Лабораторный бп схема: Лабораторный блок питания с регулировкой тока и напряжения

Содержание

Схема профессионального лабораторного БП | 2 Схемы

Очень популярная схема блока питания для лабораторного источника питания, который может обеспечить питание 0-30 В вызвала такой интерес, что несколько китайских поставщиков выпустили набор со всеми деталями, включая печатную плату, по вполне привлекательной цене около 10 долларов. Вот оригинальная схема этого регулируемого БП:

Схема конечно хороша, но слишком устарела, поэтому проведена её модернизация: добавлен ЖК-дисплей, изменен механизм настройки тока, использующий дисплей, так что можно установить режим ограничения тока перед подключением проверяемого устройства. Собраны сразу два стабилизатора чтоб при надобности соединить их параллельно, чтобы получить больший ток, или последовательно, чтобы получить регулируемое двойное напряжение +0-30 В / масса / -0-30 В или напряжение 0-60 В. Также разработана простая система двойного слежения, когда один источник контролирует другой.

Список деталей схемы поставляемый с комплектом, приведен в конце статьи, со всеми изменениями и дополнениями. Из этого списка не будем использовать D7, а D8 — стабилитрон 1N4733A 5V1, требующий смещения 60 мА. Заменим этот тип стабилитроном BZX55C5V6 или BZX79C5V6, для обоих требуется ток смещения всего 5 мА. ОУ U1 установит опорное напряжение в два раза больше напряжения стабилитрона — 11,2 В. При необходимом смещении 5 мА для D8, R4 должен быть 1K, а не 4K7.

Поскольку надо ограничить максимальный ток до 1 или 1,5 А, необходимо пересчитать R18. Этот резистор в любом случае имел неправильное значение (56К) в оригинальной конструкции.

Также необходимо поставить цифровой дисплей напряжения и тока. Их диапазон рабочего напряжения где-то между 3,5 и 30 В постоянного тока. Обратите внимание, что эти дисплеи должны быть гальванически развязаны от источника питания во избежание лишнего шума. Альтернативой является хорошая фильтрация в цепи напряжения питания, чтобы избежать этого дела.

Эти дисплеи способны работать с большими токами — до 10 А с внутренним шунтом.

Красный провод подключен к выходу блока питания и является входом для измерения напряжения. Это устройство имеет внутренний шунтирующий резистор, который подключен между желтым и черным проводом. Чтобы было проще, подключим черный провод к выходу минуса блока питания (4), а желтый провод станет новым выходом минуса.

На задней панели индикатора есть два подстроечных резистора, которые можно использовать для регулировки (подстройки) напряжения и тока. Чтобы точно установить напряжение питания блока питания, используйте эталонный прибор.

  1. Есть еще два дополнения. Одним из них является добавление светодиода, показывающего что устройство имеет основное питание. Этот зеленый светодиод подключен к 12 В через резистор 4K7 к земле.
  2. Вторым дополнением является еще один конденсатор 3300 мкФ / 50 В (C12), параллельный C1, чтобы обеспечить большую стабильность исходного питания и уменьшить пульсации при более высоких токах.

Конечно использован большой радиатор, на него размещена LM7812, Q2 и Q4. Существует достаточно места для добавления другого выходного транзистора, параллельного Q4, если надо увеличить ток. С этим радиатором не понадобится вентилятор (с токами ниже 1,5 А).

Можете использовать трансформаторы разных размеров и использовать их для нескольких стабилизаторов (при двухполярной сборке БП).

После всех модификаций и экспериментов с источником питания, возникла необходимость добавить способ отображения настройки ограничения тока, поэтому я добавлена небольшая цепь к БП, чтобы можно было установить постоянный ток / ограничение тока.

Вот улучшенная схема:


А это оригинальный список деталей, поставляемых с комплектом, но с изменениями и дополнениями:

R1 = 2K2 1W Заменено на версию 2W
R2 = 82R Заменен на версию 2W
R3 = 220R Не требуется (заменен на LM337)
R4 = 4K7 Значение изменено на 1K
R5, R6, R13, R20, R21 = 10K R13 не требуется
R7 = 0,47R 5 Вт
R8, R11 = 27K
R9, R19 = 2K2
R10 = 270K Значение изменено на 1K
R12, R18 = 56K R18 см. Текст
R14 = 1K5 Не требуется
R15, R16 = 1K
R17 = 33R Значение изменено на 68R
R22 = 3K9 Значение изменено на 1K5
RV1 = 100K 10 подстроечник заменен на 5K 10-ти оборотный подстроечник
P1, P2 = 10K линейный P1 заменен на 10-ти оборотный подстроечник

C1 = 3300 мкФ / 50 В
C2, C3 47 мкФ / 50 В

C4 = 100 нФ
C5 = 220 нФ
C6 = 100 пФ
C7 = 10 мкФ / 50 В
C8 = 330 пФ
C9 = 100 пФ

D1, D2, D3, D4 = 1N5408
D5, D6, D9, D10 = 1N4148
D7, D8 = 1N4733A, стабилитрон 5V1, D8 = BCX55C5V6, D7 не требуется
D11 = 1N4004

Q1 = 2SD9014
Q2 = 2SD882
Q3 = 2SD9015
Q4 = 2SD1047 Не требуется

U1, U2, U3 = TL081 Заменяется на 3x TLE2141
U4 = LM7824 Заменено на LM7812
D12 = красный светодиод

Дополнительные детали:

R23, R27 = 4K7
R24 = 1K
R25 = 240R
R26 = 10R
RV2 = 2K
RV3 = 200K или 250K (необязательно)
U5 = TLE 2141
U6 = LM337
C 11 = 47 мкФ / 25 В
C12 = 3300 мкФ / 50 В
C13 = 22 мкФ / 10 В
D13 = 10 В 1 Вт
D14 = зеленый светодиод
D15 = красный светодиод
Индикатор вольт / ампер
S1 двухпозиционный переключатель
S2 кнопка

Испытания блока питания

Как оказалось, большая часть измеренного шума исходит от дисплея V/A метр.

Импульсный регулятор, который стоит в этом дисплее, подает много шума обратно в источник питания. Для решения этих проблем вернемся к использованию LM7824, который был частью набора, и применим его вместо D10, стабилитрона 10 В, который использовался для создания питания для U3, U5 и Q3.

Чтобы противодействовать просачиванию шума с дисплея, используем D10 для уменьшения питания и для питания дисплея.

Также переместим токовый шунт дисплея с выходной клеммы за пределы токовой петли обратной связи. Это уменьшило еще немного шума и сделало настройку более точной. Поскольку шунт находился внутри контура обратной связи, напряжение на шунте при более высоких токах создавало ошибку. Небольшое, потому что шунт всего 25 мОм, но все же создавало.

Чтобы максимально устранить большие токи на печатной плате, подключим коллекторы Q4 и Q3 непосредственно к точке, где объединяются катоды D1 и D2 и конденсаторы фильтра C1 и C2.

Ещё установим дополнительные подстроечники, чтобы установить максимальное выходное напряжение (RV2) и максимальный выходной ток (RV3). Важно установить максимальный предел тока. Конденсатор C16 используется тоже для устранения шума.

Поскольку светодиоды D14 и D15 теперь подключены к шинам 24 В, их резисторы ограничения тока (R27 и R23) должны удвоиться в значении.

Наконец, выходной конденсатор C7 был увеличен с 10 мкФ до 470 мкФ. Вот окончательная схема с последними изменениями:

Время нарастания питания теперь составляет около 5 мсек, а время спада составляет чуть более 2 мсек при максимальном напряжении и токе, измеренных с помощью динамической электронной нагрузки.

Со всеми этими модификациями выходной шум теперь составляет 18 мВ по всему спектру напряжения и тока и, что более важно, остается на этом уровне в режиме CC / CL.

И еще одно дополнение: установлен параллельный транзистор (2SD1047) и модифицирован источник питания, чтобы он мог выдерживать больший ток. При более высоких токах также понадобится вентилятор для охлаждения, так что это тоже было добавлено в основную схему.

Трансформатор, который в итоге установлен, это 15-0-15 В при 3,5 А. Выбран диодный мост с напряжением 600 В на 10 A, который можно установить на радиатор охлаждения. Немного излишне, но это из-за пусковых токов к конденсаторам основного фильтра. Два 3300 мкФ не подходят для таких токов, поэтому установлены 2 х 10 000 мкФ на напряжение 63 В.

Корпус укомплектован главным выключателем, предохранителем и индикатором питания. Также подается с трансформатора AC 15-0-15 на гнезда на передней панели, чтобы использовать переменку для различных целей.

Позже удалось найти простой, но эффективный способ объединить два стабилизатора и создать источник питания с напряжением +30 0 -30 В или источник +60 В.

Принцип прост: если вы подключите выход 0 В одного источника питания к выходу +0-30 В второго, то фактически можете создать источник питания +30 0 -30 В или 0-60 В. Нужно отрегулировать оба измерителя напряжения для установки таких значений, но если хотите измерить цепь с переменным напряжением, нужен механизм отслеживания.

Хитрость заключается в том, чтобы сделать настройку напряжения одного источника в зависимости от настройки другого. После экспериментов с разными способами в итоге остановились на следующей схеме:

Переключатель R41 должен быть установлен так, чтобы настройка напряжения на главном устройстве совпадала с выходным напряжением на ведомом устройстве. Сигнал идущий к выключателю будет близко к опорному напряжению 11V2.

Слева направо: Q4, Q3 и LM7812. Q4 и Q3 изолированы, радиатор LM заземлен, поэтому не нуждается в нем.

Наилучшая точность отслеживания может быть достигнута, если оба источника питания установлены на 30 В в режиме +/-, как на схеме. Затем можно переключить переключатель в режим слежения и настраивать R41 до тех пор, пока ведомый не покажет 30 В. Вы заметите, что отслеживание является довольно точным (около 1%) до тех пор, пока не опуститесь ниже 5 В, затем оно все больше рассинхронизируется до примерно 200 мВ при 1 В. Это должно быть связано с разницей в линейности усиления обоих операционных усилителей U2.

В принципе эта точность достаточно хороша.

Также добавлен R43 в качестве меры безопасности, чтобы убедиться что ведомое питание не будет иметь неопределенного выхода, если связь между чувствительным резистором в ведущем устройстве не подключена к ведомому или когда переключатель перемещен из одного положения в другое.

Учтите, что нужно установить оба предела тока независимо для обоих источников, но если стабилизатор «мастер» переходит в режим ограничения тока, ведомый будет следовать его примеру независимо от своей настройки.


от простейшего до мощного с легкой регулировкой

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками.

Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Самостоятельная сборка БП

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Часть схемы простейшего БП без трансформатора

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Схема БП со стабилитроном

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Схема регулируемого БП

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для  устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Схема двухполярного блока питания

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Советы по оформлению корпуса

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Самодельный БП

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Оцените статью:

СХЕМА ЛАБОРАТОРНОГО ИСТОЧНИКА ПИТАНИЯ

   Необходимость в лабораторном источнике питания с возможностью регулировки выходного напряжения и порога срабатывания защиты по току потребления нагрузкой возникла давно. Проработав кучу материала на просторах интернета и набив шишки на собственном опыте, остановился на нижеследующей конструкции. Диапазон регулирования напряжения 0-30 Вольт, ток отдаваемый в нагрузку определяется в основном примененным трансформатором, в моём варианте спокойно снимаю более 5-ти Ампер. Есть регулировка порога срабатывания защиты по току потребляемого нагрузкой, а также от короткого замыкания в нагрузке. Индикация выполнена на ЖК дисплее LSD16х2. Единственным недостатком данной конструкции считаю невозможность трансформации данного источника питания в двуполярный и некорректность показания потребляемого тока нагрузкой в случае объединения полюсов — вместе. В мои цели ставилась задача питать в основном схемы однополярного питания по сему даже двух каналов, как говорится, с головой. Итак, схема узла индикации на МК с его вышеописанными функциями:

   Измерения силы тока и напряжения I — до 10 А, U — до 30 В, схема имеет два канала, на фото показания напряжения до 78L05 и после, имеется возможность калибровки под имеющиеся шунты в наличии. Несколько прошивок для ATMega8 есть на форуме, проверенны мной не все. В схеме в качестве операционного усилителя использована микросхема МСР602, ее возможная замена — LM2904 или LM358, тогда подключать питание ОУ нужно к 12 вольтам. На плате заменил перемычкой диод по входу стабилизатора и дроссель по питанию, стабилизатор необходимо ставить на радиатор — греется значительно.

   Для корректного отображения величин токов необходимо обратить внимание на сечение и длину проводников включенных от шунта к измерительной части. Совет такой — длина минимальная, сечение максимальное. Для самого лабораторного источника питания, была собрана схема: 

   Завелась сразу же, регулировка выходного напряжения плавная, так же, как и порог защиты по току. Печать под ЛУТ пришлось подгонять, вот что получилось: 

   Подключение переменных резисторов: 

Расположение элементов на плате БП

Цоколевка некоторых полупроводников

 


Перечень элементов лабораторного ИП:

R1 = 2,2 KOhm 1W

R2 = 82 Ohm 1/4W
R3 = 220 Ohm 1/4W
R4 = 4,7 KOhm 1/4W
R5, R6, R13, R20, R21 = 10 KOhm 1/4W
R7 = 0,47 Ohm 5W
R8, R11 = 27 KOhm 1/4W
R9, R19 = 2,2 KOhm 1/4W
R10 = 270 KOhm 1/4W
R12, R18 = 56KOhm 1/4W
R14 = 1,5 KOhm 1/4W
R15, R16 = 1 KOhm 1/4W
R17 = 33 Ohm 1/4W
R22 = 3,9 KOhm 1/4W
RV1 = 100K trimmer
P1, P2 = 10KOhm
C1 = 3300 uF/50V
C2, C3 = 47uF/50V
C4 = 100nF polyester
C5 = 200nF polyester
C6 = 100pF ceramic
C7 = 10uF/50V
C8 = 330pF ceramic
C9 = 100pF ceramic
D1, D2, D3, D4 = 1N5402,3,4 diode 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V Zener
D9, D10 = 1N4148
D11 = 1N4001 diode 1A
Q1 = BC548, NPN transistor or BC547
Q2 = 2N2219 NPN transistor
Q3 = BC557, PNP transistor or BC327
Q4 = 2N3055 NPN power transistor
U1, U2, U3 = TL081
D12 = LED

   Готовые платы выглядят в моём варианте так:

 

   С дисплеем проверял, работает отлично — как вольтметр, так и амперметр, проблема тут в другом, а именно: иногда возникает необходимость в двухполярном напряжении питания, у меня вторичные обмотки трансформатора отдельные, видно из фото стоят два моста, то есть полностью два независимых друг от друга канала. Но вот канал измерения общий и имеет общий минус, посему создать среднюю точку в блоке питания не получится, из-за общего минуса через измерительную часть. Вот и думаю либо делать на каждый канал собственную независимую измерительную часть, или может не так уж часто мне нужен источник с двухполярным питанием и общим нулем… Далее привожу печатную плату, та что пока вытравилась:

 

 

   После сборки, первое: выставляем фьюзы именно так: 

 

 

 

   Собрав один канал, убедился в его работоспособности:

   Пока сегодня включен левый канал измерительной части, правая висит в воздухе, посему ток показыват почти максимум. Кулер правого канала ещё не поставил, но суть ясна из левого.

   Вместо диодов пока что в левом канале (он снизу под платой правого) диодного моста который в ходе экспериментов выкинул, хоть и 10А, поставил мост на 35А на радиатор под кулер.

   Провода второго канала вторички трансформатора пока висят в воздухе.

   Итог: напряжение стабилизации прыгает в пределах 0.01 вольт во всем диапазоне напряжений, максимальный ток который смог снять — 9.8 А, хватит с головой, тем более, что рассчитывал получить не больше трёх ампер. Погрешность измерения — в пределах 1%. 

   Недостаток: данный блок питания не могу трансформировать в двухполярный из-за общего минуса измерительной части, да и поразмыслив решил, что оконечники мне не настраивать, поэтому отказался от схемы полностью независимых каналов. Ещё одним из недостатков, на мой взгляд, данной измерительной схемы считаю то, что если соединить полюса — вместе по выходу мы теряем информативность по току потребления нагрузкой из-за общего корпуса измерительной части. Происходит это в следствии запараллеливания шунтов обоих каналов. А в общем источник питания получился совсем не плохой и скоро будет статья о его модернизации. Автор конструкции: ГУБЕРНАТОР

   Форум по схеме

   Форум по обсуждению материала СХЕМА ЛАБОРАТОРНОГО ИСТОЧНИКА ПИТАНИЯ

Самодельный лабораторный блок питания. Схема и описание

Приведенный в данной статье самодельный лабораторный блок питания изготовлен из широко распространенных элементов. Он практически  не требует настройки, работает в широком диапазоне подводимого переменного напряжения, обладает  защитой от перегрузки по току. Данный лабораторный блок питания обеспечивает выходное напряжение от 1 В и практически до величины выпрямительного напряжения с вторичной обмотки трансформатора.

На основе транзистора  VT1 составлен модуль сравнения: с бегунка потенциометра R3 на базу VT1 поступает доля образцового напряжения, которое определяется источником образцового напряжения на элементах VD5, VD6, HL1, R1. На эмиттер VT1 поступает входное напряжение делителя на элементах R14 и R15. В результате сравнения образцового и выходного уровня,  сигнал рассогласования попадает на базу транзистора VT2 являющийся усилителем тока, который в свою очередь управляет силовым транзистором VT4.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Работа защиты самодельного блока питания

В результате случайного замыкания выходных выводов самодельного лабораторного блока питания или при нагрузки превышающий допустимый предел, повышается падение напряжения на мощном резисторе R8. В результате чего  VT3 открывается и тем самым замыкает базовую цепь транзистора VT2, лимитируя  Iнагр. на  выходе БП. Визуальным сигналом о перегрузки по току в цепи служит светодиод HL2.

В случае короткого замыкания в лабораторном блоке питания, активация режима ограничения протекающего тока происходит не сразу. Установленный в схему дроссель L1 мешает стремительному увеличению тока через  VT4, а диод VD7 понижает скачок напряжения при неосторожном выключении нагрузки от блока питания.

 

Если есть необходимость в регулировании Iнагр., то можно в разрыв между  сопротивлениями  R7 и R9 включить переменный резистор номиналом 250 Ом, причем движок его нужно подключить к базе VT3. Таким образом, в данном самодельном лабораторном блоке будет возможно регулировать Iнагр. от 400 мА до 1,9 А.

Детали лабораторного блока питания

В самодельном лабораторном блоке питания допустимо применить любой понижающий трансформатор с Uвых. на вторичной обмотке в районе  от 9 до 40 В. Единственное, что может потребоваться при низком напряжении на вторичной обмотке, уменьшить номиналы сопротивлений  R1, R2, R9, R13-R14 примерно в два раза. А также нужно поставить стабилитроны VD5 и VD6 с другими параметром, чтобы напряжение на резисторе R1 было приблизительно равно половине напряжения на конденсаторе C2.

Дроссель L1 самодельный, намотан на каркасе диаметром 8 мм и имеет 120 витков провода ПЭЛ0,6 мм. Транзистор VT1 (КТ209М) можно заменить на КТ502, КТ209, КТ208, КТ3107. Заменой транзистора VT2 (КТ815Г) может служить любой транзистор серии КТ817. Транзистор VT4 на  КТ809А, КТ808А, КТ803А, КТ829 с максимальным Iкол. не меньше 5А и максимально-допустимым напряжением коллектор-эмиттер превышающим напряжения на выходе вторичной обмотки трансформатора.  Диоды VD1-VD4 — могут быть любыми выпрямительными с максимальным обратным напряжением больше U вторичной обмотки и максимальным прямым током более 5А.

Узел ограничения Iнагр. лабораторного блока питания можно улучшить. Для этого необходимо убрать сопротивление R7, а вместо постоянного резистора R8 установить переменный. Его сопротивление подбирают так, чтобы при наименьшем токе ограничения падение напряжения на этом резисторе было примерно 0,6 В. Для диапазона тока ограничения от 0,2 до 2 А сопротивление переменного резистора должно быть 3 Ом, а мощность не менее 12 Вт.

Лабораторный БП на основе Простого и доступного БП « схемопедия


Лабораторный блок питания

В этой статье я хотел бы рассказать о своем лабораторном БП, за основу которого была взята схема «Простой и доступный БП». Вариантов этого устройства довольно много, авторы постоянно что-то добавляют, вносят изменения, на тот момент, когда я начал собирать, последней версией была  v 13. Однако я немного изменил схему, в свою пользу, т.к. планировал использовать БП на большие токи и хотел добавить схему переключения обмоток трансформатора. Вот схема оригинал:

В своем варианте я убрал «Индикатор перегрузки» на DA 1.3 и «Схему измерителя тока» на DA 1.4 и т.к. теперь два  ОУ освободились, я решил на них же собрать «Схему переключения обмоток трансформатора», но об этом позже. Из-за этого была изменена схема стабилизации +12В для микросхемы ОУ, был использован отдельный источник питания со стабилизатором 7812. Также добавил силовых транзисторов, вместо одного 2N3055 я поставил пару 2SC5200. Максимальный отдаваемый ток теперь 5,6А. Вот мой вариант схемы:

В итоге мой вариант регулирует напряжение от 0 до 25В и может ограничивать максимальный ток на уровне от 0,01А до 5,6А. Для окончательной настройки схемы нужно установить максимальное напряжение резистором R13 и подобрать резисторы R14 и R16 для макс.  и мин.  тока соответственно.

Управление обмотками трансформатора

Бывают такие случаи,что нужно подключить к ЛБП какую-то низковольтную нагрузку, но с довольно большим током, например 5В при токе 5А. Тогда получается, что на силовых транзисторах будет падать несколько десятков вольт.  К примеру после диодного моста и конденсатора в фильтре у нас 30В, а на выходе ЛБП всего 5В, значит на транзисторе будет падать 25В, и это при токе в 5А, получается, что бедный транзистор как-то должен превратить 125Вт просто в  тепло. Одному мощному транзистору это не под силу, просто напросто произойдет тепловой пробой и он выйдет из строя, да и двум тяжко будет. На этой случай придумана схема, которая переключает обмотки трансформатора в зависимости от выходного напряжения ЛБП. К примеру, если нужно 5В, то зачем подавать на ЛБП 30В?

Ниже изображена схема переключения обмоток:

У меня же сам ЛБП и «схема переключения»  собраны на одной плате. Переключение обмоток происходит при напряжениях на выходе 12В и 18В. Настройка схемы сводится к установке нужных напряжений переменными резисторами. Резистором R2 устанавливается деление выходного напряжения на 10, т.е. если на выходе ЛБП 25В, то на среднем выводе R2 (ползунке)  должно быть 2,5В. Далее устанавливаем пороги срабатывания реле. Например у меня при 12В срабатывает первое реле, значит на 2 ножке микросхемы нужно установить 1,2В, соответственно при 18В  на 6 ножке устанавливаем 1,8В. Позже можно будет заменить переменные резисторы R3 и R5 на  два постоянных, спаяв их как делитель напряжения.

Охлаждение

В качестве радиаторов были собраны экспериментальные варианты из алюминиевых карнизов для штор, профили прикручиваются винтами к алюминиевой пластине ( признаюсь, хотелось бы потолще) и естественно промазываются термопастой. Эффективность таких радиаторов довольна неплохая. В верхней крышке корпуса есть отверстия для охлаждения.

Ампервольтметры

В качестве измерителя напряжения и тока была использована довольно известная схема на специализированной  мс  ICL7107. Я собирал по этой схеме:

Отдельное питание

Для питания индикации и микросхем LM324 в ЛБП используется отдельный трансформатор и стабилизаторы +5В и +12В.

О корпусе

Основой для корпуса стал кусок стеклотекстолита, толщиной около 6-7 мм. На нем все и собиралось, далее были прикручены передняя панель со всеми органами управления и индикацией и задняя с вентиляторами и сетевым разьемом. И сверху П–образная крышка, обклеенная синей самоклейкой.

Трансформаторы я использовал ТН 60. У них довольно мощные обмотки по 6,3В. Ток до 7А. По весу данный аппарат получился около 10кг.

Диодные мосты серии КВРС, 35-амперные, также посаженые на общий радиатор с силовыми транзисторами.

Вот общий вид моего ЛБП:

Прикрепленные файлы:

Лабораторный блок питания своими руками

При создании различных электронных устройств, рано или поздно, встаёт вопрос о том, что использовать в качестве источника питания для самодельной электроники. Допустим, собрали вы какую-нибудь светодиодную мигалку, теперь её нужно от чего-то аккуратно запитать. Очень часто для этих целей используют различные зарядные устройства для телефонов, блоки питания компьютеров, всевозможные сетевые адаптеры, которые никак не ограничивают ток, отдаваемый в нагрузку.

А если, допустим, на плате этой самой светодиодной мигалки случайно остались незамеченными две замкнутые дорожки? Подключив её к мощному компьютерному блоку питания собранное устройство легко может сгореть, если на плате имеется какая-либо ошибка монтажа. Именно для того, чтобы не случалось таких неприятных ситуаций, существуют лабораторные блоки питания с защитой по току. Заранее зная, какой примерно ток будет потреблять подключаемое устройство, мы можем предотвратить короткое замыкание, и, как следствие, выгорание транзисторов и нежных микросхем.
В этой статье рассмотрим процесс создания именно такого блока питания, к которому можно подключать нагрузку, не боясь, что что-нибудь сгорит.

Схема блока питания



Схема содержит в себе микросхему LM324, которая совмещает в себе 4 операционных усилителя, вместо неё можно ставить TL074. Операционный усилитель ОР1 отвечает за регулировку выходного напряжения, а ОР2-ОР4 следят за потребляемым нагрузкой током. Микросхема TL431 формирует опорное напряжение, примерно равное 10,7 вольт, оно не зависит от величины питающего напряжения. Переменный резистор R4 устанавливает выходное напряжение, резистором R5 можно подогнать рамки изменения напряжения под свои нужны. Защита по току работает следующим образом: нагрузка потребляет ток, который протекает через низкоомный резистор R20, который называется шунтом, величина падения напряжения на нём зависит от потребляемого тока. Операционный усилитель ОР4 используется в качестве усилителя, повышая малое напряжение падения на шунте до уровня 5-6 вольт, напряжение на выходе ОР4 меняется от нуля до 5-6 вольт в зависимости от тока нагрузки. Каскад ОР3 работает в качестве компаратора, сравнивая напряжение на своих входах. Напряжение на одном входе задаётся переменным резистором R13, который устанавливает порог срабатывания защиты, а напряжение на втором входе зависит от тока нагрузки. Таким образом, как только ток превысит определённый уровень, на выходе ОР3 появится напряжение, открывающее транзистор VT3, который, в свою очередь, подтягивает базу транзистора VT2 к земле, закрывая его. Закрытый транзистор VT2 закрывает силовой VT1, размыкая цепь питания нагрузки. Происходят все эти процессы за считанные доли секунды.
Резистор R20 стоит взять мощностью ватт на 5, чтобы предотвратить его возможный нагрев при долгой работе. Подстроечный резистор R19 задаёт чувствительность по току, чем больше его номинал, тем большей чувствительности можно добиться. Резистор R16 настраивает гистерезис защиты, рекомендую не увлекаться с повышением его номинала. Сопротивление 5-10 кОм обеспечит чёткое защёлкивание схемы при срабатывании защиты, более большое сопротивление даст эффект ограничения по току, когда напряжение не выходе будет пропадать не полностью.
В качестве силового транзистора можно применить отечественные КТ818, КТ837, КТ825 или импортный TIP42. Особое внимание стоит уделить его охлаждению, ведь вся разница входного и выходного напряжение будет рассеиваться в виде тепла на этом транзисторе. Именно поэтому не стоит использовать блок питания на малом выходном напряжении и большом токе, нагрев транзистора при этом будет максимальным. Итак, перейдём от слов к делу.

Изготовление печатной платы и сборка


Печатная плата выполняется методом ЛУТ, который неоднократно описывался в интернете.



На печатной плате добавлен светодиод с резистором, которые не указаны в схеме. Резистор для светодиода подойдёт номиналом 1-2 кОм. Этот светодиод включается при срабатывании защиты. Также добавлены два контакта, обозначенные словом «Jamper», при их замыкании блок питания выходит из защиты, «отщёлкивается». Кроме того, добавлен конденсатор 100 пФ между 1 и 2 выводом микросхемы, он служит для защиты от помех и обеспечивает стабильную работу схемы.



Скачать плату:

Настройка блока питания


Итак, после сборки схемы можно приступить к её настройке. Первым делом, подаём питание 15-30 вольт и замеряем напряжение на катоде микросхемы TL431, оно должно быть примерно равно 10,7 вольт. Если напряжение, подаваемое на вход блока питания, небольшое (15-20 вольт), то резистор R3 стоит уменьшить до 1 кОм. Если опорное напряжение в порядке, проверяем работу регулятора напряжения, при вращении переменного резистора R4 оно должно меняться от нуля до максимума. Далее, вращаем резистор R13 в самом крайнем его положении возможно срабатывание защиты, когда этот резистор подтягивает вход ОР2 к земле. Можно установить резистор номиналом 50-100 Ом между землёй и выводом крайним выводом R13, который подключается к земле. Подключаем какую-либо нагрузку к блоку питания, устанавливаем R13 в крайнее положение. Повышаем напряжение на выходе, ток будет расти и в какой-то момент сработает защита. Добиваемся нужной чувствительности подстроечным резистором R19, затем вместо него можно впаять постоянный. На этом процесс сборки лабораторного блока питания закончен, можно установить его в корпус и пользоваться.

Индикация




Для индикации выходного напряжения весьма удобно использовать стрелочную головку. Цифровые вольтметры хоть и могут показывать напряжение вплоть до сотых долей вольта, постоянно бегущие цифры плохо воспринимаются глазом человека. Именно поэтому рациональнее использовать именно стрелочные головки. Сделать вольтметр из такой головки очень просто – достаточно поставить последовательно с ней подстроечный резистор номиналом 0,5 – 1 МОм. Теперь нужно подать напряжение, величина которого заранее известна и подстроечным резистором подстроить положение стрелки, соответствующее прикладываемому напряжению. Успешной сборки!

Линейный лабораторный блок питания своими руками

Приветствую, Самоделкины!
Если вы ищете схему простого и надежного линейного блока питания, то эта статья именно для вас. Тут вы найдете полную инструкцию по сборке, а также настройке данного блока питания. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).


Для начала немного предыстории. Совсем недавно автор переделывал свое рабочее место и в качестве третьего блока питания хотел установить именно линейный блок, так как иногда ему приходится собирать схемы, которые не переносят пульсации напряжения. А как нам известно, то у линейного блока на выходе, пульсация напряжения практически полностью отсутствует.


До этого момента линейные блоки автора не сильно интересовали, и он как-то особо не вникал в данную тему. Когда же пришла идея по построению такого блока, Роман сразу открыл всеми любимый и широко известный видеохостинг YouTube. В итоге после продолжительных поисков автор для себя смог выделить 2 схемы. Автором первой является AKA KASYAN (автор одноименного YouTube канала), а вторая схема построена на операционниках.


Но так как операционники могут работать на напряжении до 32В, то и выходное напряжение соответственно не могло превышать данного предела, а это значит эта схема отпадает.

Ладно, можно собрать схему от Касьяна, но и тут нас ждало разочарование. Данная схема боится статики. Это проявлялось взрывом транзисторов если взяться за выходные контакты.


Так было несколько раз. И тогда автор решил оставить данную схему в покое. Вы скажете, что в интернете полно схем линейных блоков питания.

Да, несомненно это так, но только эти две схемы упомянутые выше, имели нормально разведенные печатки, которое можно было просто скачать. Все остальное, либо без печаток, либо собрано навесным монтажом. А мы (радиолюбители) привыкли к тому, что все подается на блюдечке с голубой каёмочкой.

И вот когда все варианты иссякли, автор вспомнил, что года 3 тому назад он уже собирал линейный блок, который, кстати, к тому же отлично работал. Была найдена схема трехлетней давности.


Автор решил развести нормальную печатку. Плата получилось довольно компактной. После проведенного тестирования данной схемы, на удивление она отлично проявила себя.

При такой простоте автору это так понравилось, что он даже решил сделать kit-набор из данной платы. Для этого необходимо преобразовать печатку в Gerber файл (файл с расширением .gbr, представляющий собой проект печатной платы для последующего изготовления фотошаблонов на различном оборудовании). Затем необходимо отправить платы на изготовление.

И вот спустя пару недель после заказа получаем наши долгожданные платы. Вскрыв посылку и рассмотрев платы поближе, можем убедиться, что все очень качественно и красиво получилось.


Итак, давайте уже запаяем данную плату и проверим ее в работе. Компонентов для установки не так уж много, паять от силы минут 20, не больше.

Закончили с пайкой. Производим первое включение. И тут нас ждет небольшое разочарование. Данная плата не обошлась без косяков. Проявились они в том, что при вращении ручки потенциометра влево идёт увеличение напряжения и тока, а при правом вращении происходит уменьшение.


Так произошло потому, что резисторы для данной платы автор вынес на провода (для последующей установки на корпус) и там без проблем можно было поменять направление вращения просто поменяв боковые контакты. Ну ладно, зато все остальное работает как положено.


Но все же автор исправил печатку, теперь там при правом вращении потенциометра идёт увеличение напряжения, все как и должно быть. Так что можете смело скачивать и повторять данную конструкцию (архив с данной печатной платой находится в описании под оригинальным видеороликом автора, необходимо пройти по ссылке ИСТОЧНИК в конце статьи).

А теперь давайте перейдем к детальному рассмотрению схемы и непосредственно самой платы. Схему вы можете видеть на своих экранах.


Данный блок питания оснащен регулятором напряжения и тока, а также системой защиты от короткого замыкания, которая просто необходима в таких блоках.

Представьте себе на минуточку, что происходит при коротком замыкании, когда на входе напряжение 36В. Получается, что все напряжение рассеивается на силовом транзисторе, который конечно же такого издевательства вряд ли выдержит.


Защиту тут можно настроить. С помощью вот этого подстроечного резистора выставляем любой ток срабатывания.

Здесь установлена релюшка защиты на 12В, а входное напряжение может достигать 40В. Поэтому необходимо было получить напряжение 12В.


Это можно реализовать с помощью параметрического стабилизатора на транзисторе и стабилитроне. Стабилитрон на 13В, так как идет падение напряжения на переходах коллектор-эмиттер двух транзисторов.


Итак, теперь можно приступать к тестам данного линейного блока питания. Подаем напряжение в 40В от лабораторного блока питания. На нагрузку вешаем лампочку рассчитанную на напряжение 36В, мощностью 100Вт.

Затем начинаем потихоньку вращать переменный резистор.



Как видим регулировка напряжения работает отлично. Теперь давайте попробуем регулировать ток.

Как можно наблюдать, при вращении второго резистора ток уменьшается, а это значит, что схема работает в штатном режиме.
Так как это линейный блок и все «лишнее» напряжение превращается в тепло, ему нужен радиатор довольно таки больших размеров. Для этих целей отлично зарекомендовали себя радиаторы от процессора компьютера. Такие радиаторы имеют большую площадь рассеивания, а если их еще оснастить вентилятором, то можно в принципе полностью забыть про перегрев транзистора.

А теперь о том, как работает защита. Выставляем необходимый ток с помощью подстроечного резистора. При коротком замыкании срабатывает реле. Пара его контактов размыкает выходную цепь и транзистор находится в безопасности.

Для возвращения в нормальный режим работы предусмотрена вот такая кнопка на размыкание, при нажатии на которую снимается защита.

Ну или же можно просто отключить блок от сети и подать напряжение снова. Таким образом, защита тоже выключится. Также на плате имеются 2 светодиода. Один сигнализирует про работу блока, а второй про срабатывание защиты.


Подводя итоги можно сказать, что блок получился очень классным и подойдет как для новичков, так и для уже опытных радиолюбителей. Так что скачивайте архив и собирайте себе такой блок.

Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь. Цепь лабораторного источника питания

| Проекты самодельных схем

Хотя в последнее время появилось множество лабораторных источников питания, лишь немногие из них обеспечат вам эффективность, универсальность и низкую стоимость конструкции, подробно описанной в этой статье.

В этом посте рассказывается о строго регулируемом, самостоятельном, лабораторном источнике питания с двойным напряжением 0-50 вольт. Диапазоны напряжения и тока независимо изменяются от 0 до 50 В и от 0 до 5 ампер соответственно.

Сказав, что, благодаря компоновке DIY, вы можете настроить параметры по мере необходимости, что можно увидеть в следующей таблице спецификаций. ..

  • Количество источников питания = 2 (полностью плавающих)
  • Диапазон напряжения = от 0 до 50 В
  • Диапазон тока = от 0 до 5 ампер
  • Коэффициент грубого и точного управления для тока и напряжения = 1:10
  • Регулировка напряжения = 0,01% от линии и 0,1% нагрузки
  • Ограничитель тока = 0,5%

Вам также понравится: Как спроектировать схему стационарного источника питания


Описание схемы

На рисунке 1 выше показана схема схема лабораторного электроснабжения. Технические характеристики компоновки сконцентрированы вокруг регулируемого регулятора IC1 LM317HVK, обеспечивающего широкие функциональные возможности. Суффикс «HVK» указывает на высоковольтную версию регулятора.

Оставшаяся часть схемы обеспечивает возможность настройки напряжения и ограничения тока. Вход на IC1 исходит от выхода BR1, который фильтруется C1 и C2 примерно до + 60 В постоянного тока, а вход для токового компаратора IC2 создается мостовым выпрямителем BR2, который, кроме того, работает как источник отрицательного смещения, чтобы получить регулировка до уровня земли.

Функция IC1 — поддерживать на клемме OUT 1,25 В постоянного тока на клемме ADJ. Потребление тока на выводе ADJ крайне минимально (всего 25 мкА), и, следовательно, R15 и R16 (грубые и уточненные манипуляции с напряжением) и R8 образуют делитель напряжения с 1,25 вольт, появляющимся около R8.

Нижняя клемма R16 подключается к опорному напряжению -1,3, создаваемому D7 и D8, что позволяет резистивному делителю R8 — R15 фиксировать выходное напряжение вплоть до уровня земли в любой момент, когда R15 + R16 становится равным 0 Ом.

Расчет выходного напряжения

Обычно выходное напряжение зависит от следующих результатов:

(VouT — 1,25 + 1,3) / (R15 + R16) = 1,25 / R8.

Таким образом, максимальное значение напряжения, доступное для каждой платы переменного питания, может быть:

VOUT = (1,25 / R8) x (R15 + R16) = 50,18 В постоянного тока.

Потенциометры R15 и R16 используются для управления выходным напряжением, которое позволяет изменять VouT от 0 до 50 вольт постоянного тока.

Как работает контроль тока

Когда ток нагрузки постоянного тока увеличивается, падение напряжения на R2 также возрастает и составляет около 0.65 вольт (то есть примерно 20 мА), Q1 и Q2 включаются, становясь основным направлением тока. Кроме того, R3 и R4 гарантируют, что Q1 и Q2 справляются с нагрузкой равномерно. IC2 работает как ступень ограничителя тока.

Его неинвертирующий вход использует выходное напряжение как опорное, в то время как его инвертирующий вход подключен к делителю напряжения, разработанному R6, и токовым регуляторам R13 и R14. Падение напряжения на R6 составляет около 1,25 В, указанное выше опорное напряжение определяется разностью между выводами OUT и ADJ IC1.

Ток, проходящий через Q1 и Q2, проходит через R9, создавая падение напряжения на R13 + R14. В результате IC2 принудительно выключается, как только падение напряжения вокруг R9 генерирует ток через R13 и R14, в результате чего неинвертирующее входное напряжение выходит за пределы VouT.

Это фиксирует порог ограничения тока на уровне: (IouT x 0,2) / (R13 + R14) = 1,25 / 100K; низкий = от 0 до 5 ампер. Это обеспечивает соответствующий диапазон около 0-5 ампер.

Когда достигается порог ограничения тока, выход IC2 становится низким, приводя в движение вывод ADJ через D2, что приводит к включению светодиода LED1.Дополнительный ток для D5 доставляет R5.

Когда на выводе ADJ установлен низкий уровень, выход следует, пока выходной ток не упадет до точки, эквивалентной настройке R13 и R14.

Учитывая, что выходное напряжение может быть в пределах 0-50 вольт, напряжение питания для IC2 должно соответствовать этому диапазону при работе с D3, D4 и Q3.

Затем D9 проверяет, что выходное напряжение не увеличивается после выключения входа питания, в то время как D10 защищает от обратного напряжения питания.Наконец, счетчики M1 отображают значение напряжения, а M2 отображает текущее значение.

Список деталей

Схема расположения печатной платы

Еще одна простая схема лабораторного источника питания с использованием LM324 IC

Для получения промежуточного напряжения питания здесь использовался стабилизатор IC LM7815. Его выход перемещается с помощью R17, который считывает выходной ток для полевого МОП-транзистора T1.

Этот МОП-транзистор управляется операционным усилителем IC1, сконфигурированным как регулятор напряжения. В этой лабораторной цепи питания R11 и C4 задают полосу пропускания контура управления, что позволяет устранить колебания на повышенных частотах.

Резистор R15 гарантирует, что емкостные нагрузки с пониженным эффективным сопротивлением не приведут к нестабильности контура управления. Отрицательная обратная связь содержимого переменного тока по току через R12 и C5 позволяет схеме быть совершенно надежной, даже если на выходе источника питания используется большой конденсатор.

Отрицательная обратная связь по постоянному току через фильтр нижних частот устанавливается резистором R14 и конденсатором C6. Эта конфигурация гарантирует, что падение напряжения, возникающее на резисторе R15, эффективно компенсируется.

Выходной конденсатор C7 обеспечивает источник с низким сопротивлением для высокочастотных нагрузок. Резистор R16 помогает разрядить конденсатор C17 всякий раз, когда установленное напряжение уменьшается при отсутствии выходной нагрузки.

Секция IC1D работает как регулятор тока. Еще раз, чтобы убедиться, что лабораторный источник питания работает с идеальной стабильностью, ширина полосы обратной связи ограничена резистором R19 и конденсатором C8.

В случае, если падение напряжения, возникающее на резисторе R17, становится выше, чем значение, заданное предварительно установленным P2, срабатывает функция ограничения тока схемы, и транзистор T2 запускается.

Это действие впоследствии снижает входное напряжение до ступени цепи стабилизации напряжения до тех пор, пока не будет достигнута заданная величина выходного тока. Резисторы R7, R9 и конденсатор C3 гарантируют, что правильное регулирование тока не приведет к выбросам выходного напряжения, а также гарантирует отсутствие эффекта резонанса при подключении индуктивной нагрузки к выходу.

Использование IC 723

Следующая конструкция демонстрирует простой, но чрезвычайно полезный лабораторный источник питания с использованием IC LM723:

Регулируемый лабораторный источник питания 0–30 В 0–3 А

Имея под рукой исходную схему, я взял на себя смелость внести несколько изменений.Первым делом я заменил два стабилизатора транзистора-стабилитрона на LM317L / LM337L. Цепи рассчитаны на получение положительного напряжения 33 В и отрицательного напряжения 3 В. Таким образом, общее напряжение питания операционных усилителей не превышает 36 В, поэтому мы можем использовать стандартные. Я также внес изменения в схему управления светодиодами и несколько других мелких изменений.

После этого я решил еще больше упростить схему. Я заменил ненужную сложную схему для построения опорного напряжения на IC2 с простой схемой резистор-стабилитрон.Это даст нам стабильное опорное напряжение, так как напряжение питания уже регулируется LM317. В исходной схеме опорное напряжение составляет 9,4 В, поэтому я решил использовать два стабилитрона — 3,3 В и 6,2 В, соединенные последовательно, что должно дать нам 9,5 В. Также выбранные стабилитроны имеют противоположные температурные коэффициенты, которые должны устранять друг друга, что обеспечивает превосходную температурную стабильность.

Это тестировалось на готовой плате предыдущей версии — я вынул IC2 из сокета, распаял R5 и Z3 и подключил дополнительный стабилитрон (для теста я использовал один 9.Стабилитрон 1В) и резистор с проводами. Это сработало очень хорошо — как я и ожидал.

Выпрямитель сильно нагревается, когда выходной ток превышает 2 А, поэтому будет полезно установить небольшой радиатор поверх него.

Трансформатор должен быть 100–120 Вт с выходным напряжением 27–30 В переменного тока. Вы должны внести некоторые исправления в схему, если выходное напряжение ниже или падение напряжения выше при высоком токе. R10 и R21 устанавливают выходное напряжение регулятора IC3 (LM317), и они должны быть рассчитаны таким образом, чтобы выходное напряжение было на 2 В ниже минимального входного напряжения.Если, например, наименьшее напряжение, измеренное на C1, когда источник питания полностью загружен, составляет 27 В постоянного тока, то выход IC3 должен быть 25 В. При R10 = 4k3 и R21 = 220R у нас будет это выходное напряжение. При стабилизированном напряжении 25 В для микросхем максимальное выходное напряжение блока питания будет около 23 В постоянного тока.
Схема будет работать без этих изменений, но выходное напряжение не будет таким стабильным.
Если напряжение на C1 ниже 33 В постоянного тока без нагрузки, то в IC3 нет необходимости, и мы можем его пропустить.

В качестве резистора для измерения тока R7 я использую два параллельных резистора 0,68 Ом / 10 Вт. Вы можете использовать один резистор 0,33 Ом / 10 Вт, но он будет слишком горячим.
При R16 = 82 кОм и R7 = 0,33 Ом максимальный предел тока, настраиваемый с помощью P2, будет больше 3 А — больше похоже на 3,3 А. Если мы хотим быть ближе к 3A, тогда R16 должен быть 91k.

Вы можете добавить линейный потенциометр 1 кОм последовательно к P1 для точной регулировки напряжения. Или лучше использовать многооборотный потенциометр, но он дорогой.

Странно выглядящий стабилитрон Z1, подключенный к PAD1, используется для питания цифрового вольтметра, который показывает выходное напряжение. Для этого требуется напряжение питания 6-28 В, и с помощью этого стабилитрона я уменьшаю входное напряжение до приемлемого уровня. Z1 можно не указывать, если он не нужен.

Многие люди просили меня нарисовать схему подключения цифровых панельных счетчиков. Вот как можно подключить цифровой вольтметр и амперметр. Как видите, в «варианте 1» вольтметр последовательно подключен к амперметру, поэтому его ток питания будет добавлен к измеряемому току и представит очень небольшую ошибку (ниже 10 мА). В «варианте 2» заземляющий провод вольтметра подключается к отрицательному выводу платы, а не к отрицательной клемме. Таким образом, его ток питания не будет измеряться, но вольтметр будет показывать немного более высокое напряжение, потому что будет добавлено падение напряжения на амперметре (макс. 50-80 мВ).
Убедитесь, что общий ток питания двух счетчиков не превышает 15–16 мА (стабилитрон Z1 перегреется).

Также сообщалось, что отрицательное напряжение может колебаться. Это может произойти, если входное переменное напряжение ниже или при высоком токе нагрузки оно значительно падает.Затем входное напряжение для IC4 (LM337L) становится низким, чтобы поддерживать стабильное выходное напряжение -3 В. Лекарство от этого простое: увеличьте значение C2 до 22 или 47 мкФ.

Стабилизированный источник питания 0-30 В постоянного тока с контролем тока 0,002-3 A

Авторские права на эту схему принадлежат smart kit electronics . На этой странице мы будем использовать эту схему для обсуждения улучшений и внесем некоторые изменения на основе исходной схемы.

Общее описание

Это высококачественный источник питания с плавно регулируемым стабилизированным выходом, регулируемым в диапазоне от 0 до 30 В постоянного тока. Схема также включает электронный ограничитель выходного тока, который эффективно регулирует выходной ток от нескольких миллиампер (2 мА) до максимального выходного сигнала в три ампера, который может выдать схема. Эта функция делает этот источник питания незаменимым в лаборатории экспериментаторов, поскольку можно ограничить ток до типичного максимума, который может потребоваться для тестируемой цепи, и затем включить его, не опасаясь, что он может быть поврежден, если что-то пойдет не так.Также имеется визуальная индикация того, что ограничитель тока работает, так что вы можете сразу увидеть, выходит ли ваша схема за установленные пределы или нет.

Технические характеристики

  • Входное напряжение: ……………. 24 В переменного тока
  • Входной ток: ……………. 3 А (макс)
  • Выходное напряжение: …………. 0-30 В регулируемый
  • Выходной ток: …………. 2 мА-3 А регулируемый
  • Пульсация выходного напряжения:…. 0,01% максимум
  • Размеры печатной платы: 123 x 85 мм

Характеристики

  • Уменьшенные размеры, простая конструкция, простое управление.
  • Выходное напряжение легко регулируется.
  • Ограничение выходного тока с визуальной индикацией.
  • Полная защита поставляемого устройства от перегрузок и неисправностей.

Как это работает

Для начала имеется понижающий сетевой трансформатор с вторичной обмоткой на 24 В / 3 А, который подключается через входные точки схемы к контактам 1 и 2. (качество выходного напряжения питания будет равным. прямо пропорционально качеству трансформатора).Переменное напряжение вторичной обмотки трансформаторов выпрямляется мостом, образованным четырьмя диодами D1-D4. Постоянное напряжение на выходе моста сглаживается фильтром, образованным накопительным конденсатором C1 и резистором R1. Схема включает в себя некоторые уникальные особенности, которые сильно отличают ее от других источников питания этого класса. Вместо использования устройства с переменной обратной связью для управления выходным напряжением в нашей схеме используется усилитель с постоянным усилением для обеспечения опорного напряжения, необходимого для ее стабильной работы.Опорное напряжение генерируется на выходе U1.

Схема работает следующим образом: Диод D8 представляет собой стабилитрон 5,6 В, который здесь работает при токе с нулевым температурным коэффициентом. Напряжение на выходе U1 постепенно увеличивается, пока не загорится диод D8. Когда это происходит, цепь стабилизируется, и на резисторе R5 появляется опорное напряжение стабилитрона (5,6 В). Ток, протекающий через неинвертирующий вход операционного усилителя, незначителен, поэтому один и тот же ток течет через R5 и R6, а поскольку два резистора имеют одинаковое значение, напряжение на двух из них, соединенных последовательно, будет ровно в два раза больше. напряжение на каждом.Таким образом, напряжение на выходе операционного усилителя (вывод 6 U1) составляет 11,2 В, что вдвое превышает опорное напряжение стабилитрона. Интегральная схема U2 имеет постоянный коэффициент усиления приблизительно 3 X, согласно формуле A = (R11 + R12) / R11, и повышает опорное напряжение 11,2 В примерно до 33 В. Подстроечный резистор RV1 и резистор R10 используются для регулировка пределов выходного напряжения таким образом, чтобы его можно было снизить до 0 В, несмотря на любые отклонения значений других компонентов схемы.

Еще одна очень важная особенность схемы — это возможность предварительно установить максимальный выходной ток, который может быть получен от источника постоянного напряжения, эффективно преобразовывая его из источника постоянного напряжения в источник постоянного тока. Чтобы сделать это возможным, схема определяет падение напряжения на резисторе (R7), который включен последовательно с нагрузкой. За эту функцию схемы отвечает микросхема U3. Инвертирующий вход U3 смещен на 0 В через R21. В то же время неинвертирующий вход той же ИС можно настроить на любое напряжение с помощью P2.

Предположим, что для данного выходного сигнала в несколько вольт P2 установлен так, что вход IC поддерживается на уровне 1 В. Если нагрузка увеличивается, выходное напряжение будет поддерживаться постоянным с помощью секции усилителя напряжения схемы и наличие R7, включенного последовательно с выходом, будет иметь незначительный эффект из-за его низкого значения и из-за его расположения вне контура обратной связи цепи управления напряжением. Пока нагрузка остается постоянной, а выходное напряжение не изменяется, схема стабильна.Если нагрузка увеличивается так, что падение напряжения на R7 превышает 1 В, IC3 принудительно срабатывает, и схема переводится в режим постоянного тока. Выход U3 соединен с неинвертирующим входом U2 через D9. U2 отвечает за управление напряжением, и поскольку U3 подключен к его входу, последний может эффективно отменять его функцию. Что происходит, так это то, что напряжение на R7 контролируется, и ему не разрешается повышаться выше заданного значения (1 В в нашем примере) за счет уменьшения выходного напряжения схемы.

Фактически, это средство поддержания постоянного выходного тока, и оно настолько точное, что можно предварительно установить ограничение тока до 2 мА. Конденсатор C8 предназначен для повышения стабильности цепи. Q3 используется для включения светодиода всякий раз, когда срабатывает ограничитель тока, чтобы обеспечить визуальную индикацию работы ограничителей. Чтобы U2 мог контролировать выходное напряжение до 0 В, необходимо обеспечить отрицательную шину питания, и это делается с помощью цепи вокруг C2 и C3.Такое же отрицательное питание также используется для U3. Поскольку U1 работает в фиксированных условиях, он может питаться от нерегулируемой положительной шины питания и земли.

Отрицательная шина питания создается простой схемой накачки напряжения, которая стабилизируется с помощью R3 и D7. Чтобы избежать неконтролируемых ситуаций при отключении, вокруг Q1 построена схема защиты. Как только отрицательная шина питания выходит из строя, Q1 полностью отключает питание выходного каскада. Это фактически приводит к нулевому выходному напряжению, как только отключается переменный ток, защищая цепь и устройства, подключенные к ее выходу.Во время нормальной работы Q1 отключается с помощью R14, но когда отрицательная шина питания разрушается, транзистор включается и устанавливает на выходе U2 низкий уровень. ИС имеет внутреннюю защиту и не может быть повреждена из-за этого эффективного короткого замыкания ее выхода. Это большое преимущество в экспериментальной работе, когда можно отключить выходную мощность источника питания, не дожидаясь разрядки конденсаторов, а также есть дополнительная защита, поскольку выходная мощность многих стабилизированных источников питания имеет тенденцию мгновенно повышаться при выключении. с плачевными результатами.

Строительство

Прежде всего, давайте рассмотрим несколько основ построения электронных схем на печатной плате. Плата изготовлена ​​из тонкого изоляционного материала, покрытого тонким слоем проводящей меди, форма которой позволяет формировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень желательно, поскольку это значительно ускоряет сборку и снижает вероятность ошибок.Чтобы защитить плату от окисления во время хранения и гарантировать, что она будет доставлена ​​вам в идеальном состоянии, медь лужится во время производства и покрывается специальным лаком, который защищает ее от окисления, а также облегчает пайку.

Припаивание компонентов к плате — единственный способ построить вашу схему, и от того, как вы это сделаете, во многом зависит ваш успех или неудача. Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, у вас не должно возникнуть проблем. Паяльник, который вы используете, должен быть легким, а его мощность не должна превышать 25 Вт.Наконечник должен быть в хорошем состоянии и всегда оставаться чистым. Для этой цели очень удобны специально изготовленные губки, которые нужно держать во влажном состоянии, и время от времени вы можете протирать ими горячий наконечник, чтобы удалить все остатки, которые могут на нем скапливаться.

НЕ подпиливайте грязный или изношенный наконечник наждачной бумагой. Если наконечник нельзя очистить, замените его. На рынке существует множество различных типов припоя, и вы должны выбрать припой хорошего качества, который содержит необходимый флюс в своей сердцевине, чтобы каждый раз обеспечивать идеальное соединение.
НЕ используйте паяльный флюс, кроме того, который уже включен в ваш припой. Слишком большой поток может вызвать множество проблем и является одной из основных причин неисправности цепи. Если, тем не менее, вам необходимо использовать дополнительный флюс, как в случае лужения медных проводов, тщательно очистите его после завершения работы.

Для правильной пайки компонента необходимо сделать следующее:

  • Очистите выводы компонентов небольшим кусочком наждачной бумаги.
  • Согните их на правильном расстоянии от корпуса компонентов и вставьте компонент на его место на плате.
  • Иногда можно встретить компоненты с более толстыми выводами, чем обычно, которые слишком толстые, чтобы войти в отверстия ПК. доска. В этом случае используйте мини-дрель, чтобы немного увеличить отверстия. Не делайте отверстия слишком большими, так как впоследствии это затруднит пайку.
  • Возьмите горячий утюг и поместите его наконечник на вывод компонента, удерживая конец припоя в том месте, где вывод выходит из платы.Наконечник утюга должен касаться провода немного выше компьютера. доска.
  • Когда припой начнет плавиться и течь, подождите, пока он равномерно покроет область вокруг отверстия, и флюс закипит и выйдет из-под припоя.
  • Вся операция не должна занимать более 5 секунд. Снимите утюг и дайте припою остыть естественным образом, не дуя на него и не перемещая компонент. Если все было сделано правильно, поверхность стыка должна иметь блестящую металлическую отделку, а его края должны плавно заканчиваться на выводе компонента и направляющей платы.Если припой выглядит тусклым, потрескавшимся или имеет форму капли, значит, вы сделали сухое соединение, и вам следует удалить припой (с помощью насоса или фитиля) и переделать его. Следите за тем, чтобы не перегреть гусеницы, так как их очень легко оторвать от доски и сломать.
  • При пайке чувствительного компонента рекомендуется удерживать провод со стороны компонента платы с помощью пары плоскогубцев, чтобы отвести тепло, которое может повредить компонент.
  • Убедитесь, что вы не используете больше припоя, чем необходимо, поскольку существует риск короткого замыкания соседних дорожек на плате, особенно если они расположены очень близко друг к другу.
  • Когда вы закончите работу, отрежьте лишние выводы компонентов и тщательно очистите плату подходящим растворителем, чтобы удалить все остатки флюса, которые могут остаться на ней.

Строительство (… продолжение)

Так как рекомендуется начать работу с определения компонентов и разделения их на группы. Поместите в первую очередь гнезда для микросхем и контакты для внешних подключений и припаяйте их на свои места. Продолжаем с резисторами. Не забудьте насыпать R7 на определенном расстоянии от печатной платы, так как он имеет тенденцию сильно нагреваться, особенно когда по цепи подаются большие токи, и это может привести к повреждению платы.Также желательно установить R1 на определенном расстоянии от поверхности печатной платы. Продолжайте с конденсаторами, соблюдая полярность электролита, и, наконец, припаяйте диоды и транзисторы, стараясь не перегреть их и в то же время очень осторожно, чтобы правильно их выровнять.

Установите силовой транзистор на радиатор. Для этого следуйте схеме и не забудьте использовать слюдяной изолятор между корпусом транзистора и радиатором, а также специальные фибровые шайбы для изоляции винтов от радиатора.Не забудьте поместить метку для пайки на один из винтов со стороны корпуса транзистора, она будет использоваться как вывод коллектора транзистора. Используйте небольшое количество теплопередающей смеси между транзистором и радиатором, чтобы обеспечить максимальную теплопередачу между ними, и затяните винты до упора.

Прикрепите кусок изолированного провода к каждому выводу, стараясь сделать очень хорошие соединения, так как ток, протекающий в этой части цепи, довольно велик, особенно между эмиттером и коллектором транзистора.
Удобно знать, где вы собираетесь разместить каждую вещь внутри корпуса, в котором будет размещаться ваш источник питания, чтобы рассчитать длину проводов, которые будут использоваться между печатной платой и потенциометрами, силовым транзистором и для входные и выходные подключения к схеме. (На самом деле не имеет значения, длиннее ли провода, но это делает проект более аккуратным, если провода обрезаны точно до необходимой длины).
Подключите потенциометры, светодиод и силовой транзистор и подключите две пары выводов для входных и выходных соединений.Убедитесь, что вы очень внимательно следите за схемой этих подключений, так как в общей сложности 15 внешних подключений к цепи, и если вы сделаете ошибку, может быть очень трудно найти ее впоследствии. Рекомендуется использовать кабели разных цветов, чтобы облегчить поиск неисправностей.

Внешние соединения:

  • 1 и 2 вход переменного тока, вторичная обмотка трансформатора.
  • 3 (+) и 4 (-) выход постоянного тока.
  • 5, 10 и 12 к P1.
  • 6, 11 и 13 — P2.
  • 7 (E), 8 (B), 9 (E) к силовому транзистору Q4.
  • Светодиод также должен быть размещен на передней панели корпуса, где он всегда виден, но контакты, к которым он подключен, не пронумерованы.

Когда все внешние соединения выполнены, очень внимательно осмотрите плату и очистите ее от остатков паяльного флюса. Убедитесь, что нет мостов, которые могут закоротить соседние дорожки, и, если все в порядке, соедините вход цепи с вторичной обмоткой подходящего сетевого трансформатора.Подключите вольтметр к выходу схемы и первичной обмотке трансформатора к сети.

НЕ ПРИКАСАЙТЕСЬ К ЧАСТИ ЦЕПИ, КОГДА ОНА НАХОДИТСЯ НА ПИТАНИИ.

Вольтметр должен измерять напряжение от 0 до 30 В постоянного тока в зависимости от настройки P1 и должен следить за любыми изменениями этой настройки, чтобы указать, что регулятор переменного напряжения работает правильно. При повороте P2 против часовой стрелки должен загореться светодиод, указывая на то, что ограничитель тока работает.

Данные

Регулировки

Если вы хотите, чтобы выход вашего источника питания регулировался в диапазоне от 0 до 30 В, вы должны отрегулировать RV1, чтобы убедиться, что когда P1 установлен на минимальное значение, выход источника питания равен точно 0 В. Поскольку невозможно измерить очень небольшие значения с помощью обычного панельного измерителя, лучше использовать для этой настройки цифровой измеритель и установить его на очень низкую шкалу, чтобы повысить его чувствительность.

Предупреждение

При использовании электрических деталей обращайтесь с источником питания и оборудованием с большой осторожностью, соблюдая стандарты безопасности, описанные в международных спецификациях и нормах.

ВНИМАНИЕ

Эта схема работает от сети, и в некоторых ее частях присутствует 220 В переменного тока.
Напряжение выше 50 В ОПАСНО и даже может быть СМЕРТЕЛЬНЫМ.
Во избежание несчастных случаев, которые могут привести к летальному исходу для вас или членов вашей семьи, соблюдайте следующие правила:

  • НЕ работайте, если вы устали или торопитесь, дважды проверьте все, прежде чем подключать вашу схему к электросети, и будьте готовы
  • , чтобы отключить его, если что-то не так.
  • НЕ прикасайтесь к какой-либо части цепи, когда она находится под напряжением.
  • ЗАПРЕЩАЕТСЯ оставлять сетевые провода незащищенными. Все силовые провода должны быть хорошо изолированы.
  • ЗАПРЕЩАЕТСЯ заменять предохранители другими предохранителями более высокого номинала, а также заменять их проволокой или алюминиевой фольгой.
  • НЕ работайте мокрыми руками.
  • Если вы носите цепочку, ожерелье или что-нибудь, что может свисать, и дотрагиваетесь до незащищенной части цепи, БУДЬТЕ ОСТОРОЖНЫ.
  • ВСЕГДА используйте подходящий сетевой шнур с подходящей вилкой и должным образом заземляйте электрическую цепь.
  • Если корпус вашего проекта металлический, убедитесь, что он правильно заземлен.
  • По возможности используйте сетевой трансформатор с соотношением 1: 1, чтобы изолировать вашу цепь от сети.
  • При тестировании схемы, работающей от сети, наденьте обувь с резиновой подошвой, встаньте на сухой непроводящий пол и держите одну руку в кармане или за спиной.
  • Если вы примете все вышеперечисленные меры предосторожности, вы снизите риск до минимума и тем самым защитите себя и окружающих.
  • Тщательно сконструированное и хорошо изолированное устройство не представляет опасности для пользователя.

ОСТОРОЖНО: ЭЛЕКТРИЧЕСТВО МОЖЕТ УБИТЬ, ЕСЛИ ВЫ НЕ ВНИМАТЕЛЬНЫ

Если не работает

Проверьте свою работу на предмет возможных сухих стыков, перемычек на соседних дорожках или остатков паяльного флюса, которые обычно вызывают проблемы.
Еще раз проверьте все внешние подключения к цепи и от цепи, чтобы увидеть, нет ли там ошибки.

  • Убедитесь, что все компоненты отсутствуют или вставлены в неправильные места.
  • Убедитесь, что все поляризованные компоненты припаяны правильно. — Убедитесь, что источник питания имеет правильное напряжение и правильно подключен к вашей цепи.
  • Проверьте свой проект на наличие неисправных или поврежденных компонентов.

Список запчастей

Деталь Значение Примечание
R1 2,2 кОм 1W
R2 82 Ом 1/4 Вт
R3 220 Ом 1/4 Вт
R4 4.7 кОм 1/4 Вт
R5-R6-R13-R20-R21 10 кОм 1/4 Вт
R7 0,47 Ом 5 Вт
R8-R11 27 кОм 1/4 Вт
R9-R19 2,2 кОм 1/4 Вт
R10 270 кОм 1/4 Вт
R12-R18 56 кОм 1/4 Вт
R14 1.5 кОм 1/4 Вт
R15-R16 1 кОм 1 / 4W
R17 33 Ом 1/4 Вт
R22 3,9 кОм 1/4 Вт
RV1 100 кОм подстроечный резистор
P1-P2 10 кОм линейный понтезиометр
C1 3300 мкФ / 50 В электролитический
C2-C3 47 мкФ / 50 В электролитический
C4 100 нФ полиэстер
C5 200nF полиэстер
C6 100pF керамический
C7 10 мкФ / 50 В электролитический
C8 330pF керамический
C9 100pF керамический
D1-D2-D3-D4 1N5402-3-4 2A диод — RAX GI837U
D5-D6 1N4148
D7-D8 5.6В Стабилитрон
D9-D10 1N4148
D11 1N4001 диод 1A
Q1 BC548 Транзистор NPN или BC547
Q2 2N2219 NPN транзистор
Q3 BC557 Транзистор PNP или BC327
Q4 2N3055 NPN силовой транзистор
U1-U2-U3 TL081 операционный усилитель
D12 Светодиодный диод

Обратная связь

Вы можете опубликовать свой опыт и мысли о создании этого блока питания в этой теме.

Еще одна реализация этого блока питания находится здесь — на чешском языке


вот плата, сделанная Sam Carmel и хорошо проработанная


Блок питания Daniel — вид спереди с ЖК-вольтметром
Потензиометры для грубой и точной регулировки напряжения и регулятор тока


Блок питания Даниэля — внутренний вид. В качестве источника питания для вольтметра используется зарядное устройство для мобильного телефона.

Блок питания Дэниела — внутренний вид.Он собирается заменить конденсатор 2200 мкФ на 6800 мкФ, чтобы уменьшить пульсации при высокой нагрузке.


Блок питания Даниэля — внутренний вид. новый конденсатор (6800 мкФ x 40 В) для улучшения фильтрации пульсаций


Блок питания Даниэля — внутренний вид. Модификация для защиты LM311

06/2012 получил следующее электронное письмо от Даниэля:
Сейчас у меня проблема только с одной из самых больших бед в электронике… Поддельные компоненты. Я использую поддельный 2N2219, и он длился 100 мс (или меньше) с первой попытки.Поскольку изделие было новым, я никогда не подозревал об этом. Я потратил 2 часа на поиски проблемы и не мог поверить, когда проверял ее… У меня было еще два, которые я боюсь вместе, у них была такая же судьба… На мое счастье, у меня была коробка со старыми компонентами (некоторые датируются 70-ми годами). ) и там я нашел настоящую Motorola 2N2219… Он работает идеально. Это была единственная трудность, с которой я столкнулся…

Получил следующее письмо от Ивана 02/2010:
Ok. Я построил ваш проект около дня назад. Смонтировал все детали на печатной плате, а затем пришел к выводу, что в этой схеме есть серьезные проблемы.Во-первых, 2N3055 перегреется, поэтому вам придется подключить два из них параллельно с эмиттерными резисторами 0,1 Ом / 5 Вт. Во-вторых, максимальное напряжение между «+» и «-» TL081 составляет 36 В постоянного тока. Если вы подключите их, как показано на этой принципиальной схеме, напряжение будет около 45 В постоянного тока, поэтому они немедленно сгорят. Чтобы решить эту проблему, вам необходимо повторно подключить все контакты номер 7 U1, U2 и U3, эмиттер Q3 и «верхний» конец R19 к выходу из 7809 с стабилитроном 18 В между «общим» контактом и «-» конденсатора 3300 мкФ. , а вход 7809 соединить с ‘+’ той же крышки.Теперь на контакте 7 и упомянутых частях у вас будет 27 В постоянного тока, а общее напряжение будет 32,6 В постоянного тока. В-третьих, вместо 3300 мкФ используйте 4700 или 6800 мкФ / 63 В постоянного тока, чтобы уменьшить пульсации при более высоких токах (2-3 А). В остальном схема идеальна. Мне это нравится, потому что это так недорого и легко сделать с помощью тех простых реконструкций, о которых я упоминал.

Банкноты

Лабораторный источник питания 0-50 В 0-4A

Лабораторный тип 0-50 В 0-4A Регулируемая схема источника питания Классическая конструкция на базе операционного усилителя TL081.. Я думаю, что, возможно, неправильно прочитал схему в электрических или электронных схемах .. Лабораторный трансформатор источника питания, используемый в … Проекты электроники, Лабораторный источник питания 0-50V 0-4A «проекты силовой электроники, схема источника питания, питание проект питания, « Дата 2019/08/04

Лаборатория Тип 0-50V 0-4A Регулируемая схема источника питания Классическая конструкция на основе операционного усилителя TL081. Я думаю, что я неправильно прочитал схему в электрическом или электронном схемы..

Лабораторный источник питания В цепи питания используется трансформатор с 4 транзисторами BD249 на выходном каскаде. Один выход может использоваться 2X25VAC вместо трансформатора 50VAC.

В схеме регулируемого источника питания есть гораздо более дешевый альтернативный готовый модуль для резистивных переходов для использования вольтметров и амперметров, построенных с интеграцией ICL7107, и вы не можете использовать их, потому что они являются внутренними. На том же чертеже печатной платы той же цепи эти элементы были добавлены, чтобы сделать еще 3.Регулировка потенции 3k в неиспользуемом контуре.

В аппликаторах цепи питания лабораторного типа не использовался изолятор для транзисторов управления мощностью. В конструкции, не имеющей элементов вольт-амперметра, транзистор T4 BD140 подключен к хладагенту, но это не обязательно. Поскольку коллекторы транзисторов BD239 и BD249 объединены, в соединении охлаждающей жидкости нет изолятора, поэтому все напряжение охлаждающей жидкости сохраняется. Если вы используете металлический корпус для блока питания, он может выйти из строя, если он коснется шасси.

Схема цепей источника питания 0,50 В, 0,4 А

источник:
hobbielektronika.hu/forum/topic_1560.html?pg=127
elektro.zolee.hu/rajz_mutat.php?mutasd=75 9000LINK DOWN 9000AD224 СПИСОК (в формате TXT): LINKS-25942.zip

6 отличных источников питания для вашей лаборатории электроники

Вы заметили, что ваша лаборатория электроники могла бы потребовать небольшого обновления с 1970-х годов до настоящего времени? Если да, то вы попали в нужное место.Надежный источник питания постоянного тока часто считается требованием во многих современных лабораториях электроники. Мы хотели поделиться несколькими отличными вариантами источников питания, которые помогут вам развить устаревшее оборудование для источников питания!

* Этот пост содержит партнерские ссылки, по которым мы будем получать небольшую комиссию без каких-либо дополнительных затрат для вас.

6 отличных источников питания для обновления вашей лаборатории электроники

1. Регулируемый линейный источник питания постоянного тока Tekpower TP3005T

Источник переменного тока Tekpower TP3005T — это компактный прибор линейного типа, который подходит как для лабораторного, так и для промышленного использования.

Этот цифровой источник питания постоянного тока имеет максимальное выходное напряжение до 30 вольт и ток до 5 ампер . Он поставляется с поворотными переключателями для настройки напряжения и тока.

Благодаря своей надежности и универсальности, это бесценный и незаменимый инструмент для тестирования, который идеально подходит для лабораторий, исследовательских институтов и научно-исследовательских центров.

2. Блок питания Rigol DP832 Triple Output 195 Вт

Rigol DP832 — это источник питания более высокого уровня, который предлагает 3 выхода с общей мощностью до 195 Вт.Это позволит вам установить удаленную связь между DP800 и ПК через интерфейс USB, LAN, RS232 или GPIB.

Дистанционное управление Методы включены в определяемое пользователем программирование. Вы также можете программировать прибор и управлять им с помощью SCPI (стандартные команды для программируемых приборов). Это позволяет отправлять команды SCPI через программное обеспечение ПК. Вы можете управлять источником питания удаленно, отправляя команды SCPI через программное обеспечение ПК (UltraSigma), предоставляемое RIGOL.

Источник питания имеет очень хорошо сконструированный и простой в использовании интерфейс, предлагающий комплексные простые в использовании функции, такие как программируемые кривые напряжения.Меню имеет интуитивно понятную структуру.

3. Источник переменного тока EvenTek KPS

Высокоточный источник питания постоянного тока Eventek KPS специально разработан для научных исследований, разработки продуктов, лабораторий, школ и производственных линий электронной техники.
Выходное напряжение и ток плавно регулируются до номинального значения. Обладая высокой точностью, надежностью, идеальной схемой защиты от перегрузки и короткого замыкания, они могут быть идеальным выбором для промышленности.

4. Настольный регулируемый источник питания постоянного тока YaeCCC

Лабораторный источник питания может действовать как источник питания для регулирования напряжения или тока. Диапазон регулирования напряжения составляет от 0 В до 30 В, а диапазон тока — от 0 А до 5 А.

Выход устанавливается поворотными переключателями, значение отображается на ЖК-дисплее. Он имеет низкие пульсации и шум, высокую надежность и высокую точность. В комплект входят измерительные провода для подключения к источнику питания (банановые вилки) и нагрузке (зажимы типа «крокодил»).Отличный вариант по более низкой цене!

5. Программируемый лабораторный источник питания постоянного тока KORAD

Этот линейный источник питания с множеством функций и непревзойденной ценой !! Он имеет легко читаемый 4-значный светодиод, который используется для отображения значений напряжения и тока. Это сверхмощный одноканальный источник питания постоянного напряжения и постоянного тока с низким уровнем пульсаций и шума, высокой надежностью и высокой точностью. Напряжение и ток регулируются плавно. Блок питания KORAD разработан для использования в лабораториях, колледжах и на производстве.

6. Блок питания Siglent SPD3303X-E с тройным выходом

Блок питания Siglent SPD3303X-E содержит три независимых блока питания в одном блоке. Как истинный линейный источник питания, выходной шум и регулировка превосходны. Благодаря интеллектуальному вентилятору с регулируемой температурой снижается уровень шума. Разрешение по напряжению 10 мВ / 10 мА. Блок питания SPD3303X-E поставляется с программным обеспечением EasyPower для ПК, поддерживает команды SCPI и, как и все приборы Siglent, имеет доступный драйвер LabView.

Хотите обновить другое оборудование в своей лаборатории электроники? Обратите внимание на эти 3 великолепных осциллографа для любого бюджета.

Источники питания | Скамья, программируемая, 12 В

Блоки питания

Что такое блоки питания?

Источники питания — это в основном компоненты, которые обеспечивают питание по крайней мере одной электрической нагрузки, и они обычно интегрированы в устройство, которое они питают. Они также обычно преобразуют один тип электроэнергии в другой — в большинстве случаев, переменный ток (переменный ток) в постоянный ток (постоянный ток).Однако некоторые модели действительно преобразуют различные формы энергии, такие как солнечная или химическая энергия, в электрическую энергию.

Источники питания также называются блоками питания, блоками питания и адаптерами питания.

Почему следует выбирать источник питания с осторожностью?

Если вы хотите, чтобы ваша система работала оптимально, вам нужно позаботиться о фундаменте. Так сказать костяк всей операции.

Энергия — это основа буквально любой электронной системы, будь то небольшое домашнее хобби или крупное промышленное использование.Электроника не может работать без какой-либо формы питания, и источники питания являются самим источником этой энергии.

Поэтому крайне важно, чтобы вы понимали характеристики хорошего блока питания и элементы, которые следует искать, чтобы выбрать лучший для вашей ситуации. Посмотрите на их тип, марку и модель. Знайте разницу между источником питания переменного тока и источником питания постоянного тока и выясните, с каким из них ваша система будет работать лучше всего.

Чтобы быть более конкретным, изучите различные варианты преобразования источника питания.Ознакомьтесь с различными типами источников питания; настольные, программируемые, регулируемые, нерегулируемые, линейные, переключатели и т. д.

Нужно распаковать много информации, это правда, но поверьте нам, когда мы говорим, что в конечном итоге это того стоит.

Сравнение источников питания

Для начала давайте рассмотрим некоторые способы сравнения различных источников питания. Опять же, необходимо учесть несколько элементов. А пока мы рассмотрим три:

  • Регулируемый и нерегулируемый

  • Линейные и коммутационные

  • переменного и постоянного тока

Регулируемый vs.Нерегулируемый Источники питания

переменного и постоянного тока могут быть как регулируемыми, так и нерегулируемыми. Самая большая разница между ними — их способность подавать постоянное напряжение на нагрузку. Регулируемые блоки питания вполне на это способны. Нерегулируемые источники питания не могут.

Если вы выберете неправильный тип источника питания, вы потенциально можете нанести непоправимый ущерб системе или устройству, которое питаете. Вы также можете потратить впустую энергию и заплатить слишком много, если будете использовать более мощный отряд, чем это строго необходимо.

Мы утверждаем, что выбор между регулируемым и нерегулируемым источником питания так же важен, как и выбор возможностей напряжения.

Нерегулируемые блоки питания

Нерегулируемые источники питания способны обеспечивать ожидаемую мощность при заданном токе. Однако полученное выходное напряжение не всегда отражает фактическое выходное напряжение. Более того, напряжение в нерегулируемом источнике питания выходит, когда на выходе мощности присутствует пульсация напряжения.

Нерегулируемые источники питания — это простые и недорогие варианты, которые подходят для небольших жилых помещений.Однако имейте в виду, что они обеспечивают неравномерное напряжение.

Более того, нерегулируемые источники питания не способны к резкому увеличению или уменьшению потока без конденсатора, чтобы предотвратить резкие колебания напряжения. Это означает, что изменения в токовой нагрузке и входном напряжении приведут к непоследовательному или нечистому выходу из источника питания.

Плюсы:

Минусы:

Регулируемые блоки питания С другой стороны, блоки питания

имеют дополнительный регулятор напряжения, способный уменьшить пульсации напряжения для обеспечения чистого, равномерного выхода.Помимо этого, они имеют все те же части, что и нерегулируемый источник питания, что означает, что они также способны обеспечивать ожидаемую мощность при заданном токе.

Самая большая разница между регулируемым источником питания и нерегулируемым заключается в том, что выходной сигнал регулируемого источника питания является стабильным и неизменным. В отличие от нерегулируемой модели, подача отражает фактическое выходное напряжение независимо от входа или потребления.

Из-за этого регулируемые источники питания идеально подходят для деликатной электроники, требующей единообразия.

Плюсы:

  • Бесперебойная и стабильная доставка

  • Выход отражает фактическое выходное напряжение, указанное в списке

  • Добавлен стабилизатор напряжения

  • Согласованный

  • Эффективный

Минусы:

Линейное и переключение

Большинство регулируемых источников питания также способны преобразовывать мощность постоянного тока в мощность переменного тока.Такие модели преобразователей бывают линейными, переключаемыми или аккумуляторными. Но источники питания на батарейках — это в значительной степени переключаемые преобразователи, поэтому вам действительно нужно сравнить линейные источники питания с переключаемыми (или переключаемыми) источниками питания.

Линейные блоки питания

Линейные источники питания намного проще и понятнее, чем импульсные или импульсные источники питания. Они также выделяют намного больше тепла.

В линейных источниках питания также используются трансформаторы для преобразования входного переменного тока в выходной постоянный ток.Они очень тихие и менее требовательны, чем импульсные блоки питания, что делает их отличным выбором для проектов, требующих минимальной или низкой мощности. Однако они довольно тяжелые и громоздкие. Они редко бывают портативными.

Общие области применения линейных источников питания включают лабораторные работы, связь и медицинские нужды.

Плюсы:

Минусы:

Импульсные источники питания

Импульсные блоки питания или импульсные блоки питания немного сложнее, чем их аналоги.К тому же они намного шумнее. Однако они намного холоднее линейных источников питания и намного более портативны.

Для эффективного регулирования выходного напряжения в импульсных источниках питания используется процесс, называемый изменением ширины импульса (PWM). Это позволяет им работать при более низкой температуре без ущерба для эффективности или гибкости. Фактически, импульсные источники питания известны своим универсальным применением, способным адаптироваться к широкому спектру функций.

Однако импульсные источники питания из-за их высокочастотного шума не рекомендуются для лабораторных или медицинских работ.Импульсные источники питания в основном используются в авиации, кораблях, производстве и мобильных станциях.

Плюсы:

  • Эффективный

  • Легкий и компактный

  • Охладитель, работает при низкой температуре

  • Гибкость, позволяет использовать несколько приложений

Минусы:

Переменный ток и постоянный ток

Наконец, вы должны подумать, требуется ли в вашей ситуации источник переменного тока (AC) или постоянного тока (DC).На всякий случай вы всегда можете спросить профессионала, но даже базовые знания обоих типов помогут.

Вот что вам следует знать:

Блоки питания переменного тока

Как следует из названия, источники питания переменного тока характеризуются волнами переменного тока, создаваемыми генераторами переменного тока, в частности, различными областями магнитной полярности внутри генераторов переменного тока. Также стоит отметить, что питание переменного тока на самом деле является стандартным форматом электрического вывода для розеток, что делает его довольно распространенным.

Источники питания переменного тока

обеспечивают электрические токи, которые периодически меняются в зависимости от определенных параметров. Они могут двигаться как в положительном, так и в отрицательном направлении. Когда электрический ток положительный, он создает поток вверх. Когда он отрицательный, он падает.

Это создает очень отчетливое волнообразное движение, и именно это движение дает мощности переменного тока преимущество перед мощностью постоянного тока.

Мощность переменного тока может передаваться дальше, чем мощность постоянного тока. Его также очень легко создать.Вы часто встретите этот формат в торговых точках в коммерческих зданиях, небольших устройствах, таких как настольные лампы, и бытовой технике, например холодильниках и посудомоечных машинах.

Преимущества переменного тока:

Источники питания постоянного тока

В то время как мощность переменного тока определяется его волнообразным движением, источники питания постоянного тока генерируют токи, которые движутся по прямой, непоколебимой линии — отсюда и название.

Электроны в постоянном токе фиксированы и неизменны. Они поступают от генераторов переменного тока, оборудованных коммутаторами, которые специально вырабатывают прямую энергию.Электропитание постоянного тока также может генерироваться выпрямителями, которые способны преобразовывать переменные токи в постоянные токи.

Постоянство мощности постоянного тока действительно делает его лучшим выбором для портативных устройств и чувствительной электроники. Большинство батарей являются источниками питания постоянного тока. Конвертеры созданы специально для преобразования мощности переменного тока из розеток в полезную мощность постоянного тока.

Подумайте о зарядных устройствах для портативных компьютеров. Они часто поставляются с преобразователями питания, преобразующими переменный волновой выходной ток вашей розетки в более линейный, постоянный ток, с которым действительно может справиться ваш ноутбук.Высокие и низкие частоты переменного тока могут повредить хрупкие компоненты внутри портативных устройств, поэтому более стабильный ток предпочтительнее.

Другие приложения включают смартфоны, фонарики и некоторые электромобили нового поколения.

Преимущества постоянного тока:

  • Последовательный и стабильный

  • Легко преобразовать из AC

Но что касается преобразования, как преобразователи — и некоторые блоки питания — преобразуют мощность переменного тока в мощность постоянного тока?

Вот краткий обзор:

Преобразование переменного тока в постоянный

Рассмотрим выход переменного тока из стенной розетки.

Как мы упоминали ранее, постоянно меняющийся характер тока может быть вредным для большинства портативных электронных устройств. Допустим, вы хотите зарядить свой смартфон. Вашему смартфону требуется стабильный постоянный ток для безопасной зарядки аккумулятора.

Преобразователь или блок питания забирает переменный ток из стенной розетки и преобразует его в нерегулируемый постоянный ток, одновременно снижая напряжение через входной силовой трансформатор. Напряжение выпрямлено, но все еще немного колеблется. Он проходит через конденсатор (обычно в импульсных источниках питания) для «сглаживания».”

Внутри конденсатора создается резервуар энергии. Этот пул затем подается на нагрузку при дальнейшем падении напряжения. Когда это происходит, поступающая энергия расходуется, эффективно сглаживая напряжение еще больше и устраняя «пики» или скачки тока. Осталась гладкая линейная линия, которая движется только в одном направлении.

Теперь, когда у вас есть хорошее представление о том, как работают разные блоки питания и для каких типов лучше всего подходят разные типы, вы готовы углубиться в детали! После того, как вы определили источник питания или источники питания, которые лучше всего подходят для вашего проекта, вы можете провести дальнейшее исследование, используя более конкретные и последовательные термины.

А если вы ищете источники питания самого высокого качества по выгодной цене, ознакомьтесь с полным списком источников питания для специалистов по схемам. От программируемых источников питания до линейных и импульсных источников питания — вы обязательно найдете здесь модель, которая точно соответствует вашим характеристикам.

Лабораторный / системный настольный источник питания постоянного тока 0-30 В

Лабораторный / системный настольный источник питания постоянного тока 0-30 В — 12 А

Модель 3012A — это универсальный настольный источник питания постоянного тока, монтируемый в стойку, с высокой нагрузочной способностью.Благодаря широкому диапазону рабочих характеристик и производительности он хорошо подходит для производственных испытаний в режиме реального времени, разработки электронных систем, приработки компонентов и различных лабораторных приложений. Пользователи образовательных учреждений также оценят это экономичное устройство. 3012A разработан для работы в режиме постоянного напряжения или постоянного тока. Работа с постоянным напряжением поддерживается для нагрузок, потребляющих ток ниже заданного уровня. Если ток нагрузки должен превышать настройку контроля тока, источник питания автоматически подаст полностью регулируемый ток на нагрузку.Дополнительные функции включают в себя легко читаемые панельные измерители для одновременного мониторинга выходов V&A, гибкость системы, малый дрейф выходного сигнала и надежные 5-сторонние клеммные колодки.

Основные характеристики настольного источника питания 3012A:

  • Плавная регулировка 0-30 В постоянного тока при 0-12 А
  • Десятиоборотный потенциометр обеспечивает высокое разрешение для контроля выходного напряжения
  • Дистанционное программирование и зондирование
  • Постоянное напряжение / постоянный ток с автоматическим кроссовером
  • Индикаторы режима
  • Возможность последовательного или параллельного подключения
  • Защита от короткого замыкания, обратной полярности и перегрузки
  • Плавающий выход — использовать как положительный или отрицательный источник
  • Монтаж на столе или в стойке
  • Конвекционное охлаждение — вентиляторы не требуются

Характеристики настольного источника питания 3012A:

  • Выходное напряжение: от 0 до 30 В постоянного тока, бесступенчато.
  • Выходной ток: от 0 до 12 ампер.
  • Регулировка напряжения — Нагрузка / Линия: 0,05% от нуля до полной нагрузки / 0,02% от 105 до 125 В переменного тока.
  • Регулировка тока — нагрузка / линия: 0,25% от короткого замыкания до 30 В / 0,1% от 105 до 125 В переменного тока.
  • Пульсация и шум: 500 мкВ RMS.
  • Защита от перегрузки: Нагрузка и источник питания защищены регулируемой электронной схемой ограничения тока — регулируется от <1% до 105% выходного тока. Вход переменного тока защищен предохранителем.
  • Программирование напряжения: 0–1,2 В постоянного тока для полного управления выходом.
  • Полярность: положительная или отрицательная клемма может быть подключена к заземлению шасси или может быть «плавающей» до 300 В постоянного тока.
  • Температура — эксплуатация / хранение: от 0 ° до 40 ° C / от -20 ° до + 75 ° C.
  • Требования к питанию: 115 ± 10 В переменного тока, 50/60 Гц, 690 Вт. Размер (ВШГ): 5-5-1 / 2 «x 19» x 13-3 / 4 «(140 x 483 x 349 мм).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *