Однолинейная схема электроснабжения частного дома: однолинейная схема. Схема электроснабжения частного дома

Содержание

назначение, виды, принципы проектирования, требования к оформлению


При строительстве частного дома на первое место выходит строительство инженерных сетей и коммуникаций, электроснабжение в частном доме. И здесь основная роль отводится электроснабжению. В создании домашнего уюта большое значение имеют электробытовые приборы, их мощность и количество.

В первую очередь, для электроснабжения, необходимо выполнить проект, он создаётся на основе технических условий. Потом на основании проекта выполняются электромонтажные работы. Всё это должна выполнять специализированная организация, имеющая соответствующую лицензию.

Пример проекта электроснабжения частного жилого дома

Технические условия на электроснабжение

ТУ выдает энергоснабжающая организация. В основном, это местные электрические сети или та организация или фирма, которой принадлежат электросети, от которых будет произведено подключение. Электрические сети могут принадлежать как предприятию электросетей, так и, к примеру, водоканалу, ТСЖ, дачному кооперативу или другой организации.

Подключение электричества к частному дому: мощность

В заявлении на выдачу ТУ необходимо указать, какую мощность вы хотите подключить и на какое напряжение (230/400 В). Предварительно необходимо рассчитать, какую мощность будут потреблять ваши электроприборы. На основании вашего заявления и технической возможности линии электропередач, энергоснабжающая организация выдает ТУ.

Подключение частного дома к электричеству: что важно принять к сведению

Многие просят мощность больше, чем им надо. И это правильно. Заново делать проект на электроснабжение в случае увеличения мощности дело не из дешёвых. Поэтому в заявлении на выдачу ТУ пишут большую мощность, при этом перечень документации аналогичен.

Как провести электричество в частный дом: внешнее электроснабжение

После того, как вам выдали ТУ, вы идёте в проектную организацию, которая сделает проект на основании ПУЭ (правила устройства электроустановок) и СНиП (строительные нормы и правила). В ТУ будет указана общая разрешенная мощность для подключения, сечение кабельной или воздушной линии, марка и тип. Специалисты организации согласно ТУ и нормам выполнят проект, но вы обязаны принять участие в его работе, так как существует ряд нюансов. Схема электроснабжения дома поможет проработать многие детали.


Пример внешнего электроснабжения

В большинстве случаев энергоснабжающая организация выдаёт ТУ на подключение частного дома воздушным вводом. Это делается с целью минимизиции случаев хищения электрической энергии. По этой же причине рекомендуется устанавливать ШУЭ (шкаф учета электроэнергии) на опоре или на фасаде дома. Чтобы не возникало проблем с последующей сдачей электроснабжения на коммерческий учёт, рекомендуется прислушаться к этим рекомендациям.

Сечение вводного провода и его марка

Согласно нормативной документации, вводной кабель должен быть сечением не менее: 10 мм2 для кабеля с медной жилой, и не менее 16 мм2 для кабеля с алюминиевой жилой, если воздушный ввод более 25 метров. Это связано с тем, что этот участок ввода рассматривается как отдельный участок воздушной линии, от столба к дому. Если он составляет менее 25 метров, то сечение медной жилы не менее 4 мм2, алюминиевой не менее 10 мм2.

Сечение выбирают согласно ПУЭ, и зависит оно от системы, будет ли проводник PEN разделен на PE и N или нет. Всё это сделают специалисты проектного института.

Пример, как проводить электричество в частном доме

Необходимо помнить, что сечение кабельной линии выбирается по его длительно допустимому току. Он зависит от способа прокладки. К примеру, самый распространённый кабель – это ВВГ. Если сделать ввод в дом воздушным, а сечение его 10 мм2, то длительно допустимый ток для него составляет 80 А, а если этот же провод тем же сечением проложен в трубе один – трёхжильный, то длительно допустимый ток составляет 50 А. Это уже погрешность примерно 40 %.

Виды однолинейных электрических схем

В зависимости от того, на каком этапе выполнения работ по созданию электрической сети объекта составляется однолинейная схема, зависит её вид и прямое предназначение. На этапе разработки проектной документации составляется расчётная однолинейная схема, служащая основным документом для расчёта параметров системы электроснабжения. Именно этот документ необходим для последующих согласований с органами, выдающими технические условия для подключения объекта строительства к действующим электрическим сетям, каковыми являются электросетевые организации в месте размещения объекта-потребителя электрической энергии.

К сведению! Порядок получения технических условий на подключение к электрическим сетям регламентирован рядом документов. Среди них: Постановление Правительства РФ № 861 от 27.12.2004 «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих , «Правил недискриминационного доступа к услугам администратора торговой системы оптового рынка и оказания этих . Все нормативные документы должны быть учтены при разработке документации обязательно.

Расчётная схема квартирного щита загородного дома

На этапе эксплуатации объекта составляются однолинейные исполнительные схемы, на которых отображаются все изменения, вносимые в конфигурацию электрической сети в процессе её использования. Это может быть связано с модернизацией используемого оборудования или его заменой, добавлением новых мощностей или изменением конфигурации магистральных и групповых линий. На крупных объектах, где система электроснабжения подразделяется на несколько уровней, однолинейные схемы составляются по каждой группе потребителей: «объект в целом – цех – участок» и т.д. Изначально делается рисунок, отображающий подстанции (ТП) и конфигурацию сетей их объединяющих, затем схема ТП или ГРЩ (главный распределительный щит) и затем − каждого силового или осветительного щитка, имеющегося на объекте.

К сведению! На объектах различной формы собственности за ведение технической документации и её соответствие предъявляемым требованиям отвечает лицо, ответственное за энергохозяйство (ПТЭЭП гл.1.2 «Обязанности, ответственность потребителей за выполнение правил»).

Исполнительная схема 2-трансформаторной подстанции

На основе однолинейных разрабатываются прочие электрические схемы системы электроснабжения: структурные и функциональные, принципиальные и монтажные.



Подключение трехфазной линии электропроводки в частном доме, конечно, возможно. Но для этого нужно соблюдать все правила и грамотно сделать оформление, где указываются основные типы электрического оборудования и их характеристики.

Что такое однолинейная диаграмма?

Независимо от того, есть ли у вас новое или существующее предприятие, однолинейная схема является жизненно важной дорожной картой для всех будущих работ по тестированию, обслуживанию и техническому обслуживанию. Таким образом, однолинейная диаграмма подобна балансовому отчету вашего предприятия и дает моментальный снимок вашего предприятия в определенный момент времени. Он должен меняться по мере изменения вашего объекта, чтобы обеспечить адекватную защиту ваших систем.

Посмотреть продукты и услуги


Эффективная однолинейная схема четко покажет, как подключены основные компоненты электрической системы, включая резервное оборудование и доступные запасные части.Он показывает правильный путь распределения мощности от входящего источника питания к каждой последующей нагрузке, включая номинальные характеристики и размеры каждой части электрического оборудования, их проводников цепи и их защитных устройств.

На многих производственных объектах нагрузки постоянно добавляются или удаляются небольшими приращениями. Чистый эффект не всегда виден до тех пор, пока какая-то часть системы не станет перегруженной или не обнаружит другие проблемы. Много раз цепи добавляются без соответствующих изменений стандартных настроек соответствующих автоматических выключателей на входе.Используемые защитные устройства должны быть согласованы с их кривыми время / ток и друг с другом. Однолинейная схема представляет собой дорожную карту для обеспечения надлежащего проектирования оборудования, резервирования и защиты.

Требования

NFPA-70E требуют получения точных и актуальных однолинейных схем.

Чтобы удовлетворить эти требования, Vertiv может провести всестороннее обследование объекта, чтобы разработать однолинейные схемы для вашего объекта или обновить существующие схемы. В опросе вошли:

  • Иметь опись оборудования
  • Проверить наличие рабочих чертежей и их наличие
  • Проверка наличия процесса, обеспечивающего поддержание действующего чертежа в текущем состоянии
  • Подтвердить, что нагрузки подключены к аварийным / резервным фидерам
  • Проверить потенциальные единые точки отказа
  • Оценить проектное резервирование критических систем (N, N + 1, N + 2…) и можно ли обслуживать все критическое оборудование без останова
  • Сделать отчет с изложением результатов по участкам вместе с рекомендованными действиями
  • Обновление предоставленных заказчиком однолинейных чертежей до распределительных щитов 480 В
  • Предоставить копию однолинейной электрической схемы в формате AutoCAD
  • Размещать рабочие чертежи на каждом объекте

Современная однолинейная схема жизненно важна для различных сервисных операций, включая:

  • Расчет короткого замыкания
  • Координационные исследования
  • Исследования потока нагрузки
  • Исследования по оценке безопасности
  • Все прочие инженерные изыскания
  • Правила электробезопасности
  • Эффективное обслуживание

Преимущества

  • Помогает определять места неисправностей и упрощает поиск и устранение неисправностей
  • Определить потенциальные источники электроэнергии во время процедуры LOTO
  • Обеспечение безопасности персонала
  • Соответствие требованиям NFPA 70E
  • Обеспечить безопасную и надежную работу объекта

Область применения

Чтобы дать вам точное представление о вашей электрической системе, информация об однолинейной схеме обычно включает:

  • Входящие линии (напряжение и габариты)
  • Входные главные предохранители, наконечники, вырезы, переключатели и главные / межкоммутаторные выключатели
  • Трансформаторы силовые (номинал, соединение обмоток и средства заземления)
  • Автоматические выключатели и выключатели с предохранителями
  • Реле (назначение, применение и тип)
  • Трансформаторы тока / напряжения (размер, тип и соотношение)
  • Трансформаторы управляющие
  • Все основные кабели и провода с соответствующими изолирующими выключателями и наконечниками (размер и длина)
  • Все подстанции, включая встроенные реле и главные панели, а также точный характер нагрузки в каждом фидере и на каждой подстанции
  • Напряжение и размер критически важного оборудования (ИБП, аккумулятор, генератор, распределение энергии, автоматический переключатель, кондиционирование воздуха в компьютерном зале)

Common Power Supply — обзор

5.2.2 Отказ по общей причине (CCF)

В то время как простые модели избыточности предполагают, что отказы являются как случайными, так и независимыми, при моделировании отказов по общей причине (CCF) учитываются отказы, которые связаны между собой из-за некоторой зависимости и, следовательно, происходят одновременно или по крайней мере, в пределах достаточно короткого интервала, чтобы восприниматься как одновременное.

Два примера:

(a)

Наличие водяного пара в газе, вызывающее заклинивание двух клапанов из-за обледенения.В этом случае интервал между двумя отказами может составлять порядка дней. Однако, если интервал между контрольными испытаниями для этого неактивного отказа составляет два месяца, то два отказа будут, по сути, одновременными.

(b)

Выпрямительные диоды с недостаточным номиналом на идентичных сдвоенных печатных платах выходят из строя одновременно из-за переходного процесса напряжения.

Обычно причины возникают из:

(a)

Требования: неполные или противоречивые

(b)

Конструкция: стандартные источники питания, программное обеспечение, ЭМС, шум

(c)

Производство: недостатки компонентов, связанные с партиями

(d)

Техническое обслуживание / эксплуатация: проблемы, связанные с деятельностью человека или испытательного оборудования

(e)

Окружающая среда: температурные циклы, электрические помехи и т. Д.

Защита от CCF включает в себя конструктивные и эксплуатационные особенности, которые формируют критерии оценки, приведенные в Приложении 3.

CCF часто доминируют в ненадежности резервных систем в силу подавления функции случайного совпадающего отказа резервной защиты. Рассмотрим дублированную систему на рисунке 5.2. Интенсивность отказов резервного элемента (другими словами, совпадающие отказы) можно рассчитать по формуле, приведенной в таблице 5.1, а именно 2λ 2 MDT.Типичные показатели частоты отказов 10 на миллион часов (10 −5 на час) и время простоя 24 часа приводят к частоте отказов 2 × 10 −10 × 24 = 0,0048 на миллион часов. Однако, если только один отказ из 20 имеет такую ​​природу, что влияет на оба канала и, таким образом, нарушает избыточность, необходимо добавить последовательный элемент, показанный как λ 2 на рисунке 5.3, частота отказов которого составляет 5% × 10 −5 = 0,5 на миллион часов, что на два порядка чаще. 5%, используемые в этом примере, известны как коэффициент БЕТА.Эффект состоит в том, чтобы заглушить избыточную часть прогноза, и поэтому важно включить CCF в модели надежности. Такая чувствительность сбоя системы к CCF делает акцент на достоверности оценки CCF и, таким образом, оправдывает усилия по улучшению моделей.

Рисунок 5.3. Блок-схема надежности, показывающая CCF.

На рисунке 5.3 (λ 1 ) — это частота отказов одного резервного блока, а (λ 2 ) — это частота CCF, такая что (λ 2 ) = β (λ 1 ) для Модель BETA, которая предполагает, что фиксированная доля отказов возникает по общей причине.Вклад в BETA разделен на группы по конструктивным и эксплуатационным характеристикам, которые, как считается, влияют на степень CCF. Таким образом, множитель БЕТА складывается путем сложения вкладов каждого из ряда факторов в каждой группе. Эта модель частичного бета-тестирования (как она поэтому известна) включает следующие группы факторов, которые представляют защиту от CCF:

Сходство (Разнесение между резервными модулями снижает CCF)

Разделение (физическое расстояние и препятствия уменьшают CCF)

Сложность (более простое оборудование менее подвержено CCF)

Анализ (FMEA и анализ полевых данных помогут снизить CCF)

Процедуры (контроль модификаций и мероприятий по техническому обслуживанию может снизить CCF)

Обучение (разработчики и специалисты по обслуживанию могут помочь уменьшить CCF, понимая основные причины)

Контроль (контроль окружающей среды может снизить восприимчивость к CCF, e.g., защита дублированных инструментов от атмосферных воздействий)

Испытания (Экологические испытания могут удалить особенности конструкции, подверженные CCF, например, испытание на электромагнитное излучение)

Предполагается, что модель Partial BETA состоит из количество частичных βs, каждое из которых обусловлено различными группами причин CCF. Затем β оценивается путем анализа и оценки каждого из факторов (например, разнообразия, разделения).

Модель BETAPLUS была разработана на основе метода частичной бета-версии, потому что:

Она объективна и обеспечивает максимальную прослеживаемость при оценке BETA.Другими словами, выбор результатов контрольного списка при оценке дизайна может быть записан и пересмотрен.

Любой пользователь модели может разработать контрольные списки, чтобы дополнительно учесть любые соответствующие причинные факторы отказа, которые могут быть восприняты.

Можно откалибровать модель по фактической частоте отказов, хотя и с очень ограниченными данными.

Существует достоверная взаимосвязь между контрольными списками и анализируемыми функциями системы.Таким образом, этот метод, вероятно, будет приемлемым для неспециалистов.

Метод аддитивной оценки позволяет отдельно взвешивать частичные составляющие β.

Метод β подтверждает прямую связь между (λ 2 ) и (λ 1 ), как показано на рисунке 5.3.

Он допускает предполагаемую «нелинейность» между значением β и оценкой в ​​диапазоне β.

Модель BETAPLUS включает следующие усовершенствования:

(a) Категории факторов

Принимая во внимание, что существующие методы полагаются на единственное субъективное суждение о количестве баллов в каждой категории, метод BETAPLUS дает ответы на конкретные вопросы, связанные с дизайном и эксплуатацией. в каждой категории.

(b) Подсчет баллов

Максимальный балл по каждому вопросу был взвешен путем калибровки результатов оценок с известными полевыми оперативными данными.

(c) Учет охвата диагностикой

Поскольку CCF не является одновременным, увеличение частоты автотестов или контрольных проверок снизит β, поскольку отказы могут произойти не в один и тот же момент.

(d) Разделение контрольных списков в соответствии с эффектом диагностики

Два столбца используются для оценок контрольных списков. Столбец (A) содержит баллы для тех характеристик защиты от CCF, которые воспринимаются как улучшенные за счет увеличения частоты диагностики.Столбец (B), однако, содержит баллы для тех функций, которые, как считается, не улучшаются за счет повышения частоты диагностики. В некоторых случаях оценка была разделена между двумя столбцами, где считается, что затронуты некоторые, но не все аспекты функции (см. Приложение 3).

(e) Создание модели

Модель позволяет изменять оценку в зависимости от частоты и охвата диагностического теста. Баллы в столбце (A) изменяются путем умножения на коэффициент (C), полученный из соображений, связанных с диагностикой.Этот балл (C) основан на частоте диагностики и охвате. (C) находится в диапазоне 1–3. Коэффициент S, используемый для получения BETA, затем оценивается из RAW SCORE:

S = RAWSCORE = (∑A × C) + ∑B

(f) Нелинейность

В настоящее время нет данных CCF для обоснования отступая от предположения, что по мере уменьшения (т. е. улучшения) БЕТА последовательных улучшений становится пропорционально труднее достичь. Таким образом, предполагается, что отношение коэффициента BETA к RAW SCORE [(ΣA × C) + ΣB] является экспоненциальным, и эта нелинейность отражается в уравнении, которое переводит исходную оценку в коэффициент BETA.

(g) Тип оборудования

Оценка была разработана отдельно для программируемого и непрограммируемого оборудования, чтобы отразить несколько разные критерии, применимые к каждому типу оборудования.

(h) Калибровка

Модель откалибрована по полевым данным.

Критерии оценки были разработаны для охвата каждой из категорий (т.е. разделение, разнообразие, сложность, оценка, процедуры, компетентность, экологический контроль и экологический тест).Вопросы были собраны так, чтобы отразить вероятные особенности, защищающие от CCF. Затем оценки были скорректированы с учетом относительного вклада в CCF в каждой области, как показано в данных автора. Значения оценок были взвешены для калибровки модели по данным.

При ответе на каждый вопрос (в Приложении 3) может быть выставлен балл меньше максимального 100%. Например, в первом вопросе, если суждение таково, что только 50% кабелей разделены, тогда 50% максимальных баллов (15 и 52) могут быть введены в каждый из столбцов (A) и (B) (7). .5 и 26).

Контрольные списки представлены в двух формах (перечислены в Приложении 3), поскольку вопросы, применимые к программируемому оборудованию, будут немного отличаться от вопросов, необходимых для непрограммируемых элементов (например, полевых устройств и контрольно-измерительных приборов).

Заголовки (расширенные баллами в Приложении 3):

(1)

Разделение / сегрегация

(2)

Разнообразие

9103
(3) Сложность / Дизайн / Применение / Зрелость / Опыт

(4)

Оценка / анализ и обратная связь данных

(5)

Процедуры / человеческий интерфейс

(6)

Компетентность / Обучение / Культура безопасности

(7)

Контроль окружающей среды

(8)

Экологические испытания

Интервал диагностики

(Оценка диагностического фактора C)

Чтобы установить оценку (C), необходимо учитывать влияние частоты диагностики.Охват диагностикой, выраженный в процентах, представляет собой оценку доли отказов, которые будут обнаружены контрольным или автоматическим тестом. Это можно оценить путем суждения или, более формально, путем применения FMEA на уровне компонентов, чтобы решить, будет ли каждый сбой обнаружен диагностикой.

Экспоненциальная модель используется для отражения возрастающих трудностей в дальнейшем сокращении БЕТА по мере увеличения оценки. Это отражено в следующем уравнении, которое разработано в Smith DJ, 2000, «Развитие использования данных о частоте отказов»:

ß = 0.3exp (−3,4S / 2624)

Однако базовая модель BETA применяется к простому резервированию «один из двух». Другими словами, с парой избыточных элементов «главным событием» является отказ обоих элементов. Однако по мере увеличения числа систем, за которые проголосовали (другими словами, N> 2), доля отказов по общей причине меняется, и значение β необходимо изменять. Причину этого можно понять, рассмотрев два крайних случая:

1 из 6

В этом случае для работы требуется только один из шести элементов, и можно допустить до пяти сбоев.Таким образом, в случае отказа по общей причине необходимо, чтобы еще пять отказов были спровоцированы общей причиной. Это менее вероятно, чем случай «один из двух», и β будет меньше (см. Таблицы ниже).

5 из 6.

В этом случае для работы требуются пять из шести элементов, и можно допустить только один отказ. Таким образом, в случае отказа по общей причине есть пять элементов, к которым могут относиться отказы по общей причине. Это более вероятно, чем случай «один из двух», и β будет больше (см. Таблицы ниже).

Эта область вызывает много споров. Эмпирических данных нет, и модели являются предметом предположений, основанных на мнениях различных авторов. Между различными предложениями нет большого соответствия. Таким образом, это очень противоречивая и неопределенная область. Первоначальные предложения были взяты из статьи SINTEF (в 2006 г.), которые были факторами MooN, которые изначально использовались в пакете Technis BETAPLUS версии 3.0. Документ SINTEF был пересмотрен (в 2010 г.) и снова в 2013 г. Рекомендации IEC 61508 (2010 г.) аналогичны, но не идентичны (Таблица 5.10). Значения SINTEF (2013) показаны в Таблице 5.11. Компромисс BETAPLUS (теперь версия 4.0) показан в Приложении 3.

Таблица 5.10. Коэффициент BETA (MooN) МЭК 61508.

M = 1 M = 2 M = 3 M = 4
N = 2 1
N = 3 0,5 1,5
N = 4 0,3 0.6 1,75
N = 5 0,2 0,4 0,8 2

Таблица 5.11. Фактор BETA (MooN) SINTEF (2013).

904
M = 1 M = 2 M = 3 M = 4
N = 2 1
2
N = 4 0.3 1,1 2,8
N = 5 0,2 0,8 1,6 3,6

Что мне нужно знать о технических схемах инверторных энергетических систем?

Однолинейная схема

Однолинейная схема (SLD) должна содержать информацию об монтажной проводке от точки подачи питания от сети Western Power до всех инверторов на объекте, включая места подключения нагрузки заказчика.

Он также должен содержать информацию обо всех защитных устройствах и переключателях, а также обо всех коммуникациях, необходимых для достижения желаемой работы системы (например, самопотребление, экспортный лимит и т. Д.).

SLD

должны использовать правильные электрические символы и должны содержать по крайней мере, но не ограничиваясь, следующую информацию, относящуюся к рассматриваемому объекту:

  • Точка питания от сети Western Power
  • Западный измеритель мощности
  • Показать главный выключатель на месте — это автоматический выключатель, рассчитанный на распределение поставок на месте (или будет во время установки)
  • любые частные / клиентские смарт-счетчики
  • распределительные щиты
  • грузов
  • все инверторы — новые и существующие
  • источник энергии (фотоэлектрическая батарея, батареи и т. Д.))
  • любое оборудование связи и управления / мониторинга *
  • защитные устройства
  • размер кабеля и длина между всеми перечисленными
  • Описание принципа работы предлагаемой системы

* Если для ограничения генерации или управления самопотреблением требуется оборудование для мониторинга, в SLD необходимо указать следующее:

  • контрольно-измерительное оборудование, такое как трансформаторы тока (ТТ) или счетчики энергии
  • фаза / с, которую контролирует оборудование
  • любые связи между устройством мониторинга и аккумуляторным накопителем (см. Разделы 2.1 Требования к энергосистеме инвертора аккумуляторных батарей (IES) для получения более подробной информации)

Электрические символы — AS / NZS 3000: 2018


Переключатель (общий символ)


Трансформатор (однолинейный)


Переключающий переключатель с механической блокировкой


Выключатель-разъединитель (разъединитель под нагрузкой)


Разъединитель (разъединитель)


Предохранитель


Генератор


Автоматический выключатель


Автоматический выключатель, с защитой от замыкания на землю, токовый (УЗО)


PV массив


Аккумулятор


Инвертор


3-х контактная розетка или шнур
удлинитель


Провод защитного заземления (PEN)


3-х контактная розетка или вилка


Нейтральный провод (N)


Провод защитного заземления (РЕ)


Заземление


Соединение рамы поколения


Земля или нейтраль


Счетчик полного тока (прямое соединение) (без ТТ)


Счетчик трансформаторов тока НН (LV CT)


Высоковольтный трансформаторный узел учета тока (ВН ТТ)


Соединительный блок


Комбинированный предохранитель


Перемычки НН или разъединитель нагрузки ВН / НН


Выпадающий предохранитель (DOF)


Генератор

Критические вопросы по электромонтажу в мастерской

У электроинструментов большой аппетит к электричеству, и, если вы не построили свой магазин с нуля, вы, вероятно, сработали автоматические выключатели, пытаясь их накормить.

Правильно подключенный магазин — единственный способ обеспечить себе достаточное количество продуктов питания. Итак, как вы определяете свои потребности в электромонтаже? Найдите время, чтобы ответить на следующие вопросы, и вы будете на правильном пути.

Примечание. Если вы не являетесь специалистом в области электромонтажных работ и не знакомы с местными правилами, поручите выполнение электромонтажных работ профессионалу. Используйте собранную здесь информацию для ведения беседы с электриком.

В: Какая мощность требуется для моих инструментов?

A: Инструменты питаются от усилителя.Паспортная табличка, расположенная на корпусе инструмента или корпусе двигателя, ниже , указывает, сколько инструмента потребуется (потянуть) при полной нагрузке. На диаграмме ниже показаны средние диапазоны для некоторых распространенных инструментов.

Запишите основные требования к электроинструментам и сохраните их для дальнейшего планирования. Обратите внимание на любые инструменты, которые могут быть подключены для работы от 240 вольт вместо 120 (это также указано на паспортной табличке).

В: Соответствует ли мое электрическое обслуживание требованиям?

A: Посмотрите на номер, напечатанный на главном выключателе на вашей сервисной панели, и определите общую силу тока, доступную для вашего дома от линии электропитания.Это говорит вам о максимальной силе тока, которую все электрические цепи могут потреблять одновременно. Большинство домов, построенных за последние 40 лет, оснащены сетью на 100 или 200 ампер, которая должна обеспечивать достаточную мощность для работы вашего дома и, во многих случаях, магазина. Кроме того, на сервисной панели могут быть неиспользуемые цепи для электромонтажа вашего магазина.

Даже если у вас есть место для дополнительных контуров, подумайте о том, чтобы установить отдельное устройство подачи для вспомогательной панели в вашем магазине. Преимущества включают в себя отсутствие необходимости делить электрические цепи с домом, изгибать только один большой кабель вместо нескольких меньших и возможность отключать электричество в магазине, когда он не используется.

Добавление дополнительной панели также позволяет сократить длину проводки в магазине, что снижает потери мощности и тепловыделение. Но подпанель не увеличит вашу общую емкость. Другими словами, если у вас есть служба на 200 ампер, и вы отделили 80 ампер на субпанель, у вас не будет 280 доступных ампер.

Если ваш дом был построен до 1950-х годов и электрически не обновлялся, у вас может быть только 60-амперный сервис. Если это так, если у вас все еще есть блок предохранителей или если вы часто отключаете выключатели, вам потребуется повышенное обслуживание и новая панель.

Также имейте в виду, что если ваш магазин расположен в гараже или недостроенном подвале, электрические коды, вероятно, потребуют защиты прерывателя цепи от замыкания на землю (GFCI) на всех розетках общего пользования. Эти устройства обнаруживают утечки тока и мгновенно отключают питание в случае короткого замыкания. Розетки GFCI защищают определенные области в цепи, в то время как выключатель GFCI обслуживает всю цепь.

Найдите руководство по потребностям вашего усилителя

Чтобы определить, какая мощность нужна вашему магазину, сначала найдите свой самый мощный инструмент для вытягивания усилителя (часто столовую пилу или пылесборник) и умножьте силу тока на 125 процентов.

Максимальный усилитель x 1.25 = (А) _______

Теперь просуммируйте силу тока самых мощных инструментов, работающих одновременно, таких как столовая пила и пылесборник, маршрутизатор, пылесос и т. Д.

Одновременные усилители инструмента = (B) _______

Суммируйте потребляемую мощность всех других нагрузок, которые работают постоянно, например, освещения, отопления / кондиционирования воздуха, воздушного фильтра, радио и т. Д. (Если токи неизвестны, например, с лампами, разделите ватты на напряжение, чтобы получить токи).

Усилители непрерывного действия = (C) _______

МИНИМАЛЬНЫЕ УСИЛЕНИЯ, НЕОБХОДИМЫЕ ДЛЯ МАГАЗИНА (A + B + C) = _______

Наивысший тираж (A):
(столовая пила на 18 ампер) × 1.25 = 22,5

Максимальный одновременный сигнал (B):
(18-амперная пила + 11-амперный пылесборник) = 29

Непрерывный (C):
(освещение, обогрев, телевидение, воздушный фильтр) = 24

Минимальный требуемый ток (A + B + C) = 75,5

Для надлежащего питания этого магазина требуется 80-амперная дополнительная мощность существующей сервисной панели или дополнительная 80-амперная вспомогательная панель.

В: Как определить размер моих схем и субпанели?

A: Начните с изучения списка необходимых вам инструментов в силе тока, который вы записали ранее.Большинство небольших портативных электроинструментов могут работать с током 15 А, но для больших фрезерных станков и циркулярных пил часто требуется больше. Кроме того, электрические нормы предписывают, что общая нагрузка цепи не может превышать 80 процентов ее емкости — это 16 ампер на 20-амперную цепь. Выделите две 20-амперные цепи для настольных розеток и розеток для портативных инструментов.

Для более крупных станков с напряжением 120 В (пилы, строгального станка, пылеуловителя и т. Д.) Требуется цепь на 20 или 30 А. Если вы используете одновременно две машины, например, пилу и пылесборник, то для каждой из них потребуется отдельный контур.

Здесь возможность переподключить к 240 вольт является бонусом. Помните, что мощность равна напряжению, умноженному на ток. Поскольку мощность, выдаваемая двигателем, не меняется, потребляемый им ток при 240 вольт вдвое меньше того, что потребовалось бы при 120 вольт. Преобразуйте свою 18-амперную настольную пилу и 14-амперный пылесборник, и они будут потреблять всего 16 ампер вместо 32. Это означает, что оба могут работать от одной цепи на 20 ампер и 240 вольт.

Всегда оставляйте освещение на отдельной цепи. Таким образом, если инструмент зацепится за выключатель, вы не останетесь в темноте.Вы можете обойтись схемой на 15 ампер для освещения, но использование схемы на 20 ампер добавляет дополнительную мощность.

Зная эту информацию, вы сможете определить общие потребности вашего магазина в обслуживании, следуя инструкциям на следующей странице. Как видите, вам не нужно складывать требования к усилителям для каждого инструмента. Но не забывайте и такие предметы, не связанные с инструментами, как фонари, обогреватели и зарядные устройства.

Если вы сложите все свои схемы, вы, скорее всего, получите общий рейтинг выше, чем рейтинг субпанели.Не волнуйся. Распространено использование одной 30-амперной и пяти 20-амперных цепей (всего 130 ампер) в субпанели на 80 ампер.

В: Какой тип и размер проводки мне понадобится?

A: Самая распространенная проводка для бытового использования — это кабель с неметаллической оболочкой, называемый типом NM-B, показанный на фотографиях. Если вы прокладываете проводку внутри стен, это ваш вероятный выбор. В кабелепроводах, устанавливаемых на поверхность, допустимы отдельные изолированные провода. Подземный питающий кабель (тип UF-B) выглядит аналогично и применяется во влажных помещениях или для подземных захоронений.

В дополнение к правильному типу вам нужен правильный размер или американский калибр проводов (AWG), который зависит от силы тока, которую должен выдерживать провод. Чем больше номер провода, тем меньше калибр. Вы всегда можете использовать провод большего сечения, чем указано, но никогда не используйте провода меньшего сечения. Он может стать достаточно горячим, чтобы расплавить изоляцию и вызвать короткое замыкание. Цветовая кодировка, используемая сегодня большинством производителей, упрощает идентификацию.

NM-B 14 калибра, мощность 15 А, 120 В или 240 В (слева).NM-B 12 калибра, емкость 20 А, 120 В или 240 В (средний). NM-B 10 калибра, мощность 30 А, 120 В или 240 В (справа).

В: Будут ли мои инструменты работать лучше при напряжении 240 вольт?

A: Вопреки распространенному заблуждению, работа двигателей инструмента на 240 вольт вместо 120 не делает двигатель более мощным. Конструкция двигателя ограничивает мощность, которую он может потреблять, что соответствует номинальному току, указанному на паспортной табличке.

Чтобы лучше понять это, представьте себе самый точный показатель мощности двигателя: мощность, которая равна амперам, умноженным на напряжение.Двигатель, рассчитанный на 14 ампер при 110 вольт, потребляет 1680 ватт (14×120 = 1680). Удвойте напряжение, и потребность в усилителе уменьшится вдвое, но выходная мощность останется прежней (7×240 = 1,680).

Однако вы можете заметить разницу в «мощности», если вы использовали свою 18-амперную пилу по 20-амперной схеме. Поскольку этот двигатель при максимальной нагрузке потребляет почти каждый ампер, который может сэкономить схема, он может замедляться. Подключите тот же двигатель к 240 вольт, и при полной нагрузке он потребляет только 9 ампер из 20 доступных.

Кроме того, по крайней мере, некоторые инструменты являются исключениями из правил.Мы обнаружили пилу подрядчика, у которой есть двигатель с дополнительным набором обмоток, которые вступают в действие только при подключении к сети на 240 вольт. Номинальная мощность в лошадиных силах на паспортной табличке, ниже , была нашей первой подсказкой.

В: Как выбрать правильный удлинитель?

A: Независимо от количества торговых точек в вашем магазине время от времени вам может понадобиться удлинитель. Помните о следующих правилах:

  1. Чем длиннее шнур, тем меньше ампер он может выдержать и тем больше будет падение напряжения на его длине.
  2. Чем легче калибр (большее число AWG), тем меньше ампер может выдержать шнур.

Например, шнур 12 калибра длиной 50 футов может выдерживать ток 15 ампер. Однако при длине волны 150 футов шнур 12 калибра не выдерживает более 10 ампер.

Урок: для использования в магазине покупайте только удлинители калибра 10 или 12, длина которых не превышает необходимой для работы.

Высоковольтные блоки питания переменного и постоянного тока

Технологии и топологии, разработанные и применяемые XP Glassman, позволяют нам предлагать компактные и надежные источники питания высокого напряжения, которые легко адаптируются к большинству приложений и при этом являются самыми простыми в отрасли в обслуживании.Почти во всех поставках XP Glassman в качестве первичной изолирующей среды используется воздух и используется автономный высокочастотный ШИМ-преобразователь.

Воздушная изоляция

Хотя воздушная изоляция не подходит для сверхминиатюрных модулей, работающих в суровых условиях окружающей среды, она предлагает легкую ремонтируемую конструкцию, которая сводит к минимуму потери паразитной емкости для большинства приложений. Мы разработали высоковольтные структуры, которые включают эквипотенциальную градацию и электростатическое экранирование чувствительных компонентов, что обеспечивает превосходную стабильность и точность.Все наши высоковольтные сборки основаны на хорошо известной концепции умножителя напряжения Кокрофта-Уолтона (или ее вариациях) для достижения высоких выходов постоянного тока при минимизации пиков вторичных напряжений трансформатора. Использование воздуха позволяет при необходимости принудительно охлаждать компоненты ВН. Принудительное воздушное охлаждение позволяет нам включить повышенное значение последовательного защитного сопротивления (где это возможно), что минимизирует пиковые токи разряда при возникновении дуги или перегрузки. (ПРИМЕЧАНИЕ: для некоторых моделей или приложений требуется внешнее последовательное защитное сопротивление.Это не только защищает высоковольтные компоненты и нагрузку заказчика, но также снижает энергию разряда, возникающую во время дуги, и сводит к минимуму импульс электромагнитных помех (EMI), который может повредить или нарушить работу чувствительных элементов управления и микроконтроллеров. Все эти методы повышают надежность всей высоковольтной сборки, а также элементов управления и питания всей конструкции источника питания.

При напряжении выше 150 кВ в наших конструкциях используется «стек» под открытым небом, исключающий высоковольтный соединитель и кабель, которые были бы массивными при таких напряжениях.Тороидальные клеммы и эквипотенциальные поверхности используются для минимизации электростатических полей. Для блоков 150 кВ и ниже мы монтируем высоковольтную сборку в запатентованном высоковольтном изолированном корпусе, стенки которого могут выдерживать полное напряжение. Этот кожух изготовлен из огнестойких материалов и спроектирован так, чтобы обеспечить равномерный градиент поверхности для минимизации коронного разряда. Он, в свою очередь, монтируется на заземленном шасси.

Одной из проблем увеличения частоты преобразования в высоковольтных источниках питания является отраженная паразитная емкость.Это обусловлено близостью поверхностей к земле. В большой высоковольтной структуре отраженная паразитная емкость может быть значительной. Если используется твердое или жидкое капсулирование, эта емкость намного выше, чем в воздухе, поскольку диэлектрическая проницаемость воздуха составляет 1,0, в то время как большинство герметиков имеют порядок 3-4,5. Емкость прямо пропорциональна диэлектрической проницаемости изоляции.

Наши высоковольтные трансформаторы обычно имеют пиковое напряжение 6 кВ или менее на вторичных обмотках и используют специальные универсальные методы намотки для создания самонесущей обмотки большого диаметра с подходящими градиентами напряжения.Кроме того, мы обычно используем U-образные сердечники с большими окнами, которые дают достаточно места для правильных градиентов.

ШИМ
В источниках питания

XP Glassman HV используется наша запатентованная технология преобразователя PWM для преобразования основной мощности. Обычно сетевое напряжение переменного тока выпрямляется и фильтруется в шины постоянного тока непосредственно от линии без трансформаторов. Во многих случаях повышающий преобразователь с коррекцией коэффициента мощности используется для обеспечения регулируемой шины 400 В постоянного тока. Это обеспечивает коэффициент мощности, очень близкий к единице, что практически устраняет линейные гармонические токи и снижает ВА, потребляемую от сети.Напряжение шины постоянного тока подается на преобразователь и передается на высоковольтный узел через высоковольтные трансформаторы, которые обеспечивают изоляцию линии от земли. Сигналы возбуждения преобразователя поступают на коммутационные устройства преобразователя с помощью изолирующих трансформаторов, которые также обеспечивают изоляцию между фазой и землей.

В большинстве наших расходных материалов используется преобразователь, работающий на частотах переключения от 30 кГц до 70 кГц и использующий в качестве переключающих элементов полевые транзисторы или IGBT. Эффективность преобразования превышает 90%.Топология преобразователя хорошо подходит для управления повышающими трансформаторами с большим передаточным числом, поскольку он использует энергию, запасенную в паразитной и межобмоточной емкости трансформатора, для переключения вторичного напряжения, а не для ее рассеивания в демпфере или коммутационных потерях.

Преобразователь имеет широтно-импульсную модуляцию и использует встроенные магнитные элементы для хранения энергии преобразования. Это топология включения с нулевым током, которая исключает потери при включении. Он работает на фиксированных частотах, что помогает минимизировать составляющую пульсаций частоты переключения и улучшает реакцию контура управления.Эта конструкция преобразователя по своей природе ограничена по току, так что даже без какого-либо внешнего управления или защиты преобразователь может непрерывно работать в режиме полного короткого замыкания и даже может выдерживать полное короткое замыкание на вторичных обмотках трансформатора в течение неограниченного времени.

Цепи управления

Во всех расходных материалах XP Glassman используется быстродействующий контур обратной связи по напряжению и току с автоматическим кроссовером. Кроме того, используются методы для обеспечения безопасного, хорошо контролируемого нарастания напряжения в любых условиях, включая восстановление после дуги, перегрузки или короткого замыкания.Это предотвращает опасные выбросы напряжения при любых условиях восстановления.

Во всех источниках питания XP Glassman используется резервный датчик пониженного напряжения, так что источник питания полностью защищен от любых возмущений входного линейного напряжения вплоть до нуля. Это обеспечивает безопасную работу во время перебоев в работе или больших пропаданий линии. Все напряжения смещения рельсов получаются из одного источника, так что рост и спад напряжений смещения во время включения и выключения остаются в том же соотношении, что и при нормальной работе.Это исключает любую возможность потери управления операционными усилителями с обратной связью и генерирования неправильных управляющих сигналов.

В расходные материалы XP Glassman входят различные возможности местного и дистанционного управления. Управление и мониторинг через интерфейсы RS232, USB и Ethernet также доступны во многих поставках. Дополнительный внешний последовательный интерфейс доступен для источников без встроенного цифрового управления. Все компьютерные интерфейсы обеспечивают полную гальваническую развязку между главным компьютером и источником питания до 1000 В переменного тока.Это очень важно в условиях повышенного шума и переходных процессов, в которых работают высоковольтные источники питания. Этот метод полностью изолирует и защищает чувствительные компьютерные схемы как со стороны пользователя, так и самого источника питания.

Дуговая защита

В большинстве конструкций XP Glassman используется быстрое обнаружение дуги и защита. Каждый раз, когда высоковольтный источник питания разряжается, накопленная энергия внутри высоковольтной сборки передается на последовательные ограничивающие резисторы в источнике.Эти резисторы необходимы для ограничения тока разряда до уровня, который защищает высоковольтные диоды и конденсаторы и снижает генерируемые электромагнитные помехи. Поскольку большинство источников питания XP Glassman имеют быстрое время восстановления напряжения, мощность, рассеиваемая в последовательно ограничивающих резисторах во время повторяющейся дуги, пропорциональна произведению энергии и частоты повторения дуги. Это может во много раз превышать величину накопленной энергии.

Из-за соображений размера и компоновки установка ограничивающих резисторов, достаточных для обработки всего этого рассеяния, не всегда практична.Несмотря на то, что резисторы относятся к высокоэнергетическому типу и могут выдерживать короткие вспышки электрической дуги, они могут быть не в состоянии выдерживать постоянное искрение. Защита обеспечивается схемой подсчета дуги, которая запрещает генерацию высокого напряжения, когда количество дуг превышает безопасный предел в течение определенного периода времени. Этот метод позволяет обеспечить разумное рассеивание средней мощности в ограничивающих резисторах. Наши схемы определения дуги реагируют в течение микросекунд с порогом, который обеспечивает защиту источника питания без чрезмерных «неприятных» срабатываний.После отключения источника питания автоматический сброс обычно выполняется в течение 5 секунд. Как вариант, блок питания может быть отключен навсегда. Сброс питания может быть выполнен с помощью внешнего сигнала. Функция гашения дуги блокирует преобразователь на фиксированный период времени после каждой дуги. Это позволяет дуге погаснуть.

Хотя основная цель схемы определения дуги — защита источника питания, в некоторых приложениях она также может защитить нагрузку, которую управляет источником питания.Например, для ионных источников, где обычно используется внешний последовательный резистор, функция подсчета дуги не требуется. Однако быстрое гашение дуги с помощью функции «гашения дуги» защищает ионный источник от повреждений. Продолжительность блокировки, чувствительность и частоту функции определения дуги можно изменить для любого приложения, если параметры остаются в пределах диапазона, необходимого для поддержания защиты источника питания. Если внешний резистор используется последовательно с нагрузкой, следует проконсультироваться с заводом-изготовителем, чтобы можно было правильно отрегулировать порог чувствительности датчика дуги.

Соединитель ВН

Стандартная система соединителей XP Glassman HV, используемая выше 6 кВ, включает трубку с глубоким отверстием и подпружиненным контактом. Глубина разъема зависит от уровня напряжения. Эта глубина рассчитана таким образом, чтобы, если источник питания работает без вставки ответного кабеля, персонал не может контактировать с опасным напряжением. Экран ответного кабеля заканчивается на шасси для безопасности.

Станьте мастером-электриком — Управление по электробезопасности (ESA)

Получите лицензию

Из-за серьезных рисков, связанных с вирусом COVID-19, офисы ЕКА закрыты для посетителей.

С нашими представителями службы поддержки клиентов по-прежнему можно связаться по телефону и электронной почте.

Отдел лицензирования

ESA продолжает обработку новых заявок. Кандидатам, желающим получить новую лицензию, настоятельно рекомендуется связаться с отделом лицензирования по электронной почте [email protected] или по телефону 1-877-372-7233. Обработка вашей заявки, отправленной по факсу или почте, может быть значительно отложена.

Требования к лицензии главного электрика

Зачем мне становиться мастером-электриком?

Если вы планируете вести подрядную деятельность в сфере электротехники или работать в качестве назначенного главного электрика или хотите присоединиться к группе квалифицированных и опытных специалистов, пожалуйста, ознакомьтесь с требованиями для получения лицензии главного электрика ниже.

Как стать мастером-электриком — минимальные требования:

Каждый претендент на получение лицензии главного электрика должен соответствовать требованиям Закона об электроэнергетике 1998 года (Закон) и Положения 570/05 Онтарио (Положения о лицензировании).

Положение о лицензировании требует от мастеров-электриков соответствия минимальным установленным требованиям , например:

  1. Быть не моложе 18 лет;
  2. Иметь как минимум трехлетний опыт работы в сфере электротехники:
    • Электромонтер-подмастер, выполняющий работу на основании действующего аттестата квалификации; или
    • Практикующий электрик — строительство и обслуживание; электрик — электрик бытовой, сельский или производственный при наличии действующего аттестата квалификации;
    • Осуществление работы техником по линиям электропередач при наличии действующего квалификационного аттестата;
    • Работает на подрядчика по электрике в качестве лицензированного П.Англ. зарегистрирован в профессиональных инженерах Онтарио; или
    • Работа на подрядчика по электротехнике в качестве сертифицированного инженера-технолога или C.Tech, зарегистрированного в Ассоциации сертифицированных инженеров и технологов Онтарио;
  3. Сдать экзамен на степень магистра электрика.

Как стать мастером-электриком — пошаговый процесс подачи заявки:

  1. Сдать экзамен на степень магистра электрика. Узнайте, как зарегистрироваться на экзамен здесь.
    ПРИМЕЧАНИЕ: Экзамен «Мастер-электрик» предлагается только Управлением по электробезопасности (ESA). ESA и другие организации предлагают обучение, чтобы помочь вам подготовиться к экзамену. ESA предлагает варианты обучения в классе, онлайн и самообучение. Узнайте больше о предложениях ESA по обучению электриков до магистратуры.
  2. Подайте заявку на получение лицензии мастера-электрика. Посетите страницу форм лицензирования подрядчиков для получения формы. Пакет формы включает контрольный список, чтобы убедиться, что вы включили все необходимое.Вы также можете написать по электронной почте [email protected] или позвонить по телефону 1-877-ESA-SAFE для получения помощи.
  3. Если условия НЕ соблюдены, Директор по лицензированию может отказать в выдаче лицензии и может выпустить Уведомление о предложении с объяснением причин.
  4. Если вы соответствуете требованиям, вы получите лицензию Master Electrician в течение четырех недель после подачи заполненного заявления.
  5. После выдачи лицензии, чтобы сохранить ее в силе, вы должны вести себя честно, добросовестно и в соответствии с законом.Невыполнение этого требования может привести к принятию соответствующих мер или предложению отозвать / приостановить действие лицензии.
  6. Перейдите по этой ссылке, чтобы узнать, как продлить лицензию Master Electrician

Обязанности назначенного главного электрика

Как назначенный главный электрик, у вас есть ряд обязанностей, и вы обязаны соблюдать их в течение всего срока действия лицензии:

  • Убедитесь, что подрядчик по электротехнике соблюдает Кодекс электробезопасности при выполнении электромонтажных работ.
  • Самостоятельное планирование и непосредственный надзор за выполненными работами от имени подрядчика по электрике;
  • Наблюдать за работой, проводимой подрядчиком по электротехнике, чтобы убедиться, что он соответствует всем применимым законам и постановлениям, таким как:
    • Законодательство о защите прав потребителей
    • Законы, касающиеся здоровья и безопасности
    • Законы о нормах занятости
    • Деловые законы и деловая практика
    • Понимать и соблюдать Стандарты поведения владельцев лицензии

Запреты: как мастер-электрик вы не можете:

  1. Предлагать или выполнять электрические услуги для населения, если у вас нет лицензии электрического подрядчика в дополнение к вашей лицензии главного электрика.
  2. Выполнять электромонтажные работы (даже если вы работаете у Лицензированного подрядчика по электротехнике), если у вас нет действующего свидетельства о квалификации, дающего вам право на это.
  3. Выступать в качестве назначенного главного электрика для более чем одного лицензированного подрядчика по электрике одновременно.
  4. Примите назначение Лицензированного подрядчика по электротехнике, если вы не являетесь активным сотрудником этого подрядчика.

Бытовые электросети | NFCC CPO

Информация

Бытовое напряжение в Великобритании исторически называлось 240 В переменного тока (AC), но теперь оно подается при 230 В, 50 Гц.Это однофазная заземленная система.

Напряжение более 50 В переменного тока с номинальным током более 5 мА считается опасным.

Рис. 1: Обычный бытовой водозаборник — схема любезно предоставлена ​​Лондонской пожарной службой

Электроснабжение жилых домов имеет два метода изоляции внутренних силовых цепей.

  1. Главный предохранитель (выключатель) — перед счетчиком
  2. Блок предохранителей и выключатели — после счетчика

Главный предохранитель принадлежит поставщику электроэнергии и опломбирован для предотвращения взлома.В чрезвычайных обстоятельствах удаление этого взрывателя может быть выполнено пожарными и спасательными службами. Из-за того, что в старых предохранителях может присутствовать небольшое количество асбеста, следует использовать соответствующие средства индивидуальной защиты (СИЗ) и средства защиты органов дыхания (СИЗ).

Блоки предохранителей (известные как блоки потребителей) будут иметь ряд различных предохранителей и выключателей в зависимости от возраста собственности / проводки. Срабатывание главного выключателя отключит установку от системы поставщика электроэнергии, но следует помнить, что входящее питание от распределительной системы останется под напряжением.

Розетки для источников питания обычно подключаются к кольцевым цепям, где проводники замкнуты, а контуры защитных проводников цепи подключены к нейтрали и заземляющим блокам соответственно. Обычно одна кольцевая или магистральная цепь обслуживает один этаж, а каждый последующий этаж обслуживается дополнительной цепью.

Духовки, погружные нагреватели и душевые контуры управляются отдельно и имеют предохранители в блоке потребителей.

Цепи освещения также работают по замкнутой системе, но они более сложные, потому что переключатель должен быть установлен в точке, удаленной от осветительной арматуры.Из-за сложности внутренней проводки никакие правила подключения не могут быть указаны в качестве стандарта.

Несмотря на то, что это не разрешено действующими электротехническими правилами, электрическая установка в домашних условиях могла быть подвергнута энтузиазму самодельным или преднамеренным изменениям, которые не соответствуют общепризнанным правилам электромонтажа.

Изоляция цепей может быть достигнута путем изоляции всех цепей на блоке потребителя. В зависимости от размера собственности может быть более одной потребительской единицы.

В некоторых инцидентах, когда повреждение конструкции особенно серьезное, коммунальным службам потребуется отключить источник питания через предохранитель или дальше по линии питания.

Источники питания могут быть быстро отключены от блока потребителя после его размещения. Для выполнения этой функции вам не нужно быть квалифицированным электриком; однако следует соблюдать осторожность. В большинстве жилых помещений потребительский блок будет находиться в обычном месте, например, под лестницей или в гараже.

Опасности (дополнительную информацию см. В Национальном руководстве по эксплуатации: коммунальные предприятия и топливо)

  • Высокий риск поражения электрическим током
  • Запутывание кабеля в собственности

Ссылки и дополнительная литература

www.emfs.info/sources/substations/

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *