Схема подключения lm317 для светодиодов. LM317 и светодиоды
В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:
- способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
- выходной ток может достигать 1,5 А;
- максимальная рассеиваемая мощность 20 Вт;
- встроенное ограничение тока, для защиты от короткого замыкания;
- встроенную защиту от перегрева.
У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.
У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.
Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.
А вот расположение выводов LM317T:
- Регулировочный
- Выходной
- Входной
Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.
На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.
На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.
Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.
Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
- для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
- для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.
На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.
Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.
Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.
Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.
Мощные аналоги LM317T — LM350 и LM338
Если выходного тока в 1,5 А недостаточно, то можно использовать:
- LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
- LM350K — 3 А и 30 Вт (корпус TO-3)
- LM338T, LM338K — 5 А
Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.
Навигация по записям
LM317T схема включения : 20 комментариев
- solder
Кроме мощных аналогов, есть и маломощные LM317L рассчитанные на ток не более 0,1 А , в корпусах SOIC-8 и TO-92.
- LM317LM — в поверхностном корпусе SOIC-8;
- LM317LZ — в штырьевом корпусе TO-92.
- олександр
Не забудьте установить микросхему на радиатор, надо помнить, что корпус не изолирован от вывода. Чем больше падение напряжения на микросхеме — разница между входным и выходным напряжением, тем меньше максимальная мощность.
- admin
Автор записи
Я бы уточнил, что от падения напряжения зависит «максимальная выходная мощность».
А максимальная мощность рассеиваемая на микросхеме зависит от корпуса и эффективности охлаждения.- Воф
Макс. мощность, рассеиваемая микросхемой — паспортная величина и не может быть превышена при любом охлаждении.
- admin
Автор записи
Оверклокеры с таким утверждением не соглясятся 🙂
Да я и не призываю «разгонять» стабилизаторы напряжения, даже наоборот: соблюдение рекомендаций производителя компонентов, важное условие надежной работы электронного устройста. Если невозможно или слишком дорого обеспечивать надежное охлаждение, то нужно снижать планку максимально возможной мощности. А определить эту максимальную мощность можно зная максимально допустимую температуру кристалла, максимальную температуру окружающей среды и все тепловые сопротивления от кристалла до окружающей среды.Есть паспортная максимальная мощность, которая кстати зависит от корпуса стабилизатора. А есть реальная максимальная мощность, которая получится при реальном максимальном напряжении и реальном максимальном токе. Так вот эта мощность нисколько не паспортная величина.
- Greg
Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — не менее времени Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — минимальное время наработки на отказ, указанное в паспортных данных.
Тепловая и электрическая мощности — это немного разные параметры, хотя и взаимосвязанные.
- admin
Автор записи
- Воф
- admin
Автор записи
- Greg
Всегда относился к данной микросхеме, как к стабилизатору для начинающих, которые и запитывать от нее будут такие-же устройства.
Главную, на мой взгляд, мысль данной статьи: «…использовать в случае типовых напряжений, только когда…» — надо выделить жирным. Ее же, в таких случаях, не использовать вообще. Применять можно в малоточных регуляторах, где ни КПД, ни прецизионность стабилизации на динамическую нагрузку не важны.
Использование токовых усилителей, как на последней схеме, рентабельно применять только для фиксированных напряжений. - Root
Любопытно вот, насколько критично включение танталовых конденсаторов на входе и выходе LM317, как то рекомендует даташит? Никогда не шунтировал ее входы/выходы чем-то лучшим чем самые обычные электролитические конденсаторы плюс (иногда) керамика. И ни разу не получил самовозбуждения. То же самое с LM7805 и LM7812 (и с их отечественными аналогами). Как только не изгалялся, даже подключал конденсаторы длинными проводами. Прокатывало, ни один стабилизатор не «завелся». Разработчики перестраховались или рекомендация относительно танталовых конденсаторов непосредственно возле выводов микросхемы касается каких-то особых условий эксплуатации?
- Починяю
В некоторых схемах для некоторых задач (схемы с аудиоусилением, например) шумы стабилизатора заметны даже на слух. В некоторых других частных случаях из-за «шума» работы стабилизатора возникали нежданчики, которые не устранялись конденсаторами для «ЦП или ОЗУ по питанию». Для описания ситуации, когда такое происходит нужен «талмуд» листов пот тысячу. Производитель, который получал недоумённо-ругательные «комментарии» разработчиков — подстраховался\отмазался коротким упоминанием о необходимости конденсаторов.
- Починяю
- Greg
Действительно, странноватая рекомендация… Особенно, если учесть, что стоимость танталовых конденсаторов, превышает стоимость самой микросхемы, как правило. 317-ю использовал редко, а вот 7805 и 7812 — десятками, и никогда проблем, обусловленных отсутствием редкоземельных и драгсодержащих элементов, не было. Присоединяюсь к удивлению, так как никаких особых условий использования, придумать не могу. Стабильный стабилизатор, вот и весь каламбур) ЦП или ОЗУ по питанию подстраховать, это еще могу понять, а его… не могу.
- Виктор
Отличая микросхема.Так и хочется поехать, купить и спаять что-нибудь. На этапе разработке часто не хватает такого, чтобы напряжением поиграть, двуполярное сделать. Да и помощнее есть устройства с таким же включением.
- Виталий
Как можно сделать схему, чтобы было два режима стабилизации тока. У меня к одной лампе подходит один плюс и два минуса. Нужно, чтобы по одному минусу было ярко, а по другому тускло.
- Greg
Микросхема о которой ведется речь — регулируемый стабилизатор напряжения, не тока. Для вашей задачи подойдут обычные биполярные транзисторы используемые в качестве усилителей тока. Два корпуса. Их мощность должна соответствовать мощности вашей лампы, а напряжение — питающему напряжению. Ток, обеспечивающий желаемую тусклость задайте базовым резистором, можно подстроечным. И, желательно, в вопрос вкладывать побольше информации… лампа, а какая? Много их, разных.
- Greg
- Сергей
Хочу собрать на LM317 зарядное устройство для NI-MH аккумалятора (одного). На входе — 5 вольт, на выходе — 1,5 вольт. Схему уже нашел. Но там 5 вольт берут с USB порта компьютера. А можно ли взять 5 вольт с зарядки от мобильного телефона? И, наверное, нужно выбрать такую зарядку, у которой выходной ток — не меньше, чем ток зарядки аккумулятора?
Да есть же уже ЗУ с токами 1 и 2 А для зарядки смартфонов или планшетов, как раз многие из них уже с портом usb. Но тут уже стоит обратить внимание на качественный кабель, или спаять самому, стандартные китайские кабели такие токи редко способны передать
- Greg
Вы немного путаете порт USB с его разъемом. Понимаете, USB, в первую очередь — Serial Bus, а уж во вторую — Universal. Вторая причина и послужила столь частому, но не совсем профильному использованию данного Разъема в различных блоках питания и зарядных устройствах, что не оснащает их, непосредственно Портом. А что касается кабелей USB, то они, по определению, должны соответствовать стандартам своего класса (1.1; 2.0; 3.0), а не тому, что вы подразумеваете под «китайским стандартом».
Ну не предназначены интегральные стабилизаторы постоянного напряжения, для стабилизации пульсирующего тока. - Greg
Долговечность светодиодов определяется качеством изготовления кристалла, а для белых светодиодов еще и качеством люминофора. В процессе эксплуатации скорость деградации кристалла зависит от рабочей температуры. Если предотвратить перегрев кристалла, то срок службы может быть очень велик до 10 и более лет.
От чего может быть вызван перегрев кристалла? Он может быть вызван только чрезмерным увеличением тока. Даже короткие импульсы тока перегрузки сокращают срок жизни светодиода, например, если в первый момент, после скачка тока визуально это воздействие не заметно и кажется, что светодиод не пострадал.
Повышение тока может быть вызвано нестабильностью напряжения или электромагнитными (электростатическими) наводками на цепи питания светодиода.
Дело в том, что главным параметром для долговечности светодиода является не напряжение его питания, а ток, который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1,8 до 2,6 V, белые от 3,0 до 3,7 V. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые – классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току, например, в 2 раза живут … 2-3 часов!!! Так что, если Вы желаете, чтобы светодиод горел и не сгорел в течение хотя бы 5 лет позаботесь о его питании.
Если мы устанавливаем светодиоды в цепочку (последовательное соединение) или подключаем параллельно, то добиться одинаковой светимости можно только если протекающий ток через них будет одинаков .
Также опасно для светодиодов высокое обратное напряжение. У светодиодов обычно порог обратного напряжения не превышает 5-6 V. Для зашиты светодиода от импульсов обратного напряжения рекомендуется устанавливать выпрямительный диод в обратном направлении.
Как построить своими руками самый простой стабилизатор тока? И желательно из недорогих комплектующих.
Обратим внимание на стабилизатор напряжения LM317, который легко превратить в стабилизатор тока при помощи только одного резистора, если нужно стабилизировать ток в пределах до 1 A или LM317L, если необходима стабилизация тока до 0,1 А . Datasheet можно скачать !
Т ак выглядят стабилизаторы LM317 с рабочим током до 3 А.
Так выглядят стабилизаторы LM317L с рабочим током до 100 мА.
На Vin (input) подается напряжение, с Vout (output) – снимается напряжение, а Adjust – вход регулировки. Таким образом, LM317 – стабилизатор с регулируемым выходным напряжением . Минимальное выходное напряжение 1,25 V (если Adjust “посадить” прямо на землю) и максимальное – до входного напряжения минус 1,25 V. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.
Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!
Схема включения выглядит следующим образом:
По формуле внизу рисунка очень просто рассчитать величину сопротивления резистора для необходимого тока. Т.е сопротивление резистора равно – 1,25 деленное на требуемый ток. Для стабилизаторов до 0,1 A подходит мощность резистора 0,25 W. На токи от 350 мА до 1 А рекомендуется 2 W. Ниже привожу таблицу резисторов на токи для широко распространенных светодиодов.
Вот пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).
Для белых светодиодов рабочее напряжение в среднем равно 3,2 V. В легковой автомашине бортовое напряжение колеблется в среднем от 11,6 V в режиме работы от аккумулятора и до 14,2 V при работающем двигателе. Для российских машин учтем выбросы в “обратке” и в прямом направлении до 100 ! вольт.
Включить последовательно можно только 3 светодиода – 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.
Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле – это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.
P.S. Подбирайте количество светодиодов так, чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это необходимо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребуется радиатор.
Вот и все!
Cхема. РИСУНОК 1
Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод в автомобиле обязателен! Рекомендую его ставить даже, если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.
Краткое описание к схеме рис.1
Количество светодиодов в цепочке надо выбирать с учетом вашего рабочего напряжения минус падение напряжения на стабилизаторе и минус на диоде.
Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание, что 20 мА – это рабочий ток для ФИРМЕННЫХ дорогих светодиодов!!! Только фирма гарантирует такой ток. Если вы не знаете точного происхождения, то выбирайте ток в пределах 14-15 мА. Это для того, что бы потом не удивляться, почему так быстро упала яркость или, вообще, почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому что к нам завозят не всегда то, что маркировано на изделии.
Вопрос 1. Сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 V. Падение на диоде 0,6 V. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 V. Для автомобиля минимальное напряжение в сети 12,6 – это нормально.
Для белых светодиодов на 20 мА можно включать 3 шт, для сети 12,6 V. Учитывая, что при включенном двигателе нормальное рабочее напряжение сети 13,6 V (это номинальное, в других вариантах может быть и выше!!!), а рабочее LM317 до 37 V
Вопрос 2 – как рассчитать сопротивление резистора задающего ток! Хотя выше и было описано, вопрос задают постоянно.
где R1 – сопротивление токозадающего резистора в Омах.
1,25 – опорное (минимальное напряжение стабилизации) LM317
Ist – ток стабилизации в Амперах.
Нам нужен ток в 20 мА – переводим в амперы = 0,02 А.
Вычисляем R1 = 1,25 / 0,02 = 62,5 Ом. Принимаем ближайшее значение 62 Ома.
Еще пару слов о групповом включении светодиодов.
Идеально – это последовательное включение со стабилизацией тока.
Светодиоды – это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов, то необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают вмонтируя в изделие защитный диод).
если необходимо подключить массив из светодиодов, то рекомендую такую схему включения.
Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.
Ток в цепи равен напряжению делённому на сопротивление цепи.
I led = V pit / на сопротивление диода и резистора.
Сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падение напряжения на светодиоде.
Для маломощных светодиодов с током 20 мАм необходимо принимать:
Зная падение напряжения на светодиоде можно вычислить остаток – напряжение на резисторе.
Например, питающее напряжение V pit = 9 V. Мы подключаем 1 белый светодиод, падение на нем 3,1 V. Напряжение на резисторе будет = 9 – 3,1 = 5,9 V.
Вычисляем сопротивление резистора:
R1 = 5.9 / 0.02 = 295 Ом.
Берем резистор с близким более высоким сопротивлением 300 ом.
PS. Не всегда характеристики на рабочий ток светодиода соответствуют истине, это актуально особенно для светодиодов изготовленных “не знаю где”, для светодиодов (любых) надо большое внимание уделить отводу тепла, а так как это условие не всегда выполнимо, то по этому рекомендую для “20 мА” светодиодов выбирать ток в районе 13-15 мА. Если это SMD на 50 мА, нагружать током 25-30 мА. Эта рекомендация особенно актуальна для светодиодов с рабочим напряжением в районе 3,0 вольт (белые, синие и истинно зеленые) и светодиодов в SMD исполнении. Т.е. не задавайте максимальный ток по описанию, сделаете его на 10-25% меньше, срок службы будет в 10 дольше:)…
NSI45015W
NSI45020
NSI45020A
NSI45020J
NSI45025
NSI45025A
NSI45025AZ
NSI45025Z
NSI45030
NSI45030A
NSI45030AZ
NSI45030Z
NSI45035J
NSI45060JD
NSI45090JD
NSI50010YT1G
NSI50350AD
NSI50350AS
Светодиоды питаются не напряжением, а током, поэтому важной задачей является ограничение тока проходящего через диод. Где то можно обойтись , но если напряжение не очень стабильно, или диод потребляет большой ток – то лучше применить что-нибудь посерьезнее. Стабилизаторы тока бывают линейные и импульсные, в этой статье речь пойдёт о самом простом ограничителе тока на LM317.
Эта микросхема очень универсальна, на ней можно строить как всевозможные , так и ограничители тока, зарядные устройства… Но остановимся на ограничители тока. Микросхема ограничивает ток, а напряжение диод берёт столько, сколько ему нужно. Схема очень проста, состоит всего из двух деталей: самой микросхемы и задающий ток резистора:
Минимальное напряжение должно быть минимум на 2-4В больше чем напряжение питания кристалла светодиода. Схема позволяет ограничивать ток от 10мА до 1,5А с максимальным входным напряжением 35В. При большом перепаде напряжений и(или) больших токах микросхему нужно посадить на радиатор. Если же требуются большие входные напряжения или ток, или нужно уменьшить потери, или тепловыделение то уже стоит использовать импульсный драйвер (будет рассмотрен позже).
Резистор рассчитывается по следующей формуле:
R1=1.25В/Iout
где ток взят в Амперах, а сопротивление в Омах.
Небольшая рассчитанная таблица:
Платой из трёх таких драйверов запитал 10Вт трехцветный светодиод.
Драйвер разместился на втором радиаторе с обратной стороны 10Вт светодиода, на момент написания статьи надёжно прикручен к радиатору и прикрыт алюминиевой пластиной.
Кристаллы светодиода потребляют до 350мА, напряжения: Красный 8-9В, Синий и Зелёный 10-11В. Напряжение на входе драйвера 13-14В, максимальный потребляемый ток 9,6А.
Бытует неправильное мнение, что для светодиода важным показателем является напряжение питания. Однако это не так. Для его исправной работы существенен прямой ток потребления (Iпотр.), который обычно бывает в районе 20 миллиампер. Величина номинального тока обусловлена конструкцией LED, эффективностью теплоотвода.
А вот величина падения напряжения, в большинстве своем определяется материалом полупроводника, из которого изготовлен светодиод, может доходить от 1,8 до 3,5В.
Отсюда следует, что для нормальной работы LED необходим именно стабилизатор тока, а не напряжения. В данной статье рассмотрим стабилизатор тока на lm317 для светодиодов .
Стабилизатор тока для светодиодов — описание
Конечно же, самым простым способ ограничить Iпотр. для LED является . Но следует отметить, что данный способ малоэффективен по причине больших энергетических потерь, и подходит лишь только для слаботочных LED.
Формула расчета необходимого сопротивления: Rд= (Uпит.-Uпад.)/Iпотр.
Пример : Uпит. = 12В; Uпад. на светодиоде = 1,5В; Iпотр. cветодиода = 0,02А. Необходимо рассчитать добавочное сопротивление Rд.
В нашем случае Rд = (12,5В-1,5В)/0,02А= 550 Ом.
Но опять, же повторюсь, данный способ стабилизации годится только для маломощных светодиодов.
Следующий вариант стабилизатора тока на более практичен. В ниже приведенной схеме, LM317 ограничивает Iпотр. LED, который задается сопротивлением R.
Для стабильной работы на LM317, входное напряжение должно превышать напряжение питания светодиода на 2-4 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт.
Формула для расчета сопротивления резистора R: R=1,25/Iпотр.
Пример : для LED с Iпотр. в 200мА, R= 1,25/0, 2А=6,25 Ом.
Калькулятор стабилизатора тока на LM317
Для расчета сопротивления и мощности резистора просто введите необходимый ток:
Не забывайте, что максимальный непрерывный ток, которым может управляться LM317 составляет 1,5 ампер с хорошим радиатором. Для более больших токов используйте , который рассчитан на 5 ампер, а с хорошим радиатором до 8 ампер.
Если необходимо регулировать яркость свечения светодиода, то в статье приведен пример схемы с использованием стабилизатора напряжения LM2941.
Стабилизатор на LM317T.
Стабилизатор на LM317T.Стабилизатор для блока питания на микросхеме LM317T.
Данная статья не претендует на оригинальность.
Описываемый стабилизатор обладает следующими характеристиками:
-
максимальный ток — 2 А
-
выходное напряжение 1,25 — 12 В
-
максимальная рассеиваемая мощность — 15А
-
стабилизация по входу — 0,01%/В
-
стабилизация по нагрузке — 0,1%
-
ослабление пульсаций — 80 дБ
Основным элементом стабилизатора является замечательная микросхема LM317T. В микросхеме имеется полная защита от перегузок, ограничения по току, тепловая защита. Все выше перечисленные защиты отлично работают в отличие , от аналогов отечественного производства.
Схема стабилизатора очень проста и не требует практически ни каких пояснений.
Резистор R2 является регулятором выходного напряжения. При минимуме R2 напряжение на выходе стабилизатора минимально — 1,25 В. При максимуме соответственно максимально (если отключить нижний по схеме вывод R2, то Uвых равно Uвх).
Несколько слов о конструктивных особенностях стабилизаторов на микросхемах серии LM117/LM217/LM317.На входе стабилизатора рекомендуется использовать шунтирующий керамический конденсатор емкостью 0,1 мкф или танталовый 1 мкф включенный как можно ближе к выводам стабилизатора. Не рекомендуется шунтировать выход стабилизатора емкостями в диапазоне от 500 до 5000 пФ, т.к. это приводит к чрезмерному «звону» выходного напряжения.
Резистор R1 следует подключать непосредственно вблизи выводов стабилизатора. Подключение данного резистора вблизи нагрузки достаточно сильно снижает стабилизацию. Резистор R2 необходимо подключать верхним по схеме выводом так же ближе к стабилизатору, а провод от нижнего вывода ближе к нагрузке.
Ток корый может выдержать стабилизатор конечно маловат, но это не страшно, т.к. стабилизаторы можно включать паралельно. К каждой микросхеме-стабилизатору всего лишь необходимо подключить свои Д1, Д2 и включить в имеющеюся схему стабилизатора. Таким образом можно изготавливать блоки питания на 15 А и более. Входные и выходные напряжения так же могут варироваться в больших пределах главное, что бы разница между входным и выходным напряжением не привышала
40 вольт!Следует помнить при установке микросхем на радиатор, что фланец микросхемы следует изолировать от радиатора, т.к. на фланце присутствует напряжение Uвых.
Более подробную информацию можно найти на сайте производителей (National Semiconductor).
P.S. Подобный стабилизатор эксплуатируется в блоке питания моего трансивера уже несколько лет и пока не подводил.Неплохие результаты получаются со стабилизаторами серии
Т3117, производители, кто то из наших бывших друзей по соцлагерю. Т3117 я вляется полным аналогом LM317T.RA3RTW
Интегральный стабилизатор напряжения LM317. Описание и применение
Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317.
Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы блоков питания на LM317 с регулировкой напряжения.
На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.
Технические характеристики:
- Напряжение на выходе стабилизатора: 1,2… 37 вольт.
- Ток выдерживающей нагрузки до 1,5 ампер.
- Точность стабилизации 0,1%.
- Имеется внутренняя защита от случайного короткого замыкания.
- Отличная защита интегрального стабилизатора от возможного перегрева.
Мощность рассеяния и входное напряжение стабилизатора LM317
Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.
Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.
Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.
При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.
Подбор сопротивления для стабилизатора LM317
Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
R1 + R2 + R3 = Vo / 0,008
Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).
Величина сопротивления переменного резистора R2 напрямую связана с диапазоном напряжения на выходе. Обычно его сопротивление должно быть примерно 10…15 % от суммарного сопротивления оставшихся резисторов (R1 и R2) либо же можно подобрать его сопротивление экспериментально.
Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.
Стабилизация и защита схемы
Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.
Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.
Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.
Для облегчения расчета параметров стабилизатора существует специальный калькулятор:
Скачать калькулятор для LM317 (338,2 KiB, скачано: 6 510)
Скачать datasheet LM317 (216,6 KiB, скачано: 2 280)
LM317T: распиновка, даташит, схема [Видео]
О LM317 было много статей, сегодня мы поговорим о LM317T отдельно. В этом блоге будут рассмотрены не только его распиновка, функции, приложения, но также его модели САПР, функциональные эквиваленты и некоторые полезные схемы, таблица данных, как всегда, находится внизу страницы.
LM317T относится к разновидности регулируемого трехконтактного стабилизатора положительного напряжения, рассчитанного на питание более чем одного.5 А тока нагрузки с регулируемым выходным напряжением в диапазоне от 1,2 В до 3,7 В. Номинальное выходное напряжение выбирается с помощью резистивного делителя, что делает устройство исключительно простым в использовании и избавляет от необходимости хранить множество постоянных регуляторов. Помимо использования в качестве регулятора переменного напряжения, LM317T IC также может использоваться в качестве регулятора постоянного напряжения, ограничителя тока, зарядного устройства, регулятора напряжения переменного тока и даже в качестве регулируемого регулятора тока.
Ниже показано видео о том, как LM317T работает в цепи.
Регулируемый регулятор напряжения LM317T, функциональная демонстрация
Каталог
Распиновка LM317T
Номер контакта |
Имя контакта |
Описание |
Контакт1 |
Настроить |
Этот вывод регулирует выходное напряжение |
Pin2 |
Выходное напряжение (Vout) |
Регулируемое выходное напряжение, устанавливаемое регулировочным штифтом, может быть получено с этого контакта . |
Pin3 |
Входное напряжение (Vin) |
Входное напряжение, которое необходимо отрегулировать, подается на этот вывод . |
LM317T Характеристики
Согласно листу данных LM317T, он включает:
-
Диапазон выходного напряжения: 1.От 2 до 37 В
-
Выходной ток более 1,5 A
-
Регулировка линии и нагрузки 0,1%
-
Постоянный предел тока с температурой
-
100% сжигание электричества
-
устраняет необходимость в большом количестве напряжений
-
Подавление пульсации 80 дБ
LM317T Принципиальная схема
Принципиальная схема может помочь нам лучше понять, как компонент или микросхема используется и работает в схемах.Это ссылка, чтобы заставить их работать в реальной цепи. Следующая принципиальная схема LM317T является образцом для справки.
LM317T Технические характеристики
Атрибут продукта |
Значение атрибута |
Производитель: |
STMicroelectronics |
Категория продукта: |
Линейные регуляторы напряжения |
Тип монтажа: |
Сквозное отверстие |
Упаковка / ящик: |
ТО-220-3 |
Количество выходов: |
1 Выход |
Полярность: |
Положительный |
Выходное напряжение: |
1.От 2 В до 37 В |
Выходной ток: |
1,5 А |
Тип выхода: |
Регулируемый |
Максимальное входное напряжение: |
40 В |
Мин. Входное напряжение: |
4.2 В |
Минимальная рабочая температура: |
0 С |
Максимальная рабочая температура: |
+ 125 К |
Регулировка нагрузки: |
0,5% |
Линейный регламент: |
0.04% / V |
Серия: |
LM317 |
Упаковка: |
Трубка |
Высота: |
9,15 мм |
Длина: |
10.4 мм |
Диапазон рабочих температур: |
от 0 ° C до + 125 ° C |
Ширина: |
4,6 мм |
Бренд: |
STMicroelectronics |
PSRR / Подавление пульсаций — Тип: |
80 дБ |
Тип продукта: |
Линейные регуляторы напряжения |
Количество заводской упаковки: |
1000 |
Подкатегория: |
PMIC — ИС управления питанием |
Вес единицы: |
0.081130 унция |
LM317T CAD-модели
LM317T Приложения
Регулятор напряжения LM317T используется в широком диапазоне схем, наиболее распространенные приложения:
-
Используется для регулирования положительного напряжения
-
Используется в цепях управления двигателем
-
Обычно используется в настольных ПК, DVD и других потребительских товарах
-
Источник переменного тока
-
Цепи ограничения тока
-
Цепи обратной полярности
LM317T Упаковка
LM317T Схема
Вот как будет выглядеть регулятор LM317T при подключении к цепи, чтобы он давал постоянное выходное напряжение постоянного тока.
В этой схеме мы добавляем источник постоянного напряжения к выводу V IN регулятора. Это вывод, который снова получает входящее напряжение, которое затем будет регулировать микросхема. Напряжение, которое поступает на этот вывод, должно быть больше, чем напряжение, которое он подает. Помните, что регуляторы напряжения — это просто устройства, которые регулируют напряжение до определенного уровня. Они не создают и не могут создавать напряжение самостоятельно. Следовательно, чтобы получить напряжение, V OUT , V IN должны быть больше, чем V OUT .В этой схеме мы хотим, чтобы на выходе было стабилизированное напряжение 5 В постоянного тока. Следовательно, напряжение V IN должно быть больше 5 вольт. Обычно для регуляторов, если они не являются регуляторами с малым падением напряжения, требуется, чтобы входное напряжение было примерно на 2 вольта выше. Итак, поскольку мы хотим, чтобы на выходе было 5 вольт, мы подадим на этот регулятор 7 вольт.
Теперь, когда мы разобрались с входным контактом, мы должны заняться регулируемым контактом (Adj). Это вывод, который позволяет нам регулировать напряжение до желаемого уровня.Поскольку мы хотим, чтобы на выходе было 5 вольт, мы должны вычислить, какое значение R2 даст выход 5 вольт. Используя формулу для выходного напряжения, V OUT = 1,25 В (1 + R2 / R1). Поскольку R1 = 240 Ом, наше уравнение теперь составляет 5 В = 1,25 В (1 + R2 / 240 Ом), поэтому R2 = 720 Ом. Таким образом, если R2 имеет значение 720 Ом, LM317 будет выдавать 5 В при входном напряжении более 5 В. Если вам нужно рассчитать выходное напряжение или какое значение резистора R2 потребуется для схемы, см. Онлайн-калькулятор LM317. Это может помочь вам найти точное значение резистора, необходимое для схемы.
Последний вывод LM317 — это выходной вывод. Именно здесь выйдет регулируемое напряжение (в данном случае 5 вольт). Чтобы подать в цепь регулируемые 5 вольт, мы просто подключаем ее к выходному выводу.
LM317T Функциональные эквиваленты
Номер детали |
Описание |
Производитель |
LM317T № PBF СИЛОВЫЕ ЦЕПИ |
IC VREG 1.2 РЕГУЛИРУЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР V-37 В, PSFM3, ПЛАСТИКОВЫЙ, TO-220, 3-КОНТАКТНЫЙ, РЕГУЛИРУЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ СТАНДАРТНЫЙ РЕГУЛЯТОР |
Линейные технологии |
LM317T2 СИЛОВЫЕ ЦЕПИ |
1,2 В-37В РЕГУЛИРУЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР, PSFM3, ПЛАСТИК, TO-220, 3 КОНТАКТА |
Motorola Mobility LLC |
LM317KCS СИЛОВЫЕ ЦЕПИ |
1.Регулируемый линейный стабилизатор напряжения 5 А, 40 В 3-TO-220 от 0 до 125 |
Техасские инструменты |
LM317T / NOPB СИЛОВЫЕ ЦЕПИ |
IC VREG 1.2 V-37 V РЕГУЛИРУЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР, PSFM3, СООТВЕТСТВУЮЩИЙ к ROHS, ПЛАСТИК, TO-220, 3-контактный, регулируемый стандартный положительный регулятор с одним выходом |
Национальная полупроводниковая корпорация |
LM317KC СИЛОВЫЕ ЦЕПИ |
3/4 контакт 1.Регулируемый стабилизатор положительного напряжения 5A 3-TO-220 от 0 до 125 |
Техасские инструменты |
LM317P СИЛОВЫЕ ЦЕПИ |
Регулируемые регуляторы напряжения от 1,2 В до 37 В |
STMicroelectronics |
LM317BT4 СИЛОВЫЕ ЦЕПИ |
1.2 V-37V РЕГУЛИРУЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР, PSFM3, ПЛАСТИК, TO-220, 3 КОНТАКТА |
Motorola Mobility LLC |
LM317BT СИЛОВЫЕ ЦЕПИ |
1,2 В-37В РЕГУЛИРУЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР, PSFM3, ПЛАСТИК, TO-220, 3 КОНТАКТА |
ON Semiconductor |
LM317BTG СИЛОВЫЕ ЦЕПИ |
Линейный регулятор напряжения, 1.5 А, высокий PSRR, регулируемый, положительный TJ = от -40 ° до + 125 ° C, TO-220, ОДИНОЧНЫЙ МАНОМЕТР, 3 ОТВОДА, 50 ТРУБ |
ON Semiconductor |
LM317KCE3 СИЛОВЫЕ ЦЕПИ |
Регулируемый стабилизатор положительного напряжения на 3/4 контакта 1,5 А 3-TO-220 от 0 до 125 |
Техасские инструменты |
LM317T Популярность по регионам
LM317T Анализ рыночных цен
LM317T Производитель
Группа компаний STMicroelectronics (SGS-THOMSON, ST) была основана в 1987 году в результате слияния компаний SGS Microelectronics в Италии и Thomson Semiconductor во Франции.В мае 1998 года SGS-THOMSON Microelectronics изменила название компании на STMicroelectronics Co., Ltd. STMicroelectronics — одна из крупнейших полупроводниковых компаний в мире. Она стремится быть лидером на рынке интеграции мультимедийных приложений и решений для электропитания. STMicroelectronics предлагает самую мощную в мире линейку продуктов, включая специализированные продукты с высокими правами интеллектуальной собственности. Продукты, есть также инновационные продукты во многих областях, таких как дискретные устройства, высокопроизводительные микроконтроллеры, микросхемы смарт-карт безопасности и устройства микроэлектромеханических систем (MEMS).
Спецификация компонентов
% PDF-1.4 % 1107 0 объект > эндобдж xref 1107 112 0000000016 00000 н. 0000003349 00000 п. 0000003613 00000 н. 0000005065 00000 н. 0000005351 00000 п. 0000005613 00000 п. 0000006106 00000 п. 0000006398 00000 п. 0000006725 00000 н. 0000007218 00000 н. 0000007353 00000 н. 0000007480 00000 н. 0000007519 00000 н. 0000007756 00000 н. 0000008006 00000 н. 0000008247 00000 н. 0000008477 00000 н. 0000008707 00000 н. 0000009008 00000 н. 0000009087 00000 н. 0000011785 00000 п. 0000013509 00000 п. 0000015297 00000 п. 0000017068 00000 п. 0000019040 00000 п. 0000020621 00000 п. 0000022487 00000 п. 0000022839 00000 п. 0000023187 00000 п. 0000023387 00000 п. 0000025239 00000 п. 0000027934 00000 п. 0000058009 00000 п. 0000079060 00000 п. 0000079302 00000 п. 0000079508 00000 п. 0000082815 00000 п. 0000083059 00000 п. 0000083278 00000 п. 0000083643 00000 п. 0000084098 00000 п. 0000084276 00000 п. 0000084665 00000 п. 0000085225 00000 п. 0000085399 00000 п. 0000085893 00000 п. 0000086251 00000 п. 0000086651 00000 п. 0000087088 00000 п. 0000087286 00000 п. 0000087787 00000 п. 0000088120 00000 п. 0000088354 00000 п. 0000088853 00000 п. 0000089188 00000 п. 0000089391 00000 п. 0000089800 00000 п. 00000