Самодельные блоки питания схемы: ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Содержание

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире.

Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

   Форум по БП

   Форум по обсуждению материала ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ




ПРИСТАВКИ К МУЛЬТИМЕТРУ

Сборник из 10 конструкций и схем приставок к цифровым мультиметрам, расширяющих функционал измерительных приборов.


Схемы самодельных блоков питания


Как из бесперебойника (UPS, ИБП) сделать лабораторный блок питания (0-12В, 5А)

Как неисправный или устаревший источник бесперебойного питания (UPS) переделать в лабораторный источник питания для радиолюбителя. Основное назначение источников бесперебойного питания (ИБП) — непродолжительное питание различной офисной техники (в первую очередь, компьютеров) в аварийных .

..

4 2917 1

Мощный линейный источник питания на полевых транзисторах (13В, 20А)

Схема мощного источника питания на полевых транзисторах, обеспечивающего стабилизированное напряжение 13В при токах до 20А и больше.

2 6662 4

Схема мощного двухполярного стабилизатора напряжения для УМЗЧ (41В, 4А)

Описание и принципиальная схема мощного двуполярного стабилизатора напряжения для питания усилителей мощности звуковой частоты, 2 х 41В, ток 4А. Компенсационные стабилизаторы напряжения непрерывного действия последовательного типа обладают невысоким КПД, однако большим коэффициентом стабилизации …

1 1177 0

Стабилизированный лабораторный блок питания на 1,3-30V при токе 0-5A

Приводится принципиальная схема самодельного блока питания позволяющего получить напряжения от 1,3В до 30В при токах от 0А до 5А, работает в режиме стабилизации напряжения и тока.

3 5299 0

Схема лабораторного блока питания для налаживания усилителей ЗЧ

В радиолюбительской практике нередки случаи выхода из строя мощного УМЗЧ в процессе его налаживания или ремонта.

При этом, как правило, бывают повреждены самые дорогостоящие детали — мощные выходные транзисторы. Чтобы избежать таких последствий, необходим специализированный блок питания …

0 1631 0

Сетевой блок питания на 1,5В для электромеханических часов

Электромеханические часы обычно питаются от элемента на 1,5V. Его можно заменить сетевым источником, схема которого показана здесь. В ней в качестве стабилитрона используется ИК-светодиод с прямым напряжением около 1,5V. Механизм часов питается от этого напряжения. Рис. 1. Схема сетевого …

0 1225 0

Схемы микромощных сетевых блоков питания на основе микросхемы PT4515

Три варианта сетевых бестрансформаторных микромощных источников питания с выходным током единицы-десятки миллиампер на основе микросхемы РТ4515. Эта микросхема широко применяется в светодиодных лампах. Для управления симисторами, три-нисторами, полевыми транзисторами и т. п., коммутирующими …

1 10773 0

Схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт (IR2153, IR2155)

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует …

3 5993 4

Бестрансформаторный источник питания (IRF730, 7805, VN2460N8, SR037)

Принципиальная схема простого бестрансформаторного блока питания из доступных деталей, два варианта. В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания. Обычно, они представляют собой своеобразный симбиоз параметрического стабилизатора …

0 2161 0

Блок питания на 9В с таймером (CD4069, NJM4020)

Схема простого блока питания, который может отключаться от сети через некоторое время после включения. Это время устанавливается плавно (переменным резистором) в пределах от 10 минут до 2 часов. Блок можно использовать там, где нужно выключать какую-то батарейную аппаратуру, питающуюся от сетевого …

1 885 0

1 2  3  4  5  . .. 14 

Радиодетали, электронные блоки и игрушки из китая:

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Лабораторный блок питания PS-1503D — это практически самый дешевый регулируемый китайский блок питания из представленных на Али. Технические данные лабораторного источника питания постоянного тока: модель: …

Представляем обзор простого блока питания в стиле «сделай сам» на основе готовых электронных модулей, заказанных у китайских друзей. Такой подход здорово экономит время и деньги, …

Всем привет, вот ещё одна интересная схемка — простой симметричный источник питания. Это не полноценный лабораторный источник питания, так что не нужно слишком много от …

Хочу поделиться схемой универсального лабораторного блока питания 0-22 В, 0-2,5 А.

БП имеет полностью цифровой контроль. Устройство работает безупречно уже третий год, только внес изменения …

Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …

В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …

Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. …

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …

Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения.

Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …

Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …

Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …

Радиосхемы. — Источники питания

Раздел

Схемы блоков питания, теория построения источников питания

Для любой аппаратуры требуется электропитание.

В некоторых случаях электроэнергию можно получить от электрохимических источников (батареек или аккумуляторов), но это когда речь идет о носимых устройствах, но на практике мы чаще всего используем промышленную сеть 220 Вольт, и вот здесь возникает целый ряд вопросов: ведь это напряжение необходимо преобразовывать: уменьшить (а иногда и увеличить), выпрямить, стабилизировать и так далее…

Устройства, которые преобразовывают электроэнергию принять называть вторичными источниками питания или просто блок питания (под понятием «первичный источник питания» подразумеваются химические источники) или просто блок питания, и именно блокам питания и посвящен данный раздел: здесь Вы сможете ознакомиться с теорией построения блоков питания, а также найдете различные схемы блоков питания.

Теория построения блоков питания

Параметрический стабилизатор
Компенсационный стабилизатор
Специализированные микросхемы стабилизаторов напряжения
Умножитель напряжения
Устройство импульсного источника питания
Защита стабилизаторов от перегрева
Транзисторные стабилизаторы с защитой от перегрузки (теория)

Практические схемы источников питания

Электронный ЛАТР
Регулятор температуры паяльника
Стабилизатор температуры паяльника
Стабилизированный Блок питания на 35 Вольт
Стабилизатор напряжения с защитой 13V/10A
Зарядное устройство для никель-кадмиевых аккумуляторов
Безтрансформаторный преобразователь напряжения
Бестрансформаторный удвоитель напряжения для малогабаритных устройств
Регулируемый источник питания 1. ..29V, 2A
Блок питания 13V, 20A
Схемы стабилизированных блоков питания
Блоки питания с регулировкой
Простой регулятор мощности


Блок питания с регулировкой напряжения и тока
Стабилизатор напряжения 0…25V с защитой по току
Зарядное устройство из компьютерного блока питания
Блок питания на 3V
Блок питания 13V, 20A на микросхеме серии КРЕН
Как увеличить мощность КРЕНки до 20 Ампер
Еще раз об увеличении мощности КРЕН8А
Импульсный блок питания для усилителя
Преобразователь напряжения 12-220V
Преобразователь 12V-220V на трансформаторе от компьютерного блока питания
Импульсные преобразователи напряжения
Электронный предохранитель
Устройство защиты радиоаппаратуры от повышенного и пониженного напряжения
Самодельный бесперебойник
Компьютерный блок питания в радиолюбительских конструкциях
Регуляторы напряжения с компаратором
Регуляторы постоянного напряжения на таймере 555
Регуляторы постоянного напряжения на ждущих мультивибраторах и и счетчиках
ШИМ-регулятор на простой логике
ШИМ-регулятор на операционном усилителе
Блок питания для цифровых и аналоговых микросхем
Преобразователь для питания варикапа
Стабилизатор с защитой от КЗ
Дополнительная цепь к регулируемому стабилизатору с цель защиты
Стабилизатор с установкой порогового тока для защиты
Электронно-механическое устройство защиты от перегрузки
Защита от перегрузки по току с использованием динисторного оптрона
Светодиодные индикаторы перегрузки по току
Электронный предохранитель до 10 Ампер
Схемы защиты устройств от всплесков тока и напряжения
Устройство защиты галогенных ламп
Аварийная защита низковольтной аппаратуры
Ограничитель пускового тока
Преобразователь напряжения 12В-220В для электробритвы
Звуковой сигнализатор перегрузки блока питания
Самовосстанавливающийся предохранитель на 12 Вольт
Регулируемый электронный предохранитель
Защита блока питания от КЗ
Стабилизатор напряжения К142ЕН2 и его применение
Мощный стабилизированный инвертор 24- 220 Вольт
Высоковольтный преобразователь напряжения
Преобразователи напряжения из 4,5В в двуполярное 15В
Преобразователь сетевого напряжения в трехфазное
Мощный двухполярный источник питания для лабораторных целей
Источник питания с регулировкой полярности
Зарядное устройство с цифровыми микросхемами
Не сложный импульсный стабилизатор
Транзисторный стабилизатор 9V с системой защиты
Стабилизатор переменного напряжения
Сигнализаторы разряда элементов питания
Стабилизатор напряжения на микросхеме К142ЕН2
Стабилизатор сетевого напряжения
Стабилизатор тока до 150 А
Стабилизированный источник питания с защитой от перегрузки
Преобразователь 1,5V в 9V
Ступенчатое включение мощной нагрузки
Тиристорный преобразователь 12V в 220V
Двуполярное напряжение от батарейки «Крона»
Уменьшение пульсаций выходного напряжения
Универсальное зарядное устройство
Универсальный блок питания на микросхеме КР142ЕН12
Устройство аварийного электропитания
Регулируемый стабилизатор тока
Регулируемое двуполярное из однополярного
Регулятор мощности не создающий помех
Регулятор сетевого напряжения
Тиристорный регулятор тока
Регулятор мощности для активной нагрузки
Преобразователь напряжения 12/220В-50Гц
Импульсный источник питания 30 вольт, 200 Вт
Преобразователь напряжения с 4,5 на 15 В
Преобразователь напряжения 12V-30V
Автоматическое отключение аккумуляторной батареи
Бесперебойное питание для цифровых микросхем
Стабилизированный блок питания 1-40V с защитой от перегрузки
Лабораторный блок питания 0-20V
Трехфазный инвертор для электродвигателей
Импульсный блок питания для мощного УМЗЧ
Резервный преобразователь напряжения
Электронный предохранитель для устройств с питанием до 25 Вольт
Электронный предохранитель 12V/1A
Преобразователь 50Гц\ 60Гц
Усовершенствованный лабораторный блок питания
Высоковольтный преобразователь
Устройство защиты источника питания от перегрузки
Симисторный регулятор повышенной мощности
Устройство для зарядки малогабаритных аккумуляторов
Мягкое включение УНЧ
Таймер для зарядки аккумулятора
Импульсный стабилизатор напряжения с высоким КПД
Универсальный эквивалент нагрузки для ремонта и настройки источников питания
Преобразователь напряжения для цифровых микросхем
Регулируемый стабилизатор напряжения и тока
Стабилизированный регулятор мощности для изменяющейся нагрузки
Блок бесперебойного питания
Импульсный понижающий стабилизатор 24V-12V
Лабораторный блок питания 5. ..100 Вольт
Звуковой сигнализатор разряда аккумулятора
Стабилизатор тока до 150 Ампер
Ограничение зарядного тока конденсаторов
Ni-Cd аккумуляторы и их эксплуатация
Импульсный сетевой источник 5 В с высокими параметрами
Зарядное устройство для Ni-Cd аккумуляторов
Преобразователь 12- 220V и зарядное устройство
Двуполярный источник питания на основе «электронного трансформатора»
Малогабаритный мощный стабилизатор 12V
Блок питания отключающийся без нагрузки
Преобразователь 12V- 24V на ячейке логической микросхемы
Двуполярное стабилизированное напряжение 5V из однополярного 12V
Преобразователь напряжения 12V\ 220V 50Гц
Регулируемый двуполярный блок питания с искусственной «средней точкой»
Стабилизированный блок питания 3V для аудиоплеера
Маломощный импульсный двуполярный
Агрегаты тиристорные серий ТЕ, ТП, ТПР, ТЕР схемы и документация
Источник опорного напряжения ИОНА
Мощный лабораторный источник с защитой и регулировкой
Вариант мощного двуполярного стабилизатора напряжения
Лабораторный источник питания с защитой и индикацией перегрузки
Преобразователь 12-220 вольт на NE555

как сделать своими руками пошагово

Занимаясь проектированием и конструированием различных электронных схем, не обойтись без надежного блока питания с регулируемым напряжением. Сегодня предлагаются различные конструкции: как сложные, так и простые. Узнайте, как сделать блок питания от 0 до 30 В на 10 ампер своими руками по пошаговым инструкциям со схемами и фото-примерами процесса сборки.

Варианты БП для самостоятельного монтажа

Блок питания выбирают исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также узнаем, как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе, благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное — подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Читайте также: УНЧ на транзисторах своими руками

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для зарядки АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В, и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Для размещения элементов схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлены на фото.

Читайте также: Мощный отпугиватель собак своими руками

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.


Блок питания 12В сделать самому своими руками. Самодельный блок питания: схема

Изготовить блок питания 12В своими руками несложно, но для этого вам потребуется изучить немного теории. В частности, из каких узлов состоит блок, за что отвечает каждый элемент изделия, основные параметры каждого. Также важно знать, какие трансформаторы необходимо использовать. Если нет подходящего, то можно перемотать вторичную обмотку самостоятельно для получения нужного напряжения на выходе. Нелишним будет узнать о методах травления печатных плат, а также про изготовление корпуса блока питания.

Основной элемент любого блока питания – это понижающий трансформатор. При его помощи происходит снижение напряжения в сети (220 Вольт) до 12 В. В конструкциях, рассмотренных ниже, можно использовать как самодельные трансформаторы с перемотанной вторичной обмоткой, так и готовые изделия, без модернизации. Нужно только учитывать все особенности и проводить правильный расчет сечения провода и количества витков.


Что такое трансформатор

Трансформаторы, используемые для выпрямителей, имеют следующие компоненты:

  1. Сердечник (магнитопровод, изготовленный из металла либо ферромагнетика).
  2. Сетевую обмоту (первичная). Запитывается от 220 Вольт.
  3. Вторичную обмотку (понижающую). Служит для подключения выпрямителя.

Теперь обо всех элементах более подробно. Сердечник может иметь любую форму, но наиболее распространены Ш-образные и U-образные. Реже встречаются тороидальные, но у них специфика иная, чаще применяются в инверторах (преобразователях напряжения, например, из 12 в 220 Вольт), нежели в обычных выпрямительных устройствах. Блок питания 12В 2А целесообразнее делать с использованием трансформатора, имеющего Ш-образный или U-образный сердечник.

Обмотки могут располагаться как друг на друге (сначала первичная, а после вторичная), на одном каркасе, так и на двух катушках. В качестве примера можно привести трансформатор с U-образным сердечником, на котором имеются две катушки. На каждой из них произведена намотка половины первичной и вторичной обмоток. При подключении трансформатора требуется соединять выводы последовательно.

Как произвести расчет трансформатора

Допустим, вы решили намотать вторичную обмотку трансформатора самостоятельно. Для этого вам надо будет узнать величину главного параметра – напряжения, которое можно будет снять с одного витка. Это самый простой способ, которым можно воспользоваться при изготовлении трансформатора. Намного сложнее вычислить все параметры, если требуется намотка не только вторичной, но и первичной обмотки. Необходимо для этого знать сечение магнитопровода, его проницаемость и свойства. Если рассчитывать блок питания 12В 5А самому, то этот вариант получается более точным, нежели подстраиваться под готовые параметры.

Первичную обмотку наматывать сложнее, чем вторичную, так как в ней может быть несколько тысяч витков тонкого провода. Можно упростить задачу и самодельный блок питания изготовить при помощи специального станка.

Чтобы рассчитать вторичную обмотку, нужно намотать 10 витков тем проводом, который планируете использовать. Соберите трансформатор и, соблюдая технику безопасности, подключите его первичную обмотку к сети. Проведите замер напряжения на выводах вторичной обмотки, полученное значение разделите на 10. Теперь число 12 разделите на полученное значение. И получаете количество витков, необходимое для вырабатывания 12 Вольт. Можно добавить немного, чтобы компенсировать падение напряжения (достаточно увеличить на 10%).

Диоды для блока питания

Выбор полупроводниковых диодов, используемых в выпрямителе блока питания, напрямую зависит от того, какие значения параметров трансформатора необходимо получить. Чем больше сила тока на вторичной обмотке, тем мощнее диоды необходимо использовать. Предпочтение стоит отдавать тем деталям, которые изготовлены на основе кремния. Но не стоит брать высокочастотные, так как они не предназначены для использования в выпрямительных устройствах. Их основное предназначение – детектирование высокочастотного сигнала в радиоприемных и передающих устройствах.

Идеальное решение для маломощных блоков питания – это применение диодных сборок, блок питания 12В 5А с их помощью можно разместить в гораздо меньшем корпусе. Диодные сборки — это набор из четырех полупроводниковых диодов. Используются они исключительно для выпрямления переменного тока. Работать с ними гораздо удобней, не нужно делать много соединений, достаточно на два вывода подать напряжение от вторичной обмотки трансформатора, а с оставшихся снять постоянное.

Стабилизация напряжения

После изготовления трансформатора обязательно проведите замер напряжения на выводах его вторичной обмотки. Если оно превышает значение 12 Вольт, то необходимо провести стабилизацию. Даже самый простой блок питания 12В плохо будет работать без этого. Следует учесть, что в питающей сети величина напряжения непостоянна. Подключите вольтметр к розетке и проведите замеры в разное время. Так, например, днем оно может подскочить до 240 Вольт, а вечером опуститься даже до 180. Все зависит от нагрузки на линию электропередач.

Если у вас в первичной обмотке трансформатора изменяется напряжение, то оно будет нестабильно и во вторичной. Чтобы компенсировать это, нужно применить устройства, называемые стабилизаторами напряжения. В нашем случае можно использовать стабилитроны с подходящей величиной параметров (тока и напряжения). Стабилитронов множество, подберите необходимые элементы до того, как делать 12В блок питания.

Существуют и более «продвинутые» элементы (типа КР142ЕН12), которые представляют собой комплект из нескольких стабилитронов и пассивных элементов. Их характеристики намного лучше. Также встречаются и зарубежные аналоги подобных устройств. Необходимо познакомиться с этими элементами до того, как сделать 12В блок питания вы решите самостоятельно.

Особенности импульсных блоков питания

Блоки питания такого типа нашли широкое применение в персональных компьютерах. У них на выходе имеется два значения напряжения: 12 Вольт — для питания приводов дисководов, 5 Вольт — для функционирования микропроцессоров и иных устройств. Отличие от простых блоков питания состоит в том, что на выходе сигнал не постоянный, а импульсный – по форме похож на прямоугольники. В первый период времени сигнал появляется, во второй он равен нулю.

Также имеются отличия и в схеме устройства. Для нормального функционирования самодельный импульсный блок питания нуждается в выпрямлении сетевого напряжения без предварительного понижения его значения (на входе отсутствует трансформатор). Использовать импульсные блоки питания можно как самостоятельные устройства, так и их модернизированные аналоги – аккумуляторные батареи. В итоге можно получить простейший бесперебойник, причем его мощность будет зависеть от параметров блока питания и типа используемых батарей.

Как получить бесперебойное питание?

Блок питания достаточно подключить параллельно аккумуляторной батарее, чтобы при выключении электричества все устройства продолжили работать в нормальном режиме. При подключенной сети блок питания производит зарядку батареи, принцип схож с работой электроснабжения автомобиля. А когда бесперебойный блок питания 12В отключаете от сети, происходит подача напряжения на всю аппаратуру от аккумулятора.

Но бывают случаи, когда необходимо на выходе получить сетевое напряжение 220 Вольт, например, для питания персональных компьютеров. В этом случае потребуется внедрение в схему инвертора – устройства, которое преобразует постоянное напряжение 12 Вольт в переменное 220. Схема оказывается сложнее, нежели у простого блока питания, но собрать его можно.

Фильтрация и отсечение переменной составляющей

Важное место в выпрямительной технике занимают фильтры. Взгляните на блок питания 12В, схема которого наиболее распространена. Она состоит из диодного моста, конденсатора, сопротивления. Фильтры отсекают все лишние гармоники, оставляя на выходе блока питания постоянное напряжение. Например, простейший фильтр – это электролитический конденсатор с большой емкостью. Если взглянуть на его работу при постоянном и переменном напряжениях, то становится ясен его принцип функционирования.

В первом случае он имеет определенное сопротивление и в схеме замещения он может быть заменен на постоянный резистор. Актуально это для проведения расчетов по теоремам Кирхгофа.

Во втором случае (при протекании переменного тока) конденсатор становится проводником. Другими словами, его можно заменить перемычкой, у которой нет сопротивления. Она соединит оба выхода. При более подробном изучении можно увидеть, что переменная составляющая уйдет, ведь выходы замыкаются во время протекании тока. Останется только постоянное напряжение. Кроме того, для быстрого разряда конденсаторов собираемый блок питания 12В своими руками необходимо на выходе укомплектовать резистором с большим сопротивлением (3-5 МОм).

Изготовление корпуса

Для изготовления корпуса блока питания идеально подойдут алюминиевые уголки и пластины. Сначала необходимо сделать своеобразный скелет конструкции, который впоследствии можно обшить листами из алюминия подходящей формы. Для уменьшения веса блока питания можно в качестве обшивки использовать более тонкий металл. Изготовить блок питания 12В своими руками из таких подручных материалов несложно.

Идеально подойдет корпус от микроволновой печи. Во-первых, металл достаточно тонкий и легкий. Во-вторых, если сделать все аккуратно, то лакокрасочное покрытие не повредится, поэтому внешний вид останется привлекательным. В-третьих, размер обшивки микроволновой печи довольно большой, что позволяет сделать практически любой корпус.

Изготовление печатной платы

Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в резиновых перчатках, чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок печатной платы.

Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги перманентным маркером. Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.

Как протравить плату

Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.

Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа – плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.

Монтаж компонентов

После процедуры травления вам потребуется ополоснуть плату, очистить от защитного слоя дорожки, обезжирить их. Наметьте расположение всех элементов, просверлите отверстия для них. Больше 1,2-мм сверло не стоит применять. Установите все элементы и припаяйте их к дорожкам. После этого необходимо все дорожки покрыть слоем олова, т. е. произвести их лужение. Изготовленный блок питания 12В своими руками с лужением монтажных дорожек прослужит вам намного дольше.

характеристика, схемы, как сделать своими руками

Автор otransformatore На чтение 8 мин Опубликовано

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

(1/N)~F*S*B

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

12В

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

3.3 В

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Проектирование простых схем питания

В статье подробно рассказывается, как спроектировать и построить простую схему источника питания, начиная с базовой конструкции и заканчивая достаточно сложным источником питания с расширенными функциями.

Источник питания незаменим

Будь то новичок в области электроники или опытный инженер, всем необходим этот незаменимый элемент оборудования, называемый блоком питания.

Это связано с тем, что никакая электроника не может работать без питания, а точнее, низковольтного источника постоянного тока, а блок питания — это устройство, которое специально предназначено для выполнения этой цели.

Если это оборудование так важно, всем в этой области необходимо изучить все мельчайшие подробности этого важного члена электронного семейства.

Давайте начнем и узнаем, как спроектировать схему источника питания, сначала простейшую, вероятно, для новичков, которые сочтут эту информацию чрезвычайно полезной.
Базовая схема источника питания требует трех основных компонентов для обеспечения желаемых результатов.
Трансформатор, диод и конденсатор.Трансформатор — это устройство, которое имеет два набора обмоток, одна первичная, а другая вторичная.

Сеть 220 В или 120 В подается на первичную обмотку, которая передается на вторичную обмотку, чтобы создать там более низкое наведенное напряжение.

Низкое пониженное напряжение, доступное на вторичной обмотке трансформатора, используется для предполагаемого применения в электронных схемах, однако, прежде чем это вторичное напряжение может быть использовано, его необходимо сначала выпрямить, что означает, что напряжение должно быть преобразовано в постоянный ток. первый.

Например, если вторичная обмотка трансформатора рассчитана на 12 вольт, то полученные 12 вольт от вторичной обмотки трансформатора будут 12 вольт переменного тока через соответствующие провода.

Электронная схема никогда не может работать с переменным током, поэтому это напряжение должно быть преобразовано в постоянное.

Диод — это одно устройство, которое эффективно преобразует переменный ток в постоянный, существует три конфигурации, с помощью которых могут быть сконфигурированы основные конструкции источника питания.


Вы также можете узнать, как разработать настольный источник питания


Использование одного диода:

Самая простая и грубая форма конструкции источника питания — это тот, который использует один диод и конденсатор.Поскольку один диод будет выпрямлять только половину цикла сигнала переменного тока, для этого типа конфигурации требуется большой конденсатор выходного фильтра для компенсации вышеуказанного ограничения.

Фильтрующий конденсатор гарантирует, что после выпрямления на участках падения или убывания результирующей диаграммы направленности постоянного тока, где напряжение имеет тенденцию к падению, эти участки заполняются и покрываются накопленной энергией внутри конденсатора.

Вышеупомянутая компенсация за счет накопленной энергии конденсаторов помогает поддерживать чистый и свободный от пульсаций выход постоянного тока, что было бы невозможно только с помощью одних диодов.

Для конструкции источника питания с одним диодом вторичная обмотка трансформатора должна иметь только одну обмотку с двумя концами.

Однако вышеупомянутая конфигурация не может считаться эффективной конструкцией источника питания из-за ее грубого полуволнового выпрямления и ограниченных возможностей формирования выходного сигнала.

Использование двух диодов:

Использование пары диодов для создания источника питания требует трансформатора с центральной вторичной обмоткой с ответвлениями. На схеме показано, как диоды подключаются к трансформатору.

Хотя два диода работают в тандеме и обрабатывают обе половины сигнала переменного тока и производят двухполупериодное выпрямление, используемый метод неэффективен, потому что в любой момент используется только одна половина обмотки трансформатора. Это приводит к плохому насыщению сердечника и ненужному нагреву трансформатора, что делает этот тип конфигурации источника питания менее эффективной и обычной конструкцией.

Использование четырех диодов:

Это лучшая и общепринятая форма конфигурации источника питания с точки зрения процесса выпрямления.

Продуманное использование четырех диодов делает работу очень простой, достаточно только одной вторичной обмотки, насыщение сердечника идеально оптимизировано, что приводит к эффективному преобразованию переменного тока в постоянный.

На рисунке показано, как делается двухполупериодный выпрямленный источник питания с использованием четырех диодов и конденсатора фильтра с относительно низким номиналом.

Этот тип диодной конфигурации широко известен как мостовая сеть. Возможно, вы захотите узнать, как построить мостовой выпрямитель.

Все вышеперечисленные конструкции источников питания обеспечивают выходы с обычным регулированием и поэтому не могут считаться идеальными, они не обеспечивают идеальных выходов постоянного тока и поэтому нежелательны для многих сложных электронных схем. Кроме того, эти конфигурации не включают в себя функции управления переменным напряжением и током.

Однако вышеупомянутые функции могут быть просто интегрированы в вышеуказанные конструкции, а не в последнюю двухполупериодную конфигурацию источника питания за счет введения одной ИС и нескольких других пассивных компонентов.

Использование IC LM317 или LM338:

IC LM 317 — универсальное устройство, которое обычно объединяется с источниками питания для получения хорошо регулируемых и регулируемых выходов напряжения / тока. Несколько примеров схем источника питания, использующих эту микросхему

Поскольку указанная выше микросхема может поддерживать максимум 1,5 А, для более высоких выходных токов можно использовать другое аналогичное устройство, но с более высокими номиналами. IC LM 338 работает точно так же, как LM 317, но может выдерживать ток до 5 ампер.Ниже показан простой дизайн.

Для получения фиксированных уровней напряжения ИС серии 78ХХ могут использоваться с описанными выше схемами питания. ИС 78XX подробно описаны для вашего обращения.

В настоящее время бестрансформаторные источники питания SMPS становятся фаворитами среди пользователей благодаря их высокой эффективности, высокой мощности, обеспечивающей функции при удивительно компактных размерах.
Хотя создание схемы источника питания SMPS в домашних условиях, безусловно, не для новичков в этой области, инженеры и энтузиасты, обладающие всесторонними знаниями в этой области, могут заняться построением таких схем в домашних условиях.

Вы также можете узнать об аккуратной конструкции блока питания с переключателем режимов.

Есть несколько других форм источников питания, которые могут быть построены даже начинающими любителями электроники и не требуют трансформаторов. Хотя эти типы цепей питания очень дешевы и просты в изготовлении, они не могут поддерживать большой ток и обычно ограничиваются 200 мА или около того.

Конструкция бестрансформаторного источника питания

Две концепции вышеупомянутых схем безтрансформаторного источника питания обсуждаются в следующих парах сообщений:

С использованием высоковольтных конденсаторов,

С помощью Hi-End ICs и FET

Обратная связь от одного из преданных читателей этого блога

Уважаемый Свагатам Маджумдар,

Я хочу сделать блок питания для микроконтроллера и его зависимых компонентов…

Я хочу получить стабильный выход + 5В и + 3,3В от блока питания, я не уверен в возрасте усилителя, но думаю, что всего 5А должно быть достаточно, также будет 5V Mouse и 5V Клавиатура, 3 микросхемы SN74HC595 и 2 SRAM по 512 Кб … Так что я действительно не знаю, к какому возрасту усилителя нужно стремиться ….

Полагаю, 5 ампер достаточно? …. Мой ГЛАВНЫЙ вопрос — какой ТРАНСФОРМАТОР использовать использовать и какие ДИОДЫ использовать? Я выбрал трансформатор после того, как прочитал где-то в Интернете, что мостовой выпрямитель вызывает ПАДЕНИЕ НАПРЯЖЕНИЯ на 1.4V в целом и в вашем блоге выше вы заявляете, что мостовой чтец вызовет повышение напряжения? …

ТАК Я не уверен (в любом случае не уверен, что я новичок в электронике) ….. ПЕРВЫЙ трансформатор, который я выбрал был этот. Пожалуйста, посоветуйте мне, какой из них ЛУЧШЕ для моих нужд и какие ДИОДЫ тоже использовать …. Я хотел бы использовать блок питания для платы, очень похожей на эту ….

Пожалуйста, помогите мне и подскажите лучший способ сделать подходящий сетевой блок питания 220/240 В, который дает мне СТАБИЛЬНЫЕ 5 В и 3,3 В для использования с моим дизайном.Заранее спасибо.

Как получить постоянные 5 В и 3 В от цепи источника питания

Здравствуйте, вы можете добиться этого просто с помощью микросхемы 7805 для получения 5 В и добавления пары диодов 1N4007 к этим 5 В для получения примерно 3,3 В.

5 ампер выглядит слишком высоко, и я не думаю, что вам потребуется такой высокий ток, если только вы не используете этот источник питания с внешним каскадом драйвера, несущим более высокие нагрузки, такие как светодиод высокой мощности или двигатель и т. Д.

Итак, я Я уверен, что ваше требование может быть легко выполнено с помощью вышеупомянутых процедур.

для питания MCU с помощью описанной выше процедуры вы можете использовать 0-9 В или 0-12 В с током 1 ампер, диоды могут быть 1N 4007 x 4 контакта

Диоды упадут на 1,4 В, когда на входе будет постоянный ток, но когда это будет AC как от трафарета, то выход будет увеличен в 1,21 раза.

Обязательно используйте конденсатор 2200 мкФ / 25 В после моста для фильтрации.

Надеюсь, эта информация просветит вас и ответит на ваши вопросы.

На изображении выше показано, как получить 5 В и 3.Постоянная 3В от заданной цепи питания.

Как получить переменное напряжение 9 В от IC 7805

Обычно IC 7805 рассматривается как фиксированный стабилизатор напряжения 5 В. Однако с помощью простого обходного пути ИС можно превратить в схему переменного регулятора напряжения от 5 В до 9 В, как показано выше.

Здесь мы видим, что предустановка на 500 Ом добавлена ​​к центральному контакту заземления ИС, что позволяет ИС выдавать повышенное выходное значение до 9 В с током 850 мА.Предустановку можно отрегулировать для получения выходных сигналов в диапазоне от 5 В до 9 В.

Чтобы получить повышенное выходное напряжение от микросхемы 7812, вы можете обратиться к этому сообщению!

Создание фиксированной схемы стабилизатора 12 В

На приведенной выше диаграмме мы можем увидеть, как обычная микросхема стабилизатора 7805 может быть использована для создания фиксированного регулируемого выхода 5 В.

В случае, если вы хотите получить фиксированный регулируемый источник питания 12 В, ту же конфигурацию можно применить для получения требуемых результатов, как показано ниже:

Источник питания 12 В, 5 В с регулируемым напряжением

Теперь предположим, что у вас есть схемы, которым требуется двойное питание в диапазоне фиксированных напряжений 12 В и регулируемых источников питания 5 В.

Для таких приложений описанная выше конструкция может быть просто изменена путем использования микросхемы 7812, а затем микросхемы 7805 для получения требуемых выходных регулируемых источников питания 12 В и 5 В вместе, как показано ниже:

Разработка простого двойного источника питания

Во многих схемных приложениях, особенно в тех, которые используют операционные усилители, двойной источник питания становится обязательным для включения питания +/- и заземления в цепи.

Проектирование простого двойного источника питания на самом деле включает только источник питания с центральным отводом и мостовой выпрямитель, а также пару конденсаторов фильтров высокой емкости, как показано ниже: Двойное напряжение на выходе — это то, что обычно требует сложной конструкции с использованием дорогостоящих ИС.

Следующая конструкция показывает, насколько просто и дискретно можно сконфигурировать двойной источник питания с использованием нескольких BJT и нескольких резисторов.

Здесь Q1 и Q3 настроены как проходные транзисторы эмиттерного повторителя, которые определяют величину тока, которая может проходить через соответствующие выходы +/-. Здесь оно составляет около 2 ампер.

Выходное напряжение на соответствующих двойных шинах питания определяется транзисторами Q2 и Q4 вместе с их базовым резистивным делителем.

Уровни выходного напряжения можно соответствующим образом регулировать и настраивать, регулируя значения делителей потенциала, образованных резисторами R2, R3 и R5, R6.

Двойной источник питания с одним операционным усилителем

Если в вашей цепи остался дополнительный операционный усилитель, который требует двойного источника питания от одного источника, то, возможно, можно попробовать следующий простой двойной источник питания из конфигурации с одним операционным усилителем.

Резисторы R1 и R2 работают как высокоомные, и, следовательно, экономичный делитель напряжения.Операционный усилитель гарантирует, что искусственный потенциал земли всегда идентичен потенциалу между переходом R1 и R2. Соединение между R1 и R2 устанавливает взаимосвязь между парой выходных напряжений; если R1 и R2 имеют одинаковое значение, точно такое же будет обеспечено для обоих выходных напряжений, которые будут совершенно симметричными.

Это позволяет нам получить наиболее желаемую особенность схемы, а именно то, что соединение R1 / R2 не зависит от напряжения батареи! Дополнительным преимуществом этого активного делителя потенциала является то, что (в отличие от основной цепи резисторного делителя) он хорошо подстраивается к изменяющимся токам нагрузки, движущимся к линии заземления и от нее, особенно в отношении ситуаций с несимметричным током нагрузки.Вероятно, вы можете подумать об использовании разных вариантов операционных усилителей для этой схемы. 3140 и 324, как правило, являются фантастическим выбором, несмотря на то, что напряжение батареи составляет всего 4,5 В. Имейте в виду, что максимальное напряжение, которое могут выдерживать эти микросхемы, составляет не более 30 В, а максимальный ток нагрузки, который может быть переносимость операционного усилителя также будет зависеть от типа операционного усилителя.

Проектирование источника питания LM317 с фиксированными резисторами

Чрезвычайно простой источник напряжения / тока на основе LM317T, который можно использовать для зарядки никель-кадмиевых элементов или в любое время, когда необходим практический источник питания, показан ниже.

Это несложное предприятие для новичка, которое может быть сконструировано для использования со съемным сетевым адаптером, обеспечивающим нерегулируемый постоянный ток. выход. IC1 на самом деле представляет собой регулируемый регулятор типа LM317T.

Поворотный переключатель S1 выбирает настройку (постоянный ток или постоянное напряжение) вместе со значением тока или напряжения. Регулируемое напряжение может быть получено на SK3, а ток — на SK4.

Обратите внимание на наличие регулируемой настройки (положение 12), которая позволяет настраивать переменное напряжение с помощью потенциометра VR1.

Номиналы резисторов должны быть изготовлены из ближайших возможных фиксированных значений, при необходимости размещенных последовательно.

Резистор R6 рассчитан на 1 Вт, а R7 на 2 Вт, хотя оставшаяся часть может составлять 0,25 Вт. Стабилизатор напряжения IC1 317 должен быть установлен на некотором радиаторе, размер которого определяется необходимыми входными и выходными напряжениями и токами.


Простейшая схема источника питания

Эта схема источника питания проста в изготовлении и недорого. А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone. Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я построил его с расчетом на 220 В. Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Осторожно: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете. Неправильное действие может привести к серьезным повреждениям и даже смерти. Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил. Он даже включает в себя загружаемое пошаговое руководство о том, как его собрать самостоятельно.

Проектирование источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это легко найти и просто использовать.Этот компонент даст стабильное выходное напряжение от 5 В до 1,5 А.

Я могу легко понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан стабилизатор напряжения с конденсатором 0,33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов. Некоторые предлагают конденсаторы 0,1 мкФ, другие — конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода. Но эта статья о том, как построить простую схему блока питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Возможно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор емкостью 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении — просто продолжайте читать.

Преобразование из 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В. Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто.Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Это значение конденсатора не критично. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список деталей

Деталь Значение Описание
Т1 220В (или 110В) до 12В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 $.Самый дорогой компонент — трансформатор (около 10 долларов).

Поиск компонентов для цепи

Когда я не уверен, как выбрать компоненты для схемы, я обычно хожу в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar — хороший вариант.

Быстрый поиск «трансформатора» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное — около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который в основном состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, — это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

.

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не уверены на 100% в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Расскажите в комментариях ниже, как все прошло.

Настольный блок питания DIY


Здесь представлен доступный по цене настольный блок питания. Он способен обеспечить до 1,5 А, от 0 до 25 В. Схема довольно проста, и в ней используются очень распространенные электронные компоненты.


Цепь источника питания скамьи

Цепь можно разделить на три части.В первой секции, в левой части схемы, используется обычный трансформатор и выпрямительный мост для преобразования переменного тока примерно в 33 В постоянного тока. Диоды D1, D2 и C1 используются для генерации вторичного отрицательного постоянного напряжения.

В правой части схемы мы используем обычный линейный стабилизатор напряжения LM317 (U2). Обычно минимальное выходное напряжение от U2 может составлять всего 1,25 В. Чтобы генерировать выходное напряжение ниже 1,25 В и ниже 0 В, нам нужен дополнительный опорный минус (-) 1,25 В, который обеспечивается падением напряжения на D5 и D6.D5 и D6 смещаются от вторичного отрицательного постоянного напряжения через Q2, который используется как стабильный источник тока. Q2 стабилизирует падение напряжения на D5 и D6 примерно до минус (-) 1,25 В. Таким образом, с помощью P2 выходное напряжение можно регулировать от почти 0 до 25 В.

В средней части схемы мы используем второй регулятор LM317 (U1), который действует как регулируемый ограничитель тока. R6 используется как датчик тока. По мере увеличения тока падение напряжения на R6 также увеличивается, и как только оно достигает примерно 1.25 В, срабатывает внутренний ограничитель тока U1. Используя P1, мы можем отрегулировать порог ограничения тока на любом желаемом уровне.

Строительство

Схема может быть легко собрана с помощью печатной платы, представленной ниже. Подключение трансформатора к плате осуществляется обычными кабелями. Рекомендуется использовать соответствующий металлический корпус и крепление P2, P1, а также соответствующий измеритель напряжения на передней панели. Как и в любом линейном блоке питания, теплопотери увеличиваются с уменьшением выходного напряжения.Чтобы избежать срабатывания автоматического отключения LM317 из-за чрезмерного нагрева, используйте соответствующий радиатор для обоих регуляторов.

Загрузки

Нажмите, чтобы загрузить графическое изображение печатной платы и составной чертеж для настольного источника питания

Создайте простой блок питания постоянного тока

В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку).Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока. Будет много других подобных блоков питания, но этот будет вашим.

Блок питания, как мы его здесь будем называть, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.

Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку.Способы его изменения на каждом этапе объяснены ниже. В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.

Теория:

Вход переменного тока

Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц). Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.

Простой график, показывающий мощность переменного тока. Vin Marshall
Исправление

Первая ступень этого блока питания — выпрямитель. Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя.Теперь наш сигнал выглядит так:

График мощности переменного тока после отключения выпрямителя. Vin Marshall
Сглаживание

Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду. Большой конденсатор, который можно представить себе как батарею в течение очень коротких периодов времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении.С помощью конденсатора кривая напряжения выглядит так:

График мощности переменного тока при сглаживании конденсатором. Вин Маршалл
Постановление

На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня. При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, достаточно большим, чем регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения.Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.

На этом графике мощности постоянного тока нет провалов. Вин Маршалл

Что вам понадобится

Для создания этого конкретного блока питания вам потребуется следующее:

  • Шнур питания. Где-то должен быть один…
  • Переключатель SPST 120 В
  • Монтаж на панели неоновая лампа 120 В
  • 3 клеммы
  • Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум.Я использовал Radio Shack p / n 273-1512.
  • Двухполупериодный мостовой выпрямитель
  • 6800 мкФ конденсатор
  • 2x 100 нФ (точное значение не имеет значения) конденсаторы
  • 2x 1 мкФ (точное значение не имеет значения) конденсаторы
  • 7805 регулятор напряжения 5 В
  • 7812 регулятор напряжения 12 В

Инструкции

Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате.Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них. Однако это прекрасно работает. При создании этого источника питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эту конструкцию можно довольно легко изменить для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.

Полная схема блока питания. Vin Marshall

Готовый продукт выглядит так:

Внутри блока питания. Вин Маршалл

100+ Принципиальная схема блока питания с печатной платой

Вы ищете много принципиальных схем блока питания, не так ли?

Потому что различные электронные проекты должны использовать их в качестве источника энергии.

Но иногда может понадобиться сэкономить время и почерпнуть идеи.

Кроме того, они просты в сборке и дешевы.

Сначала взгляните на:

3 источник питания для электронных устройств

Давайте познакомимся с тремя наиболее типами источников питания.
Типы 1 # Батарея
Многие схемы потребляют мало энергии. Так что он может питаться от батареек.

Это маленький и простой в использовании в любом месте. Но обычно они низкого напряжения.

Таким образом…

Они лучше всего подходят для слаботочных устройств.

Но для большой нагрузки. Что нам использовать?

Лучше подойдут аккумуляторные батареи.Для многократного использования много раз, чтобы сэкономить деньги.

Мне нравится, когда мои дети ими пользуются. Потому что для него это безопасно.

Тип 2 # Солнечная энергия

Мы можем использовать его как солнечную энергию напрямую в нашей цепи.

Но…

Нам нравится использовать это солнечное зарядное устройство для аккумуляторной батареи.

Например…

Мой сын любит делать солнечный свет.

Тип 3 # Линия переменного тока

Мы используем линию переменного тока, в основном это адаптер переменного тока, как блок питания.Они компактнее и проще в использовании, чем аккумулятор.

Их можно применять для различных выходных напряжений и токов.

Когда мы в доме. мы должны использовать их вместо батарей и солнечных батарей, это сэкономит нам деньги.

Осторожно:

Мы должны использовать его осторожно. Безопасность прежде всего! Это много полезного, но также может убить вас!

Почему следует использовать линейный источник питания?

Есть много видов цепей питания. Но все их можно разделить на две группы.

  • Линейный источник питания
  • Импульсный источник питания

Как работает линейный?

Во-первых, напряжение переменного тока подается на силовой трансформатор для повышения или понижения напряжения.

Затем преобразовано в постоянное напряжение.

И далее, применительно к цепи регулятора системы.

Поддерживает напряжение и ток нагрузки.

Но…

Как работает импульсный источник питания

Без трансформатора — он преобразует мощность переменного тока напрямую в постоянное напряжение без трансформатора.

И…

Высокая частота — это постоянное напряжение преобразуется в высокочастотный сигнал переменного тока.

Затем схема регулятора внутри выдает желаемое напряжение и ток.

Линейные импульсные источники питания постоянного тока

В таблице ниже сравниваются различные параметры линейной и импульсной формы.

Спасибо: CR Источник питания Tekpower 30V 5A на Amazon

Мне нравится линейный источник питания.

Почему?

Это…

  • простая принципиальная схема
  • тихий
  • высокостабильный, прочный и тяжелый
  • низкий уровень шума, пульсации, задержки и EMI

Какой тип переключения прямо противоположный.
ОБНОВЛЕНИЕ: Теперь я также люблю импульсные источники питания постоянного тока
Читайте также: Как это работает
Вы можете полюбить это со мной.

Power Supply Learning

Я знаю, что вы не хотите терять время, хотите быстро создать цепь питания. Но ждать. Если вы новичок.

Следует хотя бы раз изучить его принципы работы. Чтобы уменьшить количество ошибок и правильно выбрать схему Я хочу легко увидеть вашу жизнь.

8 Верхние схемы питания

На нашем сайте есть очень много схем питания.Мы не можем показать вам все. Таким образом, для экономии вашего времени см. Списки ниже.

1 # Первый источник переменного тока постоянного тока, LM317

Вы можете настроить выходное напряжение от 1,25 В до 30 В при 1,5 А. Мне это нравится. Потому что… Это просто и дешево.

Подробнее: LM317 Блок питания

Например, вы можете использовать его вместо батареи на 1,5 В.

Читайте также: См. Распиновку LM317 и способы ее использования.

2 # Простой фиксированный стабилизатор постоянного тока


Вы часто смотрите на эту схему во многих устройствах.Это довольно старая схема, но очень полезная.

Потому что … Это очень просто: всего , один транзистор , стабилитрон , и резистор. Выходное напряжение зависит от стабилитрона.

Например…

Вам нужно питание 12 В, вы используете стабилитрон 12 В. Ты можешь сделать это. Я верю тебе!

Продолжить чтение »

3 # 78xx регулятор напряжения — круто!

Фиксированный стабилизатор 5 В, 6 В, 9 В, 10 В, 12 В, 1 А от IC 7805,7806,7809,7812


Это популярный фиксированный стабилизатор постоянного тока на 1 А, простой и дешевый.

Например…

Если вам требуется питание 5V 1A для цифровой схемы. Обычно здесь используется LM7805. Продолжить чтение »

Также: Изучите распиновку схемы 7805 и многое другое

4 # Простой регулируемый регулятор на 3А, LM350

Регулируемый регулятор напряжения LM350

Иногда мне нужно использовать источник переменного напряжения 3А.

Но…

LM317 не может мне легко помочь.

В скором времени мы используем LM350 Источник переменного тока .

Это лучшая линейная [электронная почта] Выход от 1,25В до 25В.

5 # Регулируемый источник постоянного тока 0-30 В, 3 А

Мы редко используем ток 3 А, который может регулировать выходное напряжение от 0 до 30 В.

Это лучший выбор.

Он использует LM723 в качестве известной ИС регулятора.

А вот схема современного дизайна, полная защита, чем у LM350T.
Продолжить чтение »

6 # Переменный источник питания, 0-50 В при 3 А

Если вам нужно использовать выходное напряжение более 30 В или отрегулируйте 0 В до 50 В.

Можно использовать. У них есть ключевые компоненты, LM723, и транзистор 2SC5200 более высокого напряжения.

Также полная защита от перегрузки.

Продолжить чтение »

7 # Собрать блок питания 12В 2А с помощью молотка

Если торопитесь и нет печатной платы. Эта идея может быть хорошей. Вы можете легко и недорого собрать адаптер 12В 2А.

С помощью молотка и улитки по деревянной доске. Кроме того, чтобы узнать больше.

8 # 15V Двойное питание для предусилителя

Если вам нужно использовать много схем с OP-AMP.

Например, предусилитель с регулятором тембра и др. Им необходимо использовать источник питания +/- 15 В.

У нас есть для вас 3 схемы схем. Читать дальше >>

Цепей много в категориях: Блоки питания.

Другие схемы линейного питания

Регулятор постоянного напряжения: 1,5 В, 3 В, 6 В, 9 В, 12 В

Низкое напряжение

Источники питания 5 В Цифровые источники питания

9 В

Низкое падение напряжения

Просто и идеи

Регулируемая схема источника питания

Что такое регулируемый источник питания? Проще говоря, это блок питания, который может регулировать выходное напряжение или ток.Но он по-прежнему имеет те же характеристики, что и фиксированный регулируемый источник питания. Он будет поддерживать стабильное напряжение при любой нагрузке.

Менее 1 А
2 А Выходной ток
3 А Выходной ток
Высокий ток (5 А вверх)
Высокое напряжение (100 В вверх)

Двухканальный регулятор и несколько напряжений

Бестрансформаторный

Источник постоянного тока

Режим переключения Цепи питания

Это импульсные блоки питания постоянного тока.Быть идеями по созданию проектов или инструментов. Потому что они имеют небольшие размеры и дешевле линейных блоков питания.

На моем сайте появляется много схем. Пока друзья не сказали, что сложно увидеть схемы или проекты, как он хочет.

Особый импульсный источник питания постоянного тока очень полезен. В приведенном ниже списке представлены идеи по созданию отличного блока питания, небольшого размера и позволяющего сэкономить деньги. Для применения или обучения.

Итак, я собираю эти схемы для облегчения доступа к интересующим меня проектам.Кроме того, они могут быть полезны и для вас.

Примеры схем

Регулятор режима переключения
Преобразователь постоянного тока в постоянный

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Amazon.com: Электронный комплект Комплект для сборки монтажной платы LM317 Регулируемый понижающий источник питания с регулируемым напряжением Модуль: Industrial & Scientific

Это набор для самостоятельной сборки, в котором необходимо самостоятельно сварить каждый компонент.
Он может вводить питание постоянного / переменного тока, но может выводить только постоянный ток.

Характеристики:
1. Отличные разъемы. Два входа и три выхода (основной и два дополнительных)
делают работу более удобной, когда основной выход подключен к разъему Banana.
2. Добавление транзистора для поддержки нагрузки для защиты. Даже регулируемый источник питания можно отрегулировать с помощью LM317T,
нагрузка будет сожжена из-за плохого контакта потенциометра.
Тогда транзистор может играть важную роль в поддержке нагрузки для защиты в это время.
3. Радиатор размером 30 * 25 * 30 мм обеспечивает LM317T достаточную площадь рассеивания.
4. Печатная плата с четырьмя углами, шпильками и гайками, что упрощает установку и обеспечивает более устойчивое размещение.
5. Совершенно новый оригинальный комплект и печатная плата A level толщиной 1,2 мм. Площадка с припоем значительно упрощает сварку.

Технические характеристики:
Размер печатной платы: 69 * 50 мм
Для входа постоянного тока: 5-35 В
Вход переменного тока: 6-25 В
Для выхода постоянного тока: 1,3-30 В
Максимальный ток: 1 А
Минимальный перепад давления: 3 В
Упаковка включает :
1 комплект LM317 регулируемая регулируемая плата модуля блока питания Детали комплекта DIY
1) Мы принимаем Alipay, West Union, TT.Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.
2) Оплата должна быть произведена в течение 15 дней с момента заказа.
3) Если вы не можете оформить заказ сразу после закрытия аукциона, подождите несколько минут и повторите попытку. Платежи должны быть завершены в течение 15 дней.

Товар будет отправлен в течение 5 рабочих дней после получения полной оплаты. Если вы не можете получить товар вовремя, пожалуйста, сначала свяжитесь с нами, мы проверим и решим проблему в ближайшее время. Мы ответим на ваше письмо в течение 24 часов. как обычно.Иногда бывает небольшая задержка из-за выходных или праздников.Если вы не можете получить нашу почту через 48 часов, пожалуйста, проверьте свой спам или свяжитесь с нами с другим м

Комплект для самостоятельного изготовления блока питания постоянного тока и тестера цепей 2 в 1 — Circuit-Pop

Итак, вы только что закончили свой проект Arduino или сборку комплекта и готовы к тестированию. Но подождите, у вас нет возможности включить его! Не бойтесь, используя этот комплект блока питания 2 в 1, вы будете настроены для питания большинства небольших электронных проектов! Этот комплект блока питания выдает стабильный 1.25 — 12 В с макс. 200 милиампер, что идеально подходит для большинства небольших проектов и комплектов. Вы также можете проверить цепи с помощью встроенного зуммера и тестера непрерывности! В этот комплект входит все необходимое, от трансформатора и кабеля питания до интегральных схем и резисторов. Обратите внимание: Этот комплект предназначен только для опытных пользователей и тех, кому удобно подключаться к сети.

Уровень сложности : Продвинутый
Время сборки : 20-40 минут
Обучающее видео любезно предоставлено удивительным создателем:


Инструкции : Каждый компонент указан на печатной плате для облегчения обращения и установки.Если у вас возникнут проблемы, свяжитесь с нами по адресу [email protected], и мы сможем вам лично помочь.

Отказ от ответственности за доставку
Мы считаем, что хорошие условия доставки — это то, что заставляет наших клиентов возвращаться. Мы хотим, чтобы вы были довольны своей покупкой в ​​Circuit-Pop. У нас есть 24-часовая служба поддержки клиентов . Если у вас возникнут какие-либо вопросы относительно ваших покупок, свяжитесь с нами по адресу support @ circuitpop.com. Время доставки может занять от 2 до 4 недель, и у нас есть службы отслеживания, чтобы вы могли следить за своей покупкой прямо к вашей двери!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *