Маркировка конденсаторов на схеме: Страница не найдена — ELQUANTA.RU

Содержание

Что такое конденсатор, типы конденсаторов и их обозначение на схемах

 Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых  выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

 

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах, помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах, а от 0,1 мкФ и выше — в микрофарадах.

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования. Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы. Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы, в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

   Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы, представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны, т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак ?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы. Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут что такое резистор?

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Как обозначаются конденсаторы на схемах: основные параметры и емкость

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Конденсаторы

Надо сказать, что конденсатор, как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсаторэто две металлических пластинки и воздух между ними.

Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит.

Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного.


Конденсаторы бывают постоянные, подстроечные, переменные и электролитические. Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы

воздушные, слюдяные, керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость. Она измеряется в микро-, нано— и пикофарадах. На схемах Вы встретите все три единицы измерения.

Обозначаются они следующим образом: микрофарады – мКф или мFнанофарады – нф, Н или

п, пикофарады – пф или pf. Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е.

обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф).

Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф).

Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике.

Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке, которая может содержать полосы, кольца или точки.

Маркируемые параметры: номинальная емкостьмножитель

; допускаемое отклонение напряжения; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


  • Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка)
    :

  • (в таблице ошибка, должно быть: 10010 пикофарад0,01 нанофарада0,00001 мкф(!))


  • При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы. Сегодня чаще всего можно услышать название

оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны, поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков.

А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые.

Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы, хотя применяются они довольно редко.

Существую еще и танталовые конденсаторы, которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.

Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают.
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись  радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили

варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения.

Перейти к следующей статье: Диоды

Источник: http://radio-stv.ru/nachinayushhim-radiolyubitelyam/vvedenie-v-elektroniku/vvedenie-v-elektroniku-kondensatoryi

КОНДЕНСАТОР

   Конденсаторы  являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах.

Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Разные конденсаторы рисунок

   Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Устройство простейшего конденсатора

   Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Формулы соединение конденсаторов

   Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

Полярный конденсатор изображение на схеме

   К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

Фото электролитический конденсатор

   У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Фото конденсатора с насечками

   Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

  • Неполярный конденсатор изображение на схеме
  • Пленочный
  • Керамический

   На фото ниже изображены пленочный и керамический конденсаторы:

   Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные.

Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью.

Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

  1. Расшифровка цифровой маркировки конденсаторов
  2. Таблица номиналов конденсаторов
  3. Фото SMD конденсатора
  4. Фото электролитических SMD конденсаторов

   На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:   Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:    Далее показано фото электролитических SMD конденсаторов:    Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы

   Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки.

На рисунке изображено устройство конденсатора переменной емкости:

  • Рисунок как устроен переменный конденсатор
  • Фото переменный конденсатор
  • Переменный конденсатор изображение на схеме
  • Подстроечный конденсатор изображение на схеме
  • Фото подстроечный конденсатор
  • Рисунок строение подстроечного конденсатора

   Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.    На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:   На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:    Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.    На следующем рисунке изображено строение подстроечного конденсатора:    Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV.

   Форум по различным радиоэлементам

   Обсудить статью КОНДЕНСАТОР

Источник: https://radioskot.ru/publ/nachinajushhim/kondensator/5-1-0-755

Что такое конденсатор

Конденсаторы или как в народе говорят – кондеры, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”.

Интересное название, не правда ли? Но теперь вопрос ставится ребром: ” А что уплотняется или сгущается в конденсаторе?”  А сгущается в конденсаторе электрический заряд.

Конденсатор  – это своеобразный аккумулятор, но прикол в нем такой, что он готов сразу отдать весь заряд за доли секунды.  Главное отличие от аккумулятора в том, что внутри него нет источника ЭДС.

В свое время, еще в школе, мы развлекались тем, что брали конденсатор типа МБГЧ, емкостью побольше, на долю секунды вставляли его в розетку и потом шваркали друг друга этим конденсатором. Ощущения  были очень “приятными” 🙂  Чем больше емкость, тем ярче ощущения))).

Но, как говорится, времена идут, а конденсатор остается конденсатором.  И используется он теперь не только, для того, чтобы гонять друг друга, но  также широко используется и в радиоэлектронике. Скорее всего, последняя фраза даже более правдивая, чем первая :-).

Как устроен конденсатор

  • Любой конденсатор состоит из двух обкладок и эти обкладки изолированы друг от друга и не прикасаются с друг другом. Представим себе блин:
  • намажем его сгущенкой
  •  и сверху положим точно такой же блин

Должно выполняться условие:эти два блина не должны прикасаться  друг  с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед Вами типичный “блинный конденсатор” :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки разный диэлектрик. К каждой металлической пластине присоединен проводок – это и есть выводы конденсатора.

Как я уже сказал, конденсатор способен накапливать электрический заряд. Эту способность называют емкостью. Чем больше емкость, тем больше конденсатор сможет накопить электрического заряда. Его емкость измеряется в Фарадах (Ф или  зарубежный (буржуйский) вариант F).

В радиоэлектронной и электротехнической промышленности используются конденсаторы абсолютно разных номиналов. Емкость зависит от площади “блинов”, толщины “сгущенки” намазанной между ними, а также от состава сгущенки :-).

  Чем больше площадь “блинов” и тоньше “сгущенка”, тем больше его емкость.

  1. А вот и конденсаторы, которые похожи на блинчики,  но эти блинчики могут также быть и квадратной формы:
  2. Для того, чтобы уменьшить габариты  конденсатора, можно завернуть его в трубочку, как и наш тортик из двух блинов со сгущенкой:

В результате у нас получатся  малые габариты, но большой объем. Это не беда! Ведь свернуть в трубочку можно очень большие “блины”, если “сгущенка” между ними намазана очень тонким слоем. Этот принцип используется в цилиндрических конденсаторах.

В них как раз намотан вот такой “рулончик”. На фото разобранный цилиндрический конденсатор.

Как видите, здесь две ленты алюминиевой фольги, а между ними тонкая светло-коричневая бумага – диэлектрик. Такие конденсаторы обладают большой емкостью, так как у них площадь пластин, как вы видите, очень приличная.

Виды конденсаторов и их обозначение на схеме

Все конденсаторы на схемах обозначаются буковкой “С”. Простые делятся на два вида: полярные и неполярные. Неполярные конденсаторы очень распространены и занимают значительную часть радиоаппаратуры:

  • а также к ним относятся маленькие SMD конденсаторы вот такого типа:
  • на схемах неполярные конденсаторы обозначаются вот таким образом:
  • К полярным конденсаторам относятся электролитические конденсаторы
  • и SMD полярные конденсаторы:
  • На схемах обозначаются вот так, то есть у них есть плюсовый вывод, который в цепи должен быть соединен  с положительным потенциалом схемы.
  • По аналогии с резисторами, есть на свете и  конденсаторы переменной емкости (КПЕ):
  •  на схемах обозначаются как-то вот так:
  •  ну и, конечно же, подстроечные конденсаторы:
  •  а вот и их схемное обозначение:

Есть также  особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что  там есть золото. Сам принцип работы ионистора ценее, чем золото.

  Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик)  тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно,  разработчики решили уменьшить слой диэлектрика.

Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!

Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а  также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).

Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами.  А исходя из Закона Ома, чем меньше сопротивление проводника, тем большая Сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно туеву кучу раз).

Последовательное и параллельное соединение конденсаторов

  1. При последовательном соединении  конденсаторов
  2. общая емкость вычисляется по формуле
  3.  а при параллельном соединении
  4. их общая емкость будет вычисляться по формуле:
  5. Про то, как проверить конденсатор на работоспособность, можете  узнать, прочитав  эту статью.

Конденсаторы – это огромная тема в радиоэлектронике.  В этой статье я затронул  только основные понятия.  В настоящее время ни одно устройство не обходится без этих радиоэлементов. При выборе конденсатора обязательно смотрите, на какое напряжение он рассчитан.  Если он будет использоваться в цепях с высоким напряжением, то он может либо сгореть либо даже взорваться. Если, например, я собираюсь использовать его в цепях с напряжением в 36 Вольт, то я должен взять  хотя бы минимум на 50 Вольт и больше, но не меньше! Всегда обращайте внимание на этот параметр.

Имейте также ввиду, что конденсаторы и их виды очень чувствительны к нагреву и могут менять свою емкость под воздействием температуры. Поэтому, при проектировании старайтесь распределять их на плате подальше от  разного рода нагревашек:  радиаторов, трансформаторов и мощных резисторов.

Будьте осторожны с конденсаторами большой емкости.  Прежде, чем взять его в руки, убедитесь, что он разряжен. Желательно разряжать такие конденсаторы через сопротивление от 1 КилоОма, замкнув его выводы этим самым резистором. Старайтесь не задевать голыми руками выводы конденсатора, когда будете проводить эти операции.

Источник: https://www.RusElectronic.com/kondjensatory/

Основы автоэлектрики. Часть5. Электрическая ёмкость и конденсаторы — DRIVE2

Всем привет!

Ранее был рассмотрен материал:Основы автоэлектрики. Часть1. Основные законыОсновы автоэлектрики. Часть2. Резисторы. Провода. Подробнее о сопротивленииОсновы автоэлектрики. Часть3. Энергетические законы. Мощность. Делитель напряжения. Делитель тока. Тепловая энергияОсновы автоэлектрики. Часть4. Реактивные сопротивления.

Сегодня мы коснёмся темы накопителей заряда, именуемых конденсаторами.

Конденсатор — пассивный электронный компонент, состоящий из двух полюсов, накапливающий заряд.

Электрическая ёмкость — это отношение электрического заряда к разности потенциалов между полюсами конденсатора (или иного другого электронного компонента). Единица измерения — Фарад и его производные (пикоФарад, наноФарад, микроФарад). Обозначается ёмкость латинской буквой С.

Мы уже обсуждали, что ток — это есть скорость перемещения заряда, а напряжение — это разность потенциалов. Мы всегда удобно проводить некие параллели, поэтому напряжение ассоциируется с разницей давления в жидкости или газе, а ток — с объёмной скоростью жидкости или газа.

Поэтому конденсатор можно представить себе как некий сосуд, который наполняют жидкостью или газом давлением, которое выше чем в сосуде. Наполнение сосуда будет происходить до тех пор, пока давление подачи не уровняется с давлением в сосуде.

Так и работает конденсатор: по мере наполнения зарядом растет напряжение. Чем ближе будет напряжение в конденсаторе к напряжению заряжающего источника, тем меньше будет скорость заряда. Это аналогично тому, как наполняется сосуд.

Если мы заполнили сосуд, затем открыли кран у него — ток начинает утекать, тем самым снижая количество заряда и понижая напряжение.

Если рассматривать провод или резистор как трубу, а конденсатор — как сосуд, многое становится понятно на интуитивном уровне. Ну, и проще понять реактивные сопротивления, о которых мы говорили ранее. Но надо понимать, что сосуд — это сосуд, а конденсатор — это конденсатор=)

Итак, в простейшем виде конденсатор представляет собой две параллельные пластины, между которыми находится некий диэлектрик. Самый простой диэлектрик — это воздух.

Конечно, сегодня воздушные конденсаторы уже и не встретить, но я ещё несколько лет назад использовал переменный воздушный конденсатор для сборки радиоприёмника=) Правда, в этом конденсаторе пластин было гораздо больше двух, и выглядел примерно вот так:

  • Вращая ручку, можно было изменять значение электрической ёмкости.
  • На, а вот так обычно представляют простейший конденсатор:

  1. В случае такого конденсатора ёмкость вычисляется следующим образом:

Сегодня конденсаторов огромное множество. Наиболее популярные — керамические, электролитические и танталовые. Отличие последних двух в том, что они полярны, и крайне не рекомендую включать их в схему обратной полярностью=)

Основными параметрами конденсатора являются:— Электрическая ёмкость,— Максимально допустимое напряжение на его обкладках (немаловажный параметр, при подачи бОльшего напряжения можно увидеть много весёлых, но крайне не безопасных эффектов:-), особенно на конденсаторах большой ёмкости),— Полярность (т.е. полярный или неполярный),— Допустимые отклонения от номинального значения ёмкости (обычно в процентах),— Диапазон рабочих температур,

— Тип корпуса.

Полярность, допустимые отклонения и диапазон температур напрямую зависят от применяемого диэлектрика. Как правило, конденсаторы большой ёмкости — электролитические, т.е. в качестве диэлектрика — электролит.

А электролитические конденсаторы по физике процессов сильно напоминают всем знакомые свинцово-кислотные аккумуляторы и аналогично им имеют полярность, что приводит к некоторым ограничениям. Кроме того, они имеют свойство высыхать.

И именно они являются частой причиной выхода из строя бытовой и промышленной электроники, в результате чего страдают и иные компоненты. Выглядят электролитические конденсаторы так:

Танталовые конденсаторы были некогда призваны заменить электролитические, но и те имеют ряд ограничений и так и не достигли приличных ёмкостей. Кроме того, взрываются они не менее весело=) Выглядят они вот так:

Спешу обрадовать, что развитие электроники не стоит на месте и сегодня вполне можно приобрести обычные керамические конденсаторы с ёмкостью, сравнимой с танталовыми, а некоторые достигают ёмкости 330 мкФ при допустимом напряжении в 4 В. И это всё в малом чип-корпусе 1206!Кстати, размеры основных корпусов чип-конденсаторов:

Ну, и не все конденсаторы в чипах, поэтому существуют и выводные конденсаторы:

Причина такому прорыву — отличный диэлектрик под кодовым названием X5R. 330 мкФ при 4В — не густо конечно. Но на большие напряжения ёмкости также достигли впечатляющих значений — на те же 16В найти 100 мкФ не проблема, на 25 В — на 22 мкФ, на 35-50 В пока не больше 10 мкФ. Тем не менее, во многих и многих приложениях электроники появляется возможность отказаться от электролитов и танталов.

  • Вернемся к основным свойствам. Если рассматривать глубже, то параметров конденсаторов гораздо больше:— Температурная зависимость параметров,— Входное сопротивление (ESR),— Внутреннее сопротивление,— Время наработки на отказ (очень интересный параметр, которому реально посвятить целую статью),
  • — многие другие.

Расписывать здесь все детали не вижу смысла, так эти параметры важны тем, кто глубоко занимается электроникой. Тем не менее счел важным упомянуть о них. Кому захочется капнуть — можно порыться в сети.

Помимо указанных выше конденсаторов следует немного сказать о плёночных конденсаторах. Выглядят они вот так:

Их основное отличие от предыдущих — это поражающая надежность и способность работать в силовых цепях, особенно в цепях с высоким напряжением.

Наверное, сегодня краткого обзора будет достаточно. О применении конденсаторов поговорим в следующих статьях.

В прошлой статье писал, но и здесь напомню, что конденсаторы на схемах обозначаются так:

  1. На сим всё;)Продолжение следует=)
  2. ___________________________________________________________________________
  3. Бокс «Две семёрки» ВКонтакте___________________________________________________________________________

Источник: https://www.drive2.ru/b/495779964520497457/

КОНДЕНСАТОРЫ. Классификация. Обозначения. Параметры. | Мастер Винтик. Всё своими руками!

В основу классификации конденсаторов положено деление их на группы по виду применяемого диэлектрика и по конструктивным особенностям, определяющим использование их в конкретных цепях аппаратуры (табл. 14). Вид диэлектрика определяет основные элект­рические параметры конденсаторов: сопротивление изо­ляции, стабильность емкости, потери и др. Конструк­тивные особенности определяют характер их приме­нения: помехоподавляющие, подстроечные, дозиметри­ческие, импульсные и др.

СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИИ

Условное обозначение конденсаторов может быть со­кращенным и полным.

Сокращенное условное обозначение состоит из букв и цифр. Первый элемент — буква или сочетание букв — обозначают подкласс конденсатора:

  • К — постоянной емкости;
  • КТ — подстроечные;
  • КП — переменной емкости.

Второй элемент обозначает группу конденсаторов в за­висимости от вида диэлектрика (табл. 14). Третий эле­мент пишется через дефис и соответствует порядковому номеру разработки. В состав второго и третьего элемен­тов в отдельных случаях может входить также буквен­ное обозначение.

Условное обозначение конденсаторов в зависимости от материала диэлектрика

Таблица 14.

  •  * комбинированный диэлектрик состоит из определенного сочетания слоев различных материалов.
  •  Для старых типов конденсаторов в основу условных обозначений брались конструктивные, технологические, эксплуатационные и др. признаки (КД — конденсаторы дисковые, ФТ — фторопласовые  теплостойкие; КТП — конденсаторы трубчатые про­ходные)
  • Маркировка на конденсаторах может быть буквенно-цифровая, содержащая сокращенное обозначение кон­денсатора, номинальное напряжение, емкость, допуск, группу ТКЕ, дату изготовления, либо цветовая.

В зависимости от размеров конденсаторов приме­няются полные или сокращенные (кодированные) обо­значения номинальных емкостей и их допускаемых откло­нений. Незащищенные конденсаторы не маркируются, а их характеристики указываются на упаковке.

Полное обозначение номинальных емкостей состоит из цифрового значения номинальной емкости и обозна­чения единицы измерения (пФ — пикофарады, мкФ — микрофарады, Ф — фарады).

Кодированное обозначение номинальных емкостей состоит из трех или четырех знаков, включающих две или три цифры и букву.

Буква из русского или латинского алфавита обозначает множитель, состав­ляющий значение емкости, и определяет положение запятой десятичного знака. Буквы П (р), Н (n), М (м), И (m), Ф (F) обозначают множители 10е-12, 10е-9, 10е-6, 10е-3  и 1.

Например, 2,2 пФ обозначается 2П2 (2р2), 1500 пФ— 1Н5 (1n5), 0,1 мкФ —M1 (м1), 10 мкФ — 10 М (10м), 1 Ф — 1Ф0 (1F0).

Допускаемые отклонения емкости (в процентах или в пикофарадах) маркируются после номинального значения цифрами или кодом (табл. 15).

  Допускаемые отклонения емкости от номинального значения

Таблица 15

Допускаемое отклонение емкости, %КодДопускаемое отклонение емкости, %КодДопускаемое отклонение емкости, %Код
±0,1 В (Ж) ±20 М (В) ±0,1 В
+ 0,2 С (У) +30 N (Ф) ±0,25        С
+0,5 D (Д) — 10      +30 О — ±0,5 D
+ 1 F (Р) — 10      +50 Т (Э) ±1 F
+2 G (Л) — 10     +100 Y (Ю)
±5 I (И) — 20      +50 S (Б)
+20 К (С) — 20      +80 Z (А)

(В скобках указаны старые обозначения)

Цветовая кодировка применяется для маркировки номинальной емкости, допускаемого отклонения емко­сти, номинального напряжения до 63 В (табл. 16) и группы ТКЕ (см. табл. 18, 19). Маркировку наносят в виде цветных точек или полосок.

ПАРАМЕТРЫ КОНДЕНСАТОРОВ

Номинальная емкость и допускаемое отклонение емкости

 Номинальная емкость (Сн) — емкость, значе­ние которой обозначено на конденсаторе или указано в сопроводительной документации. Фактическое значе­ние емкости может отличаться от номинальной на вели­чину допускаемого отклонения.

Номинальные значения емкости стандартизированы и выбираются из опреде­ленных рядов чисел путем умножения или деления их на 10n, где n — целое положительное или отрицательное число. Наиболее употребляемые ряды номинальных ем­костей приведены в табл.

17 (значения допускаемых отклонений емкостей см. в табл. 15).

Цветовые коды для маркировки конденсаторов

Таблица 16

Цветовой
код
Номинальная емкость, пФ
номинальное
напряжение, В
1 и 2 цифрамножительдопустимые отклонения
Черный101+/-20%4
Коричневый1210+/-1%6.3
Красный15х10е2+/-2%10
Оранжевый18х10е3+/-0.25пФ16
Желтый22х10е4+/-0.5пФ40
Зеленый27х10е5+/-5%25 или 20
Голубой33х10е6+/-1%32 или 30
Фиолетовый39х10е7-20..+50%50
Серый47х10е-2-20..+80%3.2
Белый56х10е-1+/-10%63
Серебристый682.5
Золотой821.6

Наиболее употребляемые ряды номинальных значений емкостей

Таблица 17

Номинальное напряжение (UH)

Это напряжение, обозначенное на конденсаторе (или указанное в доку­ментации), при котором он может работать в заданных условиях в течение срока службы с сохранением пара­метров в допустимых пределах.

Номинальное напря­жение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряже­ние на конденсаторе не должно превышать номиналь­ного.

Для многих типов конденсаторов с увеличением температуры (как правило, более 70…85 °С) допускаемое напряжение (Ut) снижается.

Характеризует активные потери энергии в конденсаторе. Значения тангенса угла потерь у керамических высокочастотных, слюдяных, полистирольных и фторопластовых конденсаторов лежат в пределах (10…15)х10е-4 , поликарбонатных (15…25)х10е-4, керамических низкочастотных 0,035, оксидных конденсаторов (5…35)%, полиэтилентерефталатных 0,01… 0,012.

Величина, обратная тангенсу угла потерь, называется добротностью конденсатора.

Сопротивление изоляции и ток утечки

Эти пара­метры характеризуют качество диэлектрика и исполь­зуются при расчетах высокомегомных, времязадающих и слаботочных цепей.

Наиболее высокое сопротивление изоляции у фторопластовых, полистирольных и полипропиленовых конденсаторов, несколько ниже у низко­частотных керамических, поликарбонатных и лавсановых конденсаторов.

Самое низкое сопротивление изоляции у сегнетокерамических конденсаторов.

Для оксидных конденсаторов задают ток утечки, зна­чения которого пропорциональны емкости и напряжению. Наименьший ток утечки имеют танталовые конденсаторы (от единиц до десятков микроампер), у алюминиевых конденсаторов ток утечки, как правило, на один-два порядка выше.

Температурный коэффициент емкости (ТКЕ)

Это параметр, применяемый для характеристики конденса­торов с линейной зависимостью емкости от темпера­туры. Определяет относительное изменение емкости от температуры при изменении ее на один градус Цель­сия. Значения ТКЕ керамических конденсаторов и их ко­дированные обозначения приведены в табл. 18.

Значения ТКЕ керамических конденсаторов и их условные обозначения

Таблица 18. 

 * *В случаях, когда для обозначения группы ТКЕ требуется два цвета, второй цвет может быть представлен цветом корпуса.

 Слюдяные и полистирольные конденсаторы имеют ТКЕ в пределах (50…200)х10е-61/°С, поликарбонатные ±50х10е-61/°С . Для конденсаторов с другими видами диэлектрика ТКЕ не нормируется. Допускаемое измене­ние емкости сегнетокерамических конденсаторов с нели­нейной зависимостью ТКЕ приведено в табл. 19.

Изменение емкости керамических конденсаторов с не нормируемым ТКЕ

Таблица 19

Условное обозна­чение группДопускаемое изменение ем­кости в интер­валах температур от —60 до +85 °С Новое обозначение* Старое обозначение
цвет покрытия цвет
маркировочного знака
Н10± 10 Оранжевый + черныйОранжевый Черный
Н20+ 20 Оранжевый + красный » Красный
Н30+ 30 Оранжевый + зеленый » Зеленый
Н50+ 50 Оранжевый + голубой » Синий
Н70— 70 Оранжевый + фиолетовый »
Н90— 90 Оранжевый + белый » Белый

* В случаях, когда для обозначения группы требуется два цвета, второй цвет может быть представлен цветом корпуса.

Источник: В. Присняков. В Помощь Радиолюбителю №109 

П О П У Л Я Р Н О Е:

Популярность: 19 363 просм.

Источник: http://www.MasterVintik.ru/kondensatory-klassifikaciya-oboznacheniya-parametry/

3. Конденсаторы

Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических цепей.

Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные.

Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.

Общие условные графические обозначения конденсаторов постоянной ёмкости приведены на рис. 3.1 и их определяет соответствующий ГОСТ [2].Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см. рис. 3.1, С4). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 3.2).

Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности.

Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+», Обозначение С1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется.

другое изображение обкладок конденсатора (см. рис.3.2, С2 и СЗ).

 С технологическими целями   или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них общий). Условное графическое обозначение

Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы. У них тоже три вывода: два — от одной обкладки («вход» и «выход» ), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси.

Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3.3, С1). Наружную обкладку обозначают короткой дугой, а также одним (С2) или двумя (СЗ) отрезками прямых линий с выводами от середины.

Условное графическое обозначение с позиционным обозначением СЗ используют при изображении проходного конденсатора в стенке экрана. С той же целью, что и проходные, применяют опорные конденсаторы.

Обкладку, соединяемую с корпусом (шасси), выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (см. рис. 3.3, С4).

Конденсаторы переменной ёмкости (КПЕ) предназначены для оперативной регулировки и состоят обычно из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки радиовещательных приёмников. Как говорит само название, они допускают многократную регулировку ёмкости в определенных пределах. Это их свойство показывают на схемах знаком регулирования — наклонной стрелкой, пересекающей базовый символ под углом 45°, а возле него часто указывают минимальную и максимальную ёмкость конденсатора (рис. 3.4). Если необходимо обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора (см. рис. 3.4, С2).Для одновременного изменения ёмкости в нескольких цепях (например, в колебательных контурах) используют блоки, состоящие из двух, трех и большего числе КПЕ. Принадлежность КПЕ к одному блоку показывают на схемах штриховой линией механической связи, соединяющей знаки регулирования, и нумерацией секций (через точку в позиционном обозначении, рис. 3.5). При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь только соответствующей нумерацией секций (см. рис. 3.5, С2.1, С2.2, С2.3).

  Разновидность КПЕ — подстроенные конденсаторы. Конструктивно они выполнены так, что их ёмкость можно изменять только с помощью инструмента (чаще всего отвертки).

В условном графическом обозначении это показывают знаком подстроечного регулирования — наклонной линией со штрихом на конце (рис. 3.6).

Ротор подстроечного конденсатора обозначают, если необходимо, дугой (см. рис. 3.6, СЗ, С4).

Саморегулирумые конденсаторы (или нелинейные) обладают способностью изменять ёмкость под действием внешних факторов. В радиоэлектронных устройствах часто применяют вариконды (от английских слов vari(able) — переменный и cond(enser) — еще одно название конденсатора). Их ёмкость зависит от приложенного к обкладкам напряжения. Буквенный код варикондов — CU (U— общепринятый символ напряжения, см. табл. 1.1), УГО в этом случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 3.7, конденсатор CU1).Аналогично построено УГО термоконденсаторов. Буквенный код этой разновидности конденсаторов — СК (рис. 3,7, конденсатор СК2). Температура среды, естественно, обозначается символом tº

Источник: http://radio-hobby.org/modules/instruction/graficheskie-oboznacheniya-na-el/3-kondensatory

Маркировка постоянных конденсаторов. Обозначение конденсаторов на схемах

Наряду с самыми распространенными радиокомпонентами резисторами, конденсаторы по праву занимают второе место по использованию в электрических цепях и схемах. Основные характеристиками конденсатора являются номинальная ёмкость и номинальное напряжение. Чаще всего в схемах радиоэлектроники применяются постоянные конденсаторы, и значительно реже — переменные и подстроенные.

Номинальное напряжение конденсаторов обычно на схемах не указывают, хотя иногда и встречается в некоторых случаях, например, в высоковольтных схемах питающего рентгеновского устройства с обозначением номинальной емкости часто пишут и номинальное напряжение. Для оксидных, их еще называют электролитических конденсаторов номинал напряжения, также очень часто указывают.


Большинство оксидных конденсаторов полярные, поэтому включать их в электрическую схемуь можно только с соблюдением полярности. Чтобы отобразить это на схеме, у символа положительной обкладки имеется знак «+» .

Для развязки цепей питания в высокочастотных схемах по переменному току применяют проходные конденсаторы . Они имеют три вывода: два — от одной обкладки («вход» и «выход»), а третий от другой, наружной, которую соединяют с экраном. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора. Наружную обкладку рисуют короткой дугой, а также одним или двумя отрезками прямых линий с выводами от середины. С той же задачей, что и проходные, используют опорные конденсаторы. Обкладку, соединяемую с корпусом, выделяют в обозначении такого конденсатора тремя наклонными линиями, говорящим о « ».

Обозначение конденсаторов переменной емкости (КПЕ) на схемах

КПЕ используются для оперативной регулировки и состоят из статора и ротора. Такие конденсаторы широко применяются, например, для регулировки частоты радиовещательных и телевизионных приёмников. КПЕ допускают многократную регулировку ёмкости в заданных пределах. Это их свойство отображается на схемах знаком регулировки — наклонной стрелкой, пересекающей базовый символ под углом 45° , а возле него обычно пишут минимальную и максимальную емкость). Если требуется обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора

Для одновременного изменения емкости в нескольких цепях применяются блоки, из двух, грех и большего количества КПЕ. Принадлежность КПЕ к блоку указывают на схемах штриховой линией механической связи. При отображении КПЕ блока в разных частях схемы, механическую связь не показывают, ограничиваясь только соответствующей нумерацией секции.

Саморегулирумые конденсаторы (другое название нелинейные) обладают свойством изменять номинал емкость под действием внешних условий. В радиоэлектронных самоделках и конструкциях часто используют вариконды .2 PF) конденсатор от фирмы Kemet.

Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.

В общем случае керамические конденсаторы на

основе диэлектрика с высокой проницаемостью обозначаются

согласно EIA тремя символами, первые два из которых указывают

на нижнюю и верхнюю границы рабочего диапазона температур, а

третий – допустимое изменение емкости в этом диапазоне.6pF = 4. 7mF

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических цепей. Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные. Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.

Общие условные графические обозначения конденсаторов постоянной ёмкости приведены на рис. 3.1 и их определяет соответствующий ГОСТ .
Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см. рис. 3.1, С4 ). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 3.2 ).

Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности. Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+», Обозначение С1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется.другое изображение обкладок конденсатора (см. рис.3.2 , С2 и СЗ).

С технологическими целями или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них общий). Условное графическое обозначение

Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы . У них тоже три вывода: два — от одной обкладки («вход» и «выход»), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3.3 , С1). Наружную обкладку обозначают короткой дугой, а также одним (С2) или двумя (СЗ) отрезками прямых линий с выводами от середины. Условное графическое обозначение с позиционным обозначением СЗ используют при изображении проходного конденсатора в стенке экрана. С той же целью, что и проходные, применяют опорные конденсаторы. Обкладку, соединяемую с корпусом (шасси), выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (см. рис. 3.3 , С4).

Конденсаторы переменной ёмкости (КПЕ) предназначены для оперативной регулировки и состоят обычно из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки радиовещательных приёмников. Как говорит само название, они допускают многократную регулировку ёмкости в определенных пределах. Это их свойство показывают на схемах знаком регулирования — наклонной стрелкой, пересекающей базовый символ под углом 45°, а возле него часто указывают минимальную и максимальную ёмкость конденсатора (рис. 3.4). Если необходимо обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора (см. рис. 3.4, С2).
Для одновременного изменения ёмкости в нескольких цепях (например, в колебательных контурах) используют блоки, состоящие из двух, трех и большего числе КПЕ. Принадлежность КПЕ к одному блоку показывают на схемах штриховой линией механической связи, соединяющей знаки регулирования, и нумерацией секций (через точку в позиционном обозначении, рис. 3.5 ). При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь только соответствующей нумерацией секций (см. рис. 3.5 , С2.1, С2.2, С2.3).

Разновидность КПЕ — подстроенные конденсаторы . Конструктивно они выполнены так, что их ёмкость можно изменять только с помощью инструмента (чаще всего отвертки). В условном графическом обозначении это показывают знаком подстроечного регулирования — наклонной линией со штрихом на конце (рис. 3.6 ). Ротор подстроечного конденсатора обозначают, если необходимо, дугой (см. рис. 3.6 , СЗ, С4).

Саморегулирумые конденсаторы (или нелинейные) обладают способностью изменять ёмкость под действием внешних факторов. В радиоэлектронных устройствах часто применяют вариконды (от английских слов vari(able) — переменный и cond(enser) — еще одно название конденсатора). Их ёмкость зависит от приложенного к обкладкам напряжения. Буквенный код варикондов — CU (U— общепринятый символ напряжения, см. табл. 1.1), УГО в этом случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 3.7, конденсатор CU1).
Аналогично построено УГО термоконденсаторов. Буквенный код этой разновидности конденсаторов — СК (рис. 3,7 , конденсатор СК2). Температура среды, естественно, обозначается символом tº

2.2.3.Система обозначений и маркировка конденсаторов.

В настоящее время принята система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая — особенности диэлектрика или эксплуатации (см. табл.2.5), затем через дефис ставится порядковый номер разработки.

Например, обозначение К 10-17 означает керамический низковольтный конденсатор с 17 порядковым номером разработки. Кроме того, применяются обозначения, указывающие конструктивные особенности: КСО — конденсатор слюдяной спрессованный, КЛГ — конденсатор литой герметизированный, КТ -керамический трубчатый и т. д.

Подстроечные конденсаторы обозначаются буквами КТ, переменные -буквами К П. Затем следует цифра, указывающая тип диэлектрика:

1 — вакуумные; 2 — воздушные; 3 — газонаполненные; 4 — твердый диэлектрик; 5 — жидкий диэлектрик.В конструкторской документации помимо типа конденсатора указывается величина емкости, рабочее напряжение и ряд других параметров. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 — подстроечный конденсатор с твердым диэлектриком.

На принципиальных схемах конденсаторы обозначаются в виде двух параллельных черточек и дополнительных элементов. На рис.2.20,а показан конденсатор постоянной емкости, на рис.2.20,6 — полярный (электролитический) конденсатор, на рис.2.20, в — конденсатор переменной емкости, на рис.2.20, г — подстроечный, на рис.2.20, д — варикап, на рис.2.20, е — вариконд.

Обозначение

Тип конденсатора

Обозначение

Тип конденсатора

К10

Керамический, низковольтный (Upa6<1600B)

К50

Электролитический, фольговый, Алюминиевый

К15

Керамический, высоковольтный (Upa6>1600B)

К51

Электролитический, фольговый, танталовый,ниобиевый и др.

К20

Кварцевый

К52

Электролитический, объемно-пористый

К21

Стеклянный

К53

Оксидно-полупроводниковый

К22

Стеклокерамический

К54

Оксидно-металлический

К23

Стеклоэмалевый

К60

С воздушным диэлектриком

К31

Слюдяной малой мощности

К61

Вакуумный

К32

Слюдяной большой мощности

К71

Пленочный полистирольный

К40

Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками

К72

Пленочный фторопластовый

К73

Пленочный полиэтилентереф-талатный

К41

Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками

К75

Пленочный комбинированный

К76

Лакопленочный

К42

Бумажный с металлизированными Обкладками

К77

Пленочный, Поликарбонатный

Таблица 2.5

 Около конденсатора ставится буква С с порядковым номером конденсатора, например С26, и указывается величина емкости. Около подстроенных и переменных конденсаторов указывается минимальная и максимальная емкости. Например, обозначения 5…25 означают, что емкость изменяется от 5 до 25 пикофарад.

На корпусе конденсатора указываются его основные параметры. В малогабаритных конденсаторах применяется сокращенная буквенно-кодовая маркировка. При емкости конденсатора менее 100 пФ ставится буква П.

Например, 33 П означает, что емкость конденсатора 33 пф. Если емкость лежит в пределах от 100 пф до 0,1 мкф, то ставится буква И (нанофарада). Например, 10 Н означает емкость в 10 нф или 10 000 пф. При емкости более 0,1 мкф ставится буква М, например, ЮМ означает емкость в 10 мкф. Слитно с обозначением емкости указывается буквенный индекс, характеризующий класс точности. Для ряда Е6 с точностью ±20% ставится индекс В, для ряда Е12 — индекс С, а для ряда Е24 — индекс И. Например, маркировка 1Н5С означает конденсатор емкостью 1,5 нф (1500 пф), имеющий отклонение от номинала ±10%.

Smd конденсаторы виды. Маркировка конденсаторов SMD

Наряду с самыми распространенными радиокомпонентами резисторами, конденсаторы по праву занимают второе место по использованию в электрических цепях и схемах. Основные характеристиками конденсатора являются номинальная ёмкость и номинальное напряжение. Чаще всего в схемах радиоэлектроники применяются постоянные конденсаторы, и значительно реже — переменные и подстроенные.

Номинальное напряжение конденсаторов обычно на схемах не указывают, хотя иногда и встречается в некоторых случаях, например, в высоковольтных схемах питающего рентгеновского устройства с обозначением номинальной емкости часто пишут и номинальное напряжение. Для оксидных, их еще называют электролитических конденсаторов номинал напряжения, также очень часто указывают.

Большинство оксидных конденсаторов полярные, поэтому включать их в электрическую схемуь можно только с соблюдением полярности. Чтобы отобразить это на схеме, у символа положительной обкладки имеется знак «+» .

Для развязки цепей питания в высокочастотных схемах по переменному току применяют проходные конденсаторы
. Они имеют три вывода: два — от одной обкладки («вход» и «выход»), а третий от другой, наружной, которую соединяют с экраном. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора. Наружную обкладку рисуют короткой дугой, а также одним или двумя отрезками прямых линий с выводами от середины. С той же задачей, что и проходные, используют опорные конденсаторы. Обкладку, соединяемую с корпусом, выделяют в обозначении такого конденсатора тремя наклонными линиями, говорящим о « ».

Обозначение конденсаторов переменной емкости (КПЕ) на схемах

КПЕ используются для оперативной регулировки и состоят из статора и ротора. Такие конденсаторы широко применяются, например, для регулировки частоты радиовещательных и телевизионных приёмников. КПЕ допускают многократную регулировку ёмкости в заданных пределах. Это их свойство отображается на схемах знаком регулировки — наклонной стрелкой, пересекающей базовый символ под углом 45° , а возле него обычно пишут минимальную и максимальную емкость). Если требуется обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора

Для одновременного изменения емкости в нескольких цепях применяются блоки, из двух, грех и большего количества КПЕ. Принадлежность КПЕ к блоку указывают на схемах штриховой линией механической связи. При отображении КПЕ блока в разных частях схемы, механическую связь не показывают, ограничиваясь только соответствующей нумерацией секции.

Саморегулирумые конденсаторы
(другое название нелинейные) обладают свойством изменять номинал емкость под действием внешних условий. В радиоэлектронных самоделках и конструкциях часто используют вариконды
. Их уровень емкости меняется в зависимости от приложенного к обкладкам напряжения.2 PF) конденсатор от фирмы Kemet.

Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.

В общем случае керамические конденсаторы на

основе диэлектрика с высокой проницаемостью обозначаются

согласно EIA тремя символами, первые два из которых указывают

на нижнюю и верхнюю границы рабочего диапазона температур, а

третий – допустимое изменение емкости в этом диапазоне.6pF = 4. 7mF

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Наряду с резисторами конденсаторы
являются наиболее широко используемыми компонентами электрических цепей. Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные. Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.

Общие условные графические обозначения конденсаторов постоянной ёмкости
приведены на рис. 3.1
и их определяет соответствующий ГОСТ .
Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см. рис. 3.1, С4
). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 3.2
).

Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности. Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+», Обозначение С1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется.другое изображение обкладок конденсатора (см. рис.3.2
, С2 и СЗ).

С технологическими целями или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них общий). Условное графическое обозначение

Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы
. У них тоже три вывода: два — от одной обкладки («вход» и «выход»), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3.3
, С1). Наружную обкладку обозначают короткой дугой, а также одним (С2) или двумя (СЗ) отрезками прямых линий с выводами от середины. Условное графическое обозначение с позиционным обозначением СЗ используют при изображении проходного конденсатора в стенке экрана. С той же целью, что и проходные, применяют опорные конденсаторы. Обкладку, соединяемую с корпусом (шасси), выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (см. рис. 3.3
, С4).

Конденсаторы переменной ёмкости
(КПЕ) предназначены для оперативной регулировки и состоят обычно из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки радиовещательных приёмников. Как говорит само название, они допускают многократную регулировку ёмкости в определенных пределах. Это их свойство показывают на схемах знаком регулирования — наклонной стрелкой, пересекающей базовый символ под углом 45°, а возле него часто указывают минимальную и максимальную ёмкость конденсатора (рис. 3.4). Если необходимо обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора (см. рис. 3.4, С2).
Для одновременного изменения ёмкости в нескольких цепях (например, в колебательных контурах) используют блоки, состоящие из двух, трех и большего числе КПЕ. Принадлежность КПЕ к одному блоку показывают на схемах штриховой линией механической связи, соединяющей знаки регулирования, и нумерацией секций (через точку в позиционном обозначении, рис. 3.5
). При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь только соответствующей нумерацией секций (см. рис. 3.5
, С2.1, С2.2, С2.3).

Разновидность КПЕ — подстроенные конденсаторы
. Конструктивно они выполнены так, что их ёмкость можно изменять только с помощью инструмента (чаще всего отвертки). В условном графическом обозначении это показывают знаком подстроечного регулирования — наклонной линией со штрихом на конце (рис. 3.6
). Ротор подстроечного конденсатора обозначают, если необходимо, дугой (см. рис. 3.6
, СЗ, С4).

Саморегулирумые конденсаторы (или нелинейные) обладают способностью изменять ёмкость под действием внешних факторов. В радиоэлектронных устройствах часто применяют вариконды (от английских слов vari(able)
— переменный и cond(enser)
— еще одно название конденсатора). Их ёмкость зависит от приложенного к обкладкам напряжения. Буквенный код варикондов — CU (U— общепринятый символ напряжения, см. табл. 1.1), УГО в этом случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 3.7, конденсатор CU1).
Аналогично построено УГО термоконденсаторов. Буквенный код этой разновидности конденсаторов — СК (рис. 3,7
, конденсатор СК2). Температура среды, естественно, обозначается символом tº

Пассивные компоненты. Конденсаторы — презентация онлайн

1. Омский государственный технический университет каф. «Электроника»

Дисциплина
Радиоматериалы и радиокомпоненты
Пассивные компоненты
Конденсаторы
Ст. преп. Пономарёв Д.Б.

2. Содержание

1. Функции, классификация
2. Система обозначений и маркировка
3. Параметры конденсаторов
Конструкции конденсаторов
Эквивалентные схемы
Электрический
конденсатор
представляет собой систему из двух
электродов
(обкладок),
разделённых
диэлектриком, и обладает способностью
накапливать электрическую энергию.
Функции
На долю конденсаторов
примерно
25%
всех
принципиальной схемы.
приходится
элементов
C
e e0 S
d
,
C
e .
C0
Емкость плоского конденсатора, пФ
где e — относительная диэлектрическая
проницаемость диэлектрика ( e >1 ),
S — площадь обкладок конденсатора
(см2),
d — расстояние между обкладками (см).

5. Конденсаторы

Функции
• Конденсатор в цепи постоянного
тока может проводить ток в
момент включения его в цепь
(происходит заряд или перезаряд
конденсатора), по окончании
переходного процесса ток через
конденсатор не течёт, так как его
обкладки разделены
диэлектриком.
• В цепи же переменного тока он
проводит колебания
переменного тока посредством
циклической перезарядки
конденсатора, замыкаясь так
называемым током смещения.

6. Конденсаторы

Слева — конденсаторы
для поверхностного
монтажа;
Справа — конденсаторы
для объёмного монтажа;
Сверху — керамические;
Снизу —
электролитические.
Классификация
конденсаторов
Классификация
Конденсаторы общего
назначения
1. Низкочастотные
2. Высокочастотные
Конденсаторы специального
назначения
1. Высоковольтные
2. Помехоподавляющие
3. Импульсные
4. Дозиметрические
5. Конденсаторы с электрически
управляемой ёмкостью
(варикапы, вариконды) и др.
Классификация
конденсаторов
Классификация
По назначению
1. Контурные
2. Разделительные
3. Блокировочные
4. Фильтровые
По характеру изменения ёмкости
1. Постоянные
2. Переменные
3. Подстроечные

9. Обозначение конденсаторов на схемах

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор
переменной ёмкости

10. Обозначение конденсаторов на схемах

11. Обозначение конденсаторов на схемах

Варикапы. Это конденсаторы, емкость которых изменяется за счет
изменения расстояния между его обкладками путем подведения
внешнего напряжения. Варикап — это одна из разновидностей
полупроводникового диода, к которому подводится обратное
напряжение, изменяющее емкость диода.
Вариконды. Это конденсаторы, емкость
которых зависит от напряженности
электрического поля.

12. Функции конденсаторов

Функции
Блокировочный
(развязывающий)
конденсатор
Разделительный
конденсатор
Фильтр верхних
частот
Функции
Фильтр верхних
частот
Слаживающий
конденсатор
Демпфер

14. Обозначение конденсаторов на схемах

• На электрических принципиальных схемах номинальная
ёмкость конденсаторов обычно указывается в
микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но
нередко и в нанофарадах.
• При ёмкости не более 0,01 мкФ, ёмкость конденсатора
указывают в пикофарадах, при этом допустимо не
указывать единицу измерения, то есть постфикс «пФ»
опускают.
• При обозначении номинала ёмкости в других единицах
указывают единицу измерения.

15. Обозначение конденсаторов на схемах

• Для электролитических конденсаторов, а также для
высоковольтных конденсаторов на схемах, после
обозначения номинала ёмкости, указывают их
максимальное рабочее напряжение в вольтах (В) или
киловольтах (кВ).
• Например так: «10 мк x 10 В».
• Для переменных конденсаторов указывают диапазон
изменения ёмкости, например так: «10 — 180».
• В настоящее время изготавливаются конденсаторы с
номинальными ёмкостями из десятичнологарифмических
рядов значений Е3, Е6, Е12, Е24, то есть на одну декаду
приходится 3, 6, 12, 24 значения, так, чтобы значения с
соответствующим допуском (разбросом) перекрывали всю
декаду.

16. Кодовая маркировка конденсаторов

• Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в
пигофарадах (пф)
Последняя — количество нулей.
Когда конденсатор имеет емкость менее 10 пФ, то
последняя цифра может быть «9».
При емкостях меньше 1.0 пФ первая цифра «0».
Буква R используется в качестве десятичной запятой.
Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
109
1
0,001
0,000001
159
1,5
0,0015
0,000001
229
2,2
0,0022
0,000001
339
3,3
0,0033
0,000001
479
4,7
0,0047
0,000001
689
6,8
0,0068
0,000001
100*
10
0,01
0,00001
150
15
0,015
0,000015
220
22
0,022
0,000022
330
33
0,033
0,000033
470
47
0,047
0,000047
680
68
0,068
0,000068
101
100
0,1
0,0001
151
150
0,15
0,00015
221
220
0,22
0,00022
331
330
0,33
0,00033
471
470
0,47
0,00047
681
680
0,68
0,00068
102
1000
1
0,001
* Иногда последний ноль не указывают
Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
152
1500
1,5
0,0015
222
2200
2,2
0,0022
332
3300
3,3
0,0033
472
4700
4,7
0,0047
682
6800
6,8
0,0068
103
10000
10
0,01
153
15000
15
0,015
223
22000
22
0,022
333
33000
33
0,033
473
47000
47
0,047
683
68000
68
0,068
104
100000
100
0,1
154
150000
150
0,15
224
220000
220
0,22
334
330000
330
0,33
474
470000
470
0,47
684
680000
680
0,68
105
1000000
1000
1

18. Кодовая маркировка конденсаторов

Код Емкость[пФ] Емкость[нФ] Емкость[мкФ]
1622
16200
16,2
0,0162
4753
475000
475
0,475
• Маркировка 4 цифрами
Возможны варианты
кодирования
4-значным числом.
Но и в этом случае
последняя цифра
указывает количество
нулей,
а первые три — емкость в
пикофарадах.
Кодовая маркировка конденсаторов
Код Емкость [мкФ]
R1
0,1
R47
0,47
1
1
4R7
4,7
10
10
100
100
• Маркировка емкости в
микрофарадах
Вместо десятичной точки
может ставиться буква R.

20. Кодовая маркировка конденсаторов

• Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ,
рабочего напряжения
В отличие от первых трех параметров, которые маркируются в
соответствии со стандартами, рабочее напряжение у разных фирм
имеет различную буквенно-цифровую маркировку.
Код
p10
Ip5
332p
1НО или 1nО
15Н или 15n
33h3 или 33n2
590H или 590n
m15
1m5
33m2
330m
1mO
10m
Емкость
0,1 пФ
1,5 пФ
332 пФ
1,0 нФ
15 нФ
33,2 нФ
590 нФ
0,15мкФ
1,5 мкФ
33,2 мкФ
330 мкФ
1 мФ или 1000 мкФ
10 мФ
Параметры конденсаторов
Параметры конденсаторов
Параметры
конденсаторов
Параметры конденсаторов
Основные
1. Номинальная ёмкость
2. Рабочее напряжение
Кроме того, конденсаторы
паразитных параметров.
характеризуются
рядом
Параметры конденсаторов
Q
C
U
Ёмкость
конденсатора

электрическая ёмкость между электродами
конденсатора
(ГОСТ
19880

74),
определяемая
отношением,
накапливаемого
в
нём
заряду
к
приложенному
напряжению.
Ёмкость
конденсатора
зависит
от
материала
диэлектрика,
формы
и
взаимного
расположения электродов.
Удельная ёмкость – отношение
ёмкости
к
массе
(или
объёму)
конденсатора.
Номинальная
ёмкость
конденсатора СНОМ — емкость, которую
должен иметь конденсатор в соответствие
с нормативной документацией (ГОСТ или
ТУ).
Параметры конденсаторов
Номинальные
значения
ёмкости
СНОМ
электролитических конденсаторов определяются рядом:
0,5;1; 2; 5; 10; 20; 30; 50; 100; 200; 300; 500; 1000; 2000;
5000 мкФ.
Номинальные значения
плёночных конденсаторов
ёмкости
СНОМ
бумажных
0,05; 0,25; 0,5; 1; 2; 4; 6; 8;.20; 40; 60; 80; 100; 400; 600; 800;
1000 мкФ.
Параметры конденсаторов
Международной электротехнической комиссией (МЭК) установлено
семь предпочтительных рядов для значений номинальной емкости
(Публикация № 63): ЕЗ; Е6; Е12; Е24; Е48; Е96; Е192. Цифры после
буквы Е указывают на число номинальных значений в каждом
десятичном интервале (декаде). Номинальные емкости соответствуют
числам декады и числам, полученным путем их умножения и деления
на 10n, где n — целое положительное или отрицателе число.
В производстве конденсаторов чаще всего используют
Параметры конденсаторов
Допустимое
отклонение
от
номинала
С
характеризует точность значения ёмкости и определяется
классом точности.
Класс
0,01
0.02
0,05
0
00
I
II
III
IV
V
VI
Допуск %
0,1
0,2
0,5
1
2
5
10
20
— 10
+20
-20
+30
-20
+50
Конденсаторы широкого применения имеют класс
точности I, II или III и соответствуют рядам Е6, Е12, Е24.
Блокировочные и разделительные конденсаторы
обычно соответствую классам II и III.
Контурные конденсаторы обычно соответствуют
классам 1, 0, или 00.
Фильтровые конденсаторы обычно соответствуют
классам IV, V, VI.
Параметры конденсаторов
Номинальное
рабочее
напряжение
конденсатора – максимальное напряжение, при
котором конденсатор может работать в течение
минимальной наработки, в условиях, указанных в
технической документации (ГОСТ 21415 – 75).
Значения номинальных напряжений установлены ГОСТ
9665 – 77. Все конденсаторы в процессе изготовления
подвергают воздействию испытательного напряжения в
течение 2…5 секунд.
U Н U ИСП U ПРОБ
Электрическое
сопротивление
изоляции
конденсатора – электрическое сопротивление
конденсатора постоянному току, определяемое
соотношением
Параметры конденсаторов
R ИЗ
U
I УТ
U — напряжение, приложенное к
конденсатору;
IУТ — ток утечки (проводимости).
Сопротивление изоляции всех видов конденсаторов, кроме
электролитических и полупроводниковых, очень велико и
составляет МОм, ГОм и даже ТОм. Это со противление измеряют в
нормальных климатических условиях (температура 25 10 С,
относительная влажность 45…75 %, атмосферное давление
86…106 кПа).
С
повышением
уменьшается.
температуры
сопротивление
изоляции
Эквивалентное
сопротивление ЭПС (ESR)
последовательное
Параметры конденсаторов
ESR Rc Ra
1
Rc
2 RC
Добротность конденсатора
Rc
Q
ESR
Rобкл = Rиз
Эквивалентная схема
конденсатора
Ia
1
tg
,
Ic C R
Параметры конденсаторов
Частотные свойства
При изменении частоты изменяется диэлектрическая
проницаемость диэлектрика. Увеличивается степень влияния
паразитных параметров (собственной индуктивности и
сопротивления потерь).
Собственная индуктивность конденсатора Lc – это
индуктивность выводов и обкладок.
На высоких частотах любой конденсатор можно
рассматривать как последовательный колебательный контур,
образуемый ёмкостью, собственной индуктивностью LC и
сопротивлением потерь RП. Резонанс наступает на частоте
fP
1
2 LC C
RC
При f > fP конденсатор ведёт себя как катушка
индуктивности. Обычно максимальная рабочая частота
конденсатора в 2…3 раза ниже резонансной.
Параметры конденсаторов
Характер частотной зависимости действующей ёмкости СД
в диапазоне частот от нуля до fР обусловливается
соотношением C, LC, RП. В большинстве случаев СД
уменьшается с ростом частоты во всём указанном диапазоне
частот. Вблизи резонансной частоты она всегда уменьшается
и стремится к нулю.
Параметры конденсаторов
Эквивалентная емкость конденсатора
Рабочие частоты конденсатора должны
быть существенно меньше f0.
Допустимая амплитуда переменного напряжения на
конденсаторе Um ДОП – амплитуда переменного напряжения, при
которой потери энергии в конденсаторе не превышают
допустимых. Значения Um ДОП приводятся в справочниках или
определяются по формуле
Параметры конденсаторов
U m ДОП
QР ДОП
2 f C
QР ДОП — допустимая реактивная мощность
конденсатора, В А
f
— частота напряжения на конденсаторе, Гц
C
— ёмкость конденсатора, Ф
Превышение Um
диэлектрика.
ДОП
может вызвать тепловой пробой
Ниже представлена зависимость напряжения Um ДОП от
частоты, построенная для фиксированных значений
температуры и допустимой мощности потерь РА = РА ДОП.
Граничная частота определяется допустимым снижением
действующей ёмкости.
Um ДОП
4
t = const
РА > РА ДОП
Параметры конденсаторов
UИСП
3
2
UНОМ
РА = РА ДОП
1
РА
5
fГР
6

f
Стабильность параметров
конденсаторов
Электрические свойства и срок службы
конденсатора
зависят
от
условий
эксплуатации.
Воздействия
1. тепла
2. влажности
3. радиации
4. вибраций
5. ударов
6. др.
Наибольшее влияние оказывает температура.
Влияние температуры проявляется в изменении
1. ёмкости конденсатора
2. добротности конденсатора
3. электрической прочности конденсатора
Влияние температуры оценивают ТКЕ
С
С
С 0 T
Изменение ёмкости обусловлено изменением
диэлектрической проницаемости (в основном), а также
линейных размеров обкладок и диэлектрика
конденсатора
TKC TK e
TK e
e 2 e1
e1 (T2 T1 )
С
повышением
температуры
уменьшается
электрическая прочность и срок службы конденсатора.
У высокочастотных конденсаторов величина ТКЕ не зависит
от температуры и указывается на корпусе путём окрашивания
корпуса в определённый цвет и нанесения цветной метки.
У низкочастотных конденсаторов температурная зависимость
ёмкости
носит
нелинейный
характер.
Температурную
стабильность этих конденсаторов оценивают величиной
предельного отклонения ёмкости при крайних значениях
температуры.
Низкочастотные конденсаторы разделены на три группы
по величине температурной нестабильности:
1. Н20
20 %
2. Н30
30 %
3. Н90
+ 50 — 90 %
Понижение атмосферного давления приводит к
уменьшению электрической прочности, изменениям
ёмкости вследствие деформации элементов конструкции
конденсатора. Возможны нарушения герметичности
конденсатора.
При поглощении влаги диэлектриком конденсатора
увеличивается ёмкость и резко уменьшается сопротивление
изоляции. В результате возрастают потери энергии,
особенно при повышенных температурах, и уменьшается
электрическая
прочность
(повышается
вероятность
пробоя).
При
длительном
хранении
конденсаторов изменяется их ёмкость.
Стабильность конденсаторов во времени
характеризуется
коэффициентом
старения
С
С 0 t
Потери энергии в конденсаторах обусловлены
электропроводностью и поляризацией диэлектрика.), скобки и π (число пи), уже поддерживаются на настоящий момент.
  • Из списка выберите единицу измерения переводимой величины, в данном случае «фарад [Ф]».
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае «микрофарад [мкФ]».
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.
  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, «537 фарад». При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, «фарад» или «Ф». После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае «Ёмкость». После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение.3″. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией «Числа в научной записи», то ответ будет представлен в виде экспоненциальной функции. Например, 4,339 881 565 445 3× 1031 . В этой форме представление числа разделяется на экспоненту, здесь 31, и фактическое число, здесь 4,339 881 565 445 3. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 4,339 881 565 445 3E+31. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 43 398 815 654 453 000 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.


    Калькулятор измерений, который, среди прочего, может использоваться для преобразования фарад в микрофарад : 1 фарад [Ф] = 1 000 000 микрофарад [мкФ]

    Сокращённые обозначения эл.величин

    При сборке электронных схем волей неволей приходится пересчитывать величины сопротивлений резисторов, ёмкостей конденсаторов, индуктивность катушек.

    Так, например, возникает необходимость переводить микрофарады в пикофарады, килоомы в омы, миллигенри в микрогенри.

    Как не запутаться в расчётах?

    Если будет допущена ошибка и выбран элемент с неверным номиналом, то собранное устройство будет неправильно работать или иметь другие характеристики.

    Такая ситуация на практике не редкость, так как иногда на корпусах радиоэлементов указывают величину ёмкости в нано фарадах (нФ), а на принципиальной схеме ёмкости конденсаторов, как правило, указаны в микро фарадах (мкФ) и пико фарадах (пФ). Это вводит многих начинающих радиолюбителей в заблуждение и как следствие тормозит сборку электронного устройства.

    Чтобы данной ситуации не происходило нужно научиться простым расчётам.

    Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах нужно ознакомиться с таблицей размерности. Уверен, она вам ещё не раз пригодиться.

    Данная таблица включает в себя десятичные кратные и дробные (дольные) приставки. Международная система единиц, которая носит сокращённое название СИ , включает шесть кратных (дека, гекто, кило, мега, гига, тера) и восемь дольных приставок (деци, санти, милли, микро, нано, пико, фемто, атто). Многие из этих приставок давно используются в электронике.

    Множитель

    Приставка

    Наименование

    Сокращённое обозначение

    международное

    1000 000 000 000 = 10 12

    Тера

    1000 000 000 = 10 9

    Гига

    1000 000 = 10 6

    Мега

    1000 = 10 3

    кило

    100 = 10 2

    Гекто

    10 = 10 1

    дека

    0,1 = 10 -1

    деци

    0,01 = 10 -2

    санти

    0,001 = 10 -3

    милли

    0,000 001 = 10 -6

    микро

    0,000 000 001 = 10 -9

    нано

    0,000 000 000 001 = 10 -12

    пико

    0,000 000 000 000 001 = 10 -15

    фемто

    0,000 000 000 000 000 001 = 10 -18

    атто

    Как пользоваться таблицей?

    Как видим из таблицы, разница между многими приставками составляет ровно 1000. Так, например, такое правило действует между кратными величинами, начиная с приставки кило- .

    Так, если рядом с обозначением резистора написано 1 Мом (1 Мега ом), то его сопротивление составит – 1 000 000 (1 миллион) Ом. Если же имеется резистор с номинальным сопротивлением 1 кОм (1 кило ом), то в Омах это будет 1000 (1 тысяча) Ом.

    Для дольных или по-другому дробных величин ситуация похожа, только происходит не увеличение численного значения, а его уменьшение.

    Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах, нужно запомнить одно простое правило. Нужно понимать, что милли, микро, нано и пико – все они отличаются ровно на 1000 . То есть если вам говорят 47 микрофарад, то это значит, что в нанофарадах это будет в 1000 раз больше – 47 000 нанофарад. В пикофарадах это уже будет ещё на 1000 раз больше – 47 000 000 пикофарад. Как видим, разница между 1 микрофарадой и 1 пикофарадой составляет 1 000 000 раз.

    Также на практике иногда требуется знать значение в микрофарадах, а значение ёмкости указано в нанофарадах. Так если ёмкость конденсатора 1 нанофарада, то в микрофарадах это будет 0,001 мкф. Если ёмкость 0,01 мкф., то в пикофарадах это будет 10 000 пФ, а в нанофарадах, соответственно, 10 нФ.

    Приставки, обозначающие размерность величины служат для сокращённой записи. Согласитесь проще написать 1мА , чем 0,001 Ампер или, например, 400 мкГн , чем 0,0004 Генри.

    В показанной ранее таблице также есть сокращённое обозначение приставки. Так, чтобы не писать Мега , пишут только букву М . За приставкой обычно следует сокращённое обозначение электрической величины. Например, слово Ампер не пишут, а указывают только букву А . Также поступают при сокращении записи единицы измерения ёмкости Фарада . В этом случае пишется только буква Ф .

    Наравне с сокращённой записью на русском языке, которая часто используется в старой радиоэлектронной литературе , существует и международная сокращённая запись приставок. Она также указана в таблице.

    Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

    1 фарад [Ф] = 1000000 микрофарад [мкФ]

    Исходная величина

    Преобразованная величина

    фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ

    Общие сведения

    Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

    C = Q/∆φ

    Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

    В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

    Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

    Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

    В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

    Использование емкости

    Конденсаторы — устройства для накопления заряда в электронном оборудовании

    Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

    Историческая справка

    Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

    В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

    В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

    Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

    Примеры конденсаторов

    Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

    Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

    Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

    Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

    Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.

    В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

    Маркировка конденсаторов

    Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

    Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

    Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

    Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

    Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

    Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

    Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

    Имеются и другие типы конденсаторов.

    Ионисторы

    В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

    С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

    Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.Электромобиль А2В Университета Торонто. Под капотом

    Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

    Поверхностно-емкостные экраны

    Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

    Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

    Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

    Проекционно-емкостные экраны

    Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

    Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

    1 фарад [Ф] = 1000000 микрофарад [мкФ]

    Исходная величина

    Преобразованная величина

    фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ

    Линейная плотность заряда

    Общие сведения

    Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

    C = Q/∆φ

    Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

    В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

    Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

    Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

    В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

    Использование емкости

    Конденсаторы — устройства для накопления заряда в электронном оборудовании

    Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

    Историческая справка

    Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

    В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

    В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

    Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

    Примеры конденсаторов

    Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

    Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

    Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

    Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

    Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.

    В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

    Маркировка конденсаторов

    Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

    Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

    Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

    Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

    Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

    Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

    Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

    Имеются и другие типы конденсаторов.

    Ионисторы

    В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

    С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

    Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.Электромобиль А2В Университета Торонто. Под капотом

    Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

    Поверхностно-емкостные экраны

    Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

    Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

    Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

    Проекционно-емкостные экраны

    Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

    Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

    Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

    Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.

    При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

    У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

      Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.

      Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

      Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

    Итак, разберёмся в том, как маркируют конденсаторы.

    Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

    Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


    Конденсаторы серии К73 и их маркировка

    Правила маркировки.

    Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .

    Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
    330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

    Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

    Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .

    Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
    Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

    Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.

    Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

    На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


    Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

    Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

    Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .

    Буквенный код отклонения ёмкости (допуск).

    Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .

    Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

    Д опуск в % Б уквенное обозначение
    лат.рус.
    ± 0,05pA
    ± 0,1pBЖ
    ± 0,25pCУ
    ± 0,5pDД
    ± 1,0FР
    ± 2,0GЛ
    ± 2,5H
    ± 5,0JИ
    ± 10KС
    ± 15L
    ± 20MВ
    ± 30NФ
    -0…+100P
    -10…+30Q
    ± 22S
    -0…+50T
    -0…+75UЭ
    -10…+100WЮ
    -20…+5YБ
    -20…+80ZА

    Маркировка конденсаторов по рабочему напряжению.

    Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

    Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

    Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

    Н оминальное рабочее напряжение , B Б уквенный код
    1,0I
    1,6R
    2,5M
    3,2A
    4,0C
    6,3B
    10D
    16E
    20F
    25G
    32H
    40S
    50J
    63K
    80L
    100N
    125P
    160Q
    200Z
    250W
    315X
    350T
    400Y
    450U
    500V

    Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

    Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

    Как читать схему

    Добавлено в избранное Любимый 98

    Условные обозначения (часть 1)

    Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.

    Резисторы

    Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями, при этом два вывода выходят наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.

    Потенциометры и переменные резисторы

    Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр — это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).

    Конденсаторы

    Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой — неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.

    Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.

    Катушки индуктивности

    Катушки индуктивности

    обычно представлены серией изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.

    Коммутаторы

    Коммутаторы

    существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей исполнительный механизм (часть, которая соединяет клеммы вместе).

    Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.

    Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.

    Источники энергии

    Так же, как существует множество вариантов питания вашего проекта, существует множество символов схем источника питания, помогающих указать источник питания.

    Источники постоянного или переменного напряжения

    В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):

    Аккумуляторы

    Батарейки, будь то цилиндрические, щелочные AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:

    Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.

    Узлы напряжения

    Иногда — особенно на очень загруженных схемах — вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим однополюсным символам , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).


    ← Предыдущая страница
    Обзор

    Как читать значение кода конденсатора

    Очень простой метод считывания значения конденсатора

    Нажмите здесь, чтобы увидеть цветовой код резистора и код резистора SMD

    • На керамических дисковых конденсаторах напечатан двух- или трехзначный код.

    • Первые два числа описывают емкость конденсатора, а третье число — количество нулей в умножителе.

    • Когда первые два числа умножаются на множитель, получается значение емкости конденсатора в пикофарад .

    • Если есть только два числа, это означает, что множителя нет. Затем вы просто считываете значение первых двух чисел в пикофарадах .

    Если на каком-либо конденсаторе напечатано 10 — тогда его значение будет 10 PF

    • Когда на каком-либо конденсаторе напечатано 104 — он имеет множитель 4 (третье число кода).10 умножается на 10 × 10 4 = 10000. Тогда его значение 10 × 10000 = 100000ПФ

    Вот таблица наиболее часто используемых кодов керамических конденсаторов и их преобразование единиц в Micro, Nano и Picofarad

    Последнее число является степенью 10 и умножается на первые два числа.

    Если конденсатор имеет код 682 — сначала проверьте последнее «нет», здесь последнее «нет» — 2. Теперь множитель 10 2

    Например —

    • 204 = 20 × 10 4 = 200000 ПФ
    • 472 = 47 × 10 2 = 4700 ПФ
    • 502 = 50 × 10 2 = 5000 ПФ
    • 330 = 33 × 10 0 = 33 ПФ [10 0 = 1]

    ЕДИНИЦ —

    • 1000 нанофарад (нФ) = 1 микрофарад (мкФ)
    • 1 пикофарад = 10 -12 фарад.
    • Нано = 10 -9
    • Микро = 10 -6
    • 1 нанофарад = 10 -9 фарад
    • 1 Микрофарад (мкФ) = 10 -6 Фарад

    1 нФ = 1000 пФ
    1 пФ = 0,001 нФ

    Пример:

    преобразовать 15 нФ в пФ:
    15 нФ = 15 × 1000 пФ = 15000 пФ

    Коды полиэфирной пленки и металлизированного пленочного конденсатора

    Если конденсатор имеет маркировку 2A474J , емкость декодируется, как описано выше, два первых знака представляют собой номинальное напряжение и могут быть декодированы из приведенной ниже таблицы. 2A — это номинальное напряжение 100 В постоянного тока в соответствии со стандартом EIA (Electronic Industries Alliance).

    Вторая буква будет температурным коэффициентом, если он присутствует.

    Некоторые конденсаторы имеют маркировку только 0,1 или 0,01 , в большинстве случаев значения указаны в мкФ.

    Некоторые конденсаторы малой емкости могут быть помечены буквой R. Если код 3R9, то R является индикатором значений менее 10 пФ и не имеет ничего общего с сопротивлением.3R9 будет 3,9 пФ.

    105J = 10 × 105 = 1000000pf = 1000nf = 1.0 мкФ

    j = +/- 5% Допуск

    104 = 10 × 104 = 100000pf = 100nf = 0,1 мкФ

    j = ± 5% допуск

    2A = номинальное напряжение 100 В постоянного тока

    Обязательно читать


    Об авторе

    Админ

    Привет, меня зовут Аман Бхарти, я интересуюсь изготовлением и изучением электроники, принципиальной схемы, проектированием и компоновкой печатных плат и т. Д.Мне нравится делиться знаниями и всеми идеями с людьми, которые я получаю из «Моего эксперимента» и из разных источников. Я стараюсь максимально подробно описать детали схемы с результатами испытаний. Если вы хотите что-то предложить или прокомментировать, оставьте свой комментарий в поле для комментариев на соответствующей странице.

    Как читать значения конденсаторов?

    У вас есть связка из конденсаторов , лежащих вокруг, и вы не можете их использовать, потому что вы не знаете их номинала ? Наряду с резисторами , конденсаторами являются второй наиболее часто используемой частью практически в любой аудиосхеме, и возможность считывания их значения является обязательной для любого любителя электроники .Продолжайте читать и узнайте, как узнать номинал конденсатора по его маркировке !

    КОНДЕНСАТОРЫ — ЕДИНИЦЫ

    Способность быстро считывать значение конденсатора и возможность переключаться между устройствами — важный навык, который поможет вам сэкономить много времени при создании педалей эффектов или даже ваших собственных проектов DIY. Прежде всего, мы объясним, как устройства работают с конденсаторами. Базовый конденсаторный блок — Фарад . Проблема в том, что этот блок действительно огромен, и в большинстве проектов номиналы конденсаторов намного ниже, а работа с числами, такими как 0,0000000047 Фарад, довольно неудобна и подвержена ошибкам.Вот почему, если с резисторами мы используем килоОм (10 Ом) и Мега Ом (10 Ом), то с конденсаторами мы используем делителей основного блока . Вот они:

    • пикофарад ( пФ ) — это наименьший блок , используемый в аудиосхемах, и обычно ассоциируется с керамическими конденсаторами , поскольку они имеют очень низкое значение. 1 пФ = 10⁻¹² F = 0,000000000001 F
    • нанофарад ( нФ ) является наиболее распространенной единицей, и стандартные полиэфирных конденсаторов обычно попадают в этот диапазон. 1 нФ = 10 ⁻⁹ F = 0,000000001 F
    • мкФ ( мкФ ) в основном используется с электролитическими конденсаторами , поскольку они имеют более высокое значение емкости, чем другие. 1 мкФ = 10⁻⁶ F = 0,000001 F

    Как это может показаться немного запутанным, вот справочная таблица конденсатора с соотношением между ними:

    Таблица 1: Соотношение единиц емкости

    КОНДЕНСАТОРЫ — ЧТЕНИЕ

    Чтобы немного усложнить задачу, не все конденсаторы имеют одну и ту же систему маркировки , поэтому мы должны сделать разницы между тремя основными типами конденсаторов: электролитический, керамический и полиэфирный .Начнем с электролитов , так как они самые простые для чтения . Полиэстер и керамический имеют одинаковую систему маркировки, но с небольшими различиями . В следующих примерах мы будем использовать изображения некоторых конденсаторов, которые мы отправляем с нашими наборами педалей эффектов для самостоятельного изготовления , поэтому обязательно возьмите один и примените свои знания на практике !


    1 — Конденсаторы электролитические

    Пример: значение электролитического конденсатора

    Пример : электролитический конденсатор 100 мкФ, максимум 400 В.

    Электролитические конденсаторы довольно просты для чтения : поскольку они довольно большие по сравнению с остальными, значение прямо записано в корпусе . Единица измерения также указана, но, поскольку они имеют большие значения емкости, выбранная единица — мкФ ( мкФ ) почти в 100% случаев, даже если единица меньше (т. Е. Электролитический конденсатор 220 нФ будет помечен как 0,22 мкФ , а не 220 нФ). Кроме того, максимальное напряжение конденсатора также может быть считано.Это значение напряжения, которое не должно превышать ни при каких обстоятельствах , поскольку конденсатор может быть необратимо поврежден и даже взорваться.


    2 — Конденсаторы керамические

    Керамические конденсаторы на меньше, чем на электролитические, поэтому на них нельзя записать полную стоимость плюс единицу. Вместо этого у них трехзначная система кодирования . Первые две цифры представляют собой значение конденсатора , а третья — нулей , которые нужно добавить справа.Таким образом, мы получаем значение конденсатора в пикофарадах .


    Пример 1: керамический конденсатор обозначен как 104

    10 → базовое значение
    4 → количество нулей для добавления

    Значение : 100000 пФ = 100 нФ

    Пример 1: показание номинала керамического конденсатора
    Пример 2: показание номинала керамического конденсатора

    Пример 2:

    Этот конденсатор имеет только две цифры.Что делать в этом случае? Когда значение меньше, чем 100 пФ , только две цифры используются для непосредственной маркировки значения конденсатора. В данном случае у нас есть конденсатор 22пФ . Обычные значения — 47 пФ (обозначено 47), 470 пФ (обозначено 471). Что касается максимального напряжения, керамические конденсаторы имеют больших значений (~ 50 В), поэтому маловероятно, что вы повредите их, превысив его!


    3 — Конденсаторы полиэфирные

    Если вы умеете правильно читать керамические конденсаторы, у вас не должно возникнуть проблем с полиэфирами! Маркировка конденсаторов из полиэстера работает так же, как и для керамики , но обычно на них написано больше информации.Они могут показаться немного более запутанный из-за этого, но вам нужно только сосредоточиться на трех последовательных цифрах . В отличие от керамики, которая может иметь две цифры для некоторых значений, полиэфиры всегда имеют три цифры , поэтому их будет легко идентифицировать. Дополнительная информация появляется только в некоторых случаях и показывает допуск , , который равен , насколько реальное значение может отличаться от обозначенного (буква рядом со значением) и максимального напряжения рейтинг, который нельзя превышать (цифра + буквенный код или цифра, в зависимости от конденсатора).В таблице ниже вы можете найти эквивалентов между кодами и значениями .

    Пример 1: Показание значения конденсатора из зеленого полиэстера

    Пример 1: зеленый полиэфирный конденсатор с маркировкой 2A104J

    10 → базовое значение
    4 → количество добавляемых нулей
    — 2A → 100 В, обозначенные цифрой + буквенный код
    — J → допуск 5%

    Значение : 100000 пФ → 100 нФ ± 5%, 100 В максимум

    — Насколько реальное значение может отличаться от обозначенного значения ? 100 нФ x 5% = 5 нФ → реальная емкость конденсатора будет в диапазоне 95 нФ — 105 нФ

    В то время как резисторы имеют более жесткие допуски (обычно 1% -5%), с конденсаторами все, что ниже 10%, является хорошим допуском , и мы разрабатываем наши схемы педали эффектов так, чтобы эти допуски не влияли на конечный результат .

    Таблица 2: Таблица допусков и кодов напряжения полиэфирного конденсатора
    Пример 2: показание значения конденсатора коробки из полиэстера

    Пример 2: полиэфирный конденсатор коробчатого типа, обозначенный как 474J63

    47 → базовое значение
    4 → количество добавляемых нулей
    — 63 Максимум 63 В (обозначается непосредственно значением напряжения )
    — J → допуск 5%

    Значение : 470000 пФ → 470 нФ ± 5%, 63 В

    — Насколько реальное значение может отличаться от обозначенного значения ? 470 нФ х 5% = 23.5 нФ → реальная емкость конденсатора будет в диапазоне 446,5 нФ — 493,5 нФ

    Лучший способ проверить свои знания — применить их на практике, поэтому обязательно посетите наш раздел комплектов , где вы найдете комплекты педалей эффектов со всем необходимым для создания собственной педали эффектов.

    Надеемся, этот пост был вам полезен! Если вам понравилось, поделитесь им и помогите другим людям улучшить свои навыки чтения конденсаторов 😉

    Как считывать значения цветовой маркировки конденсаторов

    Цветовая маркировка на конденсаторе определяет его значение.Вам нужно только знать, как читать значения цветовой маркировки конденсаторов, их расчет и идентификационные коды. Этот пост даст вам краткое представление о том, как расшифровать цветовую маркировку конденсаторов на примере.

    На рынке есть конденсаторы, на которых указана их емкость. Например — электролитические конденсаторы. А как быть тем, у кого на ней напечатана только цифра? Или цветная маркировка на нем? Номер конденсатора или его цветные полосы могут предоставить нам много полезной информации, скрытой в нем.

    Давайте сначала возродим основы. Преобразование Фарада в Микрофарад, Нано Фарад и Пико Фарад выглядит следующим образом: —

    Рис.1 — Таблица преобразования Фарада

    Мы должны разделить процедуру декодирования на две части, чтобы избежать путаницы, т.е.

    Расшифровка цветовой маркировки конденсатора

    Расшифровка маркировки номера конденсатора

    В этом посте мы обсудим: —

    Расшифровка цветовой маркировки конденсатора

    Есть некоторые конденсаторы, которые отмечены цветом, чтобы указать значение емкости, допуск и уровень напряжения.В таких конденсаторах две верхние цветные полосы обозначают первую и вторую цифру. Третья цветная полоса показывает значение допуска, а последняя полоса дает рабочий уровень напряжения. График для этого же размещен ниже: —

    Рис.2 — Цветовая кодировка конденсатора

    Давайте рассмотрим пример, чтобы лучше понять это.

    Рис. 3 — Пример для понимания того, как читать маркировку цвета конденсатора

    В вышеуказанном конденсаторе:

    • Первая цветная полоса — Коричневая.Это означает, что первая цифра — 1.
    • Вторая цветная полоса — красная. Это означает, что вторая цифра — 2.
    • Третья цветная полоса — Зеленая. Это означает, что количество нулей равно 5.
    • Четвертая цветная полоса — белая. Это означает, что уровень допуска для этого конденсатора составляет ± 10%.
    • Последняя цветная полоса — желтый. Это означает, что рабочее напряжение этого конденсатора составляет 400 В.

    Если мы скомпилируем все данные, мы сможем расшифровать значение емкости этого конденсатора.Скомпилированные данные будут иметь допуск 12 x 10 5 пФ ± 10%.

    Ратна имеет степень бакалавра компьютерных наук и имеет опыт работы в сфере информационных технологий для мэйнфреймов Великобритании. Она также является активным веб-дизайнером. Она является автором, редактором и основным партнером Electricalfundablog.

    Условные обозначения на схеме

    — основные символы, которые вы должны знать

    Чтобы читать схемы, вы должны знать условные обозначения. Но запоминать их все необязательно. Для начала обычно достаточно знать аккумулятор, резистор, конденсатор, транзистор, диод, светодиод и переключатель.

    Позже, когда вы встретите символы, которых вы не знаете, вы можете вернуться сюда, чтобы определить, что это такое.

    Ниже приводится обзор наиболее часто используемых символов на принципиальных схемах.

    Аккумулятор

    Символ батареи показан ниже.

    Предполагается, что большая и маленькая линии представляют одну ячейку батареи, так что изображение ниже предлагает двухэлементную батарею на 3 В. Но обычно люди просто рисуют символ батареи с одной или двумя ячейками, независимо от того, какое это напряжение.

    Конденсатор

    Конденсаторы поляризованы или нет. Символы, которые обычно используются для этих двух, показаны ниже.

    Поляризованный конденсатор помечен знаком «+». Важно различать эти два элемента, поскольку поляризованный конденсатор необходимо правильно разместить в соответствии со знаком «+».

    Условные обозначения поляризованных и неполяризованных конденсаторов

    Резистор

    Схематическое обозначение резистора нарисовано двумя разными способами.Резистор американского типа изображен в виде зигзагообразного резистора, а резистор европейского типа — в виде прямоугольного резистора.

    Хоть я и из Европы, мне нравится рисовать зигзагообразные версии. Я думаю, что это легче рисовать и выглядит лучше.

    Резистор в американском стиле Резистор европейского типа

    Потенциометр

    Потенциометр нарисован несколькими способами. Символ обычно изображается в виде резистора со стрелкой поперек или направленной вниз, как показано ниже.

    Диод

    Семейство диодов имеет несколько разных обозначений, потому что существует несколько разных типов диодов. Ниже представлен стандартный диод, стабилитрон, диод Шоттки и светодиод (LED).

    Различные символы диодов

    Схематические символы транзистора

    Наиболее распространенными типами транзисторов являются биполярный переходной транзистор (BJT), транзистор Дарлингтона и полевой транзистор (FET). Схематические обозначения для этих типов показаны ниже:

    Обозначения транзисторов

    Интегральная схема

    Интегральная схема (ИС) обычно изображается в виде прямоугольной коробки с выводами.Ниже показан пример CMOS IC 4017.

    Схематическое изображение микросхемы 4017

    Логические ворота

    Вот схематические символы для логических вентилей:

    Логические ворота

    Индуктор

    Обозначение катушки индуктивности выглядит как спиральный провод, так как это, по сути, катушка индуктивности.

    Трансформатор

    Обозначение трансформатора выглядит как две катушки индуктивности с чем-то между ними. Это потому, что это в основном трансформатор.

    Символ трансформатора

    Переключатель

    Выключатель может быть представлен на принципиальной схеме множеством способов. Ниже приведены несколько примеров:

    Три разных символа переключателя

    Операционный усилитель

    Операционный усилитель или «операционный усилитель» представлен в виде треугольника с двумя входами и одним выходом. В некоторых случаях контакты блока питания удаляются, но вам все равно нужно их подключить, чтобы он работал.

    Символы мощности

    На больших принципиальных схемах обычно много подключений к источнику питания.Для упрощения обычно используются символы питания для заземления и VDD (или VCC), как показано ниже.

    Обозначения мощности для заземления и VDD

    В схемах с двойным питанием, положительным, нейтральным и отрицательным, у вас обычно есть третий символ мощности, который выглядит как символ VDD, только в перевернутом виде.

    Фоторезистор

    Обозначение фоторезистора — или светозависимого резистора (LDR) — выглядит как резистор в круге со стрелками, направленными внутрь.

    Кристалл

    Кристалл — это компонент, используемый для создания стабильной тактовой частоты, часто для микроконтроллеров.На принципиальных схемах это выглядит так:

    Предохранитель

    Предохранители часто используются в цепях с более высоким напряжением. Обозначение предохранителя выглядит так:

    Возврат от условных обозначений к электронным схемам

    Конденсаторы

    • • Определите распространенные типы конденсаторов и способы их использования.
    • • Основные обозначения схем конденсаторов

    Рис 2.1.1 Основные обозначения схем конденсаторов

    Конденсаторы (и катушки индуктивности) обладают способностью накапливать электрическую энергию, катушки индуктивности накапливают энергию в виде магнитного поля вокруг компонента, а конденсатор сохраняет электрическую энергию в виде ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, которое создается между двумя тонкими листами металла, называемыми «пластинами», которые у каждого свой электрический потенциал (или напряжение).

    На рис. 2.1.1 показаны символы схем для Великобритании и США для различных типов конденсаторов. Основной конденсатор с фиксированным номиналом состоит из двух пластин из металлической фольги, разделенных изолятором.Это может быть сделано из различных изоляционных материалов с хорошими ДИЭЛЕКТРИЧЕСКИМИ свойствами. Некоторые основные типы конструкции конденсатора показаны на рис. 2.1.2a.

    Рис. 2.1.2 Общие типы конденсаторов

    Конденсаторы

    имеют много применений.

    Конденсаторы

    находят множество применений в электронных схемах. Каждая цель использует одну или несколько функций, описанных в этом модуле. На рис. 2.1.2 показаны различные конденсаторы. Типичное использование:

    • Электролитический высоковольтный, используемый в источниках питания.
    • Аксиальный электролитический; меньшее напряжение меньшего размера для общего назначения, где требуются большие значения емкости.
    • Диск керамический высоковольтный; малый размер и значение емкости, отличные характеристики допуска.
    • Металлизированный полипропилен; небольшой размер для значений до 2 мкФ, хорошая надежность.
    • Субминиатюрный конденсатор с многослойным керамическим чипом (поверхностный монтаж). относительно высокая емкость для размера, достигаемая за счет использования нескольких слоев. Фактически несколько конденсаторов параллельно.

    Рис. 2.1.3 Конструкция — Конденсаторы постоянной величины

    Конструкция конденсатора

    Конструкция неполяризованных конденсаторов во многих типах аналогична. Различия заключаются в площади пластин и типе диэлектрического материала, используемого для данной емкости; В идеале диэлектрик, выбранный для любого конденсатора, должен соответствовать трем основным критериям.

    1. Он будет максимально тонким, потому что емкость обратно пропорциональна расстоянию между пластинами.

    2. Диэлектрическая проницаемость материала должна быть максимально высокой, поскольку диэлектрическая проницаемость напрямую влияет на эффективность диэлектрика.

    3. Диэлектрическая прочность должна быть достаточной, чтобы выдерживать требуемое номинальное напряжение конденсатора.

    Каждый из основных типов конденсаторов, показанных на рис. 2.1.3 (кроме типов миниатюрных керамических чипов), будет покрыт изолирующим слоем (часто эпоксидной смолой).

    Рис. 2.1.4 Конструкция электролитического конденсатора

    Конденсаторы электролитические

    Конструкция электролитических конденсаторов в некоторой степени похожа на конденсатор из фольги.За исключением того, что, как показано на рис. 2.1.4, слои между фольгой теперь представляют собой два очень тонких слоя бумаги, один из которых образует изолятор (3), разделяющий свернутые пары слоев, а другой — слой ткани (4). между положительной (1) и отрицательной (2) пластиной из фольги, пропитанной электролитом, который делает ткань проводящей!

    Из предыдущего абзаца может показаться, что намокшая ткань вызывает короткое замыкание между пластинами. Но настоящий диэлектрический слой создается после завершения строительства в процессе, называемом «Формование».Через конденсатор проходит ток, и под действием электролита на положительной пластине накапливается очень тонкий слой оксида алюминия (5). Именно этот чрезвычайно тонкий слой используется в качестве изолирующего диэлектрика. Это обеспечивает конденсатор очень эффективным диэлектриком, что дает значения емкости во много сотен раз больше, чем это возможно с обычным пластиковым пленочным конденсатором аналогичного физического размера.

    Обратной стороной этого процесса является то, что конденсатор поляризован и не должен иметь напряжения обратной полярности.Если это происходит, изолирующий оксидный слой очень быстро отделяется от положительной пластины, позволяя конденсатору пропускать большой ток. Когда это происходит в запечатанном контейнере, «жидкий» электролит быстро закипает и быстро расширяется. Это может привести к сильному взрыву в считанные секунды! НИКОГДА не подключайте электролитический конденсатор неправильно! Из-за этой опасности на электролитических конденсаторах есть маркировка, показывающая полярность их соединительных проводов. Общая маркировка полярности (6) показана на рис.2.1.4, состоящий из полосы минус (-) символов, обозначающих отрицательный вывод конденсатора.

    Также обратите внимание, что на конце конденсатора есть три канавки, чтобы обеспечить слабое место в герметичном корпусе, так что в случае взрыва верхняя часть корпуса выйдет из строя, что, как мы надеемся, сводит к минимуму повреждение окружающих компонентов.

    Все конденсаторы, независимо от их типа, также имеют максимально безопасное рабочее напряжение (Vwkg). Если напряжение, указанное на конденсаторе (7), превышено, существует высокий риск того, что изоляция диэлектрического слоя, разделяющего две пластины, выйдет из строя и вызовет короткое замыкание между пластинами, это также может вызвать быстрый и сильный перегрев, что приведет к возможный взрыв.

    Рис. 2.1.5 Переменные конденсаторы

    Конденсаторы переменной емкости

    Переменные конденсаторы, показанные на рис. 2.1.5 используются в качестве настроечных конденсаторов в радиоприемниках AM, хотя они в значительной степени были заменены диодами «варикап» (переменной емкости), имеющими небольшую емкость, которую можно изменять, прикладывая переменное напряжение. но конденсаторы с механической регулировкой по-прежнему можно найти на принципиальных схемах и в каталогах поставщиков для замены.

    Конденсаторы настройки, независимо от их типа, обычно имеют очень малые значения емкости, обычно от нескольких пФ до нескольких десятков пФ. Большие типы воздушных диэлектриков, подобные анимированному на рис. 2.1.5, были заменены миниатюрными типами диэлектриков из ПВХ, как показано в правом верхнем углу на рис. 2.1.5. Виды спереди и сзади показывают крошечные предустановленные или подстроечные конденсаторы, доступ к которым осуществляется через отверстия в задней части корпуса).

    Символы переменных конденсаторов

    Рис. 2.1.6 Обозначения переменных и предварительно установленных конденсаторов

    Обозначения для переменных конденсаторов приведены на рис. 2.1.6. Переменные конденсаторы часто доступны как компоненты GANGED. Обычно два переменных конденсатора регулируются с помощью одного управляющего винта. Символ стрелки указывает на переменный конденсатор (настраивается пользователем оборудования, а диагональ Т-образной формы указывает на предварительно установленный конденсатор, только для технической настройки. Пунктирная линия, соединяющая пару переменных конденсаторов, указывает на то, что они объединены в группу.

    Эти небольшие предварительно настроенные конденсаторы доступны в различных очень маленьких конструкциях и работают аналогично более крупным переменным, с крошечными вращающимися пластинами и, как правило, диэлектрическими слоями из ПВХ-пленки между ними.Их емкость составляет всего несколько пикофарад, и они часто используются в сочетании с более крупными переменными конденсаторами (и даже устанавливаются внутри корпуса настроечных конденсаторов) для повышения точности.

    Цветовая и кодовая маркировка конденсаторов. Маркировка конденсаторов

    Код и цветовая маркировка конденсаторов

    Допуски

    В соответствии с требованиями публикаций 62 и 115-2 МЭК, для конденсаторов установлены следующие допуски и их кодировка:

    Таблица 1

    Допуск [%] Буквенное обозначение Цвет
    ± 0.1 * B (F)
    ± 0,25 * C (U) оранжевый
    ± 0,5 * Д (Д) желтый
    ± 1,0 * Ф (п) коричневый
    ± 2,0 г (большой) красный
    ± 5,0 Дж (I) зеленый
    ± 10 К (С) белый
    ± 20 M (В) черный
    ± 30 N (Ж)
    -10… + 30 Q (0)
    -10 … + 50 T (E)
    -10 … + 100 Г (г)
    -20 … + 50 S (В) фиолетовый
    -20, .. + 80 Z (А) серый

    * -Для конденсаторов с емкостью

    Чтобы пересчитать допуск из% (δ) в фарады (Δ):

    Δ = (δxC / 100%) [F]

    Пример:

    Реальный номинал конденсатора с маркировкой 221J (0.22 нФ ± 5%) лежит в диапазоне: C = 0,22 нФ ± Δ = (0,22 ± 0,01) нФ, где Δ = (0,22 x 10 -9 [F] x 5) x 0,01 = 0,01 нФ, или, соответственно, от 0,21 до 0,23 нФ.

    Температурный коэффициент емкости (ТКЕ)


    Нестандартные конденсаторы ТКЕ

    стол 2

    * Современное цветовое кодирование, цветные полосы или точки. Второй цвет может быть цветом корпуса.

    Конденсаторы с линейной температурой

    Таблица 3

    Обозначение
    ГОСТ
    Обозначение
    международный
    ТКЕ
    *
    Буква
    код
    Цвет **
    P100 P100 100 (+130…- 49) A красный + фиолетовый
    P33 33 N серый
    IGO НПО 0 (+30 ..- 75) С черный
    M33 N030 -33 (+30 …- 80] H коричневый
    M75 N080-75 (+30 …- 80) L красный
    M150 N150-150 (+30…- 105) R оранжевый
    M220 N220 -220 (+30 …- 120) R желтый
    M330 N330-330 (+60 …- 180) S зеленый
    M470 N470-470 (+60 …- 210) Т синий
    M750 N750-750 (+120…- 330) U фиолетовый
    M1500 N1500 -500 (-250 …- 670) В оранжевый + оранжевый
    M2200 N2200 -2200 К желтый + оранжевый

    * В скобках реальный разброс для импортных конденсаторов в диапазоне температур -55 … + 85 ° С.

    ** Современная цветовая кодировка согласно EIA.Цветные полосы или точки. Второй цвет может быть цветом корпуса.

    Конденсаторы с нелинейной температурной зависимостью

    Таблица 4

    Группа ТКЕ * Допуск [%] Температура ** [° C] Letter
    код ***
    Цвет ***
    Y5F ± 7,5 -30 … + 85
    Y5P ± 10 -30… + 85 серебро
    Y5R -30 … + 85 R серый
    Y5S ± 22 -30 … + 85 S коричневый
    Y5U +22 …- 56 -30 … + 85 A
    Y5V (2F) +22 …- 82 -30 … + 85
    X5F ± 7.5 -55 … + 85
    H5P ± 10 -55 … + 85
    X5S ± 22 -55 … + 85
    X5U +22 …- 56 -55 … + 85 синий
    X5V +22 …- 82 -55 .. + 86
    X7R (2R) ± 15 -55… + 125
    Z5F ± 7,5 -10 … + 85 AT
    Z5P ± 10 -10 … + 85 С
    Z5S ± 22 -10 … + 85
    Z5U (2E) +22 …- 56 -10 … + 85 E
    Z5V +22…- 82 -10 … + 85 F зеленый
    SL0 (GP) +150 …- 1500 -55 … + 150 Нет белый

    * Обозначение в соответствии со стандартом EIA, в скобках — IEC.

    ** В зависимости от технологий, которыми обладает компания, ассортимент может быть разным. Например: компания Philips для группы Y5P нормализует -55 … + 125 ° С.

    *** Согласно EIA. Некоторые фирмы, например «Панасоник», используют другую кодировку.

    Рис. Один

    Таблица 5

    Метки
    полоска, кольцо, острие
    1 2 3 4 5 6
    3 тега * 1-я цифра 2-я цифра Фактор
    4 тега 1-я цифра 2-я цифра Фактор Допуск
    4 тега 1-я цифра 2-я цифра Фактор Напряжение
    4 тега 1-я и 2-я цифры Фактор Допуск Напряжение
    5 тегов 1-я цифра 2-я цифра Фактор Допуск Напряжение
    5 тегов 1-я цифра 2-я цифра Фактор Допуск ТКЕ
    6 тегов 1-я цифра 2-я цифра 3-я цифра Фактор Допуск ТКЕ

    * Допуск 20%; возможно сочетание двух колец и точки, обозначающей множитель.

    ** Цвет корпуса указывает значение рабочего напряжения.

    Фиг.2

    Таблица 6

    Цвет 1-я цифра
    мкФ
    2-я цифра
    мкФ
    Умножить
    тел.
    Tense
    ния
    Черный 0 1 10
    Коричневый 1 1 10
    Красный 2 2 100
    Оранжевый 3 3
    Желтый 4 4 6,3
    Зеленый 5 5 16
    Синий 6 6 20
    фиолетовый 7 7
    Серый 8 8 0,01 25
    Белый 9 9 0,1 3
    Розовый 35

    Рис.3

    Таблица 7

    Цвет 1-я цифра
    pf
    2-я цифра
    pf
    3-я цифра
    pf
    Фактор Допуск ТКЕ
    Серебристый 0,01 10% Y5P
    Золото 0,1 5%
    Черный 0 0 1 20% * НПО
    Коричневый 1 1 1 10 1% ** Y56 / N33
    Красный 2 2 2 100 2% N75
    Оранжевый 3 3 3 10 3 N150
    Желтый 4 4 4 10 4 N220
    Зеленый 5 5 5 10 5 N330
    Синий 6 6 6 10 6 N470
    фиолетовый 7 7 7 10 7 N750
    Серый 8 8 8 10 8 30% Y5R
    Белый 9 9 9 + 80 / -20% SL

    Рис.четыре

    Таблица 8

    Цвет 1-я и
    2-я цифра
    pf
    Фактор Допуск Напряжение
    Черный 10 1 20% 4
    Коричневый 12 10 1% 6,3
    Красный 15 100 2% 10
    Оранжевый 18 10 3 0.25 пФ 16
    Желтый 22 10 4 0,5 пФ 40
    Зеленый 27 10 5 5% 20/25
    Синий 33 10 6 1% 30/32
    фиолетовый 39 10 7 -2O … + 50%
    Серый 47 0,01 -20… + 80% 3,2
    Белый 56 0,1 10% 63
    Серебристый 68 2,5
    Золото 82 5% 1,6

    Фиг.5

    Таблица 9

    Номинальная емкость [мкФ] Допуск Напряжение
    0,01 ± 10% 250
    0,015
    0,02
    0,03
    0,04
    0,06
    0,10
    0,15
    0,22
    0,33 ± 20 400
    0,47
    0,68
    1,0
    1,5
    2,2
    3,3
    4,7
    6,8
    1 переулок 2-х полосный 3-х полосный 4 пер. 5 переулок

    Кодовая маркировка

    А.Маркировка 3-мя цифрами

    Таблица 10

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    109 1,0 0,001 0,000001
    159 1,5 0,0015 0,000001
    229 2,2 0,0022 0,000001
    339 3,3 0,0033 0,000001
    479 4,7 0,0047 0,000001
    689 6,8 0,0068 0,000001
    100 * 10 0,01 0,00001
    150 15 0,015 0,000015
    220 22 0,022 0,000022
    330 33 0,033 0,000033
    470 47 0,047 0,000047
    680 68 0,068 0,000068
    101 100 0,1 0,0001
    151 150 0,15 0,00015
    221 220 0,22 0,00022
    331 330 0,33 0,00033
    471 470 0,47 0,00047
    681 680 0,68 0,00068
    102 1000 1,0 0,001
    152 1500 1,5 0,0015
    222 2200 2,2 0,0022
    332 3300 3,3 0,0033
    472 4700 4,7 0,0047
    682 6800 6,8 0,0068
    103 10000 10 0,01
    153 15000 15 0,015
    223 22000 22 0,022
    333 33000 33 0,033
    473 47000 47 0,047
    683 68000 68 0,068
    104 100000 100 0,1
    154 150000 150 0,15
    224 220000 220 0,22
    334 330000 330 0,33
    474 470000 470 0,47
    684 680000 680 0,68
    105 1000000 1000 1,0

    Б.Маркировка 4-мя цифрами

    Таблица 11

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    1622 16200 16,2 0,0162
    4753 475000 475 0,475

    Фиг.3

    Таблица 7

    Цвет 1-я цифра
    pf
    2-я цифра
    pf
    3-я цифра
    pf
    Фактор Допуск ТКЕ
    Серебристый 0,01 10% Y5P
    Золото 0,1 5%
    Черный 0 0 1 20% * НПО
    Коричневый 1 1 1 10 1% ** Y56 / N33
    Красный 2 2 2 100 2% N75
    Оранжевый 3 3 3 10 3 N150
    Желтый 4 4 4 10 4 N220
    Зеленый 5 5 5 10 5 N330
    Синий 6 6 6 10 6 N470
    фиолетовый 7 7 7 10 7 N750
    Серый 8 8 8 10 8 30% Y5R
    Белый 9 9 9 + 80 / -20% SL

    * Для емкостей менее 10 пФ допуск ± 2,0 пФ.
    ** Для емкостей менее 10 пФ допуск ± 0,1 пФ.

    Фиг.4

    Таблица 8

    Цвет 1-я и
    2-я цифра
    pf
    Фактор Допуск Напряжение
    Черный 10 1 20% 4
    Коричневый 12 10 1% 6,3
    Красный 15 100 2% 10
    Оранжевый 18 10 3 0.25 пФ 16
    Желтый 22 10 4 0,5 пФ 40
    Зеленый 27 10 5 5% 20/25
    Синий 33 10 6 1% 30/32
    фиолетовый 39 10 7 -2O … + 50%
    Серый 47 0,01 -20… + 80% 3,2
    Белый 56 0,1 10% 63
    Серебристый 68 2,5
    Золото 82 5% 1,6

    Для маркировки пленочных конденсаторов используйте 5 цветных полосок или точек. Первые три кодируют значение номинальной емкости, четвертый — допуск, пятый — номинальное рабочее напряжение.

    Фиг.5

    Таблица 9

    Номинальная емкость [мкФ] Допуск Напряжение
    0,01 ± 10% 250
    0,015
    0,02
    0,03
    0,04
    0,06
    0,10
    0,15
    0,22
    0,33 ± 20 400
    0,47
    0,68
    1,0
    1,5
    2,2
    3,3
    4,7
    6,8
    1 переулок 2-х полосный 3-х полосный 4 пер. 5 пер.

    Кодовая маркировка

    В соответствии со стандартами IEC на практике существует четыре способа кодирования номинальной емкости.

    A. Маркировка 3 цифрами

    Первые две цифры указывают значение емкости в пигофарадах (пф), последняя — количество нулей. Если емкость конденсатора меньше 10 пФ, последняя цифра может быть «9». Для емкостей менее 1,0 пФ первая цифра — «0». Буква R используется как десятичная точка. Например, код 010 — 1,0 пФ, код 0R5 — 0,5 пФ.

    Таблица 10

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    109 1,0 0,001 0,000001
    159 1,5 0,0015 0,000001
    229 2,2 0,0022 0,000001
    339 3,3 0,0033 0,000001
    479 4,7 0,0047 0,000001
    689 6,8 0,0068 0,000001
    100 * 10 0,01 0,00001
    150 15 0,015 0,000015
    220 22 0,022 0,000022
    330 33 0,033 0,000033
    470 47 0,047 0,000047
    680 68 0,068 0,000068
    101 100 0,1 0,0001
    151 150 0,15 0,00015
    221 220 0,22 0,00022
    331 330 0,33 0,00033
    471 470 0,47 0,00047
    681 680 0,68 0,00068
    102 1000 1,0 0,001
    152 1500 1,5 0,0015
    222 2200 2,2 0,0022
    332 3300 3,3 0,0033
    472 4700 4,7 0,0047
    682 6800 6,8 0,0068
    103 10000 10 0,01
    153 15000 15 0,015
    223 22000 22 0,022
    333 33000 33 0,033
    473 47000 47 0,047
    683 68000 68 0,068
    104 100000 100 0,1
    154 150000 150 0,15
    224 220000 220 0,22
    334 330000 330 0,33
    474 470000 470 0,47
    684 680000 680 0,68
    105 1000000 1000 1,0

    * Иногда последний ноль не указывается.

    B. Маркировка 4 цифрами

    Возможные варианты кодирования 4-х значное число. Но в этом случае последняя цифра указывает количество нулей, а первые три указывают емкость в пикофарадах.

    Таблица 11

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    1622 16200 16,2 0,0162
    4753 475000 475 0,475

    Рис.6

    С. Маркировка емкости в микрофарадах

    Вместо десятичной точки можно поставить букву R.

    Таблица 12

    Код Емкость [мкФ]
    R1 0,1
    R47 0,47
    1 1,0
    4R7 4,7
    10 10
    100 100

    Рис.7

    D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение разных компаний имеет разную буквенно-цифровую маркировку.

    Таблица 13

    Код Вместимость
    p10 0,1 пФ
    IP5 1,5 пФ
    332p 332 пФ
    1НО или 1НО 1.0 нФ
    15H или 15n 15 нФ
    33х3 или 33н2 33,2 нФ
    590H или 590n 590 нФ
    м15 0,15 мкФ
    1 м5 1,5 мкФ
    33м2 33,2 мкФ
    330 кв.м 330 мкФ
    1 МО 1 мФ или 1000 мкФ
    10 м 10 мФ

    Рис.восемь

    Кодовая маркировка электролитических конденсаторов для поверхностного монтажа

    Следующие принципы кодовой маркировки применяют такие известные компании, как Panasonic, Hitachi и другие. Есть три основных метода кодирования.

    A. Маркировка двумя или тремя знаками

    Код состоит из двух или трех знаков (букв или цифр), обозначающих рабочее напряжение и номинальную мощность. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель.В случае двузначного обозначения код рабочего напряжения не указывается.

    Фиг.9

    Таблица 14

    Код Емкость [мкФ] Напряжение [В]
    A6 1,0 16/35
    A7 10 4
    AA7 10 10
    AE7 15 10
    AJ6 2,2 10
    AJ7 22 10
    AN6 3,3 10
    AN7 33 10
    AS6 4,7 10
    AW6 6,8 10
    CA7 10 16
    CE6 1,5 16
    CE7 15 16
    CJ6 2,2 16
    CN6 3,3 16
    CS6 4,7 16
    CW6 6,8 16
    DA6 1,0 20
    DA7 10 20
    DE6 1,5 20
    DJ6 2,2 20
    DN6 3,3 20
    DS6 4,7 20
    DW6 6,8 20
    E6 1,5 10/25
    EA6 1,0 25
    EE6 1,5 25
    Ej6 2,2 25
    EN6 3,3 25
    ES6 4,7 25
    EW5 0,68 25
    GA7 10 4
    GE7 15 4
    Gj7 22 4
    GN7 33 4
    GS6 4,7 4
    GS7 47 4
    GW6 6,8 4
    GW7 68 4
    J6 2,2 6,3 / 7/20
    Ja7 10 6,3 / 7
    Je7 15 6,3 / 7
    Jj7 22 6,3 / 7
    Jn6 3,3 6,3 / 7
    Jn7 33 6,3 / 7
    Js6 4,7 6,3 / 7
    Js7 47 6,3 / 7
    Jw6 6,8 6,3 / 7
    N5 0,33 35
    N6 3,3 4/16
    S5 0,47 25/35
    VA6 1,0 35
    VE6 1,5 35
    VJ6 2,2 35
    VN6 3,3 35
    VS5 0,47 35
    Vw5 0,68 35
    W5 0,68 20/35

    Фиг.десять

    B. Маркировка 4-мя знаками

    Код состоит из четырех знаков (букв и цифр), обозначающих емкость и рабочее напряжение. Буква в начале указывает рабочее напряжение, последующие знаки указывают номинальную емкость в пикофарадах (пФ), а последняя цифра указывает количество нулей. Возможны 2 варианта кодирования емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывается в микрофарадах, знак m выполняет функцию десятичной точки.Ниже приведены примеры маркировки конденсаторов емкостью 4,7 мкФ и рабочим напряжением 10 В.

    Рис. Одиннадцать

    C. Разметка в две строки

    Если размеры корпуса позволяют, код размещается в двух строках: в верхней строке указывается номинальная емкость, во второй строке — рабочее напряжение. Емкость может быть указана непосредственно в микрофарадах (мкФ) или пикофарадах (пФ) с количеством нулей (см. Метод B). Например, первая строка — 15, вторая строка — 35 В, что означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Фиг.12

    Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    Фиг.13

    Длина и расстояние Вес Измеряет объем сыпучих пищевых продуктов и пищевых продуктов Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Мощность Время Линейная скорость Плоский угол Тепловой КПД и топливная эффективность Числа Единицы измерения информация Информация Скорость обмена Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и скорость вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момен тонн силы Крутящий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разница температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоемкость Энергетическое воздействие, мощность теплового излучения Плотность теплового потока Коэффициент теплопередачи Объемный расход Массовый расход Молярный расход Плотность массового потока Молярная концентрация Массовая концентрация в растворе Динамический (a bsolute) вязкость Кинематическая Высокая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость парообмена Уровень звука Чувствительность микрофона Уровень звукового давления (SPL) Яркость Сила света Освещенность Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и линзах увеличение (×) Электрический заряд Линейная плотность заряда Плотность поверхностного заряда Объемная плотность электрического тока Линейная плотность тока Плотность поверхностного тока Напряженность электрического поля Электростатический потенциал и напряжение дБм), дБВ (дБВ), ватт и т. д.Единицы Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Доза облучения Радиация. Поглощенная доза Десятичные префиксы Передача данных Типография и обработка изображений Единицы расчета объема древесины Расчет молярной массы Периодическая система химических элементов Д.И. Менделеева

    1 нанофарад [нФ] = 0,001 микрофарад [мкФ]

    Базовая линия

    Преобразованное значение

    фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад фарад гектофарадара декафарада вольтафарад кило фарад гектофарадара декафарада mdfd mdfdmd mfmd mfmad mfarad микрофарад нимфарад пикофарад фемтофарад атто фарад кулон на вольт

    Общая информация

    Емкость — это величина, которая характеризует способность проводника накапливать заряд, равный отношению электрического заряда проводников к разности потенциалов.

    C = Q / ∆φ

    Здесь Q — электрический заряд, измеренный в подвесках (C), — разность потенциалов, измеряемая в вольтах (В).

    В системе СИ электрическая интенсивность измеряется в фарадах (Ф). Эта установка названа в честь английского физика Майкла Фарадея.

    Фарад — это очень большая емкость для изолированного проводника. Таким образом, уединенный металлический шар с радиусом 13 солнечных радиусов имел бы емкость, равную 1 фараду. А емкость металлического шара размером с Землю составила бы около 710 микрофарад (мкФ).

    Поскольку 1 фарад — это очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фараде; нанофарад (нФ), равный одной миллиардной; пикофарад (пф), равный одной триллионной фараде.

    В системе CGSE основной единицей измерения емкости является сантиметр (см). Емкость 1 сантиметр — это электрическая емкость шара радиусом 1 сантиметр, помещенного в вакуум. CGSE — это усовершенствованная система CGS для электродинамики, то есть система единиц, в которой сантиметр, грамм и секунда принимаются в качестве основных единиц для расчета длины, массы и времени соответственно. В расширенных GHS, включая CGSE, некоторые физические константы взяты за единицу, чтобы упростить формулы и облегчить вычисления.

    Использование емкости

    Конденсаторы — устройства для накопления заряда в электронном оборудовании

    Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — это система из двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (пластин). Конденсатор (от лат. Condensare — «конденсировать», «сгущать») — это двухэлектродное устройство для накопления заряда и энергии электромагнитного поля, в простейшем случае он состоит из двух проводников, разделенных каким-то изолятором.Например, иногда радиолюбители при отсутствии готовых деталей делают подстроечные конденсаторы для своих схем из лакированных проводов разного диаметра, а более тонкий провод наматывают на более толстый. Регулируя количество витков, радиолюбители точно настраивают схему оборудования на нужную частоту. Примеры изображения конденсаторов на электрических цепях показаны на рисунке.

    История создания

    250 лет назад были известны принципы создания конденсаторов.Так, в 1745 году немецкий физик Эвальд Юрген фон Клейст и голландский физик Петер ван Мушенбрук создали в Лейдене первый конденсатор, «лейденскую банку». Такая «банка» позволяла накапливать заряд порядка микроподвески (мкКл). После его изобретения с ним часто проводились эксперименты и публичные выступления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикоснулся к банке рукой и получил небольшой удар током.Известно, что 700 парижских монахов, держась за руки, провели лейденский эксперимент. В тот момент, когда первый монах коснулся головки кувшина, все 700 монахов, смешанные одной конвульсией, вскрикнули от ужаса.

    «Лейден банк» появился в России благодаря русскому царю Петру I, который познакомился с Мушенбрюком во время его путешествий по Европе и узнал больше об экспериментах с «Лейденским банком». Петр I учредил Академию наук в России и заказал Мушенбрюку различные устройства для Академии наук.

    В дальнейшем конденсаторы улучшились и стали меньше, а их емкость — больше. Конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который можно использовать для настройки приемника на желаемую частоту.

    Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью и материалом диэлектрика.

    Примеры конденсаторов

    Промышленность производит большое количество типов конденсаторов различного назначения, но их основными характеристиками являются емкость и рабочее напряжение.

    Типичные значения контейнера Конденсаторы различаются от пикофарад до сотен микрофарад, за исключением ионисторов, которые имеют несколько иной характер формирования емкости — из-за двойного слоя на электродах — в этом они похожи на электрохимические батареи . Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую электродную поверхность. Для этих типов конденсаторов типичные значения емкости составляют десятки фарад, и в некоторых случаях они могут заменить обычные электрохимические батареи в качестве источников тока.

    Вторым по важности параметром конденсатора является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято использовать конденсаторы с удвоенным значением рабочего напряжения.

    Для увеличения значений емкости или рабочего напряжения используйте метод объединения конденсаторов в батареи. Когда два конденсатора одного типа соединены последовательно, рабочее напряжение удваивается, а общая емкость уменьшается вдвое.При параллельном соединении двух конденсаторов одного типа рабочее напряжение остается прежним, а общая емкость увеличивается вдвое.

    Третьим по важности параметром конденсатора является температурный коэффициент изменения емкости (ТКЕ) . Он дает представление об изменении емкости при изменении температуры.

    В зависимости от назначения конденсаторы делятся на конденсаторы общего назначения, требования к которым параметры некритичны, и конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

    Маркировка конденсатора

    Подобно резисторам, в зависимости от размеров изделия, может использоваться полная этикетка с указанием номинальной емкости, класса отклонения и рабочего напряжения. Для малогабаритных версий конденсаторов используют кодовую маркировку из трех или четырех цифр, смешанную буквенно-цифровую маркировку и цветовую маркировку.

    Соответствующие таблицы пересчета маркировки на номинальное, рабочее напряжение и ТКЕ можно найти в Интернете, но наиболее эффективным и практичным методом проверки номинала и работоспособности элемента реальной схемы остается прямое измерение параметров припаянный конденсатор с помощью мультиметра.

    Предупреждение: Поскольку конденсаторы могут накапливать большой заряд при очень высоком напряжении, во избежание поражения электрическим током необходимо разрядить конденсатор перед измерением параметров конденсатора, закоротив его выводы проводом. с высоким сопротивлением внешней изоляции. Он лучше всего подходит для этого стандартного устройства для измерения проволоки.

    Оксидные конденсаторы: Конденсаторы этого типа имеют большую удельную емкость, то есть емкость на единицу веса конденсатора.Одна пластина таких конденсаторов обычно представляет собой алюминиевую ленту, покрытую слоем оксида алюминия. Вторая пластина — электролит. Поскольку оксидные конденсаторы имеют полярность, принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

    Твердотельные конденсаторы: вместо традиционного электролита в качестве футеровки используется органический токопроводящий полимер или полупроводник.

    Переменные конденсаторы: емкость можно изменять механически, с помощью электрического напряжения или температуры.

    Пленочные конденсаторы: Диапазон емкости конденсаторов этого типа составляет примерно от 5 пФ до 100 мкФ.

    Есть и другие типы конденсаторов.

    Ионисторы

    В настоящее время все большую популярность приобретают ионисторы. Ионистор (суперконденсатор) представляет собой гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред, электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых углеродных электродах.Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология была дополнена и улучшена. Ионисторы появились на рынке в начале восьмидесятых годов прошлого века.

    С появлением ионисторов стало возможным использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют длительный срок службы, малый вес, высокую скорость заряда-разряда. В будущем этот тип конденсатора может заменить обычные батареи.Основными недостатками ионисторов являются их меньшая удельная энергия, чем у электрохимических батарей (низкая энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

    Ионисторы используются в автомобилях Формулы 1. В системах рекуперации энергии во время замедления вырабатывается электрическая энергия, которая накапливается в маховике, батареях или ионисторах для дальнейшего использования.

    В бытовой электронике ионисторы используются для стабилизации основного источника питания и в качестве резервного источника питания для таких устройств, как плееры, фонарики, автоматические счетчики электроэнергии и других устройств с батарейным питанием и переменной нагрузкой, обеспечивая питание при повышенной нагрузке. .

    В общественном транспорте использование ионисторов особенно перспективно для троллейбусов, поскольку появляется возможность реализовать автономный курс и повысить маневренность; также ионисторы используются в некоторых автобусах и электромобилях.

    Электромобили в настоящее время производятся многими компаниями, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто в сотрудничестве с Toronto Electric разработал полностью канадский электромобиль A2B.В нем используются ионисторы и химические источники энергии, так называемые гибридные накопители электроэнергии. Двигатели этого автомобиля питаются от аккумуляторов весом 380 килограммов. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще используются сенсорные экраны, которые позволяют управлять устройствами, касаясь панелей с индикаторами или экранами. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие.Они могут реагировать на одно или несколько одновременных прикосновений. Принцип работы емкостных экранов основан на том, что объект большой емкости проводит переменный ток. В данном случае предметом является человеческое тело.

    Поверхностная емкость

    Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно используют с высокой прозрачностью и низким поверхностным сопротивлением сплав оксида индия и оксида олова.Электроды, подающие небольшое переменное напряжение на проводящий слой, расположены по углам экрана. Когда вы касаетесь этого экрана пальцем, появляется ток утечки, который регистрируется датчиками в четырех углах и передается на контроллер, который определяет координаты точки касания.

    Преимущество таких экранов в долговечности (около 6,5 лет нажатия с интервалом в одну секунду или около 200 миллионов нажатий). У них высокая прозрачность (около 90%).Благодаря этим преимуществам емкостные экраны с 2009 года начали активно вытеснять резистивные экраны.

    Недостаток емкостных экранов в том, что они плохо работают при низких температурах, возникают трудности с использованием таких экранов в перчатках. Если токопроводящее покрытие расположено на внешней поверхности, то экран достаточно уязвим, поэтому емкостные экраны используются только в тех устройствах, которые защищены от непогоды.

    Проекционные емкостные экраны

    В дополнение к поверхностно емкостным экранам существуют проекционные емкостные экраны.Их отличие состоит в том, что с внутренней стороны экрана нанесена сетка электродов. Электрод, к которому они прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке можно получить точные координаты касания. Проекционный емкостный экран реагирует на прикосновения в тонких перчатках.

    Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они достаточно прочные и прочные, поэтому широко используются не только в персональной электронике, но и в автоматах, в том числе устанавливаемых на улице.

    У вас есть трудности с переводом единиц измерения с одного языка на другой? Коллеги готовы вам помочь. Задайте свой вопрос TCTerms , и через несколько минут вы получите ответ.

    КОД ЭТИКЕТКА

    Трехзначное кодирование

    Первые две цифры указывают значение емкости в пикофарадах (пФ), последняя — количество нулей. Если емкость конденсатора меньше 10 пФ, последняя цифра может быть «9».При емкости менее 1,0 пФ первая цифра — «0». Буква R используется как десятичная точка. Например, код 010 — 1,0 пФ, код 0R5 — 0,5 пФ.

    * Иногда последний ноль не указывает.

    4-значное кодирование

    Возможные варианты кодирования 4-х значное число. Но в этом случае последняя цифра указывает количество нулей, а первые три указывают емкость в пикофарадах (пФ).

    Примеры:


    Обозначение емкости в микрофарадах

    Вместо десятичной точки можно поставить букву R.

    Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение разных компаний имеет разную буквенно-цифровую маркировку.

    ЦВЕТОВАЯ МАРКИРОВКА

    На практике для цветовой маркировки постоянных конденсаторов используется несколько методов цветовой маркировки.


    * Допуск 20%; возможно сочетание двух колец и точки, обозначающей множитель.

    ** Цвет корпуса указывает значение рабочего напряжения.

    Вывод «+» может иметь больший диаметр

    Для маркировки пленочных конденсаторов используйте 5 цветных полосок или точек:

    Первые три кодируют значение номинальной емкости, четвертый — допуск, пятый — номинальное рабочее напряжение.

    ПРИЕМНАЯ МАРКИРОВКА

    В соответствии с требованиями публикаций МЭК 62 и 115-2 (МЭК) для конденсаторов установлены следующие допуски и их кодировка:

    МАРКИРОВКА ТКЕ

    Конденсаторы ТКЕ без номинала


    * Современная цветовая кодировка.Цветные полосы или точки. Второй цвет может быть цветом корпуса.

    Конденсаторы с линейной температурой


    * В скобках дана реальная вариация для импортных конденсаторов в диапазоне температур -55 … + 85 «С.

    ** Современная цветовая кодировка. Цветные полосы или точки. Второй цвет может быть цветом корпуса.

    Конденсаторы с нелинейной температурной зависимостью


    * Обозначение в соответствии со стандартом EIA, в скобках — IEC.

    ** В зависимости от технологий, которыми обладает компания, ассортимент может быть разным.

    Например, компания PHILIPS для группы Y5P нормализует -55 … + 125 њС.

    *** Согласно EIA. Некоторые фирмы, например Panasonic, используют другую кодировку.

    Основным параметром конденсатора является его номинальная емкость, измеряемая в фарадах (ф) микрофарадах (мкФ) или пикофарадах (пФ).

    Конденсаторы

    Допуск емкости конденсатора от номинала, указанного в стандартах, и определения класса его точности.Для конденсаторов Что касается сопротивлений, чаще всего используются три класса точности I (E24), II (E12) и III (E6), соответствующие допускам ± 5%, ± 10% и ± 20%.

    По типу изменения емкости конденсаторы делятся на изделия постоянной емкости, переменной и саморегулирующейся. Номинальная емкость указана на корпусе конденсатора. Для сокращения записи применяется специальная кодировка:

    • П — пикофарад — пФ
    • Н — одна нанофарада
    • М — микрофарад — мкФ

    Пример обозначений кодированных конденсаторов:

    • 51P — 51 пФ
    • 5П1 — 5.1 пФ
    • h2 — 100 пФ
    • 1H — 1000 пФ
    • 1х3 — 1200 пФ
    • 68H — 68000 пФ = 0,068 мкФ
    • 100H — 100000 пФ = 0,1 мкФ
    • MH — 300000 пФ = 0,3 мкФ
    • 3М3 — 3,3 мкФ
    • 10М — 10 мкФ

    Числовые значения емкостей 130 пФ и 7500 пФ Целые числа (от 0 до 9999 пФ)

    Конструкции

    Конденсаторы постоянной емкости и материал, из которого они изготовлены, определяются их назначением и диапазоном рабочих частот.

    Высокочастотные конденсаторы обладают большей стабильностью, заключающейся в небольшом изменении емкости с температурой, малых отклонениях емкости от номинала, малых габаритах и ​​весе. Это керамические (типа КЛГ, КЛС, КМ, КД, КДУ, КТ, КГК, КТП и др.), Слюдяные (КСО, КГС, СГМ), стеклокерамические (СКМ), стеклоэмалевые (КС) и стеклянные ( К21У).

    Фракционный конденсатор
    от 0 до 9999 PF

    Для постоянного, переменного и пульсирующего тока низкой частоты требуются конденсаторы с большой емкостью, измеряемой тысячами микрофарад.В связи с этим бумажные (типы БМ, КБГ), металлобумажные (МБГ, МБМ), электролитические (CE, EGC, ETO, K50, K52, K53 и др.) И пленочные (PM, PO, K73, K74, K76 ) производятся конденсаторы.

    Конструкций конденсаторов постоянной емкости различной. Так, слюдяные, стеклоэмалевые, стеклокерамические и некоторые виды керамических конденсаторов имеют корпусную конструкцию. В них пластины из металлической фольги или в виде металлических пленок чередуются с пластинами из диэлектрика (например, слюды).

    Емкость конденсатора 0,015 мкФ

    Конденсатор 1 мкФ

    Для получения значительной емкости формируют корпус из большого количества таких элементарных конденсаторов.Электрически соедините между собой все верхние пластины и по отдельности — нижние. К местам соединений припаиваем проводники, которые служат выводами конденсатора. Затем пакет сжимается и помещается в футляр.

    Б / у и дисковая конструкция керамические конденсаторы . Роль пластин в них выполняют металлические пленки, нанесенные с обеих сторон керамического диска. Бумажные конденсаторы часто имеют рулонную конструкцию. Полоски алюминиевой фольги, разделенные бумажными лентами с высокими диэлектрическими свойствами, свернуты в рулон.Для увеличения производительности рулоны соединяются друг с другом и помещаются в герметичный корпус.

    В электролитических конденсаторах диэлектрик представляет собой оксидную пленку, нанесенную на алюминиевую или танталовую пластину, которая является одной из пластин конденсатора, вторая облицовка представляет собой электролит.

    Конденсатор электролитический 20,0 × 25 В

    Металлический стержень (анод) должен быть подключен к точке с более высоким потенциалом, чем корпус конденсатора (катод), подключенный к электролиту.Если это условие не выполняется, сопротивление оксидной пленки резко снижается, что приводит к увеличению тока, проходящего через конденсатор, и может вызвать его разрушение.

    В данной конструкции электролитических конденсаторов типа КЕ. Также выпускаются электролитические конденсаторы с твердым электролитом (типа К50).

    Пропускной конденсатор

    Площадь перекрытия пластин или расстояние между ними конденсаторов переменной емкости можно изменять различными способами.В этом случае изменяется и емкость конденсатора. Одна из возможных конструкций конденсатора переменной емкости (КПИ) показана на рисунке справа.

    Конденсатор переменной емкости от 9 пФ до 270 пФ

    Здесь мощность изменяется за счет иного расположения пластин ротора (подвижных) относительно статора (неподвижных). Зависимость емкости от угла поворота определяется конфигурацией пластин. Значение минимальной и максимальной емкости зависит от площади плит и расстояния между ними.Обычно минимальная емкость C min, измеренная с полностью удаленными пластинами ротора, составляет одну (до 10-20) пикофарад, а максимальная емкость C max, измеренная с полностью выведенными пластинами ротора, составляет сотни пикофарад.

    Радиооборудование часто использует блоки емкости конденсатора, состоящие из двух, трех или более переменных конденсаторов, механически связанных друг с другом.

    Конденсатор переменной емкости от 12 пФ до 497 пФ

    Благодаря блокам KPI можно одновременно и на одинаковую величину изменять емкость разных цепей устройства.

    Разнообразие КПЭ триммеров. конденсаторы . Их мощность, как и сопротивление триммеров, меняется только отверткой. В качестве диэлектрика в таких конденсаторах можно использовать воздух или керамику.

    Подстроечный конденсатор от 5 пФ до 30 пФ

    В электрических цепях конденсаторы постоянной емкости обозначаются двумя параллельными сегментами, символизирующими пластины конденсатора, с выводами от их середин. Далее указывается условная буква конденсатора буква С (от лат. Конденсатор — конденсатор).

    После буквы С ставится в этой схеме порядковый номер конденсатора, а рядом с ним пишется еще одно число, обозначающее номинальное значение емкости.

    Емкость конденсаторов от 0 до 9999 пФ указывается без единицы измерения, если емкость выражена целым числом, и с единицей измерения — пФ, если емкость выражена дробным числом.

    Подстроечные конденсаторы

    Емкость конденсаторов от 10000 пФ (0.01 мкФ) до 999 000 000 пФ (999 мкФ) указывается в микрофарадах в виде десятичной дроби или целого числа, за которым следует запятая и ноль. В обозначениях электролитических конденсаторов знаком «+» обозначается сегмент, соответствующий положительному выводу — аноду, а после знака «х» — номинальное рабочее напряжение.

    Конденсаторы переменной емкости (КПЭ) обозначаются двумя параллельными сегментами, перечеркнутыми стрелкой.

    Если необходимо, чтобы пластины ротора были подключены к заданной точке устройства, то они обозначаются на схеме короткой дугой.Рядом указаны минимальный и максимальный пределы изменения емкости.

    В обозначении подстроечных конденсаторов параллельные линии пересекаются отрезком с короткой чертой, перпендикулярным одному из его концов.

    Здравствуйте!
    Предлагаю вашему вниманию таблицу
    маркировки и расшифровки керамических конденсаторов .
    Конденсаторы имеют определенную кодовую маркировку и возможность расшифровывать Эти коды, вы можете узнать их вместимость.Для чего это нужно — все понимают.
    Итак,
    расшифровка Коды нужны так:
    Например, на конденсаторе написано «104». Первые две цифры указывают емкость конденсатора в пикофарадах (10 пФ), последняя цифра указывает количество нулей, которые нужно добавить к 10, т.е. 10 и четыре нуля, получается 100000 пФ.
    Если последняя цифра в коде — «9», это означает, что емкость этого конденсатора меньше 10 пФ.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *