Радиоэлектронные схемы своими руками: Простые радиосхемы своими руками. Радиолюбительские схемы и самодельные конструкции

Содержание

Простые радиосхемы своими руками. Радиолюбительские схемы и самодельные конструкции

Одно из распространенных хобби любителей и профессионалов в области электроники – это конструирование и изготовление различных самоделок для дома. Электронные самоделки не требуют больших материальных и финансовых затрат и выполняться могут в домашних условиях, поскольку работы с электроникой являются, по большей части, «чистыми». Исключение составляет только изготовление разнообразных корпусных деталей и иных механических узлов.

Полезные электронные самоделки могут использоваться во всех областях быта, начиная от кухни и заканчивая гаражом, где многие занимаются усовершенствованием и ремонтом электронных устройств автомобиля.

Самоделки на кухне

Кухонные самоделки из области электроники могут составлять дополнение к существующим аксессуарам и принадлежностям. Большой популярностью среди жителей квартир пользуются промышленный и самодельные электрошашлычницы.

Еще один распространенный пример кухонных самоделок, сделанных своими руками домашнего электрика, – таймеры и автоматика включения освещения над рабочими поверхностями, электроподжиг газовых горелок.

Важно! Изменение конструкции некоторой бытовой техники, в особенности газовых приборов, может вызвать «непонимание и неприятие» контролирующих организаций. Кроме того, это требует большой аккуратности и внимательности.

Электроника в автомобиле

Самодельные устройства для автомобиля наиболее широкое распространение получили среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:

  • Звуковые сигнализаторы поворотов и включения ручного тормоза;
  • Сигнализатор режимов работы аккумуляторной батареи и генератора.

Более опытные радиолюбители занимаются оснащением своего автомобиля датчиками парковки, электронными приводами стеклоподъемников, автоматическими датчиками освещенности для управления ближним светом фар.

Самоделки для начинающих

Большинство начинающих радиолюбителей занимаются изготовлением конструкций, которые не требуют высокой квалификации. Простые отработанные конструкции могут служить длительное время и не только ради пользы, но и в качестве напоминания о техническом «взрослении» от начинающего радиолюбителя до профессионала.

Для малоопытных любителей множество производителей выпускают готовые наборы для конструирования, которые содержат в составе печатную плату и набор элементов. Такие наборы позволяют отработать такие навыки:

  • Чтение принципиальных и монтажных схем;
  • Правильная пайка;
  • Настройка и регулировка по готовой методике.

Среди наборов очень распространены электронные часы различных вариантов исполнения и степени сложности.

В качестве области применения знаний и опыта радиолюбители могут конструировать электронные игрушки, используя схемы попроще или переделывая промышленные конструкции под свои пожелания и возможности.

Интересные идеи для поделок можно видеть на примерах изготовления радиоэлектронных поделок из пришедших в негодность деталей вычислительной техники.

Домашняя мастерская

Для самостоятельного конструирования радиоэлектронных устройств необходим некоторый минимум инструментов, приспособлений и измерительных приборов :

  • Паяльник;
  • Бокорезы;
  • Пинцет;
  • Набор отверток;
  • Пассатижи;
  • Многофункциональный тестер (авометр).

На заметку. Планируя заниматься электроникой своими руками, не следует браться сразу за сложные конструкции и приобретать дорогостоящий инструмент.

Большинство радиолюбителей начинали свой путь с использования простейшего паяльника 220В 25-40Вт, а из измерительных приборов в домашней лаборатории использовался самый массовый советский тестер Ц-20. Всего этого достаточно для занятий с электричеством, приобретения нужных навыков и опыта.

Начинающему радиолюбителю нет смысла покупать дорогостоящую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Тем более что возможность применения станции появится еще не скоро, а только по прошествии иногда довольно длительного времени.

Также нет необходимости в профессиональной измерительной аппаратуре. Единственный серьезный прибор, который может понадобиться даже начинающему любителю, – это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф является одним из самых востребованных измерительных инструментов.

В качестве авометра с успехом можно использовать недорогие цифровые приборы китайского производства. Имея богатую функциональность, они обладают высокой точностью измерений, простотой использования и, что важно, имеют встроенный модуль для измерения параметров транзисторов.

Говоря о домашней мастерской у самоделкина, нельзя не упомянуть о материалах, применяемых для пайки. Это припой и флюс. Самым распространенным припоем является сплав ПОС-60, который имеет невысокую температуру плавления и обеспечивает высокую надежность пайки. Большинство припоев, применяемых для пайки всевозможных устройств, является аналогами упомянутого сплава и может быть им с успехом заменено.

В качестве флюса для пайки используется обычная канифоль, но для удобства пользования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не требуют удаления с монтажа после работы, поскольку являются химически нейтральными при большинстве условий эксплуатации, а тонкая пленка канифоли, образовавшаяся после испарения растворителя (спирта), проявляет неплохие защитные свойства.

Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается паяльной кислоты (раствор хлористого цинка), поскольку даже в обычных условиях такой флюс разрушающе воздействует на тонкие медные печатные проводники.

Для облуживания сильно окисленных выводов лучше использовать активный бескислотный флюс ЛТИ-120, который не требует смывания.

Очень удобно работать, используя припой, в состав которого включен флюс. Припой выполнен в виде тонкой трубочки, внутри которой находится канифоль.

Для монтажа элементов хорошо подходят макетные платы из двухстороннего фольгированного стеклотекстолита, которые производятся в широком ассортименте.

Меры безопасности

Занятия электричеством связаны с риском для здоровья и даже жизни, особенно, если электроника своими руками конструируется с сетевым питанием. Самодельные электрические устройства не должны использовать бестрансформаторное питание от бытовой сети переменного тока. В крайнем случае, настройку подобных устройств следует производить, подключая их к сети через разделительный трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но в то же время будет обеспечена надежная гальваническая развязка.

Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.

Мастерская радиолюбителя

Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:

  • Бокорезы;
  • Пинцет;
  • Припой;
  • Флюс;
  • Монтажные платы;
  • Тестер или мультиметр;
  • Материалы и инструменты для изготовления корпуса прибора.

Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.

С чего начинать

Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.

Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.

Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.

Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.

Что можно сделать

Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:

  • Квартирный звонок;
  • Переключатель елочных гирлянд;
  • Подсветка для моддинга системного блока компьютера.

Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.

Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.

Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.

На чем выполнять конструкцию

Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.

Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.

При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.

Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.

Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.

Оформление готовой конструкции

Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.

Перед тем, как начинать изготовление понравившейся конструкции, следует полностью продумать все этапы выполнения работы: от наличия инструментов и всех радиоэлементов до варианта выполнения корпуса. Совсем неинтересно будет, если в процессе работы выясниться, что не хватает одного из резисторов, а вариантов замены нет. Работу лучше выполнять под руководством опытного радиолюбителя, а, в крайнем случае, периодически контролировать процесс изготовления на каждом из этапов.

Видео

В наше время существует огромный выбор инструментов и приборов для занятий радиоэлектроникой: паяльные станции, стабилизированные лабораторные источники питания, гравировальные наборы (для сверления плат и обработки конструкционных материалов), инструмент для зачистки и обработки проводов и кабелей и так далее. И все это оборудование стоит немалых денег. Возникает резонный вопрос — сможет ли начинающий радиолюбитель преобрести весь этот арсенал оборудования? Ответ очевиден, тем более для некоторых людей, увлекающихся электроникой по случаю (для единичного изготовления каких-то полезных приспособлений для бытовых целей), покупка такого количества инструмента не требуется. Выход из создавшегося положения довольно прост — изготовить необходимый инструмент собственными руками. Данные самоделки послужат временной (а для кого-то и постоянной) альтернативой заводскому оборудованию.
Итак, приступим. Основой нашего устройства служит сетевой понижающий трансформатор от любого отслужившего свой срок радиоэлектронного устройства (телевизор, магнитофон, стационарный радиоприемник и т.д.). Так же могут пригодится сетевой шнур, колодка предохранителей и выключатель питания.

Далее необходимо снабдить наш блок питания регулируемым стабилизатором напряжения. Так как конструкция расчитана на повторение начинающими радиолюбителями, самым рациональным, по моему мнению, будет применение интегрального стабилизатора на микросхеме типа LM317T (К142ЕН12А). На основе данной микросхемы мы соберем регулируемый стабилизатор напряжения от 1,2 до 30 вольт с полным током нагрузки до 1,5 ампер и защитой от перегрузки по току и превышению температуры. Принципиальная схема стабилизатора представлена на рисунке.

Собрать схему стабилизатора можно на куске нефольгированного стеклогетинакса (или электрокартона) навесным монтажем или на макетной плате — схема настолько проста, что даже не требует печатной платы.

На выход стабилизатора можно подключить (параллельно выводам) вольтметр, для контроля и регулировки выходного напряжения,и (последовательно с плюсовым выводом) миллиамперметр, для контроля токопотребления подключаемой к стабилизатору радиолюбительской самоделки.

Еще одна необходимая в арсенале начинающего радиолюбителя вещь — микроэлектродрель. Как известно, в арсенале любого (начинающего или умудренного опытом) самодельщика существует »склад» вышедшей из обихода или неисправной аппаратуры. Хорошо, если на таком »складе» найдется детская машинка с электроприводом, микромотор от которой и послужит электродвигателем для нашей микродрели. Необходимо только замерить диаметр вала двигателя и в ближайшем радиомагазине приобрести патрон с набором цанговых зажимов (под сверла разного диаметра) для этого микродвигателя. Полученную микродрель можно подключать к нашему блоку питания. Посредством регулирования напряжения можно регулировать количество оборотов дрели.

Следующая необходимая вещь — низковольтный паяльник с гальванической развязкой от сети (для пайки полевых транзисторов и микросхем, которые боятся статического разряда). В продаже имеются низковольтные паяльники на 6, 12, 24, 48 вольт, а если трансформатор, который мы выбрали для нашего изделия от старого лампового телевизора, то можно считать что нам крупно повезло — мы имеем уже готовую обмотку для питания низковольтного электропаяльника (следует задействовать накальные обмотки (6 вольт) трансформатора для питания паяльника). Применение трансформатора от лампового телевизора дает еще один плюс нашей схеме — мы можем оснастить наше устройство еще и инструментом для зачистки концов провода.

Основа этого приспособления — две контактных колодки, между которыми закреплена нихромовая проволока и кнопка, с нормально разомкнутыми контактами. Техническое оформление этого устройства видно из рисунка. Подключается оно все к той же накальной обмотке трансформатора. При нажатии на кнопку нихром разогревается (все наверное помнят что такое выжигатель) и прожигает изоляцию провода в нужном месте.

Корпус для данного блока питания можно найти готовый или собрать самому. Если сделать его из металла и предусмотреть вентиляционные отверстия только снизу и по бокам, то сверху можно расположить стойки для паяльника и инструмента зачистки провода. Коммутацию всего этого хозяйства можно осуществить применив пакетный переключатель, систему тумблеров или разъемов — здесь для фантазии пределов нет.

Впрочем и модернизировать данный блок можно под свои нужды — дополнить, к примеру, зарядным устройством для аккумуляторов или электроискровым гравером и т.д. Данное устройство служило мне долгие годы и служит до сих пор (правда теперь на даче) для изготовления и проверки различных радиоэлектронных и электротехнических самоделок. Автор — Электродыч.

Итак. Жизнь сложилась так, что у меня есть домик в деревне с газовым отоплением. Жить там постоянно не получается. Домик используется как дача. Пару зим тупо оставлял включенным котел с минимальной температурой теплоносителя.
Но тут два минуса.
1. Счета за газ просто астрономические.
2. Если возникает необходимость приехать в дом среди зимы, температура в доме в районе 12 град.
Поэтому надо было что-то выдумывать.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если заморочиться, можно положить рядом с датчиком подключенный мобильник, и раздавать сигнал с телефона.

Подключение датчика движения 4 контакта своими руками схема

Схема подключение датчика движения своими руками

Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.

С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.

В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.

Блок питания из энергосберегающей лампочки своими руками

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог — холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода — они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно — чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей .
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее…
В общем все что может быть полезно для дома

Антенны и Радиоприемники

Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов


Схемы различных программаторов

материалы в категории

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники


Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Лучшие радиолюбительские схемы

На этом сайте Вы найдете лучшие радиолюбительские схемы всех времен и народов 🙂

Радиолюбительство — многостороннее техническое хобби, связанное с конструированием и внедрением радиотехнических и электронных приборов. Под радиолюбительством подразумевается конструирование, постройка, модификация разной радиоэлектронной аппаратуры. Еще данным термином нередко именуют любительскую радиосвязь и радиоспорт.

Лучшее хобби

Ранее электроника была одним из величайших увлечений. Были буквально сотни тысяч, а может быть даже миллионы людей, которые выбрали радиоэлектронику в качестве хобби. Существовали десятки журналов, множество магазинов радиодеталей, которые поддерживали идеи этих людей. Ряды радиолюбителей за последние годы значительно поредели… Вероятно, это произошло после того, как персональные компьютеры начали получать более широкое применение и стали неотъемлимым атрибутом для дома. Но, находятся и сейчас энтузиасты, готовые придумывать, проектировать или даже просто собирать электронные устройства по готовым схемам. А персональные компьютеры в некотором роде даже расширили возможности по проектированию и моделированию электронных устройств.

Радиолюбительство не только обучает, но в большой мере воспитывает. Оно, к примеру, делает человека более сообразительным, находчивым, изобретательным. Более собранным и аккуратным — пару раз пострадаешь из-за собственной неосторожности, и, глядишь, появляется привычка внимательно проверять сделанное, работать быстро, но не спеша. Потеряешь час на поиски какой-нибудь детали, и совсем уже иначе звучат слова: «порядок на рабочем столе» или «организация рабочего места».

Собирая электронные схемы, отлаживая их, ища какую-нибудь неисправность, Вы учитесь логически мыслить, рассуждать, обучаетесь использовать имеющиеся знания, открывать новые. Учитесь учиться. Помнится, как известный советский радиофизик академик А. Л. Минц, принимая специалистов на работу, всегда отдавал предпочтение радиолюбителям. И не только за конкретные знания, но за умение мыслить, работать творчески, изобретать.

В целом радиолюбительство — яркий пример того, как можно с пользой организовать свой досуг.

Лучшие радиолюбительские схемы собраны для Вас

На этом сайте собрано множество схем разных устройств. Они разделены по разделам: Автомобильная электроника, Альтернативная энергетика, Свободная энергия, Аудио схемы, Для ПК, Высокое напряжение (катушки Тесла и т.д.), Измерительные приборы, Источники питания, Преобразователи напряжения, Микроконтроллеры, Радиомикрофоны и жучки, Робототехника, Электроника в быту и многое другое!

Надеемся, что этот сайт Best Schemes — Лучшие радиолюбительские схемы, с огромным количеством электронных схем самых разных устройств, вдохновит Вас на создание чего-то нового, открытие для себя необычных электронных идей. Удачи!

Самоделки для радиолюбителей

Делаем своими руками power bank размером с книгу.


Самодельный усилитель звука для компьютера, который я сделал из старого телевизора.


Как переделать блок питания от принтера под любые нужды.


Не выбрасывайте не рабочий аккумулятор от компьютерного бесперебойника ИБП (UPS), из него можно сделать нужную самоделку и не одну!


Как зарядить аккумулятор без телефона и что делать если телефон не заряжается от зарядного устройства. Что делать если аккумулятор разряжен ниже порога, при котором начинается зарядка штатным методом.


Применение датчика движения HC-SR501 за 60р.Применение датчика движения HC-SR501 в автомате освещения и охранной сигнализации.


Как сделать своими руками простейшие реле времени и фотореле на NE555. Для бюджетного автомата освещения на даче, доме и решения многих других задач.


Пришла идея собрать еще одно зарядное устройство. У меня уже есть несколько зарядных для авто аккумулятора. Благо задумка проста, детали все давно есть. Все собирается на отечественных деталях. Ничего редкого, все доступное.


Как сделать подвесной лабораторный блок питания своими руками.


Простая пошаговая инструкция по переделке фонарика со свинцовым аккумулятором на li-oon батарею.


Модернизация антенны для цифрового ТВ из телевизионного кабеля. Простейшая антенна для цифрового ТВ с возможностью более точной настройки. Делаем за 10 минут.


Расскажу как сделать переходник «жулик». Такой переходник с цоколя лампочки на обычную розетку, может вам пригодиться в местах общего пользования: подъезд, подвал и т.п. Обычно, в таких местах нет стационарных розеток, а из источников электричества есть только лампочка.


Самоделки для радиолюбителя — отличная тема для творчества.
В этом разделе можно найти инструкции по изготовлению своими руками различных радиотехнических устройств: усилителей, колонок, антенн, охранных и защитных устройств, шпионские штучки, паяльники и припои и многое многое другое.
На данный момент в базе боле 400 инструкций и схем, посмотримте их все, и Вы обязательно найдёте, для себя что-то очень интересное.

Радиолюбительские схемы, разработки, технологии — RadioRadar

Радиолюбителю
ГлавнаяРадиолюбителю

«Радиолюбителю» — подборка радиолюбительских схем, разработок различных тематик: аудиотехника, видеотехника, светотехника, измерительная техника, устройства связь, антенны, охранные устройства, телефония, автоэлектроника, радиолюбительские технологии и др. Все схемы имеют подробные описания, советы по сборке и настройке.


Новинки
  • Не на всех автомобилях на приборную панель выводится информация о температуре двигателя, напряжении аккумуляторной батареи и другая информация, которая была бы интересна водителю. Кроме того, стрелочные индикаторы имеют погрешность, они только информируют, но не более. А автору статьи хотелось иметь точную информацию, например, о скорости, когда ед…

  • Для комфортного прослушивания звукового контента необходимо обеспечить в месте прослушивания достаточный уровень звукового давления. Так, при домашнем просмотре телевидения среднеквадратический уровень звукового давления составляет 60 дБ [1]. Чрезмерное превышение этого уровня может быть вредным для здоровья. Ограничим уровень среднего звукового да…

  • С помощью простого релейного переключателя можно организовать дистанционное управление какой-либо нагрузкой или коммутировать напряжение для каких-либо устройств, при этом реализовать функцию памяти, которая не требует постоянного питающего напряжения. Схема такого переключателя показана на рисунке. Он состоит из двух кнопок SB1 «Вкл.» и…

  • На страницах журнала «Радио” и в другой радиолюбительской литературе описано немало различных конструкций регуляторов мощности, от простых на одном тиристоре до довольно сложных, с микроконтроллерным управлением. Однако в подавляющем большинстве конструкций этих регуляторов используется фазовый метод управления выходными тиристорами, поэ…

  • Осциллограф является одним из основных приборов в лаборатории радиолюбителя. И если для человека зрение является основным источником получения информации, то для электронщика осциллограф — основной источник получения практической информации о процессах в электронных устройствах.Многие радиолюбители используют в своей работе произведённые ещё в…


Категории:


Простые схемы для начинающих. Радиосхемы схемы электрические принципиальные Электронные схемы радиоустройств для радиолюбителей

Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.

Мастерская радиолюбителя

Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:

  • Бокорезы;
  • Пинцет;
  • Припой;
  • Флюс;
  • Монтажные платы;
  • Тестер или мультиметр;
  • Материалы и инструменты для изготовления корпуса прибора.

Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.

С чего начинать

Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.

Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.

Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.

Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.

Что можно сделать

Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:

  • Квартирный звонок;
  • Переключатель елочных гирлянд;
  • Подсветка для моддинга системного блока компьютера.

Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.

Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.

Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.

На чем выполнять конструкцию

Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.

Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.

При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.

Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.

Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.

Оформление готовой конструкции

Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.

Перед тем, как начинать изготовление понравившейся конструкции, следует полностью продумать все этапы выполнения работы: от наличия инструментов и всех радиоэлементов до варианта выполнения корпуса. Совсем неинтересно будет, если в процессе работы выясниться, что не хватает одного из резисторов, а вариантов замены нет. Работу лучше выполнять под руководством опытного радиолюбителя, а, в крайнем случае, периодически контролировать процесс изготовления на каждом из этапов.

Видео

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т. д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1. 4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка
VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот
HL1, HL2Светодиод

АЛ307Б

2В блокнот
C1100мкФ 10В1В блокнот
C2Конденсатор0. 1 мкФ1В блокнот
R1, R2Резистор

100 кОм

2В блокнот
R3Резистор

620 Ом

1В блокнот
BF1Акустический излучательТМ21В блокнот
SA1Геркон1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1В блокнот
Биполярный транзистор

КТ315Б

1В блокнот
C1Электролитический конденсатор100мкФ 12В1В блокнот
C2Конденсатор0. 22 мкФ1В блокнот
Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот
GB1Элемент питания9 Вольт1В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1В блокнот
Биполярный транзистор

КТ361Б

1В блокнот
C1Электролитический конденсатор15мкФ 6В1В блокнот
R1Переменный резистор470 кОм1В блокнот
R2Резистор

24 кОм

1В блокнот
T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот
Универсальный имитатор звуков
DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот
Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот
C1Конденсатор1 мкФ1В блокнот
C2Конденсатор1000 пФ1В блокнот
R1-R3Резистор

330 кОм

1В блокнот
R4Резистор

10 кОм

1В блокнот
Динамическая головкаГД 0. 1…0.5Ватт 8 Ом1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Фонарь-мигалка
VT1, VT2Биполярный транзистор

Итак. Жизнь сложилась так, что у меня есть домик в деревне с газовым отоплением. Жить там постоянно не получается. Домик используется как дача. Пару зим тупо оставлял включенным котел с минимальной температурой теплоносителя.
Но тут два минуса.
1. Счета за газ просто астрономические.
2. Если возникает необходимость приехать в дом среди зимы, температура в доме в районе 12 град.
Поэтому надо было что-то выдумывать.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если заморочиться, можно положить рядом с датчиком подключенный мобильник, и раздавать сигнал с телефона.

Подключение датчика движения 4 контакта своими руками схема

Схема подключение датчика движения своими руками

Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.

С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.

В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.

Блок питания из энергосберегающей лампочки своими руками

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог — холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода — они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно — чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей .
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее…
В общем все что может быть полезно для дома

Антенны и Радиоприемники

Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов


Схемы различных программаторов

материалы в категории

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники


Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Новички-радиолюбители, которые интересуются самостоятельной сборкой схем и ремонтом различных электронных устройств, теряются в море многочисленных терминов и деталей. Между тем, можно дать ряд советов, какие знания нужны в первую очередь, какими приборами пользоваться, как ориентироваться при выборе элементов схемы.

Необходимые знания

Для радиолюбителей очень важно:

  • знать и понимать основные законы электротехники;
  • уметь ориентироваться по схемам;
  • четко определять роль каждого элемента в схеме и представлять визуально, как он выглядит.

Важно! Теоретические знания необходимо постоянно подкреплять практикой.

Инструменты и приборы

Для сборки радиолюбительских схем и самодельных конструкций необходимо обладать следующими инструментами:

  1. Паяльник, мощность которого надо выбирать среднюю – не больше 40 Вт. Более продвинутые мастера задумываются о приобретении паяльной станции;
  2. Бокорезы. Не слишком массивный инструмент для работы с радиотехническими устройствами;

  1. Припой оловянно-свинцовый, существует в виде проволоки.

Важно! Среди всех приборов главным, а часто и единственным, является цифровой мультиметр или аналоговый тестер, посредством которого можно измерить все основные параметры схемы.

Перед тем, как приступить к сборке простых и интересных радиосхем, сделанных своими руками, можно потренироваться на демонтаже старой радиотехники. Заодно формируется практический навык при паяльных работах.

  1. В древних телевизорах на лампах вполне пригодная вещь – питающий трансформатор. Его можно использовать во многих радиосамоделках. Например, собрать устройство заряда для автомобильного аккумулятора или БП для усилителя звука. Главное – знать его технические данные;
  2. В устаревших устройствах радиоэлектроники: телеаппаратуре, видеомагнитофонах, обычных магнитофонах, встречаются целые микросхемы, готовые для использования. Для примера можно назвать звуковой усилитель, схема которого конструируется простой сборкой компонентов, без выполнения травления на печатных платах и т. д.;
  3. Регулятор тембра тоже применяется в готовом виде. При этом собираемый звуковой усилитель получит новые опции: возможность контроля низкочастотного и высокочастотного диапазона, изменения баланса в стереоколонках;
  4. В основном, все устройства, изготовляемые радиолюбителями, функционируют на пяти-, девяти- и двенадцативольтовых БП. Такие питающие блоки из старой аппаратуры будут самыми полезными.

В качестве корпусов для схем можно использовать любые подручные конструкции или купить готовые, разных размеров и форм. Кожухи от неработающих устройств часто применяются для новых радиосамоделок.

Очень ценным является нерабочий БП от компьютера, откуда берется:

  • много радиодеталей: транзисторов, конденсаторов, диодов, сопротивлений, которые пригодятся для собираемых устройств;
  • охлаждающие радиаторы – важный сопутствующий элемент для транзисторов большой мощности;
  • хорошие провода;
  • сам корпус – отличное место для размещения новых конструкций.

Методы сборки схемы

  1. Навесной монтаж. Простое спаивание компонентов в соответствии с разработанной схемой. Спаянные узлы можно устанавливать на поддерживающие площадки. Метод годится для конструирования радиосхем из небольшого числа деталей;
  2. Монтаж на печатной плате – текстолитовой платформе, на которой выполнены дорожки из фольги в качестве соединительных проводников.

Второй метод подразделяется на несколько вариантов:

  1. Механический. Прорезывание острым предметом дорожек для исключения контактного соединения в ненужных местах;
  2. Химический. С помощью лака или краски на фольге надо нарисовать требуемую схему. Затем погрузить в специальный состав – раствор хлорного железа. После обработки получится соответствующая рисунку разводка, а все участки без лака удалятся растворением;
  3. Лазерно-утюжный.

С каких схем начать

Классическое начало для радиолюбителей – сделай простейший детекторный приемник. Схема содержит небольшое количество компонентов, и ее сборка будет под силу всем. Затем можно дополнить устройство звуковым усилителем с использованием транзисторов. С приходом опыта и понимания начинается работа с микросхемами.

Большое количество интересных и очень простых вариантов радиосамоделок с описанием деталей, предоставлением схем находится на сайте «РадиоКот». Можно, например, собрать цветомузыку, импульсную подсветку часов, стереопередатчик и многое другое. Там же есть полезные форумы, где можно прояснить сложные вопросы, пообщаться с опытными мастерами.

По мере приобретения навыков увеличится интерес к сборке сложных устройств. Радиоэлектронные самоделки – одно из увлекательнейших занятий для людей всех возрастов.

Видео


Самодельные необычные электронные.  Схемы для дома, электронника своими руками в дом

Новички-радиолюбители, которые интересуются самостоятельной сборкой схем и ремонтом различных электронных устройств, теряются в море многочисленных терминов и деталей. Между тем, можно дать ряд советов, какие знания нужны в первую очередь, какими приборами пользоваться, как ориентироваться при выборе элементов схемы.

Необходимые знания

Для радиолюбителей очень важно:

  • знать и понимать основные законы электротехники;
  • уметь ориентироваться по схемам;
  • четко определять роль каждого элемента в схеме и представлять визуально, как он выглядит.

Важно! Теоретические знания необходимо постоянно подкреплять практикой.

Инструменты и приборы

Для сборки радиолюбительских схем и самодельных конструкций необходимо обладать следующими инструментами:

  1. Паяльник, мощность которого надо выбирать среднюю – не больше 40 Вт. Более продвинутые мастера задумываются о приобретении паяльной станции;
  2. Бокорезы. Не слишком массивный инструмент для работы с радиотехническими устройствами;

  1. Припой оловянно-свинцовый, существует в виде проволоки.

Важно! Среди всех приборов главным, а часто и единственным, является цифровой мультиметр или аналоговый тестер, посредством которого можно измерить все основные параметры схемы.

Перед тем, как приступить к сборке простых и интересных радиосхем, сделанных своими руками, можно потренироваться на демонтаже старой радиотехники. Заодно формируется практический навык при паяльных работах.

  1. В древних телевизорах на лампах вполне пригодная вещь – питающий трансформатор. Его можно использовать во многих радиосамоделках. Например, собрать устройство заряда для автомобильного аккумулятора или БП для усилителя звука. Главное – знать его технические данные;
  2. В устаревших устройствах радиоэлектроники: телеаппаратуре, видеомагнитофонах, обычных магнитофонах, встречаются целые микросхемы, готовые для использования. Для примера можно назвать звуковой усилитель, схема которого конструируется простой сборкой компонентов, без выполнения травления на печатных платах и т. д.;
  3. Регулятор тембра тоже применяется в готовом виде. При этом собираемый звуковой усилитель получит новые опции: возможность контроля низкочастотного и высокочастотного диапазона, изменения баланса в стереоколонках;
  4. В основном, все устройства, изготовляемые радиолюбителями, функционируют на пяти-, девяти- и двенадцативольтовых БП. Такие питающие блоки из старой аппаратуры будут самыми полезными.

В качестве корпусов для схем можно использовать любые подручные конструкции или купить готовые, разных размеров и форм. Кожухи от неработающих устройств часто применяются для новых радиосамоделок.

Очень ценным является нерабочий БП от компьютера, откуда берется:

  • много радиодеталей: транзисторов, конденсаторов, диодов, сопротивлений, которые пригодятся для собираемых устройств;
  • охлаждающие радиаторы – важный сопутствующий элемент для транзисторов большой мощности;
  • хорошие провода;
  • сам корпус – отличное место для размещения новых конструкций.

Методы сборки схемы

  1. Навесной монтаж. Простое спаивание компонентов в соответствии с разработанной схемой. Спаянные узлы можно устанавливать на поддерживающие площадки. Метод годится для конструирования радиосхем из небольшого числа деталей;
  2. Монтаж на печатной плате – текстолитовой платформе, на которой выполнены дорожки из фольги в качестве соединительных проводников.

Второй метод подразделяется на несколько вариантов:

  1. Механический. Прорезывание острым предметом дорожек для исключения контактного соединения в ненужных местах;
  2. Химический. С помощью лака или краски на фольге надо нарисовать требуемую схему. Затем погрузить в специальный состав – раствор хлорного железа. После обработки получится соответствующая рисунку разводка, а все участки без лака удалятся растворением;
  3. Лазерно-утюжный.

С каких схем начать

Классическое начало для радиолюбителей – сделай простейший детекторный приемник. Схема содержит небольшое количество компонентов, и ее сборка будет под силу всем. Затем можно дополнить устройство звуковым усилителем с использованием транзисторов. С приходом опыта и понимания начинается работа с микросхемами.

Большое количество интересных и очень простых вариантов радиосамоделок с описанием деталей, предоставлением схем находится на сайте «РадиоКот». Можно, например, собрать цветомузыку, импульсную подсветку часов, стереопередатчик и многое другое. Там же есть полезные форумы, где можно прояснить сложные вопросы, пообщаться с опытными мастерами.

По мере приобретения навыков увеличится интерес к сборке сложных устройств. Радиоэлектронные самоделки – одно из увлекательнейших занятий для людей всех возрастов.

Видео

Одно из распространенных хобби любителей и профессионалов в области электроники – это конструирование и изготовление различных самоделок для дома. Электронные самоделки не требуют больших материальных и финансовых затрат и выполняться могут в домашних условиях, поскольку работы с электроникой являются, по большей части, «чистыми». Исключение составляет только изготовление разнообразных корпусных деталей и иных механических узлов.

Полезные электронные самоделки могут использоваться во всех областях быта, начиная от кухни и заканчивая гаражом, где многие занимаются усовершенствованием и ремонтом электронных устройств автомобиля.

Самоделки на кухне

Кухонные самоделки из области электроники могут составлять дополнение к существующим аксессуарам и принадлежностям. Большой популярностью среди жителей квартир пользуются промышленный и самодельные электрошашлычницы.

Еще один распространенный пример кухонных самоделок, сделанных своими руками домашнего электрика, – таймеры и автоматика включения освещения над рабочими поверхностями, электроподжиг газовых горелок.

Важно! Изменение конструкции некоторой бытовой техники, в особенности газовых приборов, может вызвать «непонимание и неприятие» контролирующих организаций. Кроме того, это требует большой аккуратности и внимательности.

Электроника в автомобиле

Самодельные устройства для автомобиля наиболее широкое распространение получили среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:

  • Звуковые сигнализаторы поворотов и включения ручного тормоза;
  • Сигнализатор режимов работы аккумуляторной батареи и генератора.

Более опытные радиолюбители занимаются оснащением своего автомобиля датчиками парковки, электронными приводами стеклоподъемников, автоматическими датчиками освещенности для управления ближним светом фар.

Самоделки для начинающих

Большинство начинающих радиолюбителей занимаются изготовлением конструкций, которые не требуют высокой квалификации. Простые отработанные конструкции могут служить длительное время и не только ради пользы, но и в качестве напоминания о техническом «взрослении» от начинающего радиолюбителя до профессионала.

Для малоопытных любителей множество производителей выпускают готовые наборы для конструирования, которые содержат в составе печатную плату и набор элементов. Такие наборы позволяют отработать такие навыки:

  • Чтение принципиальных и монтажных схем;
  • Правильная пайка;
  • Настройка и регулировка по готовой методике.

Среди наборов очень распространены электронные часы различных вариантов исполнения и степени сложности.

В качестве области применения знаний и опыта радиолюбители могут конструировать электронные игрушки, используя схемы попроще или переделывая промышленные конструкции под свои пожелания и возможности.

Интересные идеи для поделок можно видеть на примерах изготовления радиоэлектронных поделок из пришедших в негодность деталей вычислительной техники.

Домашняя мастерская

Для самостоятельного конструирования радиоэлектронных устройств необходим некоторый минимум инструментов, приспособлений и измерительных приборов :

  • Паяльник;
  • Бокорезы;
  • Пинцет;
  • Набор отверток;
  • Пассатижи;
  • Многофункциональный тестер (авометр).

На заметку. Планируя заниматься электроникой своими руками, не следует браться сразу за сложные конструкции и приобретать дорогостоящий инструмент.

Большинство радиолюбителей начинали свой путь с использования простейшего паяльника 220В 25-40Вт, а из измерительных приборов в домашней лаборатории использовался самый массовый советский тестер Ц-20. Всего этого достаточно для занятий с электричеством, приобретения нужных навыков и опыта.

Начинающему радиолюбителю нет смысла покупать дорогостоящую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Тем более что возможность применения станции появится еще не скоро, а только по прошествии иногда довольно длительного времени.

Также нет необходимости в профессиональной измерительной аппаратуре. Единственный серьезный прибор, который может понадобиться даже начинающему любителю, – это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф является одним из самых востребованных измерительных инструментов.

В качестве авометра с успехом можно использовать недорогие цифровые приборы китайского производства. Имея богатую функциональность, они обладают высокой точностью измерений, простотой использования и, что важно, имеют встроенный модуль для измерения параметров транзисторов.

Говоря о домашней мастерской у самоделкина, нельзя не упомянуть о материалах, применяемых для пайки. Это припой и флюс. Самым распространенным припоем является сплав ПОС-60, который имеет невысокую температуру плавления и обеспечивает высокую надежность пайки. Большинство припоев, применяемых для пайки всевозможных устройств, является аналогами упомянутого сплава и может быть им с успехом заменено.

В качестве флюса для пайки используется обычная канифоль, но для удобства пользования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не требуют удаления с монтажа после работы, поскольку являются химически нейтральными при большинстве условий эксплуатации, а тонкая пленка канифоли, образовавшаяся после испарения растворителя (спирта), проявляет неплохие защитные свойства.

Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается паяльной кислоты (раствор хлористого цинка), поскольку даже в обычных условиях такой флюс разрушающе воздействует на тонкие медные печатные проводники.

Для облуживания сильно окисленных выводов лучше использовать активный бескислотный флюс ЛТИ-120, который не требует смывания.

Очень удобно работать, используя припой, в состав которого включен флюс. Припой выполнен в виде тонкой трубочки, внутри которой находится канифоль.

Для монтажа элементов хорошо подходят макетные платы из двухстороннего фольгированного стеклотекстолита, которые производятся в широком ассортименте.

Меры безопасности

Занятия электричеством связаны с риском для здоровья и даже жизни, особенно, если электроника своими руками конструируется с сетевым питанием. Самодельные электрические устройства не должны использовать бестрансформаторное питание от бытовой сети переменного тока. В крайнем случае, настройку подобных устройств следует производить, подключая их к сети через разделительный трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но в то же время будет обеспечена надежная гальваническая развязка.

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

  • асбестовая труба;
  • нихромовая проволока;
  • вентилятор;
  • выключатель.

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.

Для тех, кто только начинает делать первые шаги в электронике, важно с чего-то начать. Что ж, предлагаем вам ознакомиться с идеями, которые могут пригодиться в будущем и одновременно дадут представление о том, как что-то следует делать. Что выбрать, если есть желание сделать простые своими руками? Здесь представлены варианты, которые могут быть использованы в повседневной жизни.

Простой регулятор мощности для плавного включения ламп

Данный вид устройств нашел широкое применение. Самый простой — это обычный диод, который включается последовательно с нагрузкой. Подобное регулирование может применяться для продления срока функционирования лампы накаливания, а также для предотвращения перегрева паяльника. Также могут их применять, чтобы изменять мощность в широком диапазоне значений. Сначала будут самые простые электронные самоделки своими руками. Схемы вы можете видеть здесь же.

Как защититься от колебаний сетевого напряжения

Данное устройство отключает нагрузку, если сетевое напряжение выходит за допустимые пределы. Как правило, в рамках нормального считается отклонение до 10% от нормативного. Но в связи с особенностями системы энергоснабжения в нашем отечестве такие рамки не всегда соблюдаются. Так, напряжение может быть выше в 1,5 раза, или намного ниже, чем надо. Результат часто оказывается неприятным — аппаратура выходит из строя. Поэтому и есть необходимость в устройстве, которое будет отключать нагрузку раньше, чем что-то успеет сгореть. Но при создании такой самоделки необходимо быть осторожным, поскольку работа будет вестись со значительным напряжением.

Как изготовить трансформатор безопасности

В различных электронных конструкциях часто используют бестрансформаторные источники питания. Обычно у таких устройств небольшая мощность, а чтобы избежать электротравм, они помещаются в изоляционный пластмассовый корпус. Но иногда их необходимо настраивать, и тогда происходит вскрытие защиты. Чтобы избежать возможных травм, используют развязывающий трансформатор безопасности. Полезен он также будет и при ремонте таких устройств. Конструктивно они состоят из двух одинаковых обмоток, каждая из которых рассчитана на сети. Как правило, мощность трансформаторов подобного типа колеблется в диапазоне 60-100 Вт, это оптимальные параметры для настройки различной электроники.

Простой источник аварийного освещения

Что делать, если необходимо, чтобы в случае отключения электроснабжения сохранялась освещенность какого-то участка? Ответом на подобные вызовы может послужить аварийный светильник, выполненный на базе стандартной энергосберегающей лампы, мощность которой не превышает 11 Ватт. Так что если необходимо, чтобы свет был где-то в коридоре, подсобном помещении или на рабочем месте, эта самоделка придётся к месту. Обычно при наличии напряжения они работают напрямую от сети. Когда оно пропадает, лампа начинает функционировать на энергии аккумулятора. При восстановлении напряжения в сети и лампа будет работать, и автоматически заряжаться аккумулятор. Лучшие электронные самоделки своими руками были оставлены на конец статьи.

Повышающий регулятор мощности для паяльника

В случаях, когда необходимо паять массивные детали или часто понижается сетевое напряжение, использование паяльника становится проблематичным. И выручить из данной ситуации может повышающий регулятор мощности. В данных случаях нагрузку (т.е. паяльник) питают с помощью выпрямленного сетевого напряжения. Изменение осуществляется с помощью электролитического конденсатора, емкость которого позволяет получить напряжение больше в 1,41 сетевого. Так, при стандартном значении напряжения в 220 В он будет давать 310 В. А если произойдёт падение, скажем, до 160 В, то получится, что 160 * 1,41=225,6 В, что позволит оптимально действовать. Но это только пример. Вы имеете возможность сделать схему, подходящую именно для ваших условий.

Самый простой сумеречный выключатель (фотореле)

По мере создания новых деталей теперь необходимо всё меньше компонентов, чтобы сделать какой-то прибор. Так, для обычного сумеречного выключателя их необходимо всего 3. Причем благодаря универсальности конструкции возможно и многоцелевое применение: в многоквартирном доме; для освещения крыльца или двора частного жилища, или даже отдельной комнаты. Указывая на особенности такой конструкции как сумеречный выключатель, называют его ещё «фотореле». Можно найти много схем реализации, которые были сделаны или любителями, или промышленниками. Они обладают своим набором положительных и отрицательных свойств. В качестве отрицательных свойств обычно называют или необходимость наличия источника постоянного напряжения, или сложность самой схемы. Также при покупке дешевых и простых деталей или целых комплектов часто жалуются на то, что они попросту обгорают. Функционал схемы базируется на трех компонентах:

  1. Фотоэлемент. Обычно под ним понимают фоторезисторы, фототранзисторы и фотодиоды.
  2. Компаратор.
  3. Симистор, или реле.

Когда есть дневное освещение, сопротивление у фотоэлемента невелико, и не превышает порог срабатывания. Но стоит только потемнеть — как в сей же момент будет включена конструкция.

Заключение

Вот какие интересные электронные самоделки своими руками можно сделать. Главное в случаях, когда что-то не получается — продолжать пытаться, и тогда всё удастся. А набравшись опыта, можно будет переходить на более сложные схемы.

С каждым днем становится все больше и больше, появляется много новых статей, то новым посетителям довольно сложно сразу сориентироваться и пересмотреть за раз все уже написанное и ранее размещенное.

Мне же очень хочется обратить внимание всех посетителей на отдельные статьи, которые были размещены на сайте ранее. Для того что бы не пришлось долго искать нужную информацию я сделаю несколько «входных страниц» со ссылками на наиболее интересные и полезные статьи по отдельным темам.

Первую такую страничку назовем «Полезные электронные самоделки». Здесь рассматриваются простые электронные схемы, которые доступны для реализации людям любого уровня подготовки. Схемы построены с использованием современной электронной базы.

Вся информация в статьях изложена в очень доступной форме и в объеме, необходимом для практической работы. Естественно, что для реализации таких схем нужно разбираться хотя бы в азах электроники.

Итак, подборка наиболее интересных статей сайта по тематике «Полезные электронные самоделки» . Автор статей — Борис Аладышкин.

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.

В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.

В статье приведены несколько схем аппаратов для точечной сварки.

С помощью описываемой конструкции можно определить работает или нет механизм, расположенный в другом помещении или здании. Информацией о работе является вибрация самого механизма.

Рассказ о том, что такое трансформатор безопасности, для чего он нужен и как его можно изготовить самостоятельно.

Описание простого устройства, отключающего нагрузку в случае выхода сетевого напряжения за допустимые пределы.

В статье рассмотрена схема простого терморегулятора с использованием регулируемого стабилитрона TL431.

Статья о том, как сделать устройство плавного включения ламп с помощью микросхемы КР1182ПМ1.

Иногда при пониженном напряжении в сети или пайке массивных деталей пользоваться паяльником становится просто невозможно. Вот тут на помощь и может придти повышающий регулятор мощности для паяльника.

Статья о том, чем можно заменить механический терморегулятор масляного отопительного радиатора.

Описание простой и надежной схемы терморегулятора для системы отопления.

В статье дается описание схемы преобразователя выполненного на современной элементной базе, содержащего минимальное количество деталей и позволяющего получить в нагрузке значительную мощность.

Статья о различных способах подключения нагрузки к блоку управления на микросхемах с помощью реле и тиристоров.

Описание простой схемы управления светодиодными гирляндами.

Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.

Описание схемы и принципа действия простого аварийного светильника на основе энергосберегающей лампы.

Подробный рассказ о популярной «лазерно-утюжной» технологии изготовления печатных плат, её особенностях и нюансах.

Читайте также…

Радиосхемы для радиолюбителей своими руками.  Схемы для дома, электронника своими руками в дом. Схемы самодельных измерительных приборов

Одно из распространенных хобби любителей и профессионалов в области электроники – это конструирование и изготовление различных самоделок для дома. Электронные самоделки не требуют больших материальных и финансовых затрат и выполняться могут в домашних условиях, поскольку работы с электроникой являются, по большей части, «чистыми». Исключение составляет только изготовление разнообразных корпусных деталей и иных механических узлов.

Полезные электронные самоделки могут использоваться во всех областях быта, начиная от кухни и заканчивая гаражом, где многие занимаются усовершенствованием и ремонтом электронных устройств автомобиля.

Самоделки на кухне

Кухонные самоделки из области электроники могут составлять дополнение к существующим аксессуарам и принадлежностям. Большой популярностью среди жителей квартир пользуются промышленный и самодельные электрошашлычницы.

Еще один распространенный пример кухонных самоделок, сделанных своими руками домашнего электрика, – таймеры и автоматика включения освещения над рабочими поверхностями, электроподжиг газовых горелок.

Важно! Изменение конструкции некоторой бытовой техники, в особенности газовых приборов, может вызвать «непонимание и неприятие» контролирующих организаций. Кроме того, это требует большой аккуратности и внимательности.

Электроника в автомобиле

Самодельные устройства для автомобиля наиболее широкое распространение получили среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:

  • Звуковые сигнализаторы поворотов и включения ручного тормоза;
  • Сигнализатор режимов работы аккумуляторной батареи и генератора.

Более опытные радиолюбители занимаются оснащением своего автомобиля датчиками парковки, электронными приводами стеклоподъемников, автоматическими датчиками освещенности для управления ближним светом фар.

Самоделки для начинающих

Большинство начинающих радиолюбителей занимаются изготовлением конструкций, которые не требуют высокой квалификации. Простые отработанные конструкции могут служить длительное время и не только ради пользы, но и в качестве напоминания о техническом «взрослении» от начинающего радиолюбителя до профессионала.

Для малоопытных любителей множество производителей выпускают готовые наборы для конструирования, которые содержат в составе печатную плату и набор элементов. Такие наборы позволяют отработать такие навыки:

  • Чтение принципиальных и монтажных схем;
  • Правильная пайка;
  • Настройка и регулировка по готовой методике.

Среди наборов очень распространены электронные часы различных вариантов исполнения и степени сложности.

В качестве области применения знаний и опыта радиолюбители могут конструировать электронные игрушки, используя схемы попроще или переделывая промышленные конструкции под свои пожелания и возможности.

Интересные идеи для поделок можно видеть на примерах изготовления радиоэлектронных поделок из пришедших в негодность деталей вычислительной техники.

Домашняя мастерская

Для самостоятельного конструирования радиоэлектронных устройств необходим некоторый минимум инструментов, приспособлений и измерительных приборов :

  • Паяльник;
  • Бокорезы;
  • Пинцет;
  • Набор отверток;
  • Пассатижи;
  • Многофункциональный тестер (авометр).

На заметку. Планируя заниматься электроникой своими руками, не следует браться сразу за сложные конструкции и приобретать дорогостоящий инструмент.

Большинство радиолюбителей начинали свой путь с использования простейшего паяльника 220В 25-40Вт, а из измерительных приборов в домашней лаборатории использовался самый массовый советский тестер Ц-20. Всего этого достаточно для занятий с электричеством, приобретения нужных навыков и опыта.

Начинающему радиолюбителю нет смысла покупать дорогостоящую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Тем более что возможность применения станции появится еще не скоро, а только по прошествии иногда довольно длительного времени.

Также нет необходимости в профессиональной измерительной аппаратуре. Единственный серьезный прибор, который может понадобиться даже начинающему любителю, – это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф является одним из самых востребованных измерительных инструментов.

В качестве авометра с успехом можно использовать недорогие цифровые приборы китайского производства. Имея богатую функциональность, они обладают высокой точностью измерений, простотой использования и, что важно, имеют встроенный модуль для измерения параметров транзисторов.

Говоря о домашней мастерской у самоделкина, нельзя не упомянуть о материалах, применяемых для пайки. Это припой и флюс. Самым распространенным припоем является сплав ПОС-60, который имеет невысокую температуру плавления и обеспечивает высокую надежность пайки. Большинство припоев, применяемых для пайки всевозможных устройств, является аналогами упомянутого сплава и может быть им с успехом заменено.

В качестве флюса для пайки используется обычная канифоль, но для удобства пользования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не требуют удаления с монтажа после работы, поскольку являются химически нейтральными при большинстве условий эксплуатации, а тонкая пленка канифоли, образовавшаяся после испарения растворителя (спирта), проявляет неплохие защитные свойства.

Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается паяльной кислоты (раствор хлористого цинка), поскольку даже в обычных условиях такой флюс разрушающе воздействует на тонкие медные печатные проводники.

Для облуживания сильно окисленных выводов лучше использовать активный бескислотный флюс ЛТИ-120, который не требует смывания.

Очень удобно работать, используя припой, в состав которого включен флюс. Припой выполнен в виде тонкой трубочки, внутри которой находится канифоль.

Для монтажа элементов хорошо подходят макетные платы из двухстороннего фольгированного стеклотекстолита, которые производятся в широком ассортименте.

Меры безопасности

Занятия электричеством связаны с риском для здоровья и даже жизни, особенно, если электроника своими руками конструируется с сетевым питанием. Самодельные электрические устройства не должны использовать бестрансформаторное питание от бытовой сети переменного тока. В крайнем случае, настройку подобных устройств следует производить, подключая их к сети через разделительный трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но в то же время будет обеспечена надежная гальваническая развязка.

Итак. Жизнь сложилась так, что у меня есть домик в деревне с газовым отоплением. Жить там постоянно не получается. Домик используется как дача. Пару зим тупо оставлял включенным котел с минимальной температурой теплоносителя.
Но тут два минуса.
1. Счета за газ просто астрономические.
2. Если возникает необходимость приехать в дом среди зимы, температура в доме в районе 12 град.
Поэтому надо было что-то выдумывать.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если заморочиться, можно положить рядом с датчиком подключенный мобильник, и раздавать сигнал с телефона.

Подключение датчика движения 4 контакта своими руками схема

Схема подключение датчика движения своими руками

Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.

С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.

В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.

Блок питания из энергосберегающей лампочки своими руками

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог — холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода — они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно — чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка
VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот
HL1, HL2Светодиод

АЛ307Б

2В блокнот
C1100мкФ 10В1В блокнот
C2Конденсатор0.1 мкФ1В блокнот
R1, R2Резистор

100 кОм

2В блокнот
R3Резистор

620 Ом

1В блокнот
BF1Акустический излучательТМ21В блокнот
SA1Геркон1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1В блокнот
Биполярный транзистор

КТ315Б

1В блокнот
C1Электролитический конденсатор100мкФ 12В1В блокнот
C2Конденсатор0.22 мкФ1В блокнот
Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот
GB1Элемент питания9 Вольт1В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1В блокнот
Биполярный транзистор

КТ361Б

1В блокнот
C1Электролитический конденсатор15мкФ 6В1В блокнот
R1Переменный резистор470 кОм1В блокнот
R2Резистор

24 кОм

1В блокнот
T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот
Универсальный имитатор звуков
DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот
Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот
C1Конденсатор1 мкФ1В блокнот
C2Конденсатор1000 пФ1В блокнот
R1-R3Резистор

330 кОм

1В блокнот
R4Резистор

10 кОм

1В блокнот
Динамическая головкаГД 0.1…0.5Ватт 8 Ом1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Фонарь-мигалка
VT1, VT2Биполярный транзистор

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

  • асбестовая труба;
  • нихромовая проволока;
  • вентилятор;
  • выключатель.

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей .
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее…
В общем все что может быть полезно для дома

Антенны и Радиоприемники

Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов


Схемы различных программаторов

материалы в категории

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники


Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Простая схема бесконтактного термометра

— Сделайте это дома

В этом посте мы изучим основную концепцию работы тепловых сканеров или бесконтактных ИК-термометров, а также узнаем, как сделать практический прототип устройства своими руками без Arduino .

В эпоху, наступившую после COVID-19, часто можно было наблюдать, как врачи держат бесконтактный температурный пистолет и указывают на лоб подозреваемого в COVID-19.

Устройство на самом деле представляет собой бесконтактный термометр, который определяет мгновенную температуру поверхности тела подозреваемого и позволяет врачу узнать, в норме ли человек или у него лихорадка?

Основной метод тестирования

В процессе тестирования мы обнаруживаем, что уполномоченное лицо направляет лазерный луч из бесконтактного термометра на лоб подозреваемого и отмечает температуру на задней ЖК-панели устройства.

Фактически лазерный луч не имеет прямого отношения к процедуре измерения температуры. Он используется только для того, чтобы помочь врачу убедиться, что инфракрасный термометр правильно направлен в идеальное место тела для наиболее точного определения температуры тела.

Закон Стефана – Больцмана

Как указано в законе Стефана – Больцмана, полное излучение тела M e (T) пропорционально четвертой степени его температуры, как показано в следующем уравнении

M e (T) = εσT 4

В этом уравнении ε означает коэффициент излучения.

σ обозначает постоянную Стефана – Больцмана, которая эквивалентна величине 5,67032 x 10 -12 12 Вт · см -2 K -4 , где буква K — единица измерения температуры в Кельвинах.

Приведенное выше уравнение предполагает, что при повышении температуры тела его инфракрасное излучение также пропорционально увеличивается. Это инфракрасное излучение можно было измерить на расстоянии без какого-либо физического контакта. Показания могут предоставить нам мгновенный уровень температуры тела.

Какой датчик применим

Датчик, который лучше всего подходит и используется в бесконтактных термометрах, — это датчик на термоэлементах .

Датчик термобатареи преобразует тепловую карту падающего инфракрасного излучения от удаленного источника в пропорциональную величину крошечного выходного электрического напряжения.

Работает по принципу термопары, в которой разнородные металлы соединяются последовательно или параллельно для создания «горячего» и «холодного» спая. Когда поток инфракрасного излучения от источника падает на термобатарею, он создает разницу температур на этих переходах, создавая эквивалентное количество электричества на концевых выводах термопары.

Эта электрическая мощность, пропорциональная источнику тепла, может быть измерена для определения уровня температуры источника тепла.

Термопара внутри датчика термобатареи встроена в кремниевый чип, что делает систему чрезвычайно чувствительной и точной.

Использование датчика термобатареи MLX

Микросхема MLX является отличным примером универсального датчика термобатареи, который может быть идеально использован для создания устройства теплового сканирования или устройства бесконтактного термометра.

Микросхема MLX состоит из свайной сети термопар на поверхности мембраны.

Теплоприемные спаи термопары стратегически расположены рядом с центром базовой мембраны, в то время как дифференциальные холодные спаи расположены на краю устройства, которые образуют основную кремниевую область устройства.

Поскольку конструкция мембраны является плохим проводником тепла, обнаруженное тепло от источника может быстрее подниматься ближе к центру менбраны, чем к основной кромке устройства.

Благодаря этому на концах спая термобатареи может развиваться быстрая разница тепла, что приводит к развитию эффективного электрического потенциала на этих клеммах по термоэлектрическому принципу.

Лучшая часть датчика термобатареи заключается в том, что, в отличие от стандартных ИС, он не требует для работы внешнего источника электропитания, а генерирует собственный электрический потенциал для выполнения необходимых измерений.

Вы получаете два варианта микросхемы MLX, как показано ниже, при этом один вариант обеспечивает опцию заземления Vss, а другой — без вывода Vss.

Верхний вариант позволяет проводить биполярное измерение ИК-температуры. Это означает, что на выходе могут отображаться температуры выше, чем температура окружающей среды, а также ниже, чем температуры окружающей среды.

Нижняя опция может использоваться для измерения температуры либо выше уровня окружающей среды, либо ниже уровня окружающей среды, и, таким образом, обеспечивает возможность униполярного измерения.

Почему термистор используется в термобатареи

В приведенной выше микросхеме MLX мы видим термистор, входящий в комплект устройства.Термистор играет важную роль в создании выходного опорного уровня для каскада внешнего измерительного блока.

Термистор встроен для определения температуры окружающей среды или температуры тела устройства. Этот уровень температуры окружающей среды становится опорным уровнем для выходного каскада операционного усилителя.

Пока ИК-температура от цели ниже или равна этому опорному уровню, каскад внешнего усилителя операционного усилителя не реагирует, и его выход остается равным 0 В.

Однако, как только ИК-излучение от тела превышает температуру окружающей среды, операционный усилитель начинает реагировать, выдавая действительный измеримый выходной сигнал, который линейно соответствует возрастающей тепловой мощности тела.

Схема бесконтактного термометра с использованием микросхемы термобатареи MLX

В приведенной выше схеме прототипа бесконтактной схемы ИК-термометра мы находим датчик термобатареи IC MLX в биполярном режиме, сконфигурированный с внешним операционным усилителем, предназначенным для усиления крошечного электричества от термобатареи. в измеримый выход.

Верхний ОУ усиливает выходной сигнал термопары ИС MLX, а нижний ОУ усиливает температуру окружающей среды ИС.

Простой дифференциальный измеритель громкости подключается к выходам двух операционных усилителей. Пока перед термобатареей нет теплоизлучающего тела, ее внутренняя температура термопары остается равной температуре соседнего термистора. Благодаря этому два выхода операционного усилителя генерируют одинаковое количество напряжений. Таким образом, VU-метр показывает 0 В в центре циферблата.

В случае, если человеческое тело, имеющее более высокую температуру, чем окружающая среда, попадает в диапазон чувствительности термобатареи, выход термопары на контактах 2 и 4 начинает экспоненциально возрастать и превышает выходной сигнал термистора на контактах 3 и 1.

В результате верхний операционный усилитель генерирует более положительное напряжение, чем нижний операционный усилитель. Измеритель уровня громкости реагирует на это, и его стрелка начинает смещаться вправо от калибровки 0 В. Показания напрямую показывают уровень температуры мишени, обнаруженный термобатареей.

Какой операционный усилитель подходит для приложения?

Поскольку предполагается, что выходной сигнал термобатареи будет в микровольтах, операционный усилитель, который будет использоваться для усиления этого чрезвычайно малого напряжения, должен быть высокочувствительным и сложным, а также с очень низкими характеристиками входного смещения. Для удовлетворения этих условий наилучшим выбором для этого приложения является инструментальный операционный усилитель.

Хотя в Интернете можно найти много хороших инструментальных усилителей, инструментальный усилитель INA333 Micro-Power (50 мкА) с нулевым дрейфом и выходом Rail-to-Rail является наиболее подходящим кандидатом.

Есть много замечательных особенностей, которые делают эту ИС наиболее подходящей для усиления напряжений термопар до измеримых величин. Базовую схему инструментального усилителя IC INA333 можно увидеть ниже, и эту конструкцию можно использовать для усиления объясненной выше схемы термобатареи.

В этой схеме операционного усилителя INA333 резистор R G определяет коэффициент усиления схемы и может быть рассчитан по формуле:

Усиление = 1 + 100 / R G

Выходной результат будет в килоомах.

С помощью этой формулы мы можем установить общий коэффициент усиления схемы в зависимости от уровня микровольт, полученного от термобатареи.

Коэффициент усиления можно регулировать прямо от 0 до 10 000, что обеспечивает операционному усилителю исключительный уровень усилительной способности для микровольтных входов.

Чтобы использовать этот инструментальный усилитель без ИС с термобатареями, нам потребуются два таких модуля операционных усилителей. Один будет использоваться для усиления выходного сигнала термопары, а другой будет использоваться для усиления выходного сигнала термистора, как показано ниже;

Установку можно использовать для изготовления бесконтактного инфракрасного термометра, который будет производить линейно увеличивающийся аналоговый выходной сигнал в ответ на линейно увеличивающееся инфракрасное излучение, обнаруживаемое термобатареей.

Аналоговый выход может быть подключен к милливольтному VU-метру или цифровому милливольт-метру для мгновенной интерпретации уровня температуры тела.

Выходную мощность В o можно также оценить с помощью следующего уравнения:

В o = G ( В дюйм + В дюйм — )

Список деталей

Для построения схемы бесконтактного термометра, описанной выше, потребуются следующие детали:

  • Микросхема датчика термобатареи MLX — 1no
  • Инструментальный операционный усилитель INA333 — 2nos
  • Вольтметр с диапазоном от 0 до 1 В FSD — 1no
  • 1.Никель-кадмиевые элементы AAA 2 В для питания INA333 — 2nos

Показания вольтметра необходимо откалибровать в градусах Цельсия, что можно сделать путем экспериментов, проб и ошибок.

Использование PIR

Обычный датчик PIR также хорошо работает и представляет собой дешевую альтернативу для таких приложений.

PIR включает датчик на основе пироэлектрического материала, такого как TGS, BaTiO3 и т. Д., Который проходит самопроизвольную поляризацию, когда он обнаруживает изменение температуры в пределах своего диапазона обнаружения.

Поляризационный заряд в PIR-устройстве, генерируемый из-за изменения его температуры, зависит от мощности излучения φ e , передаваемой телом на датчик PIR. Это заставляет выход PIR генерировать ток I d ωpA d ( Δ T) .

Устройство также генерирует напряжение В o , которое может быть равно произведению тока I d и импеданса устройства.Это можно выразить следующим уравнением:

V o = I d R d / √1 + ω 2 R 2 d C 2 d

Это уравнение можно упростить следующим образом:

V o = ωpA d R d ( Δ T) / √1 + ω 2 R 2 d C 2 d

, где p обозначает пироэлектрический коэффициент, ω обозначает радианную частоту, а Δ T равно разнице температуры детектора T d
и температуры окружающей среды T a .

Теперь, применяя уравнение теплового баланса, мы находим, что значение Δ T может быть получено следующим образом:

Δ T = R T φ e / √ (1 + ω 2 τ 2 T )

Если мы заменим это значение Δ T в предыдущем уравнении, мы получим результат, который представляет Vo с характеристиками полосы пропускания, как показано ниже:

где τ E относится к электрической постоянной времени ( R d C d ), τ T указывает тепловую постоянную времени
( R T C T ), и φ e символизирует мощность излучения
от цели, обнаруженной датчиком.

Приведенные выше обсуждения и уравнения доказывают, что выходное напряжение Vo от PIR прямо пропорционально мощности излучения, излучаемой источником, и, таким образом, становится идеально подходящим для приложений бесконтактного измерения температуры.

Однако мы знаем, что PIR не может реагировать на стационарный источник ИК-излучения и требует, чтобы источник находился в движении для обеспечения читаемого вывода.

Поскольку скорость движения также влияет на выходные данные, мы должны убедиться, что источник движется с точной скоростью — аспект, который может быть невозможно реализовать на человеческой цели.

Таким образом, простой способ противодействовать этому — позволить человеческой цели быть неподвижной и воспроизвести ее движение путем сопряжения прерывателя на основе искусственного двигателя с системой линз PIR.

Прототип бесконтактного термометра с использованием PIR

Следующие параграфы объясняют испытательную установку практической системы теплового сканирования, которая может быть применена для создания практического прототипа после тщательной оптимизации различных задействованных параметров.

Как было сказано в предыдущем разделе, ИК-датчик предназначен для обнаружения лучистого излучения в виде скорости изменения температуры dT / dt и, следовательно, реагирует только на инфракрасное излучение, которое излучается с должным образом рассчитанной частотой.

Эксперименты показали, что PIR лучше всего работает при частоте импульсов около 8 Гц, что достигается за счет постоянного прерывания входящего сигнала с помощью сервопреобразователя

В основном прерывание сигналов позволяет Датчик PIR для оценки и вывода излучаемой мощности тела в виде скачков напряжения. Если частота прерывателя правильно оптимизирована, то среднее значение этих всплесков будет прямо пропорционально интенсивности излучаемой температуры.

На следующем изображении показана типичная испытательная установка для создания оптимизированного измерительного блока или MU.

Для обеспечения эффективной работы системы расстояние между источником ИК-излучения и полем обзора (FOV) датчика должно быть около 40 см. Другими словами, излучающее тело и линза PIR должны находиться на расстоянии 40 см друг от друга.

Мы также можем увидеть систему прерывателя, состоящую из небольшого шагового двигателя с пропеллером, установленным между линзой Френеля и пироэлектрическим датчиком PIR.

Как это работает

ИК-излучение от тела проходит через линзу Френеля, затем прерывается двигателем прерывателя с частотой 8 Гц, и возникающее импульсное ИК-излучение регистрируется датчиком PIR.

Выходной переменный ток, эквивалентный этому обнаруженному IR, затем подается на каскад «формирователя сигнала», состоящий из множества каскадов операционного усилителя.

Окончательный усиленный и согласованный выходной сигнал формирователя сигнала анализируется на осциллографе для проверки реакции схемы на различная световая отдача тела.

Оптимизация PIR и измельчителя

Чтобы получить наилучшие результаты, необходимо обеспечить соблюдение следующих критериев для ассоциации PIR и измельчителя.

Диск измельчителя или лезвия должны быть расположены так, чтобы вращаться между линзой Френеля и внутренним датчиком ИК-излучения.

Диаметр линзы Френеля не должен быть более 10 мм.

Фокусное расстояние объектива должно быть около 20 мм.

Учитывая тот факт, что типичная зона зондирования A d 1.6 мм φ и установлен близко к фокусному расстоянию объектива, поле зрения или FOV определяется как 4,58 o по следующей формуле:

FOV (половинный угол) ≈ | tan -1 [(d s /2) / f] | = 2,29 o

В этом уравнении d s обозначает обнаруживаемый диаметр сенсора, а f — фокусное расстояние объектива.

Характеристики ножей измельчителя

Эффективность работы бесконтактного термометра во многом зависит от того, как падающее инфракрасное излучение проходит через систему измельчителя и

В этом измельчителе должны использоваться следующие размеры:

Измельчитель должен иметь 4 лезвия и диаметр Dc должен быть около 80 мм.Он должен управляться шаговым двигателем или схемой с ШИМ-управлением.

Приблизительная частота вращения должна составлять от 5 до 8 Гц для оптимальной производительности.

ПИК-линза Френеля должна быть расположена на 16 мм позади пироэлектрического датчика, так, чтобы диаметр входящего ИК-сигнала, падающего на линзу, составлял около 4 мм, и этот диаметр должен быть намного меньше, чем TW «ширина зуба» диск измельчителя.

Заключение

Бесконтактный тепловой сканер или ИК-термометр — очень полезное устройство, которое позволяет измерять температуру человеческого тела на расстоянии без какого-либо физического контакта.

Сердцем этого устройства является инфракрасный датчик, который определяет уровень тепла в форме лучистого потока тела и преобразует его в эквивалентный уровень электрического потенциала.

Для этой цели можно использовать два типа датчиков: датчик термобатареи и пироэлектрический датчик.

Хотя физически они кажутся похожими, существует огромная разница в принципе работы.

Термобатарея работает по основному принципу термопары и генерирует электрический потенциал, пропорциональный разнице температур на ее спаях.

Пироэлектрический датчик, который обычно используется в датчиках PIR, работает, обнаруживая изменение температуры тела, когда тело с более высокой температурой, чем температура окружающей среды, пересекает поле зрения датчика. Это изменение уровня температуры преобразуется в пропорциональную величину электрического потенциала на его выходе.

Термобатарея, будучи линейным устройством, намного проще сконфигурировать и внедрить во все формы приложений теплового сканирования.

Артикулы:

Измерительный усилитель
Датчик термобатареи melexis
Инфракрасный термометр

Проекты электронных схем — простые способы обучения

Зачем нужно создавать электронные схемы?

Потому что есть три следующие причины:

Электроника — это часть физической науки, техники, технологий.

Еще я учил своих детей электронике. Но они редко понимают теорию. Им это скучно и трудно понять.

Возможно, вам нравятся мои дети.

Древние люди говорили, что я слышу и забываю; Я вижу и помню; Я понимаю и понимаю. Это правда.


Итак, я считаю, что создание электронной схемы — хорошее обучение. Это помогает нам легко понять это.

2 # Добавьте себе ценность!

Мы знаем, что в окружающих нас приборах используются электронные схемы.

Обычно нам не нужно разбираться в их работе.

Но знание электроники очень помогает.

Если у вас есть навыки электроники. Другие будут впечатлены вами.

Почему?

Потому что вы можете решить проблему за них.

Представьте: у вашего друга сломался электровентилятор, а летом стоит такая жаркая погода.

Покупать новый — не лучшая идея. Но отремонтировать его сложно тем, кто не разбирается в электронике.

Если вы это сделаете, вы легко сможете его отремонтировать.

То есть замена конденсатора вентилятора, который стоит полдоллара.

Таким образом вы сможете быстро решить проблему и помочь другу сэкономить деньги.

15 Простые электронные схемы: Для начинающих

3 # Really Great Hobby

Не тратьте время ни на что. Создание электронных проектов для решения повседневных задач полезно.

Главное! Не жалейте, когда ваши проекты не работают. Это ваш процесс обучения.

Рекомендовано: 36 проектов электроники для хобби

10 популярных проектов электронных схем

Существует более 600+ электронных схем и проектов в 9 категориях. Вы можете посмотреть не более 10 сообщений.

Что еще? Посмотрите:

Последние обновленные схемы

25 DIY любительских электронных схем для сборки — от Bright Hub Engineering

Прежде чем вы действительно начнете создавать различные интересные устройства, перечисленные в следующих разделах, вы можете прочитать «Что вам нужно знать, чтобы Наши электронные схемы производятся в Bright Hub Engineering.«Это даст вам базовые знания в теории и аппаратных аспектах общих используемых электронных компонентов… и их характеристик распиновки. Информация очень поможет вам действовать систематически при выполнении любого из следующих проектов.

Начало работы — увлекательные светодиодные проекты своими руками

В электронике схему светодиодов, вероятно, проще всего настроить, но все же интересно построить и использовать. Когда эти устройства были впервые изобретены, результаты были не такими впечатляющими.Однако они быстро развивались, и сегодня они доступны во всех формах, размерах и спецификациях.

Главной особенностью светодиодов является их способность производить значительную освещенность, используя незначительное количество энергии. Достаточно всего лишь 4 В и 20 мА, чтобы зажечь их, независимо от типа или цвета.

В статьях, представленных ниже, вы найдете подробные инструкции по безопасному обращению со светодиодами и их конфигурированию во множество различных интересных схем. Мы начнем с обзора, который расскажет вам все, что вам нужно знать о правилах и формулах, необходимых для реализации правильной и безопасной установки светодиодной проводки.В последующих статьях вы совершите экскурсию, где сможете увидеть множество интересных схем светодиодов, которые можно использовать для украшения вашего дома, игрушек, фоторамок, рождественских елок, транспортных средств и т. Д. Перечисленные более серьезные проекты светодиодов в более поздней части поможет вам построить полезные схемы, такие как аварийное освещение, электронные лампы, автомобильные фонари на крыше и т. д.

Сколько схем вы можете построить, используя пару обычных транзисторов?

Транзисторы можно считать ключевым компонентом электроники.Это основные строительные блоки, без которых невозможно построить даже самые сложные микросхемы. Для начинающего любителя электроники будет приятно узнать, что действительно можно создать много интересных схем, используя всего пару транзисторов и несколько других пассивных электронных компонентов. Транзисторы работают как усилители сигналов, процессоры сигналов, компараторы напряжения, индикаторы напряжения, мониторы, генераторы сигналов, генераторы, релейные драйверы, прецизионные выпрямители, таймеры, усилители напряжения, датчики напряжения, тепловые датчики и множество других полезных функций в ценных схемных решениях. .

Как это можно сделать? Изучите построение вышеупомянутых электронных схем простым пошаговым способом в следующих статьях.

Простые схемы IC 555 и IC 741 специально для вас

IC 555 и IC 741 являются членами семейства электронных устройств, которые действительно популярны среди любителей электроники всех возрастов. Это связано с тем, что эти устройства универсальны, дешевы, легкодоступны, надежны и поддерживают практически все виды схемотехнических приложений. В приведенных ниже статьях приводится много интересных схем для хобби, которые были специально разработаны и составлены с учетом потребностей любителей и школьников.

Полезные схемы контроллера / индикатора уровня воды

Сегодня в большинстве домов и зданий во многих странах водоснабжение является одним из основных коммунальных предприятий. Когда дело доходит до воды, резервуары для хранения очень важны, поскольку без них невозможно обеспечить круглосуточную подачу воды в наши дома.

Однако резервуары для воды, которые установлены в наших домах, имеют плохую привычку часто переполняться, вызывая некоторый ущерб окружающим материалам или просто тратя драгоценную питьевую воду.В некоторых странах добыча пресной воды обходится дорого, и поэтому без надобности ее трата будет нецелесообразно.

Регулятор уровня воды — устройство, которое напрямую помогает устранить эту проблему. Его можно использовать для автоматического определения и включения водяного насоса, когда уровень воды в резервуаре падает ниже определенного минимального уровня, и выключения насоса, когда уровень достигает края резервуара, тем самым предотвращая переполнение резервуара. и переливается.

Другая важная версия не включает переключение насоса; скорее, он предоставляет пользователю визуальную или звуковую индикацию уровня воды в резервуаре и, таким образом, держит пользователя в курсе критических ситуаций.Хотя устройства могут выглядеть сложными, изготовить их дома абсолютно несложно. Принципиальные схемы некоторых полезных устройств для мониторинга уровня воды перечислены ниже:

Производство электроэнергии с помощью возобновляемых методов — некоторые обучающие эксперименты

В сценарии, когда ископаемое топливо со временем «вымирает», возобновляемые методы производства электроэнергии имеют показано, что это лучи надежды на выход из ситуации.

Беглый взгляд вокруг может показать нам щедрую и бесплатную энергию, которую нам дает Мать-Природа.Однако только недавно ученые и инженеры начали серьезно относиться к этой проблеме и разрабатывать оборудование и системы для получения этой награды. Хотя используемые методы могут показаться слишком сложными и массивными, небольшие прототипы могут быть созданы дома для экспериментов. Поскольку они могут стать единственным источником энергии в ближайшие годы, схемы, представленные здесь, вполне могут стать ступеньками для повышения эффективности методов, а также для воспитания молодых ученых.

В следующих статьях мы узнаем о некоторых инновационных способах производства электроэнергии с помощью солнечных батарей, ветряных мельниц, приливов в морской воде, тепла и т. Д.

Составление схемы зарядного устройства батареи

Хотя описанные выше методы выработки электроэнергии могут показаться многообещающими, генерируемая мощность является мгновенной и поэтому должна использоваться по мере того, как она генерируется. Единственный практичный и эффективный способ их хранения — подсоединить источник к заряжаемой батарее.

Аккумуляторы, вероятно, на сегодняшний день являются наиболее известным методом хранения электроэнергии. Накопленная энергия может быть использована по желанию, когда это необходимо; кроме того, они портативны и достаточно эффективны.Однако у этих выдающихся устройств есть свои недостатки: если они не заряжены до указанных параметров, они становятся медлительными, неэффективными и дорогостоящими в долгосрочной перспективе.

Чтобы противостоять этому, хорошие зарядные устройства содержат сложную электронику для выполнения процесса зарядки в соответствии с рекомендациями для конкретного типа аккумулятора. Но нашим юным энтузиастам не о чем беспокоиться, поскольку схемы, связанные с этими ограничениями, довольно просты в сборке и установке.

Что означает флип-флоп в электронике?

Одним из важных приложений электроники является переключение и управление. Процедуры требуют переключения выхода конкретной цепи поочередно в ответ на ручные или автоматические входные триггеры. Это переключение или переключение выходных команд на различные нагрузки должно быть точным и надежным. Схемы или микросхемы триггеров предназначены для реализации этих функций последовательности или переключения и обычно интегрируются с выходными каскадами соответствующих цифровых схем.Как они работают? Узнайте больше в этих статьях.

Электронные проекты на основе SCR

Несколько других интересных электронных схем для хобби, основанных на SCR и симисторах, перечислены ниже. Вы тоже можете найти их интригующими.

Ссылки

  • Собственный опыт автора
  • Связанные статьи

Лучшие проекты электроники для начинающих | Блог Simply Smarter Circuitry

Эта статья будет посвящена проектам в области электроники для начинающих. Благодаря нескольким интернет-магазинам электроники создавать электронные проекты своими руками никогда не было так просто.Почти каждый теперь может получить в свои руки различные отладочные платы, микроконтроллеры, печатные платы и многое другое. Кроме того, в Интернете можно найти множество руководств и обучающих видео, которые помогут вам начать работу над любым электронным проектом. Эта статья была сделана так, чтобы она была намного проще даже для новичков и непрофессионалов, таких как вы.

При этом мы собрали некоторые из лучших электронных проектов, найденных в Интернете, которые вы можете делать дома. Большинство инструментов и оборудования, необходимых для этих проектов, дешевы и могут быть легко куплены в Интернете.Так что, проявив немного терпения и упорно работая, вы сможете выполнить большинство этих проектов в кратчайшие сроки.

Содержание
  • Сигнализация дождя
  • Автоматический ночник
  • Пожарная сигнализация
  • Таймер автоматической мытья рук
  • Выключатель хлопка
  • Автоматический свет лестницы
  • Умная камера заднего вида и защита от столкновений для автомобилей
  • Портативный бумбокс с нуля
  • Цифровой альтиметр
  • Биометрическая система посещаемости
  • Зарядное устройство для телефона на солнечной батарее
  • Индикатор уровня воды
  • Электронный репеллент от комаров

После того, как вы найдете проект, который вам понравится, обязательно ознакомьтесь с нашим инвентарем электронных запчастей и расходных материалов для всех ваших хобби!

Дождь сигнализация

Этот простой, но очень полезный проект можно использовать для домов, полей орошения, деловых площадок и автомобилей.

Мы понимаем сложность завершения любых проектов в условиях непредсказуемой погоды. Солнце вышло, следующее, что вы знали, все ваше оборудование и инструменты теперь пропитаны дождем.

Чтобы помочь вам решить эту проблему, вы можете создать собственную сигнализацию дождя. Система обнаружит дождь и активирует сигнал тревоги или уведомление. Таким образом, вы будете лучше подготовлены и сможете вовремя внести свои инструменты и оборудование внутрь.

Материалы, необходимые для создания этого проекта, довольно простые.Вам просто понадобится датчик дождя, блок питания, макетная плата, светодиод, зуммер (опционально), несколько резисторов и конденсаторов и так далее. Вы можете легко купить эти материалы в Интернете или в любом электронном магазине по низкой цене.

Автоматический ночник

Аналогичен экрану вашего телефона с автоматической регулировкой яркости в темноте. Вы также можете заархивировать то же самое с любым ночником. Этот проект ночной лампы будет автоматически включаться, когда наступает ночь, и автоматически выключается, когда наступает дневной свет.

Этот автоматический ночник — прекрасный проект для начинающих электронщиков. Он предлагает удобство, и вы можете подарить его практически любому. Кроме того, это простой проект для проверки ваших знаний принципиальных схем. Это простой проект, не требующий большого количества инструментов, а необходимые материалы относительно дешевле.

Пожарная сигнализация

Благодаря этому проекту вы сможете понять, как строятся реальные электронные системы.Несколько энтузиастов уже попробовали этот проект, поэтому в Интернете доступно множество подходов и пошаговых руководств.

Вы можете использовать термистор с отрицательным температурным коэффициентом (NTC) для этой пожарной сигнализации, чтобы измерить температуру окружающей среды. Для этого проекта рекомендуется использовать термистор NTC, поскольку его сопротивление обратно пропорционально температуре. Термистор NTC 10 кОм обычно используется вместе с LM358 и другими компонентами для более эффективного измерения сопротивления.

Вы также можете использовать светозависимый резистор (LDR) для этого DIY-проекта. Вместо того, чтобы обнаруживать возгорание через термистор NTC, вы можете использовать LDR. Термистор NTC обнаруживает возгорание по изменению температуры окружающей среды, а LDR обнаруживает возгорание через дым.

Таймер автоматической ручной стирки

В условиях продолжающейся пандемии мытье рук как никогда важно. Всемирная организация здравоохранения заявила, что мы должны мыть руки не менее 20 секунд, чтобы избежать распространения вируса.

При этом автоматический таймер для мытья рук — прекрасное дополнение к вашему дому. Это не только поможет предотвратить распространение вируса, но и сэкономит воду. Подача воды будет синхронизироваться и контролироваться, чтобы можно было экономить и использовать воду более эффективно.

Для этого проекта вы можете использовать Arduino Uno или просто таймер и модуль ультразвукового датчика. Поскольку есть несколько способов выполнить этот проект, вы можете просто найти тот, который соответствует вашему уровню квалификации.

Переключатель хлопка

Теперь вы можете выключить свет в спальне, не вставая с удобной кровати. Еще один плюс этого переключателя хлопков в том, что он не боится поражения электрическим током. Вы также можете разместить его в ванной, чтобы вам больше не приходилось касаться переключателя мокрыми руками. Кроме того, сердце этого проекта — микрофон. Потому что именно он подберет и зарегистрирует ваш аплодисменты на трассе. Что касается источника питания, это в конечном итоге будет зависеть от ваших предпочтений и выбора материалов для схемы.Еще один популярный вариант, использующий распространенные полупроводниковые микросхемы, такие как LM555, для обеспечения точности и лучшей синхронизации.

Автоматический светильник для лестницы

Просыпаетесь среди ночи из-за жажды? Трудно спуститься по лестнице, потому что там слишком темно? Если да, то этот автоматический лестничный светильник должен стать вашим следующим проектом.

По сравнению с другими электронными проектами для начинающих, этот требует большой работы. Так как устанавливать его нужно на каждой ступеньке лестницы.Однако собрать саму электронику очень просто, а необходимые материалы довольно дешевы.

Основными материалами для этого проекта являются инфракрасные датчики, светодиодные фонари и микроконтроллер. Поскольку основная идея этого проекта заключается в том, чтобы освещать лестницу только тогда, когда вы идете по ней. Инфракрасный датчик может обнаруживать движение даже в темноте, что значительно упрощает спуск по лестнице. Особенно посреди ночи для быстрого похода в туалет или на кухню.

Умная камера заднего вида и защита от столкновений для автомобилей

Первоначальная цель этого проекта — сделать умные и спасающие жизнь технологии более доступными для всех. Поскольку не все автомобили имеют функцию защиты от столкновений, некоторые любители и профессионалы придумали разные способы сделать вождение (и парковку) намного безопаснее и проще.

По сложности этот проект настолько прост, что с ним справятся даже новички. Сердце этого проекта — Raspberry Pi и ультразвуковой датчик.RPi — это одноплатный компьютер, который будет действовать как ваш интеллектуальный концентратор, а ультразвуковой датчик будет измерять расстояние до любых автомобилей или препятствий на вашем пути.

На первый взгляд этот электронный проект может показаться сложным для новичков и не программистов. Но на самом деле это всего лишь вводный проект для новичков, которые только начинают узнавать больше об одноплатных компьютерах, микроконтроллерах, платах разработки и многом другом.

Портативный бумбокс с нуля

Для тех, кто плохо знаком с электронным сообществом DIY, этот проект — одно из лучших мест для начала обучения.Это веселый и легкий проект.

Поскольку вы будете делать все с нуля, вам необходимо приобрести несколько инструментов и оборудования, которых нет в большинстве магазинов электроники. Помимо электроники, такой как конденсатор, резистор, аудиоразъем, ручка потенциометра и т. Д., Вам также необходимо приобрести собственную древесину для корпуса стрелы. Так что успех этого проекта будет зависеть от вашего творческого замысла, выбора материалов и планирования.

Этот проект потребует большого терпения и упорной работы.Учитывая, что вам не понадобится макет и какие-либо навыки программирования, даже те, кто не имеет опыта работы в электронике или схемотехнике, могут легко выполнить этот проект.

Цифровой высотомер

Хотите попрактиковаться в пайке сквозных отверстий и базовых навыках кодирования? Если да, то этот проект может быть для вас идеальным.

Учитывая, что этот проект требует некоторого базового кодирования, вам потребуется IDE Arduino для запуска кода. Некоторые любители рекомендуют для этого проекта модель Arduino Pro или что-то подобное, например, FTDI Breakout Board.Кроме того, вам понадобится датчик давления или высоты, чтобы сделать этот цифровой альтиметр.

Для новичков и не программистов этот проект поначалу может показаться сложным. Но, поскольку несколько человек уже сделали это, вы можете просто загрузить код онлайн. Вам не нужно иметь глубокий опыт программирования для этого проекта, потому что в Github уже есть библиотека для этого кода. Он общедоступен и доступен для бесплатного скачивания в Интернете.

Биометрическая система посещаемости

Идентификация с использованием биометрии — одна из новейших технологий в системах безопасности в настоящее время.Однако некоторые любители и профессионалы нашли другой способ использования биометрической идентификации. Вместо того, чтобы использовать его для систем безопасности, они вместо этого используют его для проверки и управления посещаемостью.

Итак, если вы планируете провести конференцию или массовое мероприятие, то этот проект обязательно впечатлит ваших посетителей. Вместо того, чтобы заставлять их приносить удостоверение личности в конференц-зал, вы можете просто отметить их присутствие с помощью биометрической идентификации.

Мы считаем его электронным проектом для начинающих, потому что коды, необходимые для запуска микроконтроллера, общедоступны.Сказав это, быстрый поиск в Google просто поможет. Вам просто нужно найти библиотеку, совместимую с текущим микроконтроллером, который у вас есть.

Зарядное устройство на солнечных батареях

Этот проект — отличное введение в принцип работы солнечной панели. Это идеальный проект для начинающих, потому что вы сможете применить свои базовые знания в схемах.

Однако стоит отметить, что этот проект может потенциально повредить ваш телефон, если он будет выполнен неправильно.Поэтому мы настоятельно рекомендуем вам поискать в Интернете более продуманную схему и пошаговое руководство.

Тем не менее, этот проект поможет вам начать работу и ознакомиться со схемой солнечного зарядного устройства. Материалы для этого проекта дешевые и простые. Вам понадобится всего несколько вещей, например, мини-солнечная панель, инверторное зарядное устройство USB, кабель вашего телефона и паяльник.

Указатель уровня воды

Часто вода тратится впустую из-за перелива. Чтобы решить эту проблему, несколько мастеров и профессионалов разработали этот доступный и простой в сборке проект.

Основная функция этого проекта — контролировать уровень воды в контейнере, а также подавать сигнал тревоги, если он близок к переполнению.

Учитывая, что несколько любителей уже достигли этого, есть много способов и подходов к этому проекту. Вы можете сделать водную сигнализацию, используя микроконтроллеры, такие как AVR и Arduino, или просто построить ее, используя транзистор, таймер 555 и ULN2003 IC.

Независимо от того, выбрали ли вы микроконтроллеры или простые схемы, будьте уверены, что в Интернете всегда найдется пошаговое руководство.Стоит отметить, что этот проект популярен среди любителей и любителей, поэтому вам не составит труда найти руководство или даже библиотеку кодов в Интернете.

Электронный репеллент от комаров

Электронный репеллент от комаров — один из самых интересных электронных проектов для начинающих. Принцип, лежащий в основе этого проекта, заключается в том, что любой звук с частотой более 20 кГц отталкивает и отгоняет комаров. Стоит отметить, что, несмотря на излучение в этом частотном диапазоне, было доказано, что он безопасен и безопасен для человека.

Так что, если вы живете в тропической стране или там, где вы сейчас живете, просто сезон дождей, то этот проект, возможно, стоит изучить подробнее.

Несмотря на то, что этот проект звучит сложно, его довольно легко собрать, если вы соберете все необходимые материалы. Некоторые любители используют плату Arduino, а другие просто используют таймер 555. Основными компонентами этого проекта являются резисторы и динамик или пьезозуммер, потому что они составляют цепь отпугивания комаров.

Заключение

Мы надеемся, что нам удалось вдохновить вас и поделиться некоторыми своими знаниями в электронных проектах DIY.

Стоит отметить, что упомянутые нами электронные проекты уже были выполнены несколькими любителями. Так что найти пошаговое руководство в Интернете не так уж и сложно.

В общем, вам просто нужно найти подходящие инструменты и оборудование, которые помогут вам начать работу над этими электронными проектами.

Электронные модули своими руками для мастеров

#cardboardcircuits — электронные модули, построенные из картона, клея и лома электроники.Модули создаются самими детьми, а электронные детали получают из разобранных игрушек и других повседневных электронных устройств. Модули изготовлены из обычных материалов в классе, таких как картон и скрепки для папок.

Схемы

Cardboard созданы на основе схемных плат Tinkering Studio , Toy Take-Apart и других .

Делитесь своими творениями в социальных сетях? Используйте #cardboardcircuit в Twitter или Instagram.

От сборщиков игрушек до электронных модулей

Дети начинают с того, что разбирают и открывают внутренности игрушек и электронных устройств. Извлекая детали, они идентифицируют и восстанавливают отдельные электронные компоненты, такие как кнопки или двигатели. Затем электронные компоненты преобразуются в автономный модуль, который можно повторно использовать в будущих схемах.

Пайка не требуется

Соединения между модулями выполняются с помощью зажимов типа «крокодил», зажимов для бумаг или скрепок для бумаг.Используя обычные школьные материалы, дети могут изготавливать свои собственные модули — без пайки. Так же, как и печатные платы, модули можно соединять вместе с помощью ленты, резинки и т. Д.

Создано детьми

Модули создаются самими детьми, и им предлагается настраивать их. При использовании картона рекомендуется иметь модули любой формы, если они могут использоваться с другими блоками.

Сортировка модулей по (назначению и цвету)

Мы следуем цветовому соглашению Little Bits, чтобы распределите модули по категориям: мощность = синий, вход = розовый, выход = зеленый, провод = оранжевый и (новый) контроллер = желтый.

Дети также могут использовать картон, чтобы написать руководство для компонента, который они только что построили.

Картонные роботы

Из переработанных колес и переключателей используйте картон для создания собственных роботов.

Модуль контроллера

Контроллер — это модуль, который принимает входные данные и генерирует выходные данные. По мере увеличения сложности проектов потребность в контроллере быстро возникнет. Некоторые контроллеры могут быть построены из простых электронных компонентов или с использованием программируемых микроконтроллеров. например micro: bit или Adafruit Circuit Playground Express.Микроконтроллеры могут генерировать звуки, приводить двигатели и сервоприводы или даже общаться между собой удаленно.

Кодируйте свои модули!

Редакторы Microsoft MakeCode — это блочные редакторы, работающие в большинстве браузеров и удобные для новичков. По мере того, как дети создают новые контроллеры, они будут изучать по запросу различные концепции программирования, которые необходимо реализовать. Таким образом, кодирование имеет значение, оно позволяет создавать удивительные вещи.

с открытым исходным кодом на GitHub

Исходники этого веб-сайта доступны по адресу https: // github.com / Microsoft / cardboard-circuit.

Благодарности

Особая благодарность команде Тихоокеанского научного центра «Тинкер Танк» Тихоокеанского научного центра в Сиэтле.

Лицензия

MIT

Кодекс поведения

В этом проекте принят Кодекс поведения с открытым исходным кодом Microsoft. Для получения дополнительной информации см. Часто задаваемые вопросы о Кодексе поведения или обращайтесь по адресу [email protected] с любыми дополнительными вопросами или комментариями.

Как собрать электронные схемы

Ключевые термины

o Макетная плата без пайки

o Цифровой мультиметр

o Осциллограф

o Печатная плата

Цели

o Определить некоторые общие инструменты и устройства для проектирования, изготовления и тестирования электронных схем

o Ввести общий порядок построения цепей

Если вы занимаетесь электроникой как хобби или даже как призвание, вы, вероятно, будете делать больше, чем просто рисовать электрические схемы.Когда вы делаете прыжок от теории к реальности, вам понадобятся некоторые инструменты, помимо карандаша и бумаги, чтобы вы могли создавать, тестировать и устранять неполадки в своих творениях. Хотя эта статья ни в коем случае не является полным руководством по созданию электроники, она предлагает несколько полезных советов и направления для дальнейшего исследования.

Обратите внимание: не пытайтесь воспроизвести схемы, иллюстрации или инструкции из этой статьи в реальной жизни. Это может привести к поражению электрическим током, травме или смерти.Эти примеры предназначены только для теоретического обсуждения, а не для фактического / физического использования.

Компьютерное моделирование

После того, как вы разработали идею схемы, но до создания прототипа, вы можете подумать об использовании компьютерного программного обеспечения для моделирования вашей схемы. Хотя во многих случаях вам может быть проще построить прототип, вы можете легко разрушить некоторые чувствительные электронные компоненты (например, интегральные схемы), если не будете осторожны. В таких обстоятельствах может помочь программное обеспечение для моделирования электроники.Как и в случае с большинством инструментов, которые мы обсудим в этой статье, стоимость такого программного обеспечения может варьироваться от бесплатного до чрезвычайно дорогого (гораздо больше, чем может заплатить любитель). Начните с простого: найдите простую в использовании бесплатную программу, а затем при необходимости переходите к более сложным программам. Но всегда помните, что компьютерные программы предназначены для приблизительного моделирования поведения электроники; ничто не заменит собственно построение цепи.

Прототипирование

Макетная плата без пайки — бесценный инструмент при создании большого количества прототипов.Это устройство позволяет легко и временно подключать провода и электронные компоненты, просто вставляя провода в небольшие отверстия, предназначенные для обеспечения хорошего соединения. Как правило, все отверстия в данной строке или столбце электрически соединены, что позволяет соединять несколько компонентов вместе.

Макетные платы бывают разных размеров и конфигураций. Кроме того, вы можете приобрести комплекты, содержащие провода, специально предназначенные для использования с макетными платами, а также комплекты компонентов, которые содержат различные конденсаторы, резисторы и другие компоненты.

Оборудование для тестирования цепей

Построение множества схем — даже довольно сложных — обычно довольно недорогое предложение. Часто для тестирования цепей требуется дорогостоящая инфраструктура. Тем не менее, найдя бывшее в употреблении оборудование или просто остановившись на менее дорогих моделях, вы все равно сможете получить все необходимое для тестирования схем, не разбивая банк.

Пожалуй, самый полезный инструмент для любителей (и для многих профессиональных приложений) — это цифровой мультиметр .Мультиметры часто представляют собой портативные устройства с цифровым экраном и шкалой для выбора типа измерения: общие возможности измерения включают сопротивление, напряжение, ток и емкость. Кроме того, мультиметр обычно имеет несколько портов для вставки специальных кабелей для подключения мультиметра к тестируемой цепи. Эти кабели могут иметь разные концы, например зажимы типа «крокодил» или простые металлические щупы, в зависимости от того, как вы хотите подключиться к цепи. (Например, вам может понадобиться соединение, которое освободит одну из ваших рук, и в этом случае вам пригодится зажим в виде аллигатора.Металлические щупы позволяют быстро переходить от одной точки цепи к другой, но для каждого из них постоянно требуется рука.)

Вы должны подключить мультиметр параллельно или последовательно к той части цепи, которую вы хотите проверить. В режиме измерения напряжения мультиметр имеет очень высокое (почти бесконечное) сопротивление, что означает, что он мало влияет на цепь. (Если сопротивление слишком низкое, он потребляет значительный ток и может повлиять на поведение схемы.) Ниже приведен пример мультиметра, измеряющего напряжение на резисторе (в частности, резисторе R 1 ).

Когда вы измеряете ток, вам необходимо подключить мультиметр последовательно с той частью цепи, для которой вы хотите измерить ток. Например, приведенная ниже схема дает измерение тока через резистор R 2 . (Мультиметр имеет очень низкое сопротивление при работе в этом режиме, что предотвращает значительное падение напряжения на мультиметре, которое может повлиять на поведение цепи.)

Еще одним полезным, но зачастую очень дорогим инструментом для анализа цепей является осциллограф . Вы, возможно, видели их в реальной жизни или по телевизору, поскольку они в некотором смысле являются типичным устройством для тестирования и измерения электроники. Осциллограф имеет множество элементов управления и экран, на котором отображается форма волны — это особенно полезно для цепей, в которых напряжение изменяется во времени (например, изменяется напряжение источника питания).

Принципы измерения с использованием осциллографов и мультиметров по существу одинаковы — осциллографы просто предоставляют пользователю больше информации и больший контроль. Традиционные осциллографы могут стоить тысячи долларов, а осциллографы для профессионального использования (особенно для высокочастотных схем) могут стоить десятки тысяч долларов и более. Но по мере того, как вычислительные мощности становятся повсеместными, некоторые компании разработали осциллографы, которые предназначены для использования на вашем компьютере (например, через порт USB), полагаясь на вычислительные возможности компьютера, монитор и специально разработанное программное обеспечение для имитации осциллографа.Падают в цене даже стандартные осциллографы. Таким образом, некоторые из этих осциллографов гораздо более доступны, особенно для любителей.

Строительные схемы

После того, как вы спроектировали, построили прототип и протестировали свою схему, вы можете переходить к заключительному этапу: конструированию реальной вещи. Подробности построения схем выходят за рамки этой статьи, но есть несколько соображений, с которыми вы, вероятно, столкнетесь. Во-первых, вам нужно решить, как разместить схему.Чтобы защитить электронику и обеспечить некоторую эстетическую привлекательность, вам нужно будет решить, во что поместить схему (например, в пластиковый корпус). Кроме того, вам, вероятно, придется использовать печатную плату , , которая обеспечивает как твердую, прочную поверхность для сборки схемы, так и средство создания проводящих путей (фактически, проводов) на плате. Если вы откроете большинство электронных устройств, вы найдете «плату» с компонентами и металлическими дорожками — это печатная плата (PCB).

Создание хороших печатных плат требует большой осторожности. И после того, как вы спроектировали плату, вы обычно используете припой для подключения компонентов (например, резисторов) к плате. Припой — это металл, который плавится при достаточно высоком нагреве (с помощью паяльника) и остывает, образуя электрическое соединение. Пайка, как и проектирование хороших печатных плат, — это навык, требующий практики, а также осторожности, поскольку вы можете легко пораниться паяльником, горячим припоем или кислотой, используемой для травления печатной платы.

Практическая проблема : Техник хочет измерить падение напряжения на резисторе R 2 в приведенной ниже схеме.Куда ей подключить кабели от мультиметра?

Решение : Для измерения падения напряжения техник должен подключить один кабель «сверху» R 2 и один «ниже» R 2 . Обратите внимание, что падение напряжения на R 2 и R 3 одинаково; пока кабели подсоединены к обеим сторонам R 2 (но не между источником питания и R 1 ), технический специалист выполнит правильные измерения.

Электробезопасность электронных схем своими руками

Прочтите эту информацию — это может спасти вам жизнь!

Электробезопасность при создании электронных проектов своими руками

Электроэнергия сетевого напряжения чрезвычайно опасна. Существует значительный риск смерти от поражения электрическим током, если электричество сетевого напряжения проходит через тело. Также может возникнуть опасность пожара и взрыва, если электрический кабель не подключен правильно и неправильно подключен.Поэтому необходимо соблюдать меры предосторожности при использовании электросети или аналогичного устройства.

Есть много вещей, которые могут выйти из строя с электричеством с потенциально ужасными последствиями. Некоторые из них очевидны — НИКОГДА не используйте палец для проверки наличия сетевого напряжения! — но другие могут не быть такими, как радиаторы, подключенные к высоковольтному разъему симистора. Прочтите эту страницу полностью и убедитесь, что вы продумали все аспекты при разработке своей следующей схемы. В случае сомнений обратитесь за советом к квалифицированному специалисту .

В этом разделе даются советы по электроснабжению от бытовой электросети и более низкому напряжению. Более высокие напряжения, такие как электрические подстанции и железнодорожные эстакады, намного опаснее. Никогда не приближайтесь к высоковольтным кабелям или к людям, пострадавшим от поражения электрическим током от очень высокого напряжения, если у вас нет подтверждения, что питание отключено.

Удар электрическим током

Наиболее очевидный риск поражения электрическим током при контакте с цепью под напряжением. Здесь через тело проходит электрический ток, что может привести к остановке работы сердца (остановка сердца).

Что такое опасное напряжение?

На самом деле важен ток, а не напряжение, но из-за сопротивления тела вы не можете получить опасный ток без достаточно высокого напряжения. Вы можете решить это самостоятельно, используя закон Ома, но важно помнить о принципах безопасности. Как правило, работа с напряжением ниже 50 В относительно безопасна, но все, что выше, может быть опасным. .

Как правило, вы защищены от поражения электрическим током на большинстве электронных схем, работающих от бытовых аккумуляторов, включая автомобильные аккумуляторы на 12 В. Однако в вашем доме могут быть батареи, которые могут представлять реальную опасность, например, выход из ИБП (источника бесперебойного питания) для компьютера или если у вас есть домашняя энергетическая система, такая как солнечные батареи.

Даже если ваше оборудование рассчитано на работу при напряжении ниже опасного для поражения электрическим током, оно все равно может представлять риск ожогов, пожара или даже взрыва — так что продолжайте читать.

AC против DC

Возможно, вы слышали, как некоторые люди говорят, что переменный ток опаснее постоянного тока, или наоборот. Вместо того, чтобы слишком много спорить по поводу одного и другого , как переменный, так и постоянный ток при высоких напряжениях могут быть смертельными . Считается, что переменный ток с большей вероятностью вызовет остановку сердца из-за прерывания электрических сигналов, управляющих сердцем, но постоянный ток может вызвать ожоги, и оба они все еще могут убить, поэтому обсуждение различий довольно академично. Просто помните, что электричество может убить, если оно имеет достаточное напряжение и ток, будь то переменный или постоянный ток.

Ниже приведены способы снижения риска поражения электрическим током.

Избегайте подключения к электросети

Самый безопасный способ — полностью избегать использования сетевого напряжения в компьютерной цепи. Большинство электронных схем работают при низком напряжении и могут питаться от батарей или внешнего подключаемого трансформатора. Самый безопасный способ использования трансформатора — это использовать силовой блок (например, адаптеры питания, обычно используемые с портативными компьютерами) или сетевой трансформатор (известный как настенная бородавка в США), например, те, которые используются для питания вашего мобильного телефона.Они преобразуют напряжение до безопасного напряжения, при котором будет работать электронная схема (например, от 6 В до 12 В для Arduino), и в большинстве случаев также преобразуют сигнал из переменного тока (который подается из сетевой розетки) в постоянный ток (используется для большинство электронных схем). Эти трансформаторы обычно имеют двойную изоляцию и не имеют частей под высоким напряжением, доступных пользователю. Убедитесь, что трансформатор соответствует типу цепи (например, номинальному напряжению и току) и источнику питания, к которому он подключается.

Вы все равно должны проверить трансформатор на предмет каких-либо физических повреждений, прежде чем подключать что-либо к электросети.

Если вам нужна высокая мощность, внешний источник питания не всегда может быть вариантом, и в этом случае следует проявлять особую осторожность.

Изолируется от сети при работе

Если вы когда-либо видели оборудование, на котором написано «высоковольтный, не снимайте крышку» или «отключите питание перед снятием крышки», тогда существует риск того, что внутри находится незащищенное сетевое напряжение.Если вы сняли крышку с сетевого электрического устройства, где это возможно, эту крышку следует зафиксировать на месте, прежде чем снова подключать к сети.

Заземление корпуса сетевого оборудования

Если вы действительно используете сетевое напряжение в проекте, вам обычно следует использовать металлический корпус и заземлять его. Для этого нужно взять провод от клеммы заземления и подключить его к открытой металлической части корпуса. Иногда в корпусе есть специальный разъем для заземления, но если его нет, то его можно подключить к металлическому винту, скрепляющему части корпуса вместе.Затем вам следует выполнить соответствующее тестирование, чтобы убедиться, что все металлические части / части корпуса должным образом заземлены.

Риск, связанный с сетевым напряжением, заключается в том, что находящееся под напряжением соединение (например, свободный провод) входит в контакт с металлическим корпусом, а затем кто-то касается корпуса, создавая путь для прохождения тока через человека на землю. Если это произойдет, это может представлять опасность для любого пользователя оборудования. Если корпус заземлен, то при контакте провода под напряжением с корпусом это обеспечит прямой путь к земле и сожжет предохранитель оборудования.Если вы обнаружите, что ваш предохранитель продолжает перегорать, проверьте, нет ли короткого замыкания на корпус. При использовании сетевого разъема для подачи электричества в корпус необходимо использовать 3-контактный разъем, такой как разъем IEC C13 (2-контактные разъемы не имеют заземления и поэтому не подходят). Всегда используйте предохранитель подходящего размера для оборудования (например, в вилке), чтобы гарантировать, что, если есть соединение с землей, плавкий предохранитель сгорел. Предохранитель может находиться внутри вилки (стандарт для вилок, используемых в Великобритании), или может использоваться комбинированный модуль разъема и предохранителя.

Альтернативой металлическому корпусу является использование корпуса с пластмассовой изоляцией, однако, если это необходимо, необходимо убедиться, что нет никаких незаземленных металлических соединений, идущих изнутри наружу корпуса, которые могут соприкоснуться. с напряжением сети. Сюда входят любые переключатели или любые винты, используемые для фиксации печатной платы и любых внешних разъемов. Этого сложно добиться в проектах DIY, поэтому я рекомендую использовать заземленный металлический корпус. На коммерческом электрическом оборудовании часто можно увидеть символ двойной изоляции, означающий, что используется полная изоляция, а не заземление.

При использовании сетевого напряжения необходимо также убедиться, что невозможно соприкоснуться с какими-либо частями под высоким напряжением через корпус. Лучше всего этого добиться, убедившись, что в корпусе нет отверстий, но иногда необходимо сделать отверстия в корпусе для вентиляции. В этом случае следует использовать пальцевой тест, чтобы убедиться, что палец, помещенный в отверстие, не может соприкоснуться с электричеством в сети. Очевидно, что если вы действительно это проверяете, вы должны делать это при отключенном электричестве.Также учтите, что у некоторых людей (особенно у детей) пальцы будут меньше.

Проверьте состояние любого оборудования и используйте изолированные провода.

Перед тем, как подключить какое-либо оборудование к сети, всегда проверяйте, чтобы оборудование не было видимых повреждений и не были повреждены провода. Это относится к любому электрическому оборудованию, сделанному дома или купленному, поскольку кабели со временем могут испортиться, особенно если они не хранятся должным образом.

Если вы проводите какие-либо испытания оборудования под напряжением (по возможности избегайте этого), убедитесь, что у вас есть должным образом изолированные измерительные провода с достаточной изоляцией для испытываемого напряжения.Вы всегда должны проводить оценку рисков перед работой с оборудованием, находящимся под напряжением, и обеспечивать принятие соответствующих мер предосторожности для предотвращения травм, возникающих в результате любых выявленных рисков.

Изоляция сетевого напряжения и проверка после отключения питания

В электроприборах и самодельных проектах обычно довольно легко отключить питание, вынув вилку из розетки. В случае домашней электропроводки и оборудования, подключенного непосредственно к сети, например, охранной сигнализации, электрическая сеть может быть подключена непосредственно к оборудованию.В этом случае на стене, где они подключаются, обычно есть выключатель или панель с предохранителями, и оттуда должно быть отключено электричество.

Каждый раз, когда вы работаете с оборудованием, подключенным напрямую к электросети, которое должно быть отключено, всегда проверяйте, чтобы убедиться, что сетевое питание отключено, прежде чем приступить к работе. Для домашнего пользователя можно использовать бытовой детектор напряжения, но рекомендуется, чтобы он использовался только в качестве вторичного теста после того, как другие шаги по отключению источника питания уже были выполнены.Всегда следите за тем, чтобы тестер не был поврежден и был в хорошем рабочем состоянии, и следуйте инструкциям производителя. Если вы сомневаетесь в том, что источник питания изолирован, обратитесь за профессиональной консультацией. Если вы беретесь за это в рамках своей работы, вы должны следовать руководству HSE, а не приведенному выше — см. Раздел «Электробезопасность на работе» и «Оборудование для проверки электрического оборудования для использования электриками».

Самый распространенный тип электрического тестера отечественного производства представляет собой отвертку с неоновой подсветкой внутри ручки.Вы кладете кончик отвертки на контакт, который хотите проверить, и касаетесь металлической пластины на другом конце отвертки. Если тестер находится в контакте с сетевым напряжением, загорается неон. Всегда проверяйте заранее, чтобы тестер не был поврежден. Не используйте их как отвертку.

Другой вид отечественного электротестера выглядит как большой пластиковый карандаш с белым кончиком. Когда вы помещаете наконечник рядом с сетевым напряжением, наконечник загорается красным. В некотором смысле это лучше, поскольку вам не нужно напрямую физически контактировать с электросетью, но есть и обратная сторона.Карандаш питается от батареи, и если батарея разряжена, ничто не указывает на наличие напряжения в сети. Поэтому перед использованием тестера сети с батарейным питанием сравните его с известным источником под напряжением, чтобы убедиться, что он работает правильно. Вы можете сделать это, поместив тестер напротив правой стороны вилки сетевого шнура при подключении к источнику питания. Для проведения этого теста нет необходимости открывать вилку или обнажать какие-либо токоведущие части.

Это руководство предназначено только для занятий дома / хобби.Эти тестеры следует использовать после всех усилий по отключению питания. Эти тестеры не подходят для использования в рабочей среде — см. Руководство HSE — Электрическое испытательное оборудование для использования электриками.

Используйте УЗО

УЗО (устройства остаточного тока) и могут обеспечить элемент защиты от поражения электрическим током путем отключения источника питания при обнаружении неисправности или при поражении электрическим током. УЗО теперь включены в домашнюю электропроводку в Великобритании, но многие дома были построены до того, как это постановление вступило в силу.

Иногда их называют RCCB (автоматические выключатели остаточного тока) или ELCB (автоматические выключатели утечки на землю).

Также можно купить сменные переходники УЗО. Вы подключаете их к сетевой розетке, а затем подключаете оборудование с питанием от сети к адаптеру, или вы можете получить те, которые заменяют вилку на вашем оборудовании. Если у вас есть собственная лаборатория / сарай / домашний офис, который вы используете для своих электромонтажных работ, то может быть хорошей идеей использовать их на всех розетках в этой комнате, но как минимум я бы рекомендовал использовать одну, когда вы впервые подключаете свой цепь к сети или при выполнении любых испытаний под напряжением.

Научитесь первой помощи и напарник

Если вы работаете с сетевым напряжением, поблизости должен быть кто-то, кто знает, что вы делаете, чтобы помочь, если кто-то пойдет не так. По крайней мере, они могут отключить питание и набрать 999 (112 в Европе / 911 в США / 000 в Австралии), чтобы вызвать скорую помощь. Я также рекомендую вам и вашему другу научиться первой помощи. См. Страницу обучения на веб-сайте викторины по оказанию первой помощи для получения контактных данных организаций, обучающих оказанию первой помощи.

Если вы когда-нибудь встретите кого-то, кто страдает от поражения электрическим током и все еще подключен к источнику питания, не прикасайтесь к нему напрямую, так как вы также можете получить от него электрический ток. По возможности следует отключить электропитание (вынуть вилку из розетки или выключить оборудование). Если невозможно отключить источник питания, оттолкните человека от источника питания, используя изолирующий материал, например, сухую деревянную или пластиковую ручку метлы.

Остерегайтесь работающих радиаторов

Мы рассмотрели очевидные вещи выше, но вам также необходимо принять во внимание любые компоненты, которые могут проводить электричество от сети, и любые особые функции безопасности.Например, симистор — это устройство, которое часто используется для переключения электрических токов в сети. Как и любой полупроводник, эти устройства выделяют тепло, а при переключении больших нагрузок это может привести к большому нагреву. Чтобы отвести это тепло и предотвратить перегрев симистора, часто используется радиатор. Корпус симистора подключается к радиатору. В некоторых симисторах соединение радиатора подключается к одному из сетевых выводов, а в других — соединение, изолированное от сетевого напряжения.Обычный симистор — это симистор BTA08-600, в котором соединение радиатора изолировано от сетевого напряжения, но почти идентичный BTB08-600 не изолирован. Вы можете задаться вопросом, зачем возиться с неизолированной версией, но тепловые характеристики неизолированной намного лучше, следовательно, требуется меньший радиатор. Для хобби-электроники я рекомендую всегда брать изолированные (которые в любом случае более доступны), чтобы радиатор никогда не работал. Я даже использую изолированные симисторы в цепях низкого напряжения, так как это снижает риск того, что вы можете повторно использовать оставшийся симистор в своем следующем проекте, который может использовать сетевое напряжение.

Если вы когда-нибудь обнаружите, что работаете с оборудованием, разработанным кем-то другим, никогда не предполагайте, что они используют изолированные компоненты, и всегда предполагайте, что любой компонент может быть под напряжением, пока не будет доказано обратное.

Тестирование портативных устройств (PAT)

Тестирование портативных устройств — это способ тестирования электрического оборудования, чтобы убедиться, что оно безопасно в использовании. Он включает в себя физическую проверку на наличие видимых повреждений, а также некоторые тесты, чтобы убедиться, что оборудование должным образом заземлено и изолировано.Это делается либо с помощью специального тестера PAT, либо с помощью тестера изоляции. К сожалению, стоимость испытательного оборудования PAT делает это очень трудным для электронщика, увлекающегося электроникой, для проведения тестирования самостоятельно, но вы можете найти местного электрика, который сможет проверить это оборудование за вас.

Опасность пожара и взрыва

Удар электрическим током — не единственный способ, которым вы можете пострадать из-за неправильного использования электричества. Возгорание может быть столь же опасным и может произойти при гораздо более низком напряжении, чем поражение электрическим током.Опять же, это высокий риск для сетевого электричества, но вы также должны учитывать это при работе с системами с более низким напряжением, такими как автомобильные или развлекательные аккумуляторы или низковольтное освещение, все из которых способны обеспечивать очень высокие токи. Возгорание может быть вызвано перегревом из-за перегрузки штепсельной розетки или слишком сильным током, протекающим через определенный компонент или провод.

Используйте правильный предохранитель

Важным шагом на пути к защите от пожара является использование предохранителя правильного размера.В самодельных проектах следует выбирать предохранитель, который указан выше, но как можно ближе к максимальному току, который будет потреблять цепь.

Другой фактор, контролируемый проектировщиком схемы, — это обеспечение того, чтобы все компоненты и кабели были рассчитаны в пределах, превышающих максимальный ток, потребляемый схемой. Это не должно быть проблемой для слаботочных сигналов в типичной цепи, но это необходимо учитывать при переключении больших нагрузок, таких как освещение, двигатели и т. Д.

Также убедитесь, что все горячие предметы хранятся вдали от легковоспламеняющихся материалов. Одним из примеров является обеспечение того, чтобы осветительные приборы не соприкасались напрямую с занавесками, которые иногда могут выдуть сквозняком через открытое окно.

Бернс

Очевидно, что существует риск ожога во время пайки, но существует также риск прикосновения к компоненту после того, как он нагрелся. Светильники хорошо известны своим нагревом, но другие компоненты, такие как тиристоры и симисторы, которые переключают большие нагрузки, также могут вызвать ожоги при прикосновении.

Опасные инструменты

Всегда читайте предупреждающие инструкции, прилагаемые к инструментам. Я особенно думаю о металлообрабатывающих инструментах, используемых при создании дома для вашего нового творения, но вы также можете использовать электроинструменты в самой цепи, такие как вращающиеся инструменты и тепловые пушки, используемые с термоусадочной изоляцией.

Помните, что предупреждения появляются не просто так. Возможно, вы просверлили сотни отверстий с помощью электродрели, но первый металлический осколок в глазу может необратимо повредить ваше зрение.Всегда надевайте защитные очки / перчатки там, где это указано в инструкции.

Опасные химические вещества

Если вы собираетесь изготавливать свои собственные печатные платы, то существуют опасные химические вещества, с которыми необходимо обращаться осторожно, а также утилизировать безопасным способом, чтобы не нанести вред местной дикой природе. Всегда читайте инструкции, прилагаемые к вашим химическим веществам, и обращайтесь к своему поставщику, если у вас есть какие-либо сомнения относительно рисков и способов их надлежащей утилизации.

Есть еще

Это руководство должно дать вам хорошее начало, но могут быть и другие вещи, которые я пропустил, или различия с различными электрическими системами в других странах. Если вы считаете, что нужно добавить что-нибудь еще, дайте мне знать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *