11.2016
32Блок питания с автоматическим зарядным устройством на компараторе 35616.11.2016
33Блок питания с гасящим конденсатором 38516.11.2016
34Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 40316.11.2016
35Блок питания Ступенька 5 — 9 — 12В на ток 1A 32616.11.2016
36Блок питания усилителя ЗЧ (18В, 12В) 26916.11.2016
37ВСА-5К, ВСА-111К2561948714.03.2010
38Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 45516.11.2016
39Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 27616.11.2016
40Выпрямитель с малым уровнем пульсаций 37016.11.2016
41Высококачественный блок питания на транзисторах (0-12В) 59016.11.2016
42Высокоэффективное зарядное устройство для аккумуляторов 53716.11.2016
43Высокоэффективное зарядное устройство для батарей2168822.11.2004
44Два бестрансформаторных блока питания 34016.11.2016
45Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 30416.11.2016
46Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 38316.11.2016
47Зарядка аккумуляторов с помощью солнечных батарей4716503.02.2003
48Зарядно-пусковое уст-во «Импульс ЗП-02»6741927614.08.2009
49Зарядно-пусковое устройство Старт УПЗУ-У3180154911.03.2017
50Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 89116.11.2016
51Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 64016.11.2016
52Зарядное устройство91887112.07.2007
53Зарядное устройство для Ni-Cd аккумуляторов 48016.11.2016
54Зарядное устройство «КЕДР-АВТО»72162205.10.2009
55Зарядное устройство HAMA TA03C397362507.10.2016
56Зарядное устройство \»Квант\»411337022.10.2008
57Зарядное устройство \»Рассвет-2\»11850123.12.2009
58Зарядное устройство для автомобильного аккумулятора3069721.04.2006
59Зарядное устройство для автомобильного аккумулятора 59616.11.2016
60Зарядное устройство для аккумулятором с током заряда 300 мА 33216.11.2016
61Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 36716.11.2016
62Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов3983204.05.2009
63Зарядное устройство для фонарей ФОС-1451032303.12.2006
64Зарядное устройство до 5 А.311391610.02.2009
65Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 38016.11.2016
66Зарядное устройство с таймером для Ni-Cd аккумуляторов 29016.11.2016
67Зарядное устройство с температурной компенсацией 35616.11.2016
68Зарядное устройство шуруповёрта P.I.T.466240514.07.2016
69Звуковой индикатор разряда 12V аккумулятора1415815.10.2002
70Измеритель заряда для автомобильного аккумулятора 42716.11.2016
71Импульсные источники питания на микросхемах и транзисторах 56916.11.2016
72Импульсные источники питания, теория и простые схемы 98716.11.2016
73Импульсный блок питания 5В 0,2А 44216.11.2016
74Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 25916.11.2016
75Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 41616.11.2016
76Импульсный блок питания УНЧ 4х30В 200Вт 45116.11.2016
77Импульсный источник питания (5В 6А) 26216.11.2016
78Импульсный источник питания на 40 Вт 32016.11.2016
79Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 20916.11.2016
80Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 33216.11.2016
81Импульсный источник питания УМЗЧ (60В) 28916.11.2016
82Импульсный сетевой блок питания 9В 3А (КТ839) 33016.11.2016
83Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 27416.11.2016
84Индикатор ёмкости батарей 37816.11.2016
85Интеллектуальное зарядное устройство1494963022.09.2008
86Источник питания 14В 12А (завод «Фотон», Ташкент)1321101511.07.2016
87Источник питания для автомобильного трансивера 13В 20А 43316.11.2016
88Источник питания для гибридного (лампы, транзисторы) трансивера 27216.11.2016
89Источник питания для детских электрофицированных игрушек 12В 27316.11.2016
90Источник питания для измерительного прибора на микросхемах 27916.11.2016
91Источник питания для измерительных приборов 29816.11.2016
92Источник питания для компьютера 32716.11.2016
93Источник питания для логических микросхем (5В) 27616.11.2016
94Источник питания для трехвольтовых аудиоплейеров 26916.11.2016
95Источник питания для часов на БИС 27516.11.2016
96Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 46016.11.2016
97Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 47116.11.2016
98Источник питания повышенной мощности 14 В, 100 Ватт 34916.11.2016
99Источник питания с плавным изменением полярности +/- 12В 31016.11.2016
100Источник питания со стабилизацией на UL7523 (3В) 27816.11.2016
101Источники питания для варикапа 28116.11.2016
102Квазирезонансные преобразователи с высоким КПД 36016.11.2016
103Кедр-М781526418.11.2007
104Комбинированный блок питания 0-215В/0-12В/0,5А 34816.11.2016
105Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 38316.11.2016
106Конденсаторно-стабилитронный выпрямитель 35316.11.2016
107Лабораторный блок питания для рабочего места (3-18В 4А) 40616.11.2016
108Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 41016.11.2016
109Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 34916.11.2016
110Малогабаритное универсальное зарядное устройство для аккумуляторов 37316.11.2016
111Маломощный источник питания (9В, 70мА) 26316.11.2016
112Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 33816.11.2016
113Маломощный регулируемый двуполярный источник питания (LM317, LM337) 22116.11.2016
114Маломощный сетевой блок питания (9В) 36616.11.2016
115Маломощный сетевой источник питания — выпрямитель на 9В 23616.11.2016
116Миниатюрный импульсный блок питания 5…12 В 38716.11.2016
117Миниатюрный импульсный сетевой блок питания 5В 0,5А 35216.11.2016
118Миниатюрный сетевой блок питания (5В, 200мА) 20316.11.2016
119Мощный блок питания для усилителя НЧ (27В/3А) 31916.11.2016
120Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 74916.11.2016
121Мощный импульсный блок питания для УНЧ (2х50В, 12В) 33216.11.2016
122Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 55816.11.2016
123Мощный лабораторный источник питания 0-25В, 7А 52016.11.2016
124Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 35116.11.2016
125Обзор схем восстановления заряда у батареек 39016.11.2016
126Однополярный источник питания УНЧ (40В) 25616.11.2016
127Питание будильника 1,5В от сети 220В 37616.11.2016
128Питание микроконтролерных устройств от сети 220В 31216.11.2016
129Питание микроконтроллеров от сети 220В через трансформатор 24516.11.2016
130Питание микроконтроллеров от телефонной линии 26616.11.2016
131Питание низковольтной радиоаппаратуры от сети 25816.11.2016
132Поддержание аккумуляторов в рабочем состоянии811804.10.2002
133Подключение таймера к зарядному устройству аварийного аккумулятора 26316.11.2016
134Прецизионное зарядное устройство для аккумуляторов 36216.11.2016
135Прибор для измерения параметров аккумуляторов. 927310.06.2002
136Приставка-контроллер к зарядному устройству аккумулятора 12В 42816.11.2016
137Приставка-регулятор к зарядному устройству аккумулятора 44716.11.2016
138Простейшие пусковые устройства 12В для авто на основе ЛАТРа 53916.11.2016
139Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 49716.11.2016
140Простое зарядное устройство для аккумуляторов (до 55Ач) 44716.11.2016
141Простое зарядное устройство для аккумуляторов и батарей 38916.11.2016
142Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов3264927.06.2006
143Простой блок питания 5В/0,5А (КТ807) 39316.11.2016
144Простой двуполярный источник питания (14-20В, 2А) 27116.11.2016
145Простой импульсный блок питания мощностью 15Вт 31816.11.2016
146Простой импульсный блок питания на ИМС 37116.11.2016
147Простой импульсный источник питания 5В 4А 34716.11.2016
148Пятивольтовый блок питания с ШИ стабилизатором 30316.11.2016
149Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 49116.11.2016
150Регулируемый двуполярный источник питания из однополярного 31816.11.2016
151Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 44916.11.2016
152Регулируемый источник питания на LM317T (1-37В 1,5А) 37716.11.2016
153Регулируемый источник питания на ток до 1 А (К142ЕН12А) 34216.11.2016
154Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 36916.11.2016
155Регуляторы заряда аккумуляторов от солнечных батарей 33516.11.2016
156Самодельное пусковое устройство130215925.06.2017
157Самодельный лабораторный источник питания с регулировкой 0-20В 37916.11.2016
158Сетевая «Крона» 9В/25мА 36616.11.2016
159Симметричный динистор в бестрансформаторном блоке питания 36516.11.2016
160Солнечное зарядное устройство13235147216.04.2014
161Стабилизатор напряжения сети СПН-400 \»Рубин\»261128.06.2012
162Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 31616.11.2016
163Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 32816.11.2016
164Стабилизированный источник питания с автоматической защитой от коротких замыканий 31816.11.2016
165Стабилизированный лабораторный источник питания (0-27В, 500мА) 30616.11.2016
166Схема автоматического зарядного устройства (на LM555) 38216.11.2016
167Схема автоматического зарядного устройства для сотовых телефонов 70116.11.2016
168Схема блока питания и зарядного устройства для iPod4218422.03.2012
169Схема блока питания с напряжением 12В и током 6А 36816.11.2016
170Схема высоковольтного преобразователя (вход 12В, вых — 700В) 33016.11.2016
171Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 45016.11.2016
172Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 54816.11.2016
173Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 23916.11.2016
174Схема зарядного устройства для батарей 35016.11.2016
175Схема зарядного устройства с повышающим преобразователем 31816.11.2016
176Схема измерителя выходного сопротивления батарей 30116.11.2016
177Схема импульсного стабилизатора для зарядки телефона 33416.11.2016
178Схема источника питания 12В, с током в нагрузке до 10 А 45916.11.2016
179Схема контроллера заряда батарей 29316.11.2016
180Схема непрерывного подзаряда батарей 32416.11.2016
181Схема простого зарядного устройства на диодах 30816.11.2016
182Схема стабилизированного источника питания 40В, 1.2А 31816.11.2016
183Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 53916.11.2016
184Схема универсального лабораторного источника питания 36716.11.2016
185Схема устройства для подзаряда батарей 18916.11.2016
186Схемы бестрансформаторного сетевого питания микроконтроллеров 35116.11.2016
187Схемы бестрансформаторных зарядных устройств 33416.11.2016
188Схемы нетрадиционных источников питания для микроконтроллеров 34916.11.2016
189Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 40716.11.2016
190Схемы питания микроконтроллеров от солнечных элементов 36316.11.2016
191Схемы подзарядки маломощных аккумуляторных батарей для питания МК 34016.11.2016
192Схемы простых выпрямителей для зарядки аккумуляторов 45916.11.2016
193Таймер-индикатор разрядки батареи 29516.11.2016
194Тиристорное зарядное устройство на КУ202Е 58016.11.2016
195Универсальное зарядное устройство для маломощных аккумуляторов 36616.11.2016
196Универсальный блок питания с несколькими напряжениями 33416.11.2016
197Устройство автоматической подзарядки аккумулятора1084430.10.2005
198Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 52316.11.2016
199Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 50316.11.2016
200Устройство для поддержания заряда батареи 6СТ-9 32416.11.2016
201Устройство для хранения никель-кадмиевых аккумуляторов 29216.11.2016
202Устройство зарядное автоматическое УЗ-А-12-4,51341571819.04.2006
203Устройство контроля заряда и разряда аккумулятора 12В 46216.11.2016
204Экономичный импульсный блок питания 2×25В 3,5А 40516.11.2016
205Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 32216.11.2016
206Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах617106.10.2002
207Эксплуатация никелево-кадмиевых аккумуляторов при повышенных разрядных токах 292210.06.2002
208Электронный стабилизатор тока для зарядки аккумуляторных батарей 51716.11.2016

Схемы самодельных зарядных для авто аккумулятора. Обзор схем зарядных устройств автомобильных аккумуляторов

У каждого автомобилиста наступал в жизни момент, когда, повернув ключ в замке зажигания не происходило абсолютно ничего. Стартер не проворачивался, а как следствие – машина не заводилась. Диагноз простой и ясный: аккумуляторная батарея полностью разряжена. Но имея под рукой даже самое простое с выходным напряжением 12 В, можно в течение одного часа восстановить АКБ и поехать по своим делам. Как сделать такое устройство своими руками, описано далее в статье.

Как правильно заряжать аккумуляторную батарею

Перед тем как сделать зарядное устройство для аккумулятора своими руками, следует узнать основные правила относительно его правильной зарядки. Если их не соблюдать, то ресурс батареи резко уменьшится и придётся покупать новую, так как восстановить аккумулятор практически невозможно.

Чтобы установить правильный ток, следует знать простую формулу: ток заряда равен току разряда батареи за период времени равный 10-ти часам. Это означает, что ёмкость АКБ следует разделить на 10. Например, для АКБ, ёмкостью 90 А/ч, необходимо установить ток заряда равный 9 Ампер. Если поставить больше, то произойдёт быстрый нагрев электролита и могут быть повреждены свинцовые соты. При меньшей силе тока понадобится очень много времени до полного заряда.

Теперь необходимо разобраться с напряжением. Для АКБ, разность потенциалов которых составляет 12 В, напряжение заряда не должно превышать 16.2 В. Это означает, что для одной банки напряжение должно быть в пределах 2.7 В.

Самое основное правило правильного заряда АКБ: не перепутать клеммы, во время присоединения батареи. Неправильно подключённые клеммы получили название переполюсовке, что приведёт к немедленному вскипанию электролита и окончательному выходу из строя аккумулятора.

Необходимые инструменты и расходные материалы

Сделать качественное зарядное устройство своими руками можно только в случае, если под этими самыми руками будут находиться приготовленные инструменты и расходные материалы.

Перечень инструментов и расходных материалов:

  • Мультиметр. Должен находится в инструментальной сумке каждого автомобилиста. Пригодится не только при сборке зарядного, но и в дальнейшем, при ремонте. Стандартный мультиметр включает в себя такие функции как измерение напряжения, силы тока, сопротивления и прозвонка проводников.
  • Паяльник. Достаточно мощности в 40 или 60 Вт. Слишком мощный паяльник брать нельзя, так как высокая температура приведёт к порче диэлектриков, например, в конденсаторах.
  • Канифоль. Необходима для быстрого увеличения температуры. При недостаточном прогреве деталей, качество пайки будет слишком низким.
  • Олово. Основной скрепляющий материал, используется для улучшения контакта двух деталей.
  • Термоусадочная трубка. Более новый вариант старой изоленты, легка в использовании и обладает лучшими диэлектрическими качествами.

Конечно, всегда под рукой должны находится такие инструменты как плоскогубцы, плоская и фигурная отвёртка. Собрав все вышеперечисленные элементы, можно приступать к сборке зарядного устройства для аккумуляторной батареи.

Последовательность изготовления зарядки на основе импульсного блока питания

Зарядка для аккумуляторов своими руками должна быть не только надёжной и качественной, но и обладать небольшой стоимостью. Поэтому нижеприведённая схема подходит идеально, для достижения подобных целей.

Готовая зарядка на основе импульсного источника питания

Что потребуется:

  • Трансформатор электронного типа от китайского производителя Tashibra.
  • Динистор КН102. Зарубежный динистор имеет маркировку DB3.
  • Силовые ключи MJE13007 в количестве двух штук.
  • Диоды КД213 в количестве четырёх штук.
  • Резистор, с сопротивлением не менее 10 Ом и мощностью 10 Вт. При установке резистора меньшей мощности, он будет постоянно греться и очень скоро выйдет из строя.
  • Любой трансформатор обратной связи, которые могут находится в старых радиоприёмниках.

Разместить схему можно на любой старой плате или купить для этого пластину недорого диэлектрического материала. После сборки схемы её необходимо будет спрятать в металлическом корпусе, который можно изготовить из простой жести. Схема должна быть изолирована от корпуса.

Пример зарядного устройства, смонтированного в корпусе старого системного блока

Последовательность изготовления зарядного устройства своими руками:

  • Переделать силовой трансформатор. Для этого следует размотать его вторичную обмотку, так как импульсные трансформаторы Tashibra дают только 12 В, что очень мало для автомобильного АКБ. На место старой обмотки следует намотать 16 витков нового сдвоенного провода, сечение которого не будет меньше 0.85 мм.Новая обмотка изолируется, и поверх неё наматывается следующая. Только теперь необходимо сделать всего 3 витка, сечение провода – не менее 0.7 мм.
  • Смонтировать защиту от короткого замыкания. Для этого понадобится тот самый резистор на 10 Ом. Его следует впаять в разрыв обмоток силового трансформатора и трансформатора обратной связи.

Резистор как защита от короткого замыкания

  • С помощью четырёх диодов КД213 спаять выпрямитель. Диодный мост простой, может работать с током высокой частоты, и его изготовление происходит по стандартной схеме.

Диодный мост на основе КД213А

  • Делаем ШИМ-контроллер. Необходим в зарядном устройстве, так как контролирует все силовые ключи в схеме. Его можно сделать самостоятельно, используя полевой транзистор (например, IRFZ44) и транзисторы обратной проводимости. Для этих целей идеально подходят элементы типа КТ3102.

ШИМ=контроллер высокого качества

  • Произвести стыковку основной схемы с силовым трансформатором и ШИМ-контроллера. После чего получившуюся сборку можно закреплять в самостоятельно сделанном корпусе.

Данное зарядное устройство достаточно простое, не требует больших затрат при сборке, обладает маленьким весом. Но схемы, сделанные на основе импульсных трансформаторов нельзя отнести к категории надёжных. Даже самый простой стандартный силовой трансформатор будет выдавать более стабильные показатели чем импульсные устройства.

При работе с любым зарядным устройством следует помнить, что нельзя допускать переполюсовки. Данная зарядка защищена от подобного, но всё же перепутанные клеммы сокращают срок службы аккумуляторной батареи, а резистор переменного типа в схеме позволяет контролировать ток заряда.

Простое зарядное устройство своими руками

Для изготовления данной зарядки потребуются элементы, которые можно найти в отслужившем телевизоре старого типа. Перед их монтажом в новую схему, детали необходимо проверить с помощью мультиметра.

Основной деталью схемы является силовой трансформатор, который можно найти не везде. Его маркировка: ТС-180-2. Трансформатор такого типа имеет 2 обмотки, напряжение которых составляет 6.4 и 4.7 В. Чтобы получить необходимую разность потенциалов, эти обмотки следует соединить последовательно – выход первой соединить со входом второй посредством пайки или обыкновенного клеммника.

Трансформатор типа ТС-180-2

Также понадобятся диоды типа Д242А в количестве четырёх штук. Так как данные элементы будут собраны в мостовую схему, потребуется отвод излишнего тепла от них во время работы. Поэтому также необходимо найти или приобрести 4 радиатора охлаждения для радиодеталей, площадью не менее 25 мм2.

Осталась только основа, для которой можно взять пластину из стеклотекстолита и 2 предохранителя, на 0.5 и 10А. Проводники допускается использовать любого сечения, только входной кабель должен быть не менее 2.5 мм2.

Последовательность сборки зарядного устройства:

  1. Первым элементом в схеме необходимо собрать диодный мост. Собирается он по стандартной схеме. Места выводов должны быть опущены вниз, а все диоды надо разместить на радиаторах охлаждения.
  2. От трансформатора, с выводов 10 и 10′ провести 2 провода ко входу диодного моста. Теперь следует немного доработать первичные обмотки трансформаторов, а для этого припаять между выводами 1 и 1′ перемычку.
  3. Припаять входные проводе к выводам 2 и 2′. Входной провод можно сделать из любого кабеля, например, от или любого отслужившего бытового прибора. Если же в наличии есть только провод, то к нему необходимо присоединить вилку.
  4. В разрыв провода, идущего до трансформатора, следует установить предохранитель, рассчитанный на 0.5А. В разрыв плюсового, который пойдёт непосредственно на клемму АКБ – предохранитель на 10А.
  5. Минусовой провод, идущий от диодного моста, припаивают последовательно к обыкновенной лампе, рассчитанной на 12 В, мощностью не более 60 Вт. Это поможет не только контролировать зарядку аккумулятора, но и ограничить зарядный ток.

Все элементы данного зарядного устройства можно разместить в жестяном корпусе, также сделанном своими руками. Пластину стеклотекстолита закрепить болтами, а трансформатор смонтировать прямо на корпус, предварительно разместив между ним и жестью такую же стеклотекстолитовую пластину.

Игнорирование законов электротехники может привести к тому, что зарядное устройство будет постоянно выходить из строя. Поэтому заранее стоит распланировать мощность зарядки, в зависимости от которой и собирать схему. Если превысить мощность цепи, то должной зарядки АКБ не будет, если не будет превышения рабочего напряжения.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
— доступность радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно чтобы это была схема зарядно-тренировочного устройства;
— не сложная наладка;
— стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор — ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
— колебания напряжения питания приводят к колебанию зарядного тока;
— нет защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 — 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог — таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 — на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.


Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000…18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.


Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе — прочтите эту статью:

Доброго времени суток господа радиолюбители! В этой статье хочу описать сборку несложного зарядного устройства. Даже совсем простого, потому что оно не содержит ничего лишнего. Ведь часто усложняя схемы мы снижаем её надёжность. В общем тут будет рассмотрено пару вариантов таких простейших автомобильных зарядных, которые можно спаять любому, кто хоть раз чинил кофемолку или менял выключатель в коридоре)) По своему опыту могу предположить что оно будет полезным каждому, кто имеет хоть какое-то отношение к технике или электронике. Давно меня посетила идея собрать простейшее зарядное устройство для АКБ своего мотоцикла, так как генератор иногда попросту не справляется с зарядкой последнего, особенно тяжело ему приходится зимним утром, когда нужно завести его со стартера. Конечно многие будут говорить что с кик стартера много проще, но тогда АКБ можно вообще выкинуть.

Электрическая схема самодельного зарядного


Что нужно для того, чтоб АКБ зарядился? Источник стабильного тока, который бы не превышал некоторое безопастное значение. В простейшем случае им будет обычный сетевой трансформатор. Он должен выдавать на вторичке такой ток, который нужен для стандартного зарядного режима (1/10 ёмкости аккумулятора). И если в начале зарядного цикла нагрузка начнёт тянуть ток бОльшего значения — произойдёт просадка напряжения на выходной обмотке трансформатора, а значит ток снизится. Есть два варианта выпрямителей:


Последняя схема позволит менять значение зарядного тока, за счёт изменения напряжения на АКБ. Если вы не доверяете трансформатору, то функцию стабилизатора тока можно возложить на обычную автомобильную лампочку 12 вольт.

В общем для себя решил сделать зарядку довольно мощной, как основу взял трансформатор ТС-160 от советского лампового телека, перемотал под свои нужды, на выходе вышло 14 вольт на 10 ампер, что позволяет заряжать АКБ достаточно большой ёмкости, в том числе любые автомобильные.

Корпус для зарядного устройства


Корпус был собран из цинковой жести, так как хотел сделать как можно проще.


Сзади корпуса было выпилено отверстие под вентилятор, для большей надёжности решил добавить активное охлаждение, да и вентилей поднакопилось, пусть не лежат без дела.


Затем начал делать начинку, прикрутил трансформатор, диодный мост тоже взял с запасом — КРВС-3510 , благо они не много стоят:


В передней панели сделал отверстие для вольтметра, также прикрутил гнездо для крокодилов.


Вышло как раз то что я хотел-простенько и надёжно. В основном этот блок используется для зарядки АКБ и питания 12 вольтовых светодиодных лент.


Ну и в крайнем случае для настройки автомобильных преобразователей. А чтобы было меньше помех, после моста поставил пару конденсаторов общей ёмкостью около 5 тыс. мкФ.


Внешне конечно можно было сделать и более аккуратно, но мне здесь главное надёжность, следующим на очереди стоит лабораторный блок питания, в нем то и буду воплощать все свои дизайнерские умения. Всего доброго, с вами был Колонщик !.)

Обсудить статью АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Даже при полностью исправном автомобиле рано или поздно может сложиться ситуация, когда потребуется от внешнего источника – долгая стоянка, случайно оставленные включенными габаритные огни и так далее. Владельцам же старой техники необходимость в регулярной подзарядке аккумулятора известна прекрасно – тому виной и саморазряд «уставшей» батареи, и повышенные токи утечек в электроцепях, в первую очередь – в диодном мосту генератора.

Можно приобрести готовое зарядное устройство: они выпускаются во множестве вариантов и легко доступны. Но кому-то может показаться, что изготовить зарядное устройство для автомобильного аккумулятора своими руками будет интереснее, а кого-то возможность сделать ЗУ буквально из подручного материала и выручит.

Полупроводниковый диод+лампочка

Неизвестно, кому первому пришла в голову идея заряжать аккумулятор подобным образом, но это как раз тот случай, когда зарядить аккумулятор можно буквально подручными средствами . В этой схеме источником тока служит электрическая сеть 220В, диод нужен для преобразования переменного тока в пульсирующий постоянный, а лампочка служит токоограничительным резистором.

Расчет этого зарядного устройства так же прост, как и его схема:

  • Ток, протекающий через лампу, определяется исходя из ее мощности как I=P/U , где U – напряжение в сети, P – мощность лампы. То есть для лампы в 60 Вт ток в цепи составит 0,27 А.
  • Так как диод срезает каждую вторую полуволну синусоиды, реальный средний ток нагрузки будет с учетом этого равен 0,318*I .
ПРИМЕР: Используя лампу 100 Вт в такой схеме, мы получим средний ток зарядки аккумулятора в 0,15А.

Как видно, даже при использовании мощной лампы ток нагрузки получается небольшим, что позволит использовать любой распространенный диод, например 1N4004 (такие обычно идут в комплекте с сигнализациями, стоят в блоках питания маломощной техники и так далее). Все, что нужно знать для сборки такого устройства – это то, что полоска на корпусе диода обозначает его катод. Этот контакт подсоедините к положительному полюсу батареи.

Не подсоединяйте это устройство к аккумулятору, если он не снят с автомобиля, во избежание повреждения бортовой электроники высоким напряжением!

Подобный вариант изготовления представлен на видео

Выпрямитель

Это ЗУ несколько сложнее. Такая схема используется в самых дешевых фабричных устройствах :

Для изготовления зарядного устройства потребуется сетевой трансформатор с выходным напряжением не менее 12,5 В, но и не более 14. Часто берется советский трансформатор типа ТС-180 из ламповых телевизоров, имеющий две накальные обмотки на напряжение 6,3 В. При их последовательном соединении (назначение клемм указано на корпусе трансформатора) мы получим как раз 12,6 В. Для выпрямления переменного тока со вторичной обмотки применен диодный мост (двухполупериодный выпрямитель). Его можно как собрать из отдельных диодов (например, Д242А из того же телевизора), либо купить готовую сборку (KBPC10005 либо ее аналоги).

Диоды выпрямителя будут ощутимо нагреваться, и для них придется сделать радиатор из подходящей алюминиевой пластины. В этом плане использование диодной сборки гораздо удобнее – пластина крепится винтом к ее центральному отверстию на термопасту.

Ниже приведена схема назначения выводов наиболее распространенной в импульсных блоках питания микросхемы TL494:

Нас интересует цепь, связанная с ножкой 1. Просматривая соединенные с ней дорожки на плате, найдите резистор, соединяющий эту ножку с выходом +12 В. Именно он задает выходное напряжение 12-вольтовой цепи блока питания.

КАК СДЕЛАТЬ — Простая схема зарядного устройства

     Десульфатацию автомобильных аккумуляторов, а также зарядно-восстановительную тренировку автомобильных аккумуляторов можно производить при помощи простого зарядно-восстановительного устройства, которое восстанавливает засульфатированные аккумуляторы «асиметричным» током.

 

     Кроме методики десульфатации аккумулятора в ручном режиме при помощи простейшего зарядного устройства, как описано в Десульфатация аккумулятора, известен еще один способ тренировки авотомобильного аккумулятора «асиметричным» током, когда в один полупериод аккумулятор заряжается, а следующий разряжается токами 10:1. Такой метод тренировки хорошо зарекомендовал себя не только при десульфатации аккумулятора, но и для профилактики исправных. Картинкаа кликабельна.

     Устройство обеспечивает возможность ускоренного заряда током до 10А, но рекомендуется зарядный ток 5А  и соответственно ток разряда 0.5А.

     Трансформатор можно взять любой, мощностью не менее 200Вт и выходным напряжением 22-25В. Например, можно использовать телевизионный трансформатор ТС-200. Сразу после трансформатора включено реле типаРПУ-0 с напряжением на обмотке 24В или любое другое. Если использовать реле на меньшее напряжения, то потребуется подобрать и последовательно с обмоткой реле включить добавочный резистор. Реле своими контактами подключает зарядно-восстановительное устройство к аккумулятору и предохряняет аккумулятор от разряда в случае пропадания напряжения в электросети.

    Заряд аккумулятора происходит во время одного полупериода через диоды VD1 , VD2. Во время второго полупериода, когда диоды закрыты, аккумулятор разряжается через резистор R4. Ток разряда составляет 0.5А.

    Зарядный ток устанавливается пременным резистором R2 и контролируется по амперметру. Учитывая, что в полупериод заряда часть тока заряда (10%) протекает через разрядный резистор, то показания амперметра необходимо устанавливать 1.8А – амперметр показывает усредненное значение тока, а заряд производится в течение половины периода.

Немного об используемых деталях:

Трансформатор на напряжение 22-25В, можно телевизионный ТС-200.

Реле в принципе любое с напряжением обмотки 24В. Важно, чтобы контакты реле выдерживали ток не менее 10А. При использовании реле с обмоткой на 12В, его включаем через ограничивающее сопротивление.

Измерительный амперметр типа М42100 или любой на ток 3-5А

R2 может бітьот 3.3 до 15Ком.

Стабилитроны любые на напряжение от 7.5 до 12В.

Транзистор КТ827 модно заменить на КТ825, но при этом необходимо заменить полярность элементов, как показано на втором варианте схемы. Какртинка кликабельна.

     Транзистор должен быть установлен на радиатор площадью не менее 200кв.см. В качестве радиатора можно использовать металлическую стенку корпуса.

      В отличие от схемы полного автомата, описанной в  Десульфатация аккуумулятора схема ,   эта схема отличается простотой и достаточно высокой эффективностью. Ее можно собрать из любых подручных радиоэлементов. При этом требуется соблюсти необходимые напряжения и токи.

Возможно, вас заинтересуют статья Как построить гараж недорого и сопутствующие.

 

Читайте также:

Оставьте комментарий

Добавить комментарий

Электрическая схема электромобиля и системы зарядки.

Контекст 1

… двунаправленный стабилизатор мощности реализует гибкое управление потоком мощности каждую секунду. 330 В постоянного тока аккумуляторной батареи автомобиля преобразуется в 200 В переменного тока однофазной трехпроводной распределительной системы. Типичная схема силовой электроники используется для преобразования энергии, как показано на рис. 3. Батарея электромобиля подключена к обратному повышающему преобразователю через схему аналогового фильтра, подавляющего составляющие пульсации постоянного тока.Инвертор межсоединений контролирует активную мощность для управления V2G и реактивную мощность для изолированного …

Контекст 2

… в нужный момент через UART (универсальный асинхронный приемный передатчик), а затем UART получает сообщение обратный сигнал. Двунаправленный стабилизатор мощности реализует гибкое управление потоком мощности каждую секунду. 330 В постоянного тока аккумуляторной батареи автомобиля преобразуется в 200 В переменного тока однофазной трехпроводной распределительной системы. Для преобразования энергии используется типичная схема силовой электроники, как показано на рис.3. Батарея электромобиля подключена к обратному повышающему преобразователю через схему аналогового фильтра, подавляющую составляющие пульсации постоянного тока. Инвертор межсоединений управляет активной мощностью для управления V2G и реактивной мощностью для обнаружения изолирования. Системная частота эмулируется на цифровом симуляторе с моделью энергосистемы, включая возобновляемые источники энергии и несколько электромобилей. Затем программируемый источник питания переменного тока генерирует мгновенное напряжение 200 В, соответствующее эмулируемой системной частоте.Предлагаемая система поддерживает как прямое соединение с реальной энергосистемой, так и соединение с имитируемым источником энергии. Централизованная схема LFC может быть реализована с учетом двусторонней связи между контроллером интеллектуального интерфейса и цифровым симулятором. На рис. 4 показана временная диаграмма взаимодействия компонентов. Прежде всего, начальные последовательности CHAdeMO устанавливаются путем проверки безопасности электромобиля и зарядного устройства. Контроллер интеллектуального интерфейса пробуждает электромобиль аналоговым сигналом (запуск / остановка зарядного устройства1), а затем обмен информацией осуществляется посредством связи CAN.После проверки совместимости блокировка разъема, проверка изоляции и повторное включение реле электромобиля выполняются посредством управления тремя аналоговыми сигналами (проверка разъема, включение / выключение зарядки, запуск / остановка зарядного устройства2). Расположение выводов каждой линии на разъеме показано на рис. 5. В соответствии с начальными последовательностями, SOC аккумулятора и другие рабочие условия электромобиля и зарядного устройства меняются каждые 0,1 с. Когда контроллер интеллектуального интерфейса обнаруживает условия завершения, выполняются последовательности завершения CHAdeMO.При автономном распределенном управлении уставка V2G определяется характеристиками спада в сочетании с отклонением частоты системы, как показано на рисунке 6 [10]. Когда приближается заданное пользователем время отключения, V2G переключается на интеллектуальную зарядку для выполнения запланированной зарядки. При интеллектуальной зарядке смещение в половину максимальной выходной мощности добавляется к заданному значению V2G, а коэффициент усиления снижается до одной трети от значения V2G. Если SOC составляет менее 50%, активируется интеллектуальная зарядка, чтобы подготовиться к экстренному отъезду.В этом исследовании коэффициент усиления устанавливается равным 600 Вт / 0,01 Гц с учетом компромисса между возможностью управления и фактическим состоянием отклонения частоты в экспериментальной среде. Следовательно, максимальная мощность зарядки (разрядки) подается в систему питания, когда частота системы повышается (падает) до 50,05 Гц (49,95 Гц). Также считается, что зона нечувствительности позволяет избежать условий частичной выходной мощности, в которых эффективность преобразования мощности относительно низкая. При централизованном управлении центр распределения нагрузки должен получать информацию о состоянии заряда аккумулятора каждого электромобиля с приблизительным интервалом, например, каждые 30 минут.Центр выбирает кандидатов для зарядки (разрядки) электромобилей в соответствии с их порядком возрастания (убывания) SOC, а затем сигналы LFC транслируются на выбранные электромобили каждые тридцать секунд. Это выборочное двухпозиционное управление в соответствии с порядком SOC оказалось эффективным для синхронизации SOC [11]. SOC и рабочее состояние каждого электромобиля передаются в цифровой симулятор по протоколу UDP / IP. Если у электромобиля есть достаточно времени для …

Не трать целое состояние на установку зарядки для своего нового электромобиля

Размер вашей коробки выключателя и обслуживание решат, сколько будет стоить добавление электрического… [+] автомобильное зарядное устройство.

Getty

Ранее я написал руководство, которое поможет вам решить, какой диапазон электромобилей вам подходит, особенно с Tesla Model 3. После того, как вы получите свой автомобиль, вы захотите установить для него домашнюю зарядку там, где вы его припаркуете (т. Е. В гараже. или подъездная дорожка.) Если вы вообще не можете установить зарядку, потому что вы паркуетесь на улице или в гараже квартиры, тогда вы сталкиваетесь с проблемой. Если вы можете зарядить в своем офисе (часто бесплатно), это прекрасно, хотя и не без других проблем.Если вы не можете сделать то же самое, я сейчас не рекомендую покупать электромобиль, по крайней мере, на данный момент.

Но вы можете обнаружить, что когда вы позвоните электрику и попросите установить хорошую зарядную станцию ​​второго уровня с цепью на 50 ампер, они представят очень дорогую оценку — возможно, 5000 долларов или больше — потому что вам нужно будет модернизировать электрическую сеть в вашем доме. . В старых домах часто есть только 100 ампер сети, и электрические коды не позволяют вам превышать установленную квоту устройств и нагрузок на них.Не вдаваясь в полную формулу, если вы получаете устройства на 240 В на 80 А на панели 100 А, вы, вероятно, превысите лимит. Если у вас есть сушилка на 30 ампер, электрическая духовка на 30 ампер, кондиционер, насос для бассейна или другое подобное устройство, вы легко можете превысить лимит. Ваш электрик скажет вам, что вам нужно предоставить новую услугу от энергетической компании (обычно 200 ампер), а также полностью новую силовую панель. Вдобавок к этому им потребуется провести линию мощностью от 40 до 50 ампер к месту парковки и установить розетку на 50 ампер (дешево) или проводной настенный EVSE («зарядное устройство»).

Если у вас более новая услуга, не бойтесь, вам не нужно менять панель, и вы можете просто добавить новую схему. Если провод не такой длинный, покупка вилки может стоить не так дорого. К сожалению, многие видят более дорогую оценку. Как от этого уйти? Ответ заключается в том, что , хотя и неплохо иметь достаточно мощности, чтобы перезарядить автомобиль с нуля до полной за одну ночь, на самом деле вам не нужно столько .

Зарядка на первом уровне

Средняя машина проезжает всего 40 миль в день.Зарядное устройство Level One (которое обычно поставляется практически с любым электромобилем) подключается к специальной стандартной домашней вилке и может обеспечить ток 12 ампер. Это означает, что он сможет доставить 40 миль за 8-часовую ночную зарядку. Большинство людей проводят дома на машине в среднем более 8 часов. Так что, как правило, даже при очень медленной зарядке вы не отставаете. В те дни, когда вы больше ездите, вы не сможете полностью зарядиться, но если вы не будете проводить долгие дни несколько дней подряд, вы в конечном итоге вернетесь.(Насколько быстро зависит от того, нужно ли ограничивать зарядку только непиковым временем работы электричества.)

(Если вы один из тех, кто преодолевает 100-мильную поездку, это не сработает для вас, и вам, возможно, придется укусить пулю и получить новое электрическое обслуживание. Но большинство людей не заходят так далеко.)

Конечно, прибавляя 50 миль / ночь, иногда не хватает. Для многих это будет всего несколько раз в год. Тогда вам могут помочь быстрые зарядные устройства, такие как нагнетатели Tesla.Это нормально, если это не обычное явление. Другие решения могут включать зарядку на работе. Если вы не едете на работу или вам предстоит поездка туда и обратно на расстояние 20 миль или меньше, это решение, вероятно, вам подойдет — и оно может быть даже бесплатным, если у вас есть специальная розетка на парковочном месте. Он должен быть посвящен — ничего другого на этом автоматическом выключателе.

Один слева — это стандартная розетка на 15 ампер. Тот, что справа, может предложить 20 ампер

Общественное достояние

В некоторых случаях на специальной вилке может быть выключатель на 20 А и провод 12AWG.В этом случае в вилке может уже быть Т-образный паз, в котором указано, что она составляет 20 ампер. Купите вилку на 20 ампер (которую продает Tesla и некоторые другие зарядные устройства), и вы увидите 50 миль или больше за 8 часов ночи, и вы обязательно догоните среднюю езду.

На первый взгляд, когда вы прочитаете, что зарядка автомобиля с пробегом в 250 миль на Уровне One может занять более за два дня , вы подумаете, что Уровень Один смехотворен, но на самом деле, чем больше батарея, тем больше она может раскачиваться и вниз и по-прежнему оставляет вам достаточно возможностей для вождения.Это маленький аккумуляторный автомобиль, который абсолютно необходимо заряжать каждую ночь. Автомобиль с большим аккумулятором — нет.

Следует отметить, что в очень холодном климате эта медленная зарядка может не сработать из-за необходимости нагревать батареи и большего расхода энергии при вождении в холодную погоду.

Зарядка медленнее, уровень два

Цепь второго уровня работает при удвоенном напряжении и обычно при более высоком токе. Фактически, вы можете установить их, рассчитанные на ток до 80 ампер. Однако большинству людей это не нужно.Вы будете очень довольны тем, что достаточно, чтобы восстановить около 60% заряда батареи, потому что ваш типичный дневной цикл должен составлять от 20% до 80%. На 240-мильном Tesla Model 3 вы можете получить это за 8 часов всего с 5 кВт, что вы получаете от вилки на 30 ампер, той же, что и ваша сушилка. (На любой вилке автомобиль заряжается на 80% от полного тока, в данном случае на 24 ампера.) Такая схема полностью восстановит вас почти в любой день, когда вы едете, особенно если у вас дома более 8 часов. Вам действительно не нужно быстрее.Тесла обычного диапазона не может потреблять более 32 ампер в любом случае (например, схема на 40 ампер), но вам просто не нужно даже это. Если вы можете его получить, вы, конечно, должны его взять, но вам не следует тратить тысячи, чтобы получить дополнительный импульс.

Ваш электрик может сказать вам, что вам нужна новая панель для вилки на 50 ампер, но вы можете вставить вилку на 30 или 20 ампер без новой панели, что может сэкономить вам состояние.

Это зарядное устройство уровня 2 на 20 ампер восстанавливает около 14 миль за каждый час, который вы заряжаете, или около 110 миль за 8 часов ночи.Для большинства людей этого более чем достаточно — опять же, помните, что средняя машина проезжает 40 миль в день. Вы найдете несколько дней или периодов, когда вы не насытились, но вы можете найти только пару дней в году, для которых требуется нагнетатель. Опять же, вы не хотите медлить, но если это сэкономит вам 3000 долларов, чтобы перейти на 20 ампер вместо 50, то сделайте это. Попросите электрика установить вилку «6-20» на 240 В при 20 А. Он использует горизонтальный штифт (например, 20a, изображенный выше), но с другой стороны.Купите этот адаптер для своей машины.

Если у вас действительно выделенная вилка (это единственное, что есть в выключателе), то во многих случаях электрик может за небольшие деньги заменить обычную розетку на 120 В на розетку на 240 В для удвоенной скорости зарядки, заменить вилку и выключатель, если проводка рассчитана на более высокое напряжение. Спросите об этом — он почти наверняка выдержит максимальную нагрузку на вашу панель. (В то время как в США обычные розетки работают от 120 В, а большая часть остального мира работает от 220 В, дома в США могут устанавливать розетки на 240 В, и для этого существует установленный стандарт.)

Совместное использование с сушилкой

В большинстве домов есть электрическая розетка на 30 ампер для вашей сушилки. Вам может быть легко перейти на сушилку на природном газе, особенно если вы настроены на новую сушилку. Они стоят немного дороже, но они стоят немного дешевле в эксплуатации и, таким образом, экономят деньги в долгосрочной перспективе. Они также стоят одинаково днем ​​и ночью. Вам действительно нужно установить газопровод в прачечной. Добавление этого может стоить реальных денег — или быть дешевым — в зависимости от того, насколько далеко это еще предстоит.Возможно, вы даже сможете продать свою электрическую сушилку кому-нибудь из Craigslist.

Если вы сделаете это, вы снимете нагрузку на 30 ампер со своего дома, и теперь вы можете добавить линию на 30 ампер для своего автомобиля без необходимости обновления обслуживания. В некоторых случаях электрик может просто проложить линию от того места, где находится (была) вилка электрической сушилки, до места, где находится ваша машина. Этой мощности более чем достаточно для ваших нужд, и хотя новая газовая сушилка не бесплатна, она может быть самым дешевым вариантом из всех.

Вы также можете купить устройство под названием «Dryer Buddy» примерно за 350 долларов, которое позволяет подключать машину и сушилку к одной розетке, если ваша машина припаркована рядом с сушилкой.Это устройство просто видит, когда сушилка включена, и отключает зарядку автомобиля, когда она включена. Это тоже относительно дешевое решение. Если вы не включите сушильную машину после полуночи, вы даже не заметите, что у нее общая розетка.

Умное зарядное устройство

По правде говоря, хотя электрический кодекс требует, чтобы ваш дом был в состоянии справиться со всем, что включается одновременно, — сушилкой, духовкой, кондиционером и автомобилем — на самом деле вам никогда не нужно этого делать. Если бы автомобильные зарядные устройства были умными, они бы поставлялись со схемами, которые определяют, когда другие устройства включены, и уменьшают или прекращают зарядку автомобиля, когда это происходит, что является очень редким событием.Такие зарядные устройства позволили бы установить автомобильную зарядку без обновления сервиса. К сожалению, их еще нет. В вашей электрической коробке есть устройство под названием DCC-9, произведенное в Канаде, которое отключает питание зарядного устройства, когда другие устройства включены. К сожалению, это стоит около 1000 долларов, когда это то, что должно поставляться в комплекте с зарядным устройством почти бесплатно. Но это может быть намного дешевле, чем обновление услуги. Когда-нибудь эта технология может стать дешевле и проще в установке. Устройство с открытым исходным кодом, известное как SmartEVSE, может это сделать, но требует более глубоких знаний по настройке.

А как насчет высокого класса?

Этот совет предназначен для тех, у кого дома есть сеть на 100 ампер. Если у вас более крупный сервис, например, на 200 ампер, нет причин не устанавливать хорошую схему на вилку на 50 ампер, известную как вилка 14-50 — ту же самую, которую используют большие дома на колесах. Вы не можете использовать все это, но вы можете купить электромобиль большего размера в будущем, и вы можете даже купить два электромобиля и пожелать получить 60 или более ампер. Цена на провод большего размера, чем вам нужно, может лишь незначительно добавить к цене вашей установки.Настенные соединители Tesla имеют приятную особенность, которая позволяет им «шлейфовать» и распределять мощность между двумя из них, когда у вас есть два Tesla.

Даже если вы выберете одну из описанных более дешевых вилок, например 6-20, вам следует подвести к ней более толстый провод, способный выдержать ток 30, 40 или 50 ампер. Цена. Если вы это сделаете, а позже вы обновите домашнее обслуживание, вам не нужно будет перепрограммировать эту схему, чтобы получить максимальную мощность.

Конечно, могут быть и другие причины для повышения качества обслуживания в вашем доме.Это немного безопаснее, и в нем есть место для других расширений, которые вы можете сделать в будущем, например, большего количества автомобилей, кондиционирования воздуха, гидромассажной ванны и прочего. Все эти причины могут оправдать модернизацию — основной целью этой статьи было выяснить, когда машина сама по себе не нуждается в этом.

Кстати, если ваш работодатель дает вам бесплатную зарядку на работе, то, конечно, воспользуйтесь этой привилегией. Это может означать немного меньшее удобство при парковке или может означать место премиум-класса. Даже в этом случае у вас все равно должен быть дома хотя бы первый уровень, так как это дешево.Это будет держать вас в тонусе в выходные и праздничные дни.

При зарядке

Ваша энергетическая компания может предложить вам выставление счетов за электроэнергию по времени использования. Это означает, что вместо того, чтобы платить фиксированную ставку в течение всего дня, вы платите более высокие ставки в часы пик (обычно во второй половине дня и ранними вечерами) и более низкие ставки в непиковые часы (ночью, а иногда и утром). использование в непиковое время. Если вы заряжаете машину ночью, вы именно этим и занимаетесь, и это большая победа для автовладельцев.Фактически, в Калифорнии и некоторых других местах владельцы электромобилей могут запросить специальный тариф «сверхвысокого времени использования», который даже дешевле в ночное время и доступен только для электромобилей. Хорошая новость: если вы получаете эту ставку, то ночью вы платите очень низкую цену за машину. Плохая новость заключается в том, что дневная норма довольно высока, и тогда вам стоит избегать таких вещей, как использование сушилки. Если вы много кондиционируете, это может не быть победой, но обычно так оно и есть.

Другой недостаток заключается в том, что вы не заряжаете свою машину во время пика, поэтому, если у вас есть только первый уровень, в дне будет меньше часов, когда вы сможете восстановиться.Если вы можете заряжать 24 часа в сутки, даже Level One может добавить много энергии в день в те дни, когда машина остается дома.

Прочтите / оставьте комментарии здесь

Зарядка электромобилей 101 | CALeVIP

Узнайте больше о различных вариантах зарядки электромобилей (EV).

Зарядные устройства для электромобилей уровня 1, 2 и постоянного тока

Зарядные устройства

EV подразделяются на три категории: уровень 1, уровень 2 и быстрая зарядка постоянного тока (DC). Одно из различий между этими тремя уровнями — это входное напряжение, уровень 1 использует 110/120 вольт, уровень 2 использует 208/240 вольт, а быстрые зарядные устройства постоянного тока используют от 200 до 600 вольт.Многочисленные производители выпускают зарядные устройства с разнообразной продукцией и разными ценами, приложениями и функциями.

Уровень 1 Зарядка

Зарядка

Level 1 является экономичной — в ней используется стандартная розетка на 110 В, что позволяет водителям электромобилей использовать комплект зарядных шнуров, поставляемый с большинством электромобилей, практически в любом месте. Эта зарядка занимает больше всего времени и используется в основном в качестве дополнительной, аварийной или резервной зарядки.

Зарядка уровня 1 может быть жизнеспособным решением в многоквартирных домах (MUD), таких как многоквартирные дома или кондоминиумы, а также на некоторых рабочих местах.В настройках MUD большая часть зарядки уровня 1 осуществляется от существующих розеток на 110 В на стоянке или в личных гаражах / навесах жителей. Когда планируются новые зарядные устройства, схема с более высокой выходной мощностью 240 В часто оказывается более рентабельной, поскольку предлагает большую емкость для зарядки по эквивалентной установленной цене.

Выходная мощность зарядки уровня 1 незначительно варьируется, но обычно составляет от 12 до 16 ампер непрерывной мощности. При этих уровнях мощности зарядное устройство уровня 1 может обеспечить от 3 до 3.5 и 6,5 миль диапазона за час зарядки. Эти тарифы могут быть удовлетворительными для водителей, которые не проезжают более 30-40 миль в день и могут использовать зарядное устройство на ночь.

Большинство электромобилей поставляются с фирменным шнуром Level 1 в багажнике. Существует всего несколько сторонних производителей зарядных устройств уровня 1, и большинство из них предназначены для использования в жилых помещениях.

Уровень 2 Зарядка

Зарядные устройства

Level 2 — типичные решения для жилых и коммерческих помещений / рабочих мест.Большинство из них предлагают более высокую выходную мощность, чем зарядные устройства уровня 1, и обладают дополнительными функциями, недоступными для зарядных устройств уровня 1. В целом зарядные устройства уровня 2 различаются между зарядными устройствами, не подключенными к сети, и зарядными устройствами, подключенными к сети.

Зарядные устройства уровня 2, не подключенные к сети

Зарядные устройства уровня 2, не подключенные к сети, используются как в одноквартирных домах, так и в MUD. Они могут быть разработаны для использования в помещении или на открытом воздухе (например, NEMA 3R, NEMA 6P, NEMA 4x) и обычно вырабатывают от 16 до 40 ампер выходной мощности, что может обеспечить от 14 до 35 миль электрического диапазона за час зарядки.Они выполняют ту же функцию, что и зарядные устройства 1-го уровня, однако, если для установки выделенной цепи для зарядки электромобилей требуется разрешение на электричество, чаще всего лучше установить 240-вольтовую цепь для зарядки 2-го уровня.

Зарядные устройства уровня 2, не подключенные к сети, полезны для установки в MUD или коммерческих объектах, которые питаются от субпанелей жителей или арендаторов. В этом случае вся электроэнергия, используемая зарядными устройствами, будет включена в счет за электроэнергию человека, что устраняет необходимость в отдельном счетчике зарядных устройств.Кроме того, при наличии электрической емкости несетевые зарядные устройства уровня 2 полезны для узлов сети, которым требуется более высокая мощность, чем зарядка уровня 1, но которые не имеют большого бюджета.

Зарядные устройства

уровня 2 доступны с различными выходными мощностями от 16 до 40 ампер, с несетевыми зарядными устройствами по несколько более низкой цене, чем сетевые зарядные устройства. Таким образом, если жителю / владельцу недвижимости не нужны сетевые зарядные устройства (описанные в следующем разделе), зарядных устройств, не подключенных к сети, будет достаточно.

Сетевые зарядные устройства

Хотя сетевые зарядные устройства иногда используются в частных домах, они более распространены в коммерческих / рабочих местах, где требуются платежи, или в MUD, где счет за электроэнергию распределяется между несколькими жителями. Они могут быть разработаны для использования внутри или вне помещений (например, NEMA 3R, NEMA 6P, NEMA 4x). Сетевые зарядные устройства уровня 2, как и несетевые зарядные устройства, обычно вырабатывают от 16 до 40 ампер выходной мощности, что может обеспечить от 14 до 35 миль электрического диапазона за час зарядки, а их выходная мощность иногда регулируется.Некоторые из расширенных функций включают удаленный доступ / управление через Wi-Fi или сотовую связь, контроль доступа / возможность принимать несколько форм оплаты, балансировку нагрузки между несколькими зарядными устройствами и многое другое.

Сетевые зарядные устройства

полезны для сайтов, которым необходимо отслеживать потребление электроэнергии несколькими зарядными устройствами, у которых несколько водителей используют одно зарядное устройство или требуют оплаты за использование зарядных устройств, а также для сайтов с небольшой электрической мощностью и, следовательно, для балансировки своей нагрузки.Некоторые модели сетевых зарядных устройств также могут ограничивать зарядку определенными часами, что позволяет оператору максимизировать структуру тарифов на электроэнергию по времени использования (TOU) и разрешать зарядку только тогда, когда электроэнергия самая дешевая (обычно где-то между 21:00 и 6:00). . Этот тип контроля также увеличивает вероятность участия в программах реагирования на спрос коммунальных предприятий. Следовательно, хотя сетевые зарядные устройства дороже, чем несетевые зарядные устройства, они обладают гораздо большей функциональностью и могут предоставить больше возможностей для рабочего места, коммерческого объекта или MUD.

DC Быстрая зарядка

Зарядные устройства

DC — самые мощные зарядные устройства для электромобилей на рынке. Они часто используются в качестве расширителей диапазона вдоль основных транспортных коридоров для поездок на дальние расстояния и в городских условиях для поддержки водителей без зарядки дома или водителей с очень большим пробегом. Большинство быстрых зарядных устройств постоянного тока на рынке заряжаются от 25 до 50 кВт. При нынешних скоростях зарядки они идеально подходят для мест, где человек будет проводить от 30 минут до часа, таких как рестораны, зоны отдыха и торговые центры.

Доступные в настоящее время устройства быстрой зарядки постоянного тока требуют входного напряжения 480+ вольт и 100+ ампер (50-60 кВт) и могут произвести полную зарядку электромобиля с аккумулятором на 100 миль диапазона чуть более чем за 30 минут (178 миль электрического привода). за час зарядки). Однако новые поколения устройств быстрой зарядки постоянного тока набирают обороты и могут производить 150–350 кВт мощности.

Важно отметить, что не каждая модель электромобиля поддерживает быструю зарядку постоянным током, и поэтому они не могут использоваться каждым водителем электромобиля.Кроме того, в связи с требованиями к электрической нагрузке и электропроводке для установки требуется наличие коммерческого электрика на этапе первоначального планирования. Кроме того, быстрые зарядные устройства постоянного тока имеют несколько стандартов для разъемов, тогда как существует только один общий стандарт для зарядки уровней 1 и 2 (SAE J1772). Зарядные устройства постоянного тока имеют три типа разъемов: CHAdeMO, CCS или Tesla.

Как выбрать домашнее зарядное устройство для электромобилей

1

Скорость: как быстро вы хотите заряжать?

Все зарядные устройства уровня 2 используют 240 В, но скорость зарядки зависит от силы тока зарядного устройства или электрического тока.Ваша потребность в скорости будет варьироваться в зависимости от дальности полета вашего электромобиля, ваших поездок на работу и стиля вождения: автомобиль с меньшим запасом хода, длительная поездка на работу или постоянное движение на максимальной скорости могут означать, что вы могли бы получить выгоду от более быстрой зарядки дома. Большинство электромобилей могут потреблять около 32 ампер, что увеличивает запас хода на 25 миль в час, поэтому зарядная станция на 32 ампера является хорошим выбором для многих транспортных средств. Вы также можете увеличить скорость или подготовиться к следующему автомобилю с более быстрым зарядным устройством на 50 А, которое может увеличить запас хода примерно на 37 миль за час.

2

Поставка: Сколько места на вашей электрической панели?

Как уже отмечалось, для всех зарядных устройств уровня 2 требуется электрическое соединение на 240 В. Вам нужно будет выбрать зарядное устройство с силой тока или током, которое подходит для вашего автомобиля и доступной электрической емкости вашего дома. Согласно Национальному электротехническому кодексу, электрическая цепь должна быть рассчитана на силу тока на 25% больше, чем выходная мощность вашего зарядного устройства.Например, если вы хотите купить зарядное устройство уровня 2 на 40 ампер, вам понадобится автоматический выключатель, рассчитанный как минимум на 50 ампер. (Или вы можете получить гибкое домашнее зарядное устройство, такое как ChargePoint Home Flex, которое вы можете настроить на силу тока, подходящую для вашего дома.) Проверьте свою электрическую панель, чтобы узнать, сколько ампер доступно для зарядки в вашем доме: откройте дверцу панели и посмотрите, есть ли неиспользуемый автоматический выключатель, или поговорите с электриком. Если ваша панель уже заполнена или почти заполнена, вам может потребоваться обновить электрическое обслуживание.

Краткое руководство по количеству тока, необходимого для каждой скорости зарядки
20A 16A 19 км (12 миль)
30A 24A 18 миль (29 км)
40A 32A 25 миль (40 км)
50A 40A 30 миль (48 км)
60A 48A 36 миль (58 км)
70A / 80A 50A 60 км (37 миль)

3

Расположение: Куда вы хотите поставить зарядное устройство?

По возможности установите домашнее зарядное устройство рядом с электрической панелью.Вашему электрику может потребоваться проложить кабелепровод от вашей панели к месту, где вы будете заряжать, а использование большого количества кабелепровода может оказаться дорогостоящим. Установка зарядного устройства рядом с воротами гаража может упростить зарядку нескольких автомобилей, а защищенное от атмосферных воздействий зарядное устройство, предназначенное для использования на открытом воздухе, дает вам гибкость для установки в помещении или на улице в зависимости от того, где вы хотите припарковаться. Использование контура осушителя обычно небезопасно для зарядных устройств, но ищите зарядное устройство, которое может использовать вилку NEMA 6-50 или 14-50, два распространенных типа вилок, которые электрики могут легко установить.

4

Безопасность и надежность: Насколько важны для вас безопасность и надежность?

Отдыхайте спокойно с зарядным устройством, которое было протестировано и сертифицировано национально признанной испытательной лабораторией, чтобы убедиться, что оно безопасно для использования в вашем доме и с вашим электромобилем. Сертификация ENERGY STAR показывает, что зарядное устройство потребляет минимальное количество энергии, когда не заряжается, что может помочь снизить ваши счета за электроэнергию.Портативное зарядное устройство может показаться привлекательным для путешествий, но работа с лежащими на земле кабелями и разъемами быстро устаревает, когда вы заряжаете их почти ежедневно — и это не очень безопасно, особенно если у вас бегают маленькие (животные или люди). Подумайте о приобретении настенной станции с безопасным местом для подвешивания зарядного кабеля и разъема, когда они не подключены.

Обязательно ознакомьтесь с условиями гарантии и поддержки для зарядного устройства, которое вы собираетесь приобрести, а также с репутацией компании-производителя.Обязательным условием является трехлетняя гарантия от уважаемой компании, занимающейся зарядкой, и круглосуточная поддержка по телефону без выходных, когда вам нужна зарядка, но вы не можете что-то придумать.

5

Экономия: поможет ли мне зарядное устройство сэкономить деньги?

Многие коммунальные предприятия имеют специальные тарифные планы для зарядки электромобилей, которые экономят ваши деньги, если вы заряжаете их в непиковое время (обычно в ночное время). Вы можете спросить у местного коммунального предприятия, доступен ли такой план, и получить зарядное устройство со встроенным расписанием, чтобы вам не приходилось ложиться спать до полуночи, чтобы подключиться.(Хотя многие автомобили поддерживают планирование зарядки, использование автомобиля для планирования зарядки может помешать зарядке, когда вы находитесь вдали от дома или в пути.) Местное коммунальное предприятие может также предлагать субсидии и скидки на домашнюю зарядку. Эти стимулы часто требуют, чтобы зарядные устройства были умными (с включенным Wi-Fi), чтобы соответствовать требованиям.

6

Smart Особенности: Что еще может сделать зарядное устройство?

Подобрать подходящее зарядное устройство — это одно.Собственно с его помощью можно и другое. Некоторые «умные» зарядные устройства для электромобилей с поддержкой Wi-Fi подключаются к приложению, чтобы управлять зарядкой, устанавливать расписание и получать удобные напоминания о зарядке. Если вы фанат данных или просто хотите знать, сколько именно вы тратите на зарядку, приложение также может помочь вам отслеживать расходы на зарядку и пробег в одном месте без каких-либо дополнительных усилий. Если у вас есть домашнее зарядное устройство ChargePoint, приложение ChargePoint показывает вашу общедоступную активность ChargePoint вместе с домашней зарядкой.Умные зарядные устройства также автоматически обновляются новыми функциями.

7

Стоимость: Сколько это будет стоить?

Как и все остальное, вы получаете то, за что платите. Среднее домашнее зарядное устройство для электромобиля стоит около 500-900 долларов, что примерно вдвое меньше, чем большинство водителей платят за бензин в год. Скорее всего, вы будете хранить домашнее зарядное устройство в течение многих лет, беря его с собой и (если возможно) настраивая силу тока для следующего автомобиля.Ваши вложения в электромобиль стоит защитить с помощью умного зарядного устройства, прошедшего испытания на безопасность и имеющего гарантию. Более дешевые зарядные устройства могут не проходить проверку на безопасность и могут не иметь полезных функций, таких как возможность устанавливать напоминания и планировать зарядку. Выберите зарядное устройство, которое не только защитит ваш автомобиль и ваш дом, но и поможет вам сэкономить деньги на зарядке с помощью плановой зарядки и возможных скидок, для которых может потребоваться сертификат безопасности и «умная» зарядка.

8

Теперь, когда вы знаете, что нужно учитывать при покупке домашнего зарядного устройства, пора взглянуть на ваши варианты.ChargePoint Home Flex может заряжать до 50 ампер, что увеличивает запас хода до 37 миль в час, поддерживает электрическую мощность вашего дома, может быть установлен в помещении или на улице, внесен в список UL для обеспечения безопасности, включает интеллектуальные функции, такие как зарядка по расписанию, и является доступным по цене. инвестиции.

Подробнее о Flex

Быстрые зарядные устройства для электромобилей

представляют некоторые упущенные проблемы защиты цепей

Первые серийные электромобили (электромобили) появились в конце 2010 года с выпуском Nissan Leaf, который по-прежнему остается самым продаваемым в мире автомобилем с возможностью движения по шоссе. -электромобиль.В США продажи электромобилей набирают обороты: в 2017 году продажи выросли на 25% по сравнению с 2016 годом 1 . Однако электромобили по-прежнему уступают примерно 300 к 1 транспортным средствам с двигателями внутреннего сгорания. Маловероятно, что электромобили станут полностью популярными до тех пор, пока не появится общенациональная сеть зарядных станций, которые смогут заряжать автомобиль достаточно быстро, чтобы вернуть путешественников в путь за считанные минуты, а не часы.

Инфраструктура зарядки, необходимая для того, чтобы эти автомобили оставались на дороге, также начала неуклонно расти.Маркетологи Navigant Research прогнозируют, что глобальные продажи устройств быстрой зарядки постоянного тока вырастут с 19 000 единиц в 2017 году до более чем 70 000 в 2026 году 2 . Системы зарядки постоянным током обеспечивают гораздо более быструю зарядку, чем системы зарядки переменного тока, которые по своей природе ограничены по мощности в зависимости от возможностей зарядного устройства, установленного внутри транспортного средства (т. Е. Бортового зарядного устройства).

Зарядные станции для электромобилей, известные в Северной Америке как оборудование для снабжения электромобилей (EVSE) или просто как зарядные станции, зарядные посты или зарядные станции в других местах, должны быть спроектированы так, чтобы выдерживать годы суровых условий окружающей среды, таких как жара, холод, дождь. , снег и даже эффекты от ударов молнии поблизости.Кроме того, они должны обеспечивать безопасность водителей электромобилей, которые держат в руках разъем, способный выдерживать напряжение 1000 В постоянного тока или более. Это означает, что зарядная станция должна быть защищена от сверхтоков, перенапряжений, перегрева и замыканий на землю 3 . Более того, индустрия зарядной инфраструктуры пытается понять это новое приложение, поэтому существует несколько подходов к проектированию и нет единого набора стандартов, которыми они руководствовались бы. В этой статье представлен обзор механизмов, доступных для защиты пользователей, транспортных средств, населения и устройств быстрой зарядки постоянного тока.

Введение в системы быстрой зарядки постоянным током

Чтобы обеспечить контекст для обсуждения систем быстрой зарядки постоянным током, может быть полезно описать различные подходы к зарядке переменным током, которые им предшествовали.

Первый подход, обычно предназначенный для использования в жилых помещениях, обеспечивает однофазную зарядку 120 В переменного тока (США) / 230 В переменного тока (ЕС) с выходной мощностью от 1,4 кВт до 1,9 кВт. В зависимости от емкости аккумулятора автомобиля и уровня его разряда полная перезарядка может занять от 12 до 18 часов.Второй подход, часто используемый на общественных парковках, обеспечивает одно- или трехфазную зарядку 240 В переменного тока (США) / 400 В переменного тока (ЕС) с выходной мощностью от 4 кВт до 19,2 кВт. Время зарядки составляет от двух до шести часов. Третий подход, поддерживаемый несколькими европейскими производителями автомобилей, предусматривает быструю зарядку трехфазным переменным током на уровнях мощности до 43 кВт. Все три подхода используют бортовое зарядное устройство автомобиля (преобразователь переменного тока в постоянный) для зарядки аккумуляторной батареи автомобиля.

В отличие от этих подходов, системы быстрой зарядки постоянного тока предназначены для обхода бортовой системы зарядки транспортного средства и прямого подключения к его аккумуляторной системе.Зарядные устройства постоянного тока могут обеспечивать до 400 кВт выходной мощности постоянного тока (обычно от 400 В до 1000 В постоянного тока), преобразуя трехфазную мощность переменного тока, поступающую из электрической сети, в мощность постоянного тока с использованием высокоэффективных силовых полупроводниковых устройств. Эта высокая выходная мощность позволяет заряжать полностью разряженные аккумуляторы большинства автомобилей до 80% от их полного заряда за 30 минут или меньше. Разработчики зарядных систем по всему миру стремятся еще больше сократить время зарядки, чтобы зарядка занимала примерно столько же времени, сколько заправка бензобака традиционного автомобиля.

Изолирующий трансформатор внутри EVSE отделяет мощность переменного тока на входной стороне от выходной мощности постоянного тока. После подключения разъема EVSE к транспортному средству EVSE выполняет автоматическую проверку безопасности изоляции цепи и проверяет возможные короткие замыкания между зарядным устройством и контакторами транспортного средства. Как только энергия начинает поступать в аккумулятор, если в транспортном средстве возникает неисправность, линии связи в разъеме сигнализируют EVSE о размыкании контакта для прекращения вывода постоянного тока и отображении ошибки на дисплее.

В EVSE питание проходит несколько ступеней преобразования, каждая из которых требует какой-либо защиты цепи:

  • Вход переменного тока: для этого требуется защита от перегрузки по току и перенапряжения, обнаружение остаточного тока или замыкания на землю, а также одна или несколько ступеней фильтрация электромагнитных помех (EMI).

  • Выпрямление переменного тока в постоянный: этот каскад преобразует положительные и отрицательные циклы входной мощности переменного тока только в положительное напряжение.

  • Коррекция коэффициента мощности (PFC): иногда включаемая в каскад выпрямителя, этот каскад компенсирует компоненты, накапливающие энергию (конденсаторы, катушки индуктивности и т. Д.), Используемые в преобразователе мощности, чтобы минимизировать количество реактивной мощности (или не- полезная мощность) в максимально возможной степени.

  • Преобразование постоянного тока в постоянный: на этом каскаде используются высокоэффективные полупроводники для эффективного регулирования напряжения постоянного тока до оптимальных значений для зарядки.

  • Выход постоянного тока: Эта ступень требует защиты от перегрузки по току, перенапряжения, защиты от замыканий на землю и фильтрации.

  • Защита от перегрузки по току для быстрого зарядного устройства постоянного тока.

Перегрузка по току — это любой ток, который превышает номинальный ток проводов, оборудования или устройств в условиях их использования. Термин «перегрузка по току» включает как перегрузки, так и короткие замыкания. В США требования к защите от сверхтоков для зарядных станций электромобилей основаны на требованиях стандартов NEC ® и UL. В большинстве других частей мира они продиктованы серией стандартов IEC 61851 или производными от этих стандартов.

Все электрические системы, включая зарядные устройства постоянного тока, в конечном итоге будут испытывать некоторый уровень перегрузки по току. Если не устранить вовремя, даже умеренные сверхтоки могут быстро привести к перегреву компонентов системы, повреждению изоляции, проводов и оборудования; большие сверхтоки могут даже расплавить проводники и испарить изоляцию. Очень высокие сверхтоки создают магнитные силы, способные изгибать и скручивать шины, а неконтролируемые сверхтоки могут повредить зарядные устройства, что приведет к пожарам, ядовитым испарениям и взрывам, которые могут ранить или убить любого, кто находится поблизости.

Защита от перегрузки по току на стороне входа переменного тока
Промышленные предохранители (рис. 1) являются рекомендуемым устройством защиты от перегрузки по току для стороны входа переменного тока зарядного устройства. Чтобы выбрать правильные предохранители для этого применения, необходимо принять во внимание множество факторов.

Номинальный ток — Переменный ток (выраженный в амперах), который предохранитель может выдерживать непрерывно при определенных условиях. К номинальному току предохранителя применяется ряд факторов, снижающих номинальные характеристики, в зависимости от температуры окружающей среды, ожидаемого срока службы и других факторов.Как правило, эти коэффициенты снижения номинальных характеристик полезны при аналитическом определении силы тока, который предохранитель может выдерживать без ложного срабатывания.

Номинальное напряжение — Максимальное напряжение переменного тока, при котором предохранитель рассчитан на работу. Номинальное напряжение предохранителя должно быть равным или превышать напряжение цепи, в которой будут установлены предохранители.

Номинальное значение прерывания — Наивысший доступный симметричный среднеквадратичный переменный ток, который требуется предохранителем для безопасного отключения при номинальном напряжении в стандартных условиях испытаний.Предохранитель должен отключать все сверхтоки до его отключающей способности без повреждений. Доступны стандартные силовые предохранители с номинальным током отключения от 10 000 до 300 000 ампер.

Тип защиты и характеристики предохранителя — Время-токовые характеристики определяют, насколько быстро предохранитель реагирует на перегрузки по току. Все предохранители обладают обратнозависимыми временными характеристиками; то есть время размыкания предохранителя уменьшается с увеличением величины перегрузки по току. При правильном выборе предохранители обеспечивают защиту компонентов системы как от перегрузки, так и от короткого замыкания.

Ограничение тока — Токоограничивающий предохранитель предназначен для размыкания и устранения неисправности менее чем за 180 электрических градусов или, другими словами, в течение первой половины электрического цикла (0,00833 секунды).

Физический размер — Размер предохранителя, предназначенного для конкретного применения, является еще одним важным фактором при выборе. Несмотря на то, что почти всегда предпочтительнее сокращение требований к пространству, где это возможно, необходимо учитывать и другие соображения: имеет ли наименьший предохранитель наиболее желательные характеристики для EVSE? Предоставляет ли EVSE достаточно места для обслуживания? Хорошо ли согласуются ли рассматриваемые небольшие предохранители с другими устройствами защиты от сверхтоков EVSE?

Индикация — Предохранители с функциями индикации предлагают простой способ определить, какой предохранитель в системе сработал, что сокращает время простоя, повышает безопасность и помогает уменьшить головные боли и задержки, связанные с ведением домашнего хозяйства или устранением неисправностей.

Максимальная токовая защита выходной стороны

Учитывая высокий уровень мощности постоянного тока, подаваемой на аккумулятор транспортного средства, предел погрешности для правильной зарядки очень мал. Наиболее часто упускаемый из виду аспект этой защиты от перегрузки по току — это защита дорогостоящих силовых полупроводниковых устройств, таких как полевые МОП-транзисторы, тиристоры и IGBT, используемые в преобразователях мощности (инверторы, выпрямители и т. Д.). Эти устройства обычно изготавливаются из кремния или карбида кремния и обладают низкой термостойкостью.На них могут сильно повлиять электрические, механические, термические нагрузки и воздействия окружающей среды, которым они подвергаются во время работы, что может привести к их преждевременному выходу из строя. Когда эти силовые полупроводники выходят из строя, они могут вызвать катастрофические условия, такие как разрыв корпуса, пожар и взрыв.

Рис. 2. Наиболее распространенными типами быстродействующих предохранителей для зарядных станций постоянного тока электромобилей являются (l-r) круглый корпус, квадратный корпус и цилиндрический или наконечник.

Быстродействующие предохранители (также известные как предохранители выпрямителя, сверхбыстрые предохранители, сверхбыстрые предохранители и полупроводниковые предохранители) обеспечивают уровень защиты, который требуется этим чувствительным силовым полупроводниковым приборам, чтобы выдерживать эти суровые условия.Они классифицируются по размерам, монтажу и происхождению. Наиболее распространенными стилями являются традиционный для Северной Америки круглый корпус, квадратный корпус и цилиндрический корпус или наконечник (рис. 2). Быстродействующие предохранители обладают характеристиками короткого замыкания, необходимыми для защиты полупроводниковых устройств, включая пропускание малой энергии (l2t), низкие пиковые токи (lPEAK), низкое напряжение дуги и высокое рассеивание тепла. Они содержат один или несколько чувствительных к току элементов из серебра, посеребренной меди, меди и т. Д., Каждый из которых имеет уменьшенное поперечное сечение в одной или нескольких точках, что обеспечивает измеряемое сопротивление в каждом элементе.Сопротивление каждого элемента и количество элементов, используемых в каждом предохранителе, обычно определяют номинальный ток предохранителя.

Защита устройств преобразования мощности
Рисунок 3. Типовая схема трехфазного преобразователя мощности.

На рисунке 3 представлена ​​типичная система быстрого зарядного устройства постоянного тока, состоящая из нескольких строительных блоков, включая, помимо прочего, входную защиту, входную фильтрацию, выпрямитель, коррекцию коэффициента мощности, шину постоянного или промежуточного звена, преобразователь постоянного / постоянного тока и выход. защита.

Несмотря на то, что требования к защите различаются в зависимости от местоположения, основное назначение предохранителей в этой цепи состоит в том, чтобы обеспечить постоянное непрерывное действие номинального тока нагрузки и любого допустимого тока перегрузки. В то же время, предохранители выбираются так, чтобы исключить любую неисправность, связанную с перегрузкой по току, вызванную перегрузкой или коротким замыканием, с минимальной пропускаемой энергией, чтобы защитить силовые полупроводниковые устройства, подключенные к цепи.

Рисунок 4. Расположение быстродействующих предохранителей в выпрямителях.

Расположение быстродействующего предохранителя в цепи выпрямителя зависит от размера системы при рассмотрении номинальной мощности. На рисунке 4 показано типичное расположение быстродействующих предохранителей в цепи выпрямителя.

Для устройств с меньшей номинальной мощностью быстродействующие предохранители обычно находятся только на стороне сети переменного тока в схеме с одним предохранителем на фазу. В более крупных энергосистемах быстродействующие предохранители обычно располагаются как на стороне линии переменного тока, так и индивидуально последовательно с каждым силовым полупроводниковым устройством на каждом плече выпрямительной цепи.

Быстродействующие предохранители используются в цепях инвертора для предотвращения состояний короткого замыкания между линиями, которые могут возникать разными способами, при этом пропуски зажигания транзисторов являются одной из основных причин. В зависимости от номинальной мощности цепи инвертора расположение и количество быстродействующих предохранителей, используемых в цепи, различаются. Для приложений с низким энергопотреблением быстродействующие предохранители обычно устанавливаются только на шину постоянного тока (по одному на положительный и отрицательный полюсы). Для цепей инвертора большей мощности можно использовать предохранители как на стороне шины постоянного тока, так и индивидуально ближе (последовательно) к каждому транзистору.

Защита от перенапряжения при быстрой зарядке постоянного тока

Перед подачей питания на аккумулятор электромобиля большинство станций быстрой зарядки постоянного тока обмениваются данными с автомобилем, чтобы определить, сколько заряда осталось в аккумуляторе, чтобы определить, сколько энергии необходимо обеспечить. Блоки управления связываются между электромобилем и зарядным устройством, а также с водителем через дисплей на зарядном устройстве.

Поскольку зарядные устройства обычно располагаются на открытом воздухе, они подвержены скачкам напряжения, от которых они должны быть защищены, чтобы гарантировать правильную работу.Электрические скачки являются результатом внезапного выброса энергии, которая была ранее сохранена или вызвана другими способами, такими как тяжелые индуктивные нагрузки или удары молнии. Эта энергия передается в EVSE по линиям электропитания. Повторяющиеся переходные процессы часто вызваны переключением реактивных компонентов цепи. С другой стороны, случайные переходные процессы часто вызываются молнией и электростатическим разрядом, которые обычно возникают непредсказуемо и могут потребовать тщательного мониторинга для точного измерения, особенно если они индуцируются на уровне печатной платы.

Наиболее подходящий тип подавителя переходных процессов зависит от предполагаемого применения; некоторые приложения требуют использования как первичных, так и вторичных устройств защиты. Функция подавителя переходных процессов заключается в ограничении максимального мгновенного напряжения, которое может возникнуть на защищаемых нагрузках. Выбор зависит от различных факторов, но в конечном итоге сводится к компромиссу между стоимостью подавителя и необходимым уровнем защиты.

Рис. 5. Варисторы, подобные этому варистору серии iTMOV от Littelfuse, имеют встроенный термически активируемый элемент, предназначенный для размыкания в случае перегрева.

Когда он используется для защиты чувствительных цепей, период времени, который требуется подавителю переходных процессов для начала работы, чрезвычайно важен. Если подавитель действует медленно и в системе появляется быстрорастущий переходной всплеск, напряжение на защищаемой нагрузке может вырасти до опасного уровня до того, как сработает подавление. В системе зарядки постоянного тока используется металлооксидный варистор (MOV) или высокомощный диод подавителя переходных процессов (TVS) обычно является лучшим типом устройства подавления. Также можно использовать другие типы защитных устройств, такие как газоразрядные трубки, защитные тиристоры и многослойные варисторы (MLV) или комбинации устройств подавления.

Варисторы (рисунок 5) — это зависящие от напряжения нелинейные устройства с электрическими характеристиками, аналогичными встречным стабилитронам. Они состоят в основном из оксида цинка с небольшими добавками оксидов других металлов, таких как висмут, кобальт, марганец и другие. MOV спекается во время производства в керамический полупроводник с кристаллической микроструктурой, которая позволяет ему рассеивать очень высокие уровни переходной энергии по всей массе устройства. Поэтому MOV обычно используются для подавления переходных процессов, вызванных молнией, и других переходных процессов с высокой энергией.

TVS-диоды используются для защиты полупроводниковых компонентов от высоковольтных переходных процессов. Их p-n-переходы имеют большую площадь поперечного сечения, чем у обычных диодов, что позволяет им проводить большие токи на землю без повреждений.

Защита от замыкания на землю
Рис. 6. Реле замыкания на землю постоянного тока, такие как Littelfuse SE-601, обнаруживают ток утечки постоянного тока и указывают на неисправную шину. Для устройств быстрой зарядки постоянного тока

требуется защита от замыканий на землю как на входе, так и на выходе.Замыкание на землю — это случайный контакт между проводником под напряжением и землей или корпусом оборудования. Обратный путь тока короткого замыкания проходит через систему заземления и любое оборудование или людей, которые становятся частью этой системы. Замыкания на землю часто являются результатом пробоя изоляции и представляют собой тип электрического повреждения, которое чаще всего является источником поражения электрическим током. Влажная и пыльная среда, например вокруг зарядной станции на открытом воздухе, требует особой тщательности при проектировании и обслуживании, чтобы свести к минимуму риск замыкания на землю.

Рисунок 7. Трансформаторы тока часто используются вместе с устройствами защиты от замыканий на землю.

Изолирующий трансформатор внутри зарядного устройства отделяет входную мощность переменного тока от выходной мощности постоянного тока; следовательно, выходная сторона не заземлена. Вместо этого на выходной стороне установлен монитор замыкания на землю, который обнаруживает любую утечку на землю и немедленно отключает питание. Монитор замыкания на землю используется путем установки модуля заземления между двумя шинами для установления нейтральной точки.Реле защиты от замыканий на землю (рис. 6) использует эту нейтральную точку в качестве опорной для обнаружения замыканий на землю низкого уровня.

Хотя существует много типов устройств защиты от замыканий на землю для использования в заземленных или незаземленных системах и в различных приложениях, их обычно можно упростить до нескольких различных методов работы. Трансформаторы тока (ТТ) обычно используются вместе с устройством защиты от замыканий на землю на основе переменного тока. CT (Рисунок 7) обнаруживает ток утечки, протекающий за пределами предполагаемых проводников; если он выходит за пределы допусков, установленных на защитном устройстве, устройство сработает, чтобы предотвратить повреждение системы.

Стандарт IEC 60364-7-722 требует, чтобы каждая точка подключения на входе зарядной станции была оборудована устройством защитного отключения (УЗО) с номинальным остаточным током ≤30 мА. Сторона выхода нуждается в защите в случае постоянного тока повреждения ≥6 мА. Эту защиту можно обеспечить с помощью УЗО типа B, установленного отдельно с каждой стороны установки.

Заключение

Чтобы выдерживать суровые условия окружающей среды в долгосрочной перспективе, обеспечивая безопасность водителей электромобилей и населения, зарядные станции постоянного тока завтрашнего дня должны быть защищены от сверхтоков, перенапряжений, перегрева и замыканий на землю.Даже по мере развития новых конструкций этих станций потребность в защите останется постоянной. Чтобы не отставать от новых подходов к защите, проектировщики должны постоянно переобучаться в вариантах защиты цепей.

Эта статья написана Тимом Пателем, менеджером по развитию бизнеса в области зарядки электромобилей компании Littelfuse, Inc. (Чикаго, Иллинойс). Для получения дополнительной информации посетите здесь .

Ссылки

  1. https://arstechnica.com/cars/2018/01/2017-was-the-best-year-ever-for-electric-vehicle-sales-in-the-us/
  2. https: // www.navigantresearch.com/news-and-views/global-sales-of-dc-fast-chargers-for-electric-vehicles-are-expected-to-reach-70000-in-2026
  3. «Замыкания на землю» известны как «Замыкания на землю» в некоторых странах.

Tech Briefs Magazine

Эта статья впервые появилась в апрельском выпуске журнала Tech Briefs за апрель 2019 года.

Читать статьи в этом выпуске здесь.

Другие статьи из архивов читайте здесь.

ПОДПИСАТЬСЯ

Электрическая схема

Станция быстрой зарядки 50 кВт

Подробности инструкции

Станция быстрой зарядки 50 кВт

Детали

ДОБАВИТЬ

ABB

Стоимость станции быстрой зарядки 50 кВт выставляется посекундно и основывается на общем времени подключения к станции.

В , Квебек , с 1 февраля 2020 года быстрая зарядка предлагается по цене 12,08 долларов в час (включая налоги) и оплачивается посекундно. Счет рассчитывается на основе общего времени подключения к станции, а не продолжительности заряда или общей передачи энергии.

В Ontario быстрая зарядка предлагается по цене 17 долларов в час и оплачивается посекундно. Счет рассчитывается на основе общего времени подключения к станции, а не продолжительности заряда или общей передачи энергии.

Чтобы узнать, какая цена действует на каждой зарядной станции, вы можете обратиться к мобильному приложению Electric Circuit или на веб-сайте в разделе «Найти станцию».

Чтобы иметь доступ к зарядной станции на стоянке, которая взимает плату, необходимо оплатить плату за парковку, поскольку она не включена в стоимость зарядки.

ПРЕДУПРЕЖДЕНИЕ: Плата в размере 5 долларов будет взиматься с вашей учетной записи Electric Circuit за все запросы на активацию зарядной станции через справочную линию CAA-Québec.Это будет в дополнение к стоимости вашей оплаты. Чтобы избежать этой платы, напоминаем вам, что мобильное приложение или ваша карта Electric Circuit всегда доступны, когда они вам понадобятся.

Инструкции

ДОБАВЛЯТЬ ABB

Используйте его за 5 шагов:

1

Держите вашу электрическую плату перед сканером.Инструкции будут отображаться на экране. После завершения аутентификации дверь откроется.

2

Подключите совместимый зарядный разъем к вашему автомобилю. * * Разъем CHAdeMO: доступен для азиатских электромобилей и Tesla (требуется адаптер). * Комбинированный разъем SAE: доступен на электромобилях для Северной Америки и Европы.

ВАЖНО: Не нажимайте желтую кнопку при подключении разъема

.

3

Станция инициирует проверку безопасности перед началом зарядки.Когда зеленая кнопка СТАРТ начнет мигать, нажмите эту кнопку. Затем зарядка начнется автоматически.

4

По окончании зарядки нажмите кнопку СТОП.

5

Снимите разъем с автомобиля, оберните кабель вокруг держателя кабеля и верните разъем в зарядную станцию.Чтобы разблокировать разъем CHAdeMO, нажмите желтую кнопку.

Используйте его за 4 шага:

1

1) Выключите электромобиль. На экране приветствия начните с выбора разъема, совместимого с вашим электромобилем.

1

2) Поднимите разъем и подключите его к электромобилю.

1

3) Подождите, пока зарядная станция установит связь с вашим электромобилем.

1

4) Подождите, пока зарядная станция установит связь с вашим электромобилем.

2

1) Следуйте инструкциям на экране, чтобы войти в систему с помощью мобильного приложения или карты Electric Circuit.

2

2) Если вы используете приложение «Электрическая цепь». На сенсорном экране нажмите «Приложение». Следуйте инструкциям в мобильном приложении и выберите терминал CECA-XXXXX, затем нажмите «Начать сеанс».

3

1) Если вы используете плату Electric Circuit, на сенсорном экране нажмите «Пуск».Если вы используете приложение «Электрическая схема». Следуйте инструкциям в приложении и начните перезарядку. После этого начнется зарядка.

3

2) Станция готовится, а затем начинает сеанс зарядки. На экране зарядной станции будет отображаться ход зарядки.

4

1) Если вы хотите остановить зарядку, нажмите кнопку «Стоп» на экране. Зарядка автоматически прекратится, когда электромобиль покажет, что его аккумулятор полностью заряжен.

4

2) Предупреждение: Кнопка аварийной остановки Не используйте кнопку аварийной остановки для остановки зарядки, если нет непосредственной опасности.

Станции и цены

Все модели электромобилей, доступные в Северной Америке, оснащены розеткой, совместимой с зарядными станциями уровня 2. На станции быстрой зарядки мощностью 50 кВт можно заряжать только полностью электрические автомобили с разъемом CHAdeMO или Combo.В таблице вариантов зарядки приведены типы зарядки, доступные для каждой модели электромобилей, продаваемых в Канаде.

связанные страницы

Станция быстрой зарядки 100 кВт Станция уровня 2 Список поддерживаемых автомобилей Зарядное устройство

— обзор

Простое недорогое зарядное устройство Li-Ion

Зарядное устройство, запрограммированное на 300 мА в режиме постоянного тока с функцией контроля тока заряда, показано на рисунке 210.1. PNP необходим для источника зарядного тока, а резистор R1 используется для программирования максимального зарядного тока. Выводы I SENSE и BAT используются для контроля тока заряда и напряжения соответственно, а вывод DRIVE управляет базой PNP. Обратите внимание, что не требуется внешний резистор для измерения тока или диод для блокировки обратного тока. Для большинства других зарядных устройств требуется блокирующий диод, подключенный последовательно к источнику питания, чтобы предотвратить разряд батареи, если вход источника питания без питания станет низким импедансом.Когда источник питания размыкается или замыкается на массу, зарядное устройство отключается, и от аккумулятора к зарядному устройству течет только несколько наноампер тока утечки. Эта функция продлевает срок службы батареи, особенно если портативное устройство выключено в течение длительного времени. Напряжение питания может находиться в диапазоне от 4,75 В до 8 В, но рассеиваемая мощность PNP может стать чрезмерной около верхнего предела, особенно при более высоких уровнях зарядного тока. Рассеивание мощности PNP потребует надлежащего теплоотвода. Требования к теплоотводу см. В паспорте производителя PNP.

Рисунок 210.1. Недорогое литий-ионное зарядное устройство, рассчитанное на 300 мА

Когда напряжение питания приближается к нижнему пределу, напряжение насыщения PNP становится важным. В этом случае может потребоваться транзистор CESAT с низким V , такой как показанный на рисунках, чтобы предотвратить сильное насыщение PNP и требование чрезмерного базового тока от вывода DRIVE.

Для поддержания хорошей стабильности переменного тока в режиме постоянного напряжения на батарее требуется конденсатор для компенсации индуктивности в проводке к батарее.Этот конденсатор (C2) может иметь диапазон от 4,7 мкФ до 100 мкФ, а его ESR может находиться в диапазоне от почти нуля до нескольких Ом в зависимости от компенсируемой индуктивности. Как правило, лучше всего подходит для компенсации емкость от 4,7 мкФ до 22 мкФ и ESR от 0,5 до 1,5 Ом. В режиме постоянного тока хорошая стабильность переменного тока достигается за счет поддержания емкости на выводе PROG на уровне менее 25 пФ. Более высокая емкостная нагрузка, например, от входного фильтра нижних частот к АЦП, может быть легко допущена путем изоляции емкости сопротивлением не менее 1 кОм.

Если входной источник питания подключен к «горячему» подключению, следует избегать использования керамического входного конденсатора (C1), поскольку его высокая добротность может вызвать скачки напряжения в два раза превышающие уровень постоянного тока и, возможно, повредить зарядное устройство. Если используется конденсатор с таким низким ESR, добавление сопротивления от 1 до 2 Ом последовательно с конденсатором C1 будет достаточно для гашения этих переходных процессов.

Вывод программирования (PROG) выполняет несколько функций. Он используется для установки тока в режиме постоянного тока, контроля зарядного тока и ручного отключения зарядного устройства.В режиме постоянного тока LTC1734 поддерживает вывод PROG на уровне 1,5 В. Значение программного резистора определяется делением 1,5 В на требуемый ток R1 в режиме постоянного тока. Зарядный ток всегда в 1000 раз больше тока через R1 и, следовательно, пропорционален напряжению на выводе PROG. Напряжение на выводе PROG падает ниже 1,5 В при входе в режим постоянного напряжения и падении зарядного тока. При 1,5 В зарядный ток составляет 300 мА, а при 0,15 В — 1000 · (0.15/5100) или около 30 мА. Если на заземленной стороне R1 напряжение превышает 2,15 В или разрешается оставаться на плаву, зарядное устройство переходит в режим ручного отключения и зарядка прекращается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *