Схема и не на транзисторах: Базовые элементы

Содержание

Базовые элементы

Базовые элементы

3.Структура и принцип работы базовых электронных элементов

Все многообразие устройств ЭВМ базируется на ограниченном наборе типовых электронных элементов. Поэтому принцип действия даже сверхсложного компьютера легко понять, если предварительно разобраться в структуре и принципе работы базовых электронных элементов, к которым относятся инвертор (ключ), вентиль и триггер.

Инвертор. На рис. 3, а представлена схема электронного ключа на биполярном транзисторе, реализующая логическую функцию «НЕ» (отрицание), а на рис. 3, б — его условное обозначение. При подаче на вход схемы сигнала низкого уровня (логического «0») транзистор будет заперт, т.е. ток через него проходить не будет, и на выходе будет сигнал высокого уровня (напряжение источника питания Еп, логическая «1»). Если же на вход схемы подать сигнал высокого уровня (логическую «1»), то транзистор «откроется», начнет пропускать электрический ток.
На его выходе за счет падения напряжения на сопротивлении нагрузки Rн установится напряжение низкого уровня (логический «0»).Таким образом, схема преобразует (инвертирует) сигналы одного уровня в другой, тем самым выполняя логическую функцию «НЕ».

Вентиль На рис. 4,а изображена схема вентиля на биполярных транзисторах, реализующего логическую функцию «И», а на рис. 4,б – его условное обозначение. Функция «И» — логическое умножение, ее результат С равен единице, когда оба аргумента, и А, и В, равны единице.

Если на входы Вх1 и Вх2 поданы сигналы низкого уровня (логические «0»), то оба транзистора закрыты, ток через них не проходит, выходное напряжение на Rн близко к 0. Пусть на один из входов подано напряжение высокого уровня (логическая «1»). Тогда соответствующий транзистор откроется, однако другой останется закрытым, и ток через транзисторы и сопротивление нагрузки Rн по-прежнему не будет проходить. Следовательно, при подаче напряжения высокого уровня лишь на один из транзисторов схема не переключается и на выходе остается напряжение низкого уровня.

И лишь при одновременной подаче на входы сигналов высокого уровня (логических «1») на выходе мы также получим сигнал высокого уровня: открытые транзисторы практически не оказывают сопротивление току, все напряжение падает на сопротивлении нагрузки, потенциал вывода Вых становится высоким.

На рис. 5, а приведена схема вентиля на биполярных транзисторах, реализующего логическую функцию «ИЛИ», а на рис. 5, б дано его условное обозначение. Функция «ИЛИ» — логическое сложение, ее результат С равен единице, если хотя бы один из аргументов равен единице.

Здесь транзисторы включены параллельно друг другу. Если оба закрыты, то их общее сопротивление велико и на выходе будет сигнал низкого уровня (логический «0»).Достаточно подать сигнал высокого уровня (логическую «1») на один из транзисторов, как схема начнет пропускать ток и на сопротивлении нагрузки установится также сигнал высокого уровня (логическая «1»).

Показано («Бинарная логика, законы алгебры логики»), что любая сколь угодно сложная логическая функция может быть разложена на комбинацию элементарных логических функций «НЕ», «И» и «ИЛИ», так что из инвертора и соответствующих вентилей можно построить электронную логическую схему, выполняющую любое запланированное действие. Там же показано, что вместо трёх вышеперечисленных логических функций, можно использовать всего лишь одну комбинированную логическую функцию «И-НЕ» или «ИЛИ-НЕ». Эти логические элементы получаются из «И» и «ИЛИ» путём переноса сопротивления нагрузки Rн из эмиттерной цепи в коллекторную (как в схеме инвертора).

Триггер.Триггером называется электронное устройство с двумя устойчивыми состояниями, одно из которых характеризуется высоким (логическая «1»), а второе низким (логический «0») уровнем выходного сигнала. Триггер состоит из двух вентилей. На рис. 6,а показан триггер, составленный из двух вентилей «ИЛИ-НЕ» (точно так же для этой цели используются и вентили «И-НЕ»), а на рис 6,б – его условное обозначение. (Анимацию можно запустить, если нажать правую клавишу мыши на рисунке и выбрать команду «Воспроизвести».)


Рассмотрим работу этой схемы. Пусть в начальный момент времени входы R, S и выход Q имеют низкий логический уровень. Для переключения триггера в состояние Q=1 необходимо на вход S подать «1».На входе соответствующего вентиля будут действовать входные логические сигналы: «0»(с выхода Q) и «1» (со входа S). На его выходе возникает инвертированная «1»,т. е. «0». Следовательно, через некоторое время Dt, в течение которого входной сигнал S=1 достигнет выхода вентиля, состояние выхода `Q изменится с «1» на «0». Теперь на входы второго вентиля будет действовать новая пара сигналов: «0» на вход R и «0» с выхода `Q. Следовательно, еще через Dt на выходе этого вентиля возникнет инвертированный сигнал «0», т. е. «1». Таким образом, через время 2Dt после подачи входного сигнала S=1 на выходе Q триггера логический «0» изменится на логическую «1». Следующее переключение триггера произойдет, если на вход R подать сигнал высокого уровня, и т. д. Триггер может работать бесперебойно лишь с периодом, не меньшим 4Dt.  В современных транзисторных вентилях Dt составляет единицы наносекунд (10

-9 с), поэтому быстродействие электронных элементов вычислительных устройств очень большое, достигающее сотен миллионов переключений в секунду.

Регистр. Из триггеров (они бывают и других типов, отличных от рассмотренного) строятся многие элементы ЭВМ, например регистры. Они предназначены для приема, временного хранения и передачи информации в двоичном коде. Каждый триггер регистра используется для ввода, хранения и вывода одного разряда двоичного числа. Регистр, предназначенный для хранения информации, называют накопительным. Существуют также сдвигающие регистры, в которых двоичную информацию можно перемещать поразрядно влево и вправо, а также счетные регистры, предназначенные для преобразования десятичных чисел в двоичные и обратно. На основе базовых элементов строятся различные микросхемы ЭВМ, например, процессор, память, сумматор, дешифратор, мультиплексор и др.

Назад   На главную


Логический элемент 2И-НЕ и его характеристики

 

1.2.  Логический элемент 2И-НЕ и его характеристики

 

Широкое распространение получили логические элементы транзисторно-транзисторной логики (ТТЛ). Рассмотрим принципиальную схему логического элемента 2И-НЕ  транзисторно-транзисторной логики со сложным  инвертором на выходе. Такие логические элементы имеют хорошую нагрузочную способность.

 

 

На рисунке 1.14,а приведена принципиальная схема одного из четырех логических элементов 2И-НЕ микросхемы К134ЛБ1, а на рисунке 1.14,б – условное обозначение этой микросхемы на принципиальных схемах. 

На рисунках  1.15,а и 1.15,в приведены принципиальные схемы логических элементов 2И-НЕ соответственно для микросхем К133ЛА3 и К155ЛА3. Каждая их этих микросхем имеет по 4 логических элемента 2И-НЕ, а их условные обозначения на принципиальных схемах совпадают (рис. 1.15,б).

Первые логические элементы ТТЛ не имели на входах защитных диодов. В момент окончания прямоугольного импульса на входе элемента в монтажных цепях цифрового устройства могут возникнуть затухающие колебания. Следствием этих колебаний может быть ложное срабатывание цифрового устройства.

В результате доработки  логических элементов к каждому входу многоэмиттерного

транзистора были подключены демпфирующие диоды. Первым отрицательным импульсом затухающего колебания демпфирующий диод открывается, и амплитуда затухающих колебаний резко уменьшается. Следующий положительный импульс затухающего колебания уже не может изменить состояние на выходе логического элемента.

Резисторы R4, R5 и транзистор VT5 в логическом элементе 2И-НЕ микросхемы К155ЛА3 (рис. 1.15,в) позволяют получить передаточную характеристику, более близкую к прямоугольной. Это повышает помехозащищенность в состоянии логической единицы на выходе элемента.

Рассмотрим работу логического элемента 2И-НЕ микросхемы К134ЛБ1 (рис. 1.14,а). Для логических элементов транзисторно-транзисторной логики напряжение логического нуля по техническим условиям может быть 0-0,4 В. Напряжение логической единицы — не менее 2,4 В и не более 5 В. Напряжение логического нуля можно подать, соединив вход элемента с общим проводом накоротко, либо через резистор малого сопротивления (не более 300 Ом). Напряжение логической единицы на вход элемента можно подать, соединив вход элемента с плюсовым проводом  питания через резистор сопротивлением  1 Ком, либо оставляя вход элемента свободным.

Пусть на входы Х1 и Х2  элемента 2И-НЕ (рис. 1.14,а) поданы напряжения логической единицы. Рассмотрим случай, когда  Х1 и Х2 никуда не подключены. В этом случае транзисторы VТ2, VТ4 будут открыты токами базы, протекающими по цепи: + источника, резистор R1, переход база-коллектор VТ1, база-эмиттер VТ2, база-эмиттер VТ4, минус источника. Транзистор VТ3 в этом случае закрыт, т.к. потенциал коллектора  транзистора VT2 примерно 0,9 В.

Рассмотрим делитель напряжения, верхнее плечо которого состоит из последовательно соединенных резистора R3, выводов коллектор-эмиттер транзистора VТ3, диода VД1, а нижнее плечо делителя – это выводы коллектор-эмиттер VТ4. В рассматриваемом случае сопротивление верхней части делителя велико, а сопротивление нижней части делителя — мало. Выходное напряжение соответствует логическому нулю.

Если хотя бы на одном из входов Х1, Х2 действует логический нуль, то VТ2, VТ4 закрыты, а  VТ3 открыт. Ток базы транзистора VT3 протекает по цепи: плюс источника питания, резистор R2, переход база-эмиттер транзистора VT3, полупроводниковый диод VD1, резистор нагрузки (на схеме не показан), минус источника питания. В этом случае сопротивление  между коллектором транзистора VT3 и катодом диода VD1 мало, а сопротивление между коллектором и эмиттером транзистора VT4 велико. Анализируя делитель напряжения, приходим к выводу, что выходное напряжение логического элемента будет соответствовать логической единице.

В вычислительной технике широко применяется устройство с тремя состояниями на выходе. Рассмотрим логический элемент НЕ (инвертор) с тремя состояниями  на выходе (рис. 1.16,а). Указанный инвертор легко получается из схемы базового логического элемента 2И-НЕ путем добавления в схему VД2.

 

Если на вход разрешения  V микросхемы подано напряжение логической «1», то диод VД2 оказывается отключенным от схемы, и данный элемент можно рассматривать как  логический  элемент НЕ. Если на входе Х логическая единица, то транзисторы VT2, VT4 будут открыты, транзистор VT3 закрыт и на выходе элемента будет сигнал логического нуля. Подадим на вход Х сигнал логического нуля. В этом случае транзисторы VT2, VT4 будут закрыты, транзистор VT3 открыт и на выходе элемента будет сигнал логической единицы.

Подадим на вход V напряжение логического «0» , в этом случае  окажутся  закрытыми  VТ2, VТ3, VТ4. Выход Y оказывается отключенным как от плюсового,  так и от минусового проводов источника питания. Говорят, что выход элемента находится в третьем высокоимпедансном состоянии (состояние высокого сопротивления, как от клеммы «+», так и от клеммы «-»  источника питания). Элементы с тремя состояниями позволяют организовать в компьютерных системах так называемую общую шину.

Элементы с тремя состояниями входят в состав шинных формирователей. Шинные формирователи  это устройства, которые обеспечивают передачу сигнала в двух направлениях  по одному и тому же проводу. В составе шинного формирователя на каждую линию потребуется 2 элемента с тремя состояниями на выходе.

На рисунке 1.16,б приведена схема логического элемента 2И-НЕ с открытым коллектором на выходе. Выходы нескольких таких элементов подключаются к одному резистору нагрузки, второй вывод которого подключен к плюсовому проводу источника питания.

На рисунке 1.17,а приведена схема подключения приборов для снятия зависимости выходного напряжения логического элемента от тока нагрузки в состоянии логической единицы на выходе элемента, а на рисунке 1.18,а – график этой зависимости. Логические элементы ТТЛ не выходят из строя при коротком замыкании нагрузки для случая логической единицы на выходе элемента, поэтому в цепи нагрузки нет необходимости ставить ограничительный резистор. Если на выходе элемента логический нуль, то при исследовании зависимости выходного напряжения от тока нагрузки необходимо в цепи нагрузки устанавливать ограничительный резистор. 

На рисунке 1. 17,б приведена схема подключения приборов для снятия зависимости выходного напряжения логического элемента от тока нагрузки в состоянии логического нуля на выходе элемента, а на рисунке 1.18,б – график этой зависимости. Сопротивление ограничительного резистора в цепи нагрузки выбирают примерно таким же, как сопротивление резистора R3 в логическом элементе 2И-НЕ (рисунок 1.15,в), т.е. примерно 100 Ом.  

По графикам, приведенным на рисунке 1.18 можно определить коэффициент разветвления или нагрузочную способность логического элемента. По графику рисунка 1.18,а найдем ток нагрузки при выходном напряжении 2,4 В. Зная, что входной ток логической единицы 40 мкА, определим, сколько таких элементов можно подключить в состоянии логической единицы на выходе данного элемента. По рисунку 1.18,б определим ток нагрузки в состоянии логического нуля на выходе элемента при напряжении 0,4 В. Зная, что входной ток логического нуля минус 1,6 мА, определим, сколько таких элементов можно подключить в состоянии логического нуля на выходе данного элемента. Наименьшее из двух полученных значений будет являться коэффициентом разветвления логического элемента. Определение коэффициента разветвления таким способом будет справедливо только для низких частот, когда влиянием входных емкостей элементов и емкости монтажа можно пренебречь.

  

На рисунке 1.19,а приведена схема для наблюдения на экране осциллографа зависимости выходного напряжения элемента от напряжения на его входе, а на рисунке 1.19,б – график этой зависимости для логического элемента 2И-НЕ ТТЛ. Диод VD1 может быть любым кремниевым малой мощности, т.к. обратное напряжение в данной схеме не превысит 5 В, а ток через диод в прямом направлении выбирается единицы миллиампер. Амплитуда переменного напряжения  на выходе источника переменного напряжения не должна превышать 10 В. График  зависимости  выходного напряжения  элемента от напряжения

на его входе называется передаточной характеристикой логического элемента. Из графика передаточной характеристики логического элемента 2И-НЕ видно, что при входных напряжениях менее 0,4 В на выходе элемента напряжение логической единицы, а при входных напряжениях более 2,4 В на выходе элемента напряжение логического нуля. Реально в логическом элементе входное напряжение логического нуля может быть больше 0,4 В, а напряжение логической единицы меньше 2,4 В. Однако, выбирать такой режим работы элемента нецелесообразно, т.к. уменьшается помехоустойчивость логического элемента.

На рисунке 1.20 приведена входная характеристика логического элемента 2И-НЕ, снятая по одному из входов элемента. На втором входе элемента напряжение логической единицы. Точка а на графике входной характеристики соответствует входному напряжению 2,4 В, а точка б – входному напряжению 0,4 В. Входной ток логической единицы не превышает 40 мкА, а входной ток логического нуля менее –1,6 мА. Знак минус означает, что ток вытекает из микросхемы.

На рисунке 1.21,а приведена схема подключения приборов для наблюдения на экране осциллографа зависимости выходного напряжения от тока нагрузки для случая, когда на выходе элемента логическая единица. Ограничительный резистор в цепи нагрузки не предусмотрен, т. к. исследуется логический элемент 2И-НЕ в состоянии логической единицы на выходе. В качестве источника U2 используется В24, с клемм «+» и «–» которого снимается пульсирующее с частотой 100 Гц напряжение. Сопротивление резистора  Rэт выбирают как можно меньше (коэффициент отклонения по каналу Х осциллографа должен быть минимальным). Если чувствительность канала Х осциллографа недостаточна, то на вход Х можно подключить предварительный усилитель. Схема усилителя к входу Х осциллографа ОМЛ-3М приведена на рисунке 1.22.

Для питания усилителя используют переменное напряжение 12 вольт. Сопротивление резистора R1 выбирают значительно больше сопротивления эталонного резистора Rэт. Выход предварительного усилителя подключают к входу «Х» осциллографа. Переменным резистором R5 проводят балансировку микросхемы DA1 при отсутствии входного сигнала. Необходимый коэффициент отклонения луча по оси Х устанавливают переменным резистором R4. Стабилитроны VD1 и VD2 выбирают с учетом того, что необходимо обеспечить перемещение луча по оси «Х» из одного крайнего положения экрана в другое при изменении постоянного напряжения на входе усилителя от 0 до максимально возможного. Расчет сопротивлений резисторов R6, R7 параметрического стабилизатора напряжения проводился с учетом того, что для питания усилителя используется  переменное напряжение 12 вольт и выбраны стабилитроны КС156А.

На рисунке 1.21,б приведена схема подключения приборов для наблюдения на экране осциллографа зависимости выходного напряжения от тока нагрузки для случая, когда на выходе элемента логическая нуль. На транзисторах VT1 и VT2 собрано токовое зеркало. Особенностью работы токового зеркала является то, что коллекторные токи обоих транзисторов одинаковы и в определенных пределах не зависят от сопротивлений нагрузок. Значения коллекторных токов определяются напряжением на резисторе R2 и сопротивлениями резисторов R1 и R3. Сопротивления резисторов R1 и R3 обычно выбирают одинаковыми. Сопротивление эталонного резистора в данной схеме не обязательно должно быть малым. Транзисторы VT1, VT2 должны иметь примерно одинаковый и достаточно большой коэффициент усиления по току.

В цифровых устройствах на входах логических элементов обычно присутствуют прямоугольные импульсы напряжения. Пусть напряжение на обоих входах логического элемента 2И-НЕ микросхемы К155ЛА3 скачком изменилось с высокого уровня на низкий (рис. 1.15,в).   В этом случае транзистор VT3начнет открываться, а транзистор VT4 – закрываться. Транзисторы открываются быстрее, чем закрываются. Поэтому в течение некоторого промежутка времени будут открыты транзисторы VT3 и VT4. Ток, потребляемый логическим элементом от источника питания, ограничивается только резистором R3. Указанный ток короткого замыкания приводит к увеличению потребляемой мощности в динамическом режиме. График зависимости потребляемой от источника питания мощности от частоты прямоугольных импульсов на входе приведен на рисунке 1.23.

 

 

Логический элемент или не кмоп технологии. Характеристики микросхем кмоп и их согласование с логическими элементами других серий

Логические КМОП (КМДП) инверторы

Микросхемы на комплементарных МОП транзисторах (КМОП-микросхемы) строятся на основе МОП транзисторов с n- и p-каналами. Один и тот же входной потенциал открывает транзистор с n-каналом и закрывает транзистор с p-каналом. При формировании логической единицы открыт верхний транзистор, а нижний закрыт. В результате ток через КМОП схему не протекает. При формировании логического нуля открыт нижний транзистор, а верхний закрыт. И в этом случае ток от источника питания через микросхему не протекает. Простейший логический элемент — это инвертор. инвертора, выполненного на комплементарных МОП транзисторах, приведена на рисунке 1.


Рисунок 1. Принципиальная схема инвертора, выполненного на комплементарных МОП транзисторах (КМОП-инвертор)

В результате этой особенности КМОП-микросхем, они обладают преимуществом перед рассмотренными ранее видами — потребляют ток в зависимости от поданной на вход тактовой частоты. Примерный график зависимости потребления тока КМОП-микросхемы в зависимости от частоты ее переключения приведен на рисунке 2


Рисунок 2. Зависимоть тока потребления КМОП микросхемы от частоты

Логические КМОП (КМДП) элементы «И»

Схема логического элемента «И-НЕ» на КМОП микросхемах практически совпадает с упрощенной схемой «И» на ключах с электронным управлением, которую мы рассматривали ранее. Отличие заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Принципиальная схема логического элемента «2И-НЕ » , выполненного на комплементарных МОП транзисторах (КМОП), приведена на рисунке 3.


Рисунок 3. Принципиальная схема логического элемента «2И-НЕ» , выполненного на комплементарных МОП транзисторах (КМОП)

В этой схеме можно было бы применить в верхнем плече обыкновенный , однако при формировании низкого уровня сигнала схема постоянно потребляла бы ток. Вместо этого, в качестве нагрузки используются p-МОП транзисторы. Эти транзисторы образуют активную нагрузку. Если на выходе требуется сформировать высокий потенциал, то транзисторы открываются, а если низкий — то закрываются.

В приведённой на рисунке 2 схеме логического КМОП-элемента «И», ток от источника питания на выход КМОП-микросхемы будет поступать через один из транзисторов, если хотя бы на одном из входов (или на обоих сразу) будет присутствовать низкий потенциал (уровень логического нуля). Если же на обоих входах логического КМОП-элемента «И» будет присутствовать уровень логической единицы, то оба p-МОП транзистора будут закрыты и на выходе КМОП микросхемы сформируется низкий потенциал. В этой схеме, так же как и в схеме, приведенной на рисунке 1, если транзисторы верхнего плеча будут открыты, то транзисторы нижнего плеча будут закрыты, поэтому в статическом состоянии ток КМОП-микросхемой от источника питания потребляться не будет.

Условно-графическое изображение КМОП логического элемента «2И-НЕ» показано на рисунке 4, а таблица истинности приведена в таблице 1. В таблице 1 входы обозначены как x 1 и x 2, а выход — F .


Рисунок 4. Условно-графическое изображение логического элемента «2И-НЕ»

Таблица 1. Таблица истинности КМОП-микросхемы, выполняющей «2И-НЕ»

x1 x2 F
0 0 1
0 1 1
1 0 1
1 1 0
«ИЛИ» , выполненный на КМОП транзисторах, представляет собой параллельное соединение ключей с электронным управлением. Отличие от упрощенной схемы «2ИЛИ», рассмотренной ранее, заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Вместо резистора в качестве нагрузки используются p-МОП транзисторы. Принципиальная схема логического элемента «2ИЛИ-НЕ» , выполненного на комплементарных МОП-транзисторах приведена на рисунке 5.
Рисунок 5. Принципиальная схема логического элемента «ИЛИ-НЕ», выполненного на комплементарных МОП транзисторах

В схеме КМОП логического элемента «2ИЛИ-НЕ» в качестве нагрузки используются последовательно включенные p-МОП транзисторы. В ней ток от источника питания на выход КМОП микросхемы будет поступать только если все транзисторы в верхнем плече будут открыты, т.е. если сразу на всех входах будет присутствовать низкий потенциал (). Если же хотя бы на одном из входов будет присутствовать уровень логической единицы, то верхнее плечо двухтактного каскада, собранного на КМОП транзисторах, будет закрыто и ток от источника питания поступать на выход КМОП-микросхемы не будет.

Таблица истинности логического элемента «2ИЛИ-НЕ» , реализуемая КМОП микросхемой, приведена в таблице 2, а условно-графическое обозначение этих элементов приведено на рисунке 6.


Рисунок 6. элемента «2ИЛИ-НЕ»

Таблица 2. Таблица истинности МОП микросхемы, выполняющей логическую функцию «2ИЛИ-НЕ»

x1 x2 F
0 0 1
0 1 0
1 0 0
1 1 0

В настоящее время именно КМОП-микросхемы получили наибольшее развитие. Причём наблюдается постоянная тенденция к снижению напряжения питания данных микросхем. Первые серии КМОП-микросхем, такие как К1561 (иностранный аналог C4000В) обладали достаточно широким диапазоном изменения напряжения питания (3..18В). При этом при понижении напряжения питания у конкретной микросхемы понижается её предельная частота работы. В дальнейшем, по мере совершенствования технологии производства, появились улучшенные КМОП-микросхемы с лучшими частотными свойствами и меньшим напряжением питания, например, SN74HC.

Особенности применения КМОП-микросхем

Первой и основной особенностью КМОП-микросхем является большое входное сопротивление этих микросхем. В результате на ее вход может наводиться любое напряжение, в том числе и равное половине напряжения питания, и храниться на нём достаточно долго. При подаче на вход КМОП-элемента половины питания открываются транзисторы как в верхнем, так и в нижнем плече выходного каскада, в результате микросхема начинает потреблять недопустимо большой ток и может выйти из строя . Вывод: входы цифровых КМОП-микросхем ни в коем случае нельзя оставлять неподключенными!

Второй особенностью КМОП-микросхем является то, что они могут работать при отключенном питании. Однако работают они чаще всего неправильно. Эта особенность связана с конструкцией входного каскада. Полная принципиальная схема КМОП-инвертора приведена на рисунке 7.


Рисунок 7. Полная принципиальная схема КМОП-инвертора

Диоды VD1 и VD2 были введены для защиты входного каскада от пробоя статическим электричеством. В то же самое время при подаче на вход КМОП-микросхемы высокого потенциала он через диод VD1 попадёт на шину питания микросхемы, и так как она потребляет достаточно малый ток, то КМОП микросхема начнёт работать. Однако в ряде случаев этого тока может не хватить для питания микросхем. В результате КМОП микросхема может работать неправильно. Вывод: при неправильной работе КМОП микросхемы тщательно проверьте питание микросхемы , особенно выводы корпуса. При плохо пропаянном выводе отрицательного питания его потенциал будет отличаться от потенциала общего провода схемы.

Четвёртая особенность КМОП-микросхем &mdash это протекание импульсного тока по цепи питания при ее переключении из нулевого состояния в единичное и наоборот. В результате при переходе с ТТЛ микросхем на КМОП микрохемы-аналоги резко увеличивается уровень помех. В ряде случаев это важно, и приходится отказываться от применения КМОП микросхем в пользу или BICMOS микросхем.

Логические уровни КМОП-микросхем

Логические уровни КМОП-микросхем существенно отличаются от . При отсутствии тока нагрузки напряжение на выходе КМОП-микросхемы совпадает с напряжением питания (логический уровень единицы) или с потенциалом общего провода (логический уровень нуля). При увеличении тока нагрузки напряжение логической единицы может уменьшается до 2,8В (U п =15В) от напряжения питания. Допустимый уровень напряжения на выходе цифровой КМОП микросхемы (серия микросхем К561) при пятивольтовом питании показан на рисунке 8.


Рисунок 8. Уровни логических сигналов на выходе цифровых КМОП-микросхем

Как уже говорилось ранее, напряжение на входе цифровой микросхемы по сравнению с выходом обычно допускается в больших пределах. Для КМОП-микросхем договорились о 30% запасе. Границы уровней логического нуля и единицы для КМОП-микросхем при пятивольтовом питании приведены на рисунке 9.


Рисунок 9. Уровни логических сигналов на входе цифровых КМОП-микросхем

При уменьшении напряжения питания границы логического нуля и логической единицы можно определить точно так же (разделить напряжение питания на 3).

Семейства КМОП-микросхем

Первые КМОП-микросхемы не имели защитных диодов на входе, поэтому их монтаж представлял значительные трудности. Это семейство микросхем серии К172. Следующее улучшенное семейство КМОП микросхем серии К176 получило эти защитные диоды. Оно достаточно распространено и в настоящее время. Серия К1561 завершает развитие первого поколения КМОП микросхем. В этом семействе было достигнуто быстродействие на уровне 90 нс и диапазон изменения напряжения питания 3 … 15В. Так как в настоящее время распространена иностранная аппаратура, то приведу иностранный аналог этих КМОП микросхем — C4000В.

Дальнейшим развитием КМОП-микросхем стала серия SN74HC. Эти микросхемы отечественного аналога не имеют. Они обладают быстродействием 27 нс и могут работать в диапазоне напряжений 2 . .. 6 В. Они совпадают по цоколёвке и функциональному ряду с , но не совместимы с ними по логическим уровням, поэтому одновременно были разработаны КМОП микросхемы серии SN74HCT (отечественный аналог — К1564), совместимые с ТТЛ микросхемами и по логическим уровням.

В это время наметился переход на трёхвольтовое питание. Для него были разработаны КМОП-микросхемы SN74ALVC с временем задержки сигнала 5,5 нс и диапазоном питания 1,65 … 3,6 В. Эти же микросхемы способны работать и при 2,5 вольтовом питании. Время задержки сигнала при этом увеличивается до 9 нс.

Наиболее перспективным семейством КМОП-микросхем в настоящее время считается семейство SN74AUC с временем задержки сигнала 1,9 нс и диапазоном питания 0,8 … 2,7 В.

Сокращение КМОП означает «комплементарный МОП-транзистор». Также иногда используется сокращение COSMOS, которое обозначает «комплементарная симметричная МОП-структура». Логические элементы этого подсемейства строятся как на «-канальных МОП-полевых транзисторах, так и на /^-канальных МОП-полевых транзисторах. Схемы этого подсемейства характеризуются ярко выраженной симметрией. При разработке схем применяют только самозапирающиеся МОП-транзисторы (см. Бойт, Электроника, ч. 2, разд. 8.2, МОП-полевые транзисторы).
Симметричность схем видна особенно хорошо в схеме элемента НЕ (рис. 6.91). Если на входе А действует Я-уровень, например +5 В, то транзистор Т2 отпирается. На его истоке и подложке 0 В. Напряжение затвор-исток UGS составляет +5 В. К истоку и подложке транзистора Тх приложены +5 В.

Если к управляющему электроду также прикладываются +5 В, то напряжение затвор-исток UGS = О В. Транзистор Тх заперт. Если Тх заперт, а Т2 открыт, то выход элемента Z имеет уровень L (рис. 6.92).
Если на входе А действует i-уровень О В, то транзистор Т2 запирается и напряжение затвор-исток UGS составляет О В. Напряжение затвор-исток транзистора Ту UGS = —5 В, так как напряжение истока +5 В, а затвора О В. Транзистор отпирается. Если Тх открыт, а Т2 заперт, выход элемента Z имеет уровень Н.
В КМОП-НЕ-элементе всегда один транзистор открыт, а другой заперт.
Если на выходе элемента НЕ действует уровень 0, то элемент практически не потребляет ток, так как Тх заперт. Если на выходе элемента НЕ действует уровень Н, то элемент также практически не потребляет ток, так как теперь Т2 заперт. Для управления последовательно включенными элементами также не требуется ток, так как полевые транзисторы практически не потребляют мощность. Только во время переключения от источника питания потребляется небольшой ток, так как оба транзистора одновременно, но недолго открыты. Один из транзисторов переходит из открытого состояния в запертое и еще не полностью заперт, а другой — из запертого в открытое и еще не полностью открыт. Также должны перезарядиться транзисторные емкости.
Все КМОП-элементы устроены так, что в токовой ветви один транзистор закрыт, а другой открыт. Энергопотребление КМОП-элементов крайне низко. Оно зависит в основном от количества переключений в секунду или частоты переключения.
КМОП-элементы отличаются малым энергопотреблением.
На рис. 6.93 изображена следующая типичная КМОП-схема. Если на обоих входах действует уровень L, то транзисторы 7’ и Т2 будут открыты, транзисторы Тг и Т4 заперты. Ту и Т2 при О В на А и В имеют UGS = — 5 В, а Т3 и Т4 имеют UGS = О В. На выходе Z действует уровень Н.
Если на входе А действует уровень Н(+5 В), а на входе 5-уровень L (О В), то Ту закрывается, а Т2 открывается. Путь от источника питания к выходу Z блокирован запертым транзистором.

Одновременно отпирается транзистор Т3 и на выходе Z действует примерно О В, то есть уровень L. Г4 заперт. Z всегда имеет уровень Z, если по крайней мере на одном входе действует уровень Н. Соответствующая схеме (рис. 6.93) рабочая таблица представлена на рис. 6.94. Схема производит при положительной логике операцию ИЛИ-НЕ.
Какую логическую операцию производит схема на рис. 6.95? Прежде всего для схемы должна быть составлена рабочая таблица. Если на обоих входах действуют Z-уровни (О В), то транзисторы Т{ и Т2 открываются (UGS = — 5 В). -канального МОП-транзистора (рис. 6.97).
Передаточный элемент работает как переключатель.
Если к Gx будет приложен уровень Н (например +5 В) и к G2 — уровень L (О В), то оба транзистора запираются. В /ьканальном МОП-транзисторе между управляющим электродом и подложкой приложено напряжение О В. Образование проводящего канала между истоком и стоком становится невозможным. Также и в я-канальном МОП-транзисторе между управляющим электродом и подложкой приложено напряжение О В. Здесь также не может возникнуть проводящий канал. Сопротивление между точками А и Zдостигает нескольких сотен МОм.
Если на Уровни на входах Gl и G2 всегда прикладываются в противофазе. Управление может происходить с помощью элемента НЕ (рис. 6.99). Получается двунаправленный ключ. У полевых транзисторов передаточного элемента исток и сток могут взаимно менять свои функции. Поэтому вывод затвора обозначается в середине его условной линии (рис. 6.99).
Интегрированные КМОП-микросхемы всегда содержат множество логических элементов, которые могут быть использованы по отдельности или как единая сложная логическая функция. На рис. 6.100 показана структура схемы CD 4000 А. Эта схема содержит два элемента ИЛИ-HE с тремя входами каждый и элемент НЕ. Схема CD 4012 А (рис. 6.101) содержит два элемента И-НЕ с четырьмя входами каждый.
Интегральные схемы арифметических логических устройств содержат очень много КМОП-элементов. На рис. 6.102 приведена схема 4-битного сдвигающего регистра. Эта схема рассмотрена подробно в гл. 8.

Рис. 6.102. Схема КМОП-4-битного сдвигового регистра CD 4015 A (RCA)

Микросхема CD 4008 А является 4-битным полным сумматором. Полные сумматоры рассматриваются подробно в гл. 10. Схема приведена здесь как пример КМОП-схемотехники (рис. 6.103).
Интегральные микросхемы в КМОП-исполнении могут производиться с очень большой плотностью элементов,
Можно схему целого калькулятора уместить в одной микросхеме. Дальнейшее совершенствование технологий ведет к повышению возможной плотности компоновки.
Напряжение питания КМОП-элементов может колебаться в широком диапазоне.
Для серии CD-4000-A (рис. 6.100—6.103) фирма-производитель RCA указывает диапазон напряжений питания от 3 В до 15 В. Типичные передаточные характеристики при ряде напряжений питания показаны на рис. 6.104.
Часто используются напряжения питания +5 В и +10 В. Для этих напряжений питания на рис. 6.105 и 6.106 показаны диаграммы уровней. Для больших напряжений питания характерна лучшая помехоустойчивость.
Разность между уровнями L и Н, отвечающая за помехоустойчивость, для КМОП-схем составляет примерно от 30% до 40% напряжения питания.
В следующей таблице приведены важнейшие параметры КМОП-эле-ментов:

Рис. 6.103. Схема КМОП-4-битного полного сумматора CD 4008 A (RCA)

Наглядный пример тому, как всё сложно запутанно в определении приоритетов научно-исследовательских работ, это микросхемы КМОП и их появление на рынке.

Дело в том, что полевой эффект, который лежит в основе МОП-структуры был открыт ещё в конце 20-х годов прошлого века, но радиотехника тогда переживала бум вакуумных приборов (радиоламп) и эффекты, обнаруженные в кристаллических структурах, были признаны бесперспективными.

Затем в 40-е годы практически заново был открыт биполярный транзистор, а уже потом, когда дальнейшие исследования и усовершенствования биполярных транзисторов показали, что это направление ведёт в тупик, учёные вспомнили про полевой эффект.

Так появился МОП-транзистор , а позднее КМОП-микросхемы. Буква К в начале аббревиатуры означает комплементарный, то есть дополняющий. На практике это означает, что в микросхемах применяются пары транзисторов с абсолютно одинаковыми параметрами, но один транзистор имеет затвор n-типа, а другой транзистор имеет затвор p-типа. На зарубежный манер микросхемы КМОП называют CMOS (Complementary Metal-Oxide Semiconductor). Также применяются сокращения КМДП, К-МОП.

Среди обычных транзисторов примером комплементарной пары являются транзисторы КТ315 и КТ361.

Сначала на рынке радиоэлектронных компонентов появилась серия К176 основанная на полевых транзисторах, и, как дальнейшее развитие этой серии, была разработана ставшая очень популярной серия К561. Эта серия включает в себя большое количество логических микросхем.

Поскольку полевые транзисторы не так критичны к напряжению питания, как биполярные, эта серия питается напряжением от +3 до +15V. Это позволяет широко использовать эту серию в различных устройствах, в том числе и с батарейным питанием. Кроме того, устройства собранные на микросхемах серии К561, потребляют очень маленький ток. Да и не мудрено, ведь основу КМОП-микросхем составляет полевой МДП-транзистор.

Например, микросхема К561ТР2 содержит четыре RS-триггера и потребляет ток 0,14 mA, а аналогичная микросхема серии К155 потребляла минимум 10 — 12 mA. Микросхемы на КМОП структурах обладают очень большим входным сопротивлением, которое может достигать 100 МОм и более, поэтому их нагрузочная способность достаточно велика. К выходу одной микросхемы можно подключить входы 10 — 30 микросхем. У микросхем ТТЛ такая нагрузка вызвала бы перегрев и выход из строя.

Поэтому конструирование узлов на микросхемах с применением КМОП транзисторов позволяет применять более простые схемные решения, чем при использовании микросхем ТТЛ.

За рубежом наиболее распространённый аналог серии К561 маркируется как CD4000. Например, микросхеме К561ЛА7 соответствует зарубежная CD4011.

Используя микросхемы серии К561, не следует забывать о некоторых нюансах их эксплуатации. Следует помнить, что хотя микросхемы работоспособны в большом диапазоне напряжений, при снижении напряжения питания падает помехоустойчивость, а импульс слегка «расползается». То есть чем напряжение питания ближе к максимуму, тем круче фронты импульсов.

На рисунке показан классический базовый элемент (вентиль), который осуществляет инверсию входного сигнала (элемент НЕ). То есть если на вход приходит логическая единица, то с выхода снимается логический ноль и наоборот. Здесь наглядно показана комплементарная пара транзисторов с затворами «n» и «p» типов.

На следующем рисунке показан базовый элемент 2И — НЕ. Хорошо видно, что резисторы, которые присутствуют в аналогичном элементе ТТЛ микросхемы, здесь отсутствуют. Из двух таких элементов легко получить триггер, а из последовательного ряда триггеров прямая дорога к счётчикам, регистрам и запоминающим устройствам.

При всех положительных качествах интегральных микросхем серии К561 у них, конечно, есть и недостатки. Во-первых, по максимальной рабочей частоте КМОП микросхемы заметно уступают микросхемам с другой логикой и работающей на биполярных транзисторах.

Частота, на которой уверенно работает серия К561, не превышает 1 МГц. Для согласования микросхем основанных на МОП структурах с другими сериями, например, ТТЛ, применяются преобразователи уровня К561ПУ4, К561ЛН2 и другие. Эти микросхемы также синхронизируют быстродействие, которое у разных серий может отличаться.

Но самый большой недостаток микросхем на комплементарных МОП структурах, это сильнейшая чувствительность микросхемы к статическому электричеству. Поэтому на заводах и лабораториях оборудуются специальные рабочие места. На столе все работы производятся на металлическом листе, который подключён к общей шине заземления. К этой шине подключается и корпус паяльника, и металлический браслет, одеваемый на руку работнику.

Некоторые микросхемы поступают в продажу упакованные в фольгу, которая закорачивает все выводы между собой. При работе в домашних условиях также необходимо найти возможность для стекания статического заряда хотя бы на трубу отопления. При монтаже первыми распаиваются выводы питания, а уже затем все остальные.


Рис. 16.10.

Принципиальное отличие КМОП-схем от nМОП-технологии заключается в отсутствии в схеме активных сопротивлений. К каждому входу схемы подключена пара транзисторов с различным типом канала. Транзисторы с каналом p-типа подключены подложкой к источнику питания, поэтому образование канала в них будет происходить при достаточной большой разности потенциалов между подложкой и затвором, причем потенциал на затворе должен быть отрицательным относительно подложки. Такое состояние обеспечивается подачей на затвор потенциала земли (т.е. логического 0 ). Транзисторы с каналом n-типа подключены подложкой к земле, поэтому образование канала в них будет происходить при подаче на затвор потенциала источника питания (т.е. логической 1 ). Одновременная подача на такие пары транзисторов с разным типом каналов логического нуля или логической единицы приводит к тому, что один транзистор пары обязательно будет открыт, а другой закрыт. Таким образом, создаются условия к подключению выхода либо к источнику п итания, либо к земле.

Так, в простейшем случае, для схемы инвертора (рис. 16.10) при А=0 транзистора VT1 будет открыт, а VT2 закрыт. Следовательно, выход схемы F будет подключен через канал VT1 к источнику питания, что соответствует состоянию логической единицы: F=1 . При А=1 транзистор VT1 будет закрыт (на затворе и подложке одинаковые потенциалы), а VT2 открыт. Следовательно, выход схемы F будет подключен через канал транзистора VT2 к земле. Это соответствует состоянию логического нуля: F=0 .

Логическое сложение (рис. 16.11) осуществляется за счет последовательного соединения p-каналов транзисторов VT1 и VT2. При подаче хотя бы одной единицы единого канала у данных транзисторов не образуется. В то же время благодаря параллельному соединению VT3 и VT4 осуществляется открытие соответствующего транзистора в нижней части схемы, обеспечивающее подключение выхода F к земле. Получается F=0 при подаче хотя бы одной логической 1 – это правило ИЛИ-НЕ.


Рис. 16.11.

Функция И-НЕ осуществляется за счет параллельного соединения VT1 и VT2 в верхней части схемы и последовательного соединения VT3 и VT4 в нижней части (рис. 16.12). При подаче хотя бы на один вход нуля единый канал на VT3 и VT4 не образуется, выход будет отключен от земли. В то же время хотя бы один транзистор в верхней части схемы (на затвор которого подан логический ноль) будет обеспечивать подключение выхода F к источнику питания: F=1 при подаче хотя одного нуля – правило И-НЕ.


Рис. 16.12.

Краткие итоги

В зависимости от элементной базы, различают различные технологии производства ИМС. Основными являются ТТЛ на биполярных транзисторах и nМОП и КМОП на полевых транзисторах .

Ключевые термины

nМОП-технология полевых транзисторов с индуцированным каналом n-типа.

Буфер на 3 состояния – выходная часть схемы ТТЛ, обеспечивающая возможность перехода в третье, высокоимпедансное состояние.

КМОП-технология — технология производства ИМС на базе полевых транзисторов с каналами обоих типов электропроводности.

Открытый коллектор – вариант реализации буферной части элементов ТТЛ без резистора в цепи нагрузки, который выносится за пределы схемы.

Схемы с активной нагрузкой – схемы ТТЛ, в которых состояние буферной цепи определяется состоянием не одного, а двух транзисторов.

Транзисторно-транзисторная логика – технология производства ИМС на базе биполярных транзисторов.

Принятые сокращения

КМОП – комплементарный, металл, оксид, полупроводник

Набор для практики

Упражнения к лекции 16

Упражнение 1

Вариант 1 к упражнению 1 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по nМОП-технологии.

Вариант 2 к упражнению 1 .Нарисовать схему 3-входового элемента И-НЕ по nМОП-технологии.

Вариант 3 к упражнению 1 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по nМОП-технологии.

Упражнение 2

Вариант 1 к упражнению 2 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по КМОП-технологии.

Вариант 2 к упражнению 2 .Нарисовать схему 3-входового элемента И-НЕ по КМОП-технологии.

Вариант 3 к упражнению 2 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по КМОП-технологии.

Упражнение 3

Вариант 1 к упражнению 3 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 3 .Нарисовать схему 3-входового элемента И-НЕ по ТТЛ-технологии.

Вариант 3 к упражнению 3 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Упражнение 4

Вариант 1 к упражнению 4 .Нарисовать схему 3-входового элемента ИЛИ по nМОП-технологии.

Вариант 2 к упражнению 4 .Нарисовать схему 3-входового элемента И по nМОП-технологии.

Вариант 3 к упражнению 4 .Нарисовать схему 4-входового элемента ИЛИ по nМОП-технологии.

Упражнение 5

Вариант 1 к упражнению 5 .Нарисовать схему 3-входового элемента ИЛИ по КМОП-технологии.

Вариант 2 к упражнению 5 .Нарисовать схему 3-входового элемента И по КМОП-технологии.

Вариант 3 к упражнению 5 .Нарисовать схему 4-входового элемента ИЛИ по КМОП-технологии.

Упражнение 6

Вариант 1 к упражнению 6 .Нарисовать схему 3-входового элемента ИЛИ по ТТЛ-технологии.

Вариант 2 к упражнению 6 .Нарисовать схему 3-входового элемента И по ТТЛ-технологии.

Вариант 3 к упражнению 6 .Нарисовать схему 4-входового элемента ИЛИ по ТТЛ-технологии.

Упражнение 7

Вариант 1 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по КМОП-технологии.

Вариант 3 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по nМОП-технологии.

Упражнение 8

Вариант 1 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ-НЕ с буфером на 3 состояния.

Вариант 2 к упражнению 8 .Нарисовать схему 3-входового элемента И-НЕ с открытым коллектором.

Вариант 3 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ с буфером на 3 состояния.

Комплементарная МОП логика (КМОП — КМДП -CMOS — Complementary Metal-Oxide-Semiconductor) сегодня является основной в производстве больших интегральных схем микропроцессорных комплектов, микроконтроллеров, СБИС персональных компьютеров, ИС памяти. Кроме ИС высокой интеграции для создания электронного обрамления БИС и несложных электронных схем выпущено несколько поколений КМОП серий малой и средней интеграции. В основе лежит рассмотренный ранее инвертор (рис 2.9) на комплементарных (взаимодополняющих) МОП транзисторах с индуцированным каналом разной проводимости p и n типа, выполненных на общей подложке (входные охранные цепочки не показаны).

Рис 3.8. Двухвходовые КМОП логические элементы а) И-НЕ, б) ИЛИ-НЕ

Как и в случае простого инвертора, особенностью ЛЭ является наличие двух ярусов транзисторов относительно выходного вывода. Логическая функция, выполняемая всей схемой, определяется транзисторами нижнего яруса. Для реализации И-НЕ в положительной логике транзисторы с n-каналом включаются последовательно друг с другом, с p-каналом – параллельно, а для реализации ИЛИ-НЕ – наоборот (Рис 3.8).

Микросхемы КМОП-структуры близки к идеальным ключам: в статическом режиме они практически не потребляют мощности, имеют большое входное и малое входное сопротивления, высокую помехозащищенность, большую нагрузочную способность, хорошую температурную стабильность, устойчиво работают в широком диапазоне питающих напряжений (от +3 до +15 В). Выходной сигнал практически равен напряжению источника питания. При Еп=+5В обеспечивается совместимость логических уровней со стандартной ТТЛ/ТТЛШ-логикой. Пороговое напряжение при любом напряжении питания равно половине напряжения питания U пор = 0,5 Еп, что обеспечивает высокую помехоустойчивость.

Логические элементы с большим числом входов организованы подобным же образом. В номенклатуре микросхем КМОП есть ЛЭ И, ИЛИ, И-НЕ, ИЛИ-НЕ, И-ИЛИ-НЕ, с количеством входов до 8. Увеличить число входных переменных можно с помощью дополнительных логических элементов, принадлежащих к той же серии ИС.

Отечественная промышленность выпускает несколько универсальных КМОП серий: К164, К176, К561, К564, К1561, К1564.

К176 – стандартная КМОП t з =200 нс, I пот £100 мкА

К564, К561, К1561 – усовершенствованная КМОП t з =15 нс (15 В), I пот =1-100 мкА

К1564 – высокоскоростная КМОП (функциональный аналог серии 54HC) t з =9-15 нс, Uпит=2-6 В, I пот £10 мкА

Основные технические характеристики ИС серии К564 (К561) приведены ниже:

Напряжение питания U п, В …………………………..3-15

Мощность потребления

В статическом режиме, мкВт/корпус …………0,1

При f=1 МГц, U п =10 В, С н =50 пф, мвт ……….20

Допустимая мощность рассеивания. Мвт/корпус …..500

Входное напряжение, В ……………….от -0,5В до U п + 0,5В

Выходное напряжение, В

Низкого уровня ………………………… не более 0,05В,

Высокого уровня …………………не менее U п + 0,5В

Средняя задержка распространения сигнала при С н =15 нф

Для U п =+5 В, нс ………………………………50

Для U п =+10 В, нс ……………………………..20,

Рабочая температура, 0 С

Серия 564 ………………………..от -60 до +125

Серия К561 ……………………….от -40 до +85

Если развитие ТТЛ-серий, главным образом, шло в сторону уменьшения энергопотребления, то КМОП-серии развивались в направлении повышения быстродействия. В конце концов, победила КМОП-технология. Последующие поколения стандартной логики выпускаются уже только по ней. Таким образом, второе поколение микросхем стандартной логики выпускается по КМОП-технологии, но сохраняет полное функциональное соответствие с ТТЛ-сериями.

Логические элементы на полевых транзисторах

1. Логические элементы на полевых транзисторах

Полевой транзистор – транзистор, в котором сила проходящего через него тока
регулируется внешним электрическим полем, т. е. напряжением.
Это принципиальное различие между ним и биполярным транзистором, где сила
основного тока регулируется управляющим током.
Принцип действия полевого транзистора
Поскольку у полевого транзистора нет управляющего тока, то у него очень высокое
входное сопротивление, достигающее сотен ГигаОм и даже ТерраОм (против сотен
КилоОм у биполярного транзистора).
Полевые транзисторы иногда называют униполярными, поскольку носителями
электрического заряда в нем выступают только электроны или только дырки.
В работе же биполярного транзистора, как следует из названия, участвует одновременно
два типа носителей заряда – и электроны и дырки.
Классификация полевых транзисторов
Полевые транзисторы (FET: Field-Effect-Transistors) разделяются на два типа:
– с управляющим PN-переходом (JFET: Junction-FET) и
– с изолированным затвором (MOSFET: Metal-Oxid-Semiconductor-FET).
Каждый из типов может быть как с N–каналом, так и с P-каналом.
В роли носителей электрического заряда выступают:
– у транзисторов с N-каналом – электроны.
– у транзисторов с P-каналом – дырки.
Обозначение JFET транзисторов на принципиальных схемах
Полевой транзистор с изолированным затвором MOSFET
Полевой транзистор с изолированным затвором – это полевой транзистор, затвор которого
электрически изолирован от проводящего канала полупроводника слоем диэлектрика.
Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых
моделей оно достигает 1017 Ом).
МОП-транзистор (Металл-Оксид-Полупроводник), или
МДП-транзистор (Металл-Диэлектрик-Полупроводник).
MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor)
МДП-транзисторы делятся на два типа
– со встроенным каналом и
– с индуцированным каналом.
В каждом из типов есть транзисторы с N–каналом и P-каналом.
УГО МОП (MOSFET) транзистора
со встроенным каналом
УГО МОП (MOSFET) транзистора
с индуцированным каналом
Работа n-МДП-транзистора с индуцированным каналом
Выходные (стоковые) характеристики
Сток-затворная характеристика
Характеристики n-МОП и p-МОП транзисторов
Характеристики транзисторов p-типа имеют аналогичный вид, но отличаются
напряжением на затворе и полярностью приложенных напряжений (зеркальное
отображение в третьем квадранте).
p-МОП транзистор
Передаточная характеристика
Крутизна передаточной характеристики:
S=DIC/DUЗИ (при UCИ – const)
Коэффициент усиления: KU = SRC
n-МОП транзистор
Передаточная характеристика
Логические элементы на p-МОП транзисторах
RK,Т1 ≥ 100 кОм
RK,Т2,Т3 ≤ 1 кОм
р-МОП элемент И-НЕ
Реализация логического элемента
И-НЕ в интегральной схеме
р-МОП элемент ИЛИ-НЕ
р-МОП элемент НЕ
Диапазон напряжений
Важнейшие параметры семейства p-МОП
1.
2.
3.
4.
5.
Напряжение питания – -12В (от -9 В до -20 В)
Энергопотребление на вентиль – 6 мВт при H и 0 мВт при L
Быстродействие – 400 нс.
Частота переключения (макс.) – 2 МГц
Зазор помехоустойчивости (типовой) – 5 В
• p-МОП логические элементы работают медленно, но устойчиво.
Нуждаются в достаточно большом напряжении питания.
• Применяются в схемах с низким быстродействием и высокой
помехоустойчивостью.
• Интегральные
элементов.
схемы
обладают
высокой
плотностью
упаковки
Логические элементы на n-МОП транзисторах
n-МОП логические элементы
Напряжение питания – +5В
Энергопотребление – 2 мВт (L)
0 мВт (Н)
Быстродействие – 50 нс
Максимальная частота – 20 МГц
Зазор помехоустойчивости – 2 В.
Диапазон напряжений
Логические элементы на КМОП транзисторах
Схема КМОП НЕ-элемента
Принцип действия КМОП НЕ-элемента
Все КМОП-элементы устроены так, что в токовой ветви один транзистор всегда закрыт, а
другой всегда открыт.
Энергопотребление КМОП-элементов крайне низко. Оно зависит в основном от
количества переключений в секунду или частоты переключения.
Только во время переключения от источника питания потребляется небольшой ток, так как
оба транзистора одновременно, но недолго открыты. Один из транзисторов переходит из
открытого состояния в запертое и еще не полностью заперт, а другой — из запертого в
открытое и еще не полностью открыт. Также должны перезарядиться транзисторные
емкости.
Мощность изменения энергопотребления ЛЭ КМОП
Изменение потребляемого тока в процессе переключения логического
элемента КМОП
Базовые логические элементы КМОП
Схема КМОП ИЛИ-НЕ-элемента
Логический элемент 4ИЛИ-НЕ,
входящий в состав микросхемы
КР1561ЛЕ6
Схема КМОП И-НЕ-элемента
Логический элемент 4И-НЕ,
входящий в состав микросхемы
КР1561ЛА1
Передаточный логический элемент КМОП
(электронный ключ, переключатель)
Ключ на n-канальном МОП-транзисторе
с индуцированным каналом
Зависимость сопротивления
канала n-МОП и p-МОП ключа от Uвх
Рабочая таблица передаточного
логического элемента

Принципиальная схема
передаточного
логического элемента
З2
З1
L ≈ 0 В, H ≈ +5 В
1
L
H
RAZ — высокоомный
2
H
L
RAZ — низкоомный
Передаточный элемент работает как переключатель.
Принципиальная схема
Для того чтобы перевести коммутатор в состояние
включено, нужно приложить к затвору нормально
открытого МОП-транзистора VT1 положительное
управляющее напряжение Uупр, равное, по меньшей
мере 2Uoтc, а к затвору транзистора VT2 – такое же
напряжение, но противоположное по знаку.
При малых величинах входного напряжения Uвх оба
МОП-транзистора будут открыты.
При отрицательных значениях входного напряжения
транзисторы VT1 и VT2 меняются ролями.
Передаточный логический
элемент с управляющим
элементом НЕ
Для того чтобы перевести коммутатор в состояние
выключено, необходимо изменить полярность
управляющего напряжения.
Важнейшие электрические параметры семейства КМОП
до 15 Вольт)
(30÷40% от UИ.П.)
Передаточные характеристики КМОП
UИ.П. = +5В
+10В
Особенности микросхем КМОП структуры
Специфические особенности микросхем КМОП структуры:
чувствительность к
статическим зарядам, диодно-резистивная охранная цепочка и малая токовая отдача
требуют соблюдения правил предосторожности в применении и обращении.
Емкость на выходе и входе. Если на выходе инвертора присутствует конденсатор, в
моменты переключений через открытые транзисторы протекают токи заряда и разряда.
При больших значениях ёмкости, открытый транзистор работает в режиме близком к
короткому замыканию. В обычных условиях емкостная нагрузка не должна превышать
500 пФ. Если ёмкость больше, то надо использовать разрядный резистор R для
ограничения тока, чтобы был не более 1÷2 мА.
Включение ограничивающих резисторов
Диодно-резистивная охранная цепочка
Защита входов от перегрузок.
Входное напряжение микросхем КМОП с охранной диодно-резистивной цепочкой на
входе для предотвращения отпирания входных диодов в прямом направлении не должно
выходить за пределы –0,7В ≤ Uвх ≤ UИ.П.+0,7В. Иначе также надо использовать
токоограничивающий резистор для ограничения тока уровнем 1÷2мА.
Неиспользуемые входы КМОП. Их надлежит включать определённым
образом, так, чтобы не нарушились условия работы микросхемы в целом.
Так же как и в ТТЛ свободные входы объединяют с +UИ.П. или общим проводом
в зависимости от функции элемента либо объединяют их с другими,
задействованными входами.
а)
б)
В случае варианта б) за счёт постоянного смещения отпирание n-канальных
транзисторов происходит раньше и общее пороговое напряжение становится
меньше, чем в случае а). Поэтому вариант а) более эффективен применительно
к помехам, возникающим в общей шине, а вариант б) в отношении защиты от
помех, возникающих в шине питания.
Входы КМОП микросхем (в отличие от ТТЛ) оставлять свободными
недопустимо.
Если какой-нибудь вход окажется неподсоединённым, на нём могут возникнуть
непредсказуемые напряжения за счёт наводок и связей через паразитные
ёмкости. Следствием этого может быть не только неверное действие
микросхемы, но и её повреждение.
Правила обращения с микросхемами КМОП
Микросхемы КМОП структуры нуждаются в сравнении с микросхемами других
семейств, например, ТТЛ, ЭСЛ в более бережном отношении. Это касается
как условий монтажа микросхем на платах, так и правил их хранения и
эксплуатации в аппаратуре.
При обращении с микросхемами КМОП следует соблюдать следующие меры
предосторожности:
В процессе хранения и транспортировки отдельных микросхем выводы их должны
быть соединены между собой;
Нельзя производить смену микросхем при включённом напряжении питания;
Допустимый электростатический потенциал на входах – не более 100В;
Плату со смонтированными микросхемами следует брать за торцы, не касаясь
разъёмов;
При монтаже тело монтажника должно быть заземлено с помощью проводящего
браслета, соединённого с контуром заземления через резистор 500 кОм или
вначале коснуться общего провода питания;
Необходимо избегать одежды из синтетических материалов;
Микросхему следует устанавливать на плату после выполнения всех остальных
соединений;
Пайку выводов следует вести в последовательности: «общий». «питание»,
остальные контакты.

Логический элемент И-НЕ транзисторно-транзисторной логики

Электротехника Логический элемент И-НЕ транзисторно-транзисторной логики

просмотров — 560

Транзисторный логический элемент НЕ.

Логический элемент НЕ реализуется с помощью биполярного транзистора n-p-n cтруктуры. Принципиальная электрическая схема транзисторного логического элемента НЕ и его таблица истинности приведены на рис.10.7.

Схема работает следующим образом. В случае если на вход x логического элемента подать сигнал лоᴦ.0, то транзистор VT будет закрыт и на выходе y появится сигнал лоᴦ.1, так как всё напряжение будет падать на закрытом транзисторе. При подаче на вход x логического элемента сигнала лоᴦ.1, транзистор VT открывается и на выходе y появится сигнал лоᴦ.0, при этом всё напряжение падает на резисторе .

При использовании логических элементов транзисторно-транзисторной логики, построенной с помощью биполярных транзисторов n-p-n cтруктуры, реализуется операция И-НЕ. На рис.10.8 приведена электрическая схема логического элемента И-НЕ и таблица истинности. Схема состоит из двух логических элементов И и НЕ, соединённых последовательно. Транзисторный элемент И имеет несколько входов. На схеме рассматриваются только два из эмиттерных входов х1 и х2 транзистора VT1, коллектор которого соединён с базой инвертора, построенного на транзисторе VT2.

Рис.10.7. Принципиальная электрическая схема транзисторного логического элемента НЕ и его таблица истинности

Рис.10.8. Электрическая схема логического элемента И-НЕ и его таблица истинности

Схема работает следующим образом. В случае если на входы х1 и х2 транзистора VT1 поступают сигналы лоᴦ.0 или на одном из этих входов присутствует сигнал лоᴦ.1, то базовый ток пройдет через сопротивление базы транзистора к эмиттерным входам (входу) от “+” источника питания к его “–“. При этом, транзистор VT2 будет закрыт и на его выходе y присутствует cигнал лоᴦ.1. В случае если на входы х1 и х2 транзистора VT1 поступают положительные сигналы лоᴦ.1, то в этом случае закрываются эмиттерные входы тразистора VT1 и базовый ток течет через коллектор тразистора VT1 к базе тразистора VT2, открывая его. При этом на выходе у тразистора VT2 появится синал лоᴦ.0.

10.5. Логический элемент ИЛИ-НЕ эмиттерно-связанной логики

На рис.10.9 изображена электрическая схема логического элемента ИЛИ-НЕ, построенного на транзисторах n-p-n cтруктуры, и его таблица истинности. В случае если на

входах х1 и х2 транзисторов VT1, VT2 присутствуют входные сигналы лоᴦ.0, то эти транзисторы будут закрыты и сопротивление между их коллекторами и эмиттерами будет бесконечным. При этом коллекторная цепь этих транзисторов будет иметь положительный потенциал, то есть инвертированный сигнал ИЛИ, который будет поступать на вход транзистора VT3. На выходе у транзистора VT3, работающего в режиме повторителя, появится сигнал лоᴦ.1.

В случае поступления на входы х1 и х2 транзисторов VT1, VT2 положительных сигналов лоᴦ.1 или на одном из этих входов присутствует сигнал лоᴦ.1, то их коллекторные цепи будут иметь отрицательный потенциал. При этом транзисторы VT1, VT2 (или один из них) открываются, и сопротивление цепи коллектор-эмиттер будет равно нулю. Так как Rк>Rэ1, то на общем коллекторном выходе транзисторов VT1, VT2 появится отрицательный потенциал, который поступит на вход транзистора VT3 и закроет его. Сигнал на выходе y транзистора VT3 будет иметь лоᴦ.0. Фактически транзистор VT3 является повторителœем действия выходного сигнала транзисторов VT1 и VT2, работающих в режиме операции ИЛИ-НЕ.

Рис.10.9. Электрическая схема логического элемента ИЛИ-НЕ и его таблица истинности

Логические элементы — это… Что такое Логические элементы?

Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательности «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

Всего возможно логических функций и соответствующих им логических элементов, где  — основание системы счисления,  — число входов (аргументов),  — число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

Всего возможны двоичных двухвходовых логических элементов и двоичных трёхвходовых логических элементов (Булева функция).

Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элемента и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).

Содержание

  • 1 Двоичные логические операции с цифровыми сигналами (битовые операции)
    • 1.1 Отрицание, НЕ
    • 1.2 Повторение, ДА
    • 1.3 Конъюнкция (логическое умножение). Операция 2И. Функция min(A,B)
    • 1.4 Дизъюнкция (логическое сложение). Операция 2ИЛИ. Функция max(A,B)
    • 1.5 Инверсия функции конъюнкции. Операция 2И-НЕ (штрих Шеффера)
    • 1.6 Инверсия функции дизъюнкции. Операция 2ИЛИ-НЕ (стрелка Пирса)
    • 1.7 Эквивалентность (равнозначность), 2ИСКЛЮЧАЮЩЕЕ_ИЛИ-НЕ
    • 1.8 Сложение по модулю 2 (2Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.
    • 1.9 Импликация от A к B (прямая импликация, инверсия декремента, A<=B)
    • 1.10 Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)
    • 1.11 Декремент. Запрет импликации по B. Инверсия импликации от A к B
    • 1.12 Инкремент. Запрет импликации по A. Инверсия импликации от B к A
  • 2 Физические реализации логических элементов
  • 3 Классификация электронных транзисторных физических реализаций логических элементов
  • 4 Применение логических элементов
  • 5 Комбинационные логические устройства
  • 6 Последовательностные цифровые устройства
  • 7 См. также
  • 8 Ссылки
  • 9 Литература

Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.

Из возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания и повторения, причём, операция отрицания имеет большую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.

Отрицание, НЕ

Инвертор, НЕ
0 1
1 0

Мнемоническое правило для отрицания звучит так: На выходе будет:

Повторение, ДА

0 0
1 1

Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками.

Из возможных бинарных логических операций с двумя знаками c унарным выходом интерес для реализации представляют 10 операций, приведённых ниже.

Конъюнкция (логическое умножение). Операция 2И. Функция min(A,B)

٨
0 0 0
1 0 0
0 1 0
1 1 1

Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. Мнемоническое правило для конъюнкции с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «1»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «0»

Дизъюнкция (логическое сложение). Операция 2ИЛИ. Функция max(A,B)

2ИЛИ

Мнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «1»,
  • «0» тогда и только тогда, когда на всех входах действуют «0»

Инверсия функции конъюнкции. Операция 2И-НЕ (штрих Шеффера)

2И-НЕ

Мнемоническое правило для И-НЕ с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «0»,
  • «0» тогда и только тогда, когда на всех входах действуют «1»

Инверсия функции дизъюнкции. Операция 2ИЛИ-НЕ (стрелка Пирса)

2ИЛИ-НЕ
0 0 1
0 1 0
1 0 0
1 1 0

Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «0»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «1»

Эквивалентность (равнозначность), 2ИСКЛЮЧАЮЩЕЕ_ИЛИ-НЕ

ИСКЛ-ИЛИ-НЕ
0 0 1
0 1 0
1 0 0
1 1 1

Мнемоническое правило эквивалентности с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на входе действует четное количество,
  • «0» тогда и только тогда, когда на входе действует нечетное количество

Сложение по модулю 2 (2Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

ИСКЛ-ИЛИ

В англоязычной литературе 2XOR.

Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на входе действует нечётное количество ,
  • «0» тогда и только тогда, когда на входе действует чётное количество

Импликация от A к B (прямая импликация, инверсия декремента, A<=B)

0 0 1
0 1 1
1 0 0
1 1 1

Мнемоническое правило для инверсии декремента звучит так: На выходе будет:

  • «0» тогда и только тогда, когда на «B» меньше «А»,
  • «1» тогда и только тогда, когда на «B» больше либо равно «А»

Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)

0 0 1
0 1 0
1 0 1
1 1 1

Мнемоническое правило для инверсии инкремента звучит так: На выходе будет:

  • «0» тогда и только тогда, когда на «B» больше «А»,
  • «1» тогда и только тогда, когда на «B» меньше либо равно «А»

Декремент. Запрет импликации по B. Инверсия импликации от A к B

Мнемоническое правило для инверсии импликации от A к B звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на «A» больше «B»,
  • «0» тогда и только тогда, когда на «A» меньше либо равно «B»

Инкремент. Запрет импликации по A. Инверсия импликации от B к A

Мнемоническое правило для инверсии импликации от B к A звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на «B» больше «A»,
  • «0» тогда и только тогда, когда на «B» меньше либо равно «A»

Примечание 1. Элементы импликаций не имеют промышленных аналогов для функций с количеством входов, не равным 2.
Примечание 2. Элементы импликаций не имеют промышленных аналогов.

Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется функционально полным логическим базисом. Таких базисов 4:

  • И, НЕ (2 элемента)
  • ИЛИ, НЕ (2 элемента)
  • И-НЕ (1 элемент)
  • ИЛИ-НЕ (1 элемент).

Для преобразования логических функций в один из названых базисов необходимо применять Закон (правило) де-Моргана.

Физические реализации логических элементов

Физические реализации одной и той же логической функции в разных системах электронных и неэлектронных элементов отличаются друг от друга.

Классификация электронных транзисторных физических реализаций логических элементов

Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

  • РТЛ (резисторно-транзисторная логика)
  • ДТЛ (диодно-транзисторная логика)
  • ТТЛ (транзисторно-транзисторная логика)
Упрощённая схема двухвходового элемента И-НЕ ТТЛ .

Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используются в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включенным в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включенным по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160—200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.

Инвертор

Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

Применение логических элементов

Логические элементы входят в состав микросхем, например ТТЛ элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.

Комбинационные логические устройства

Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:

Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.

Последовательностные цифровые устройства

Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

См. также

Ссылки

Литература

Логическая схема НЕ

В реальных инверторах присутствует несколько транзисторов, благодаря которым коэффициент усиления по напряжению может быть увеличен в максимальной степени. Это необходимо для обеспечения достаточного напряжения на выходном транзисторе, чтобы он гарантированно находится либо в режиме отсечки, либо в режиме насыщения.

Кроме того в реальных инверторах присутствуют дополнительные элементы, предотвращающие возможный выход схемы из строя. Показанный в этой статье инвертор на одном транзисторе слишком примитивен, чтобы его можно было использовать в практических целях. Ниже показана принципиальная схема инвертора со всеми компонентами, необходимыми для обеспечения его стабильной и надёжной работы:

 

Схема состоит из резисторов и биполярных транзисторов. Следует отметить, что выполнять функцию логической схемы НЕ могут и другие схемы, включая и такие, в которых вместо биполярных транзисторов используются полевые транзисторы.
 

Давайте проанализируем работу этой схемы при сигнале высокого логического уровня на её входе. Мы можем смоделировать эту ситуацию, если изобразим на входе схемы переключатель, через который схема соединена с линией питания Vcc:

 

В этом случае диод D1 будет прямосмещён, а следовательно не будет проводить ток. В действительности, единственная причина, по которой в схеме используется D1 — это необходимость защиты транзистора в том случае, если на вход будет подано отрицательное напряжение (по отношению к земле). При отсутствии напряжения между базой и эмиттером транзистора Q1, ток на нём будет также отсутствовать. Однако в приведённой схеме транзистор Q1 используется в необычной функции. В действительности, транзистор Q1  используется в качестве пары встречно-включённых диодов. На следующей схеме показана реальная функция транзистора Q1:

 

Назначение этих диодов заключается в том, чтобы подавать ток на базу транзистора Q2 или же отводить его от базы этого транзистора в зависимости от логического уровня на входе. На первый взгляд совершенно непонятно, каким образом эти диоды могут направлять ток в ту или сторону, поэтому необходимо привести дополнительный пример.

Допустим, что у нас имеется следующая диодно-резисторная схема, представляющая переходы база-эмиттер транзисторов Q2 и Q4 в виде отдельных диодов (все остальные элементы схемы можно опустить и сконцентрировать внимание на способе «направления» тока двумя встречно-включёнными диодами):

Когда переключатель переведён в «верхнее» положение (соединён с линией Vcc), должно быть очевидно, что на левом диоде транзистора Q1 ток будет отсутствовать, поскольку отсутствует напряжение в цепи переключатель-диод-R1-переключатель. Однако, ток будет на правом диоде транзистора Q1, а также на переходе база-эмиттер Q2 и переходе база-эмиттер Q4:

 

Таким образом, мы можем сделать вывод, что в реальной логической схеме, на транзисторах Q2 и Q4будет ток базы, в связи с чем на них будет также присутствовать ток коллектора. Общее падение напряжения между базой Q1  (узлом, соединяющим два встречно-включённых диода) и землёй будет примерно равно 2,1 В, что соответствует падению напряжения трёх pn-переходов: правый диод, диод база-эмиттер Q2 и диод база-эмиттер Q4.

Теперь давайте посмотрим, что произойдёт, если перевести переключатель в «нижнее» положение:

 

Если бы мы измерили ток этой схемы, то мы бы обнаружили, что весь ток проходит через левый диод Q1, а на правом диоде ток отсутствует. Почему же в этой цепи будет отсутствовать ток, несмотря на то, что все ещё существует полный путь для тока через диод Q4, диод Q2, правый диод пары и R1?

Вы конечно помните, что pn-переходы плоскостных диодов не проявляют линейных характеристик: они не проводят до тех пор, пока приложенное прямое напряжение не достигнет определённого минимального уровня, примерно 0,7 В для кремниевых и 0,3 В для германиевых диодов. А затем, когда они начинают проводить, падение напряжения на них не превышает 0,7 В. Когда переключатель нашей схемы переведён в «нижнее» положение, левый диод проводит и падение напряжения на нём составляет 0,7 В.

 

Вспомним, что при переключателе в «верхнем» положении (транзисторы Q2 и Q4 проводят), падение напряжения между двумя этими точками (база Q1 и земля) составляет 2,1 В, что является минимальным напряжением, необходимым для прямого смещения трёх последовательно включённых кремниевых pn-переходов. Напряжение 0,7 В, обеспечиваемое прямым падением напряжения на левом диоде, просто недостаточно для того, чтобы ток протекал по последовательной цепи правого диода, диода Q2, и параллельной части схемы R3//Q4, поэтому в этой части схемы ток будет отсутствовать. При отсутствии тока на базах транзисторов Q2 или Q4, на них также будет отсутствовать ток коллектора: транзисторы Q2 и Q4 будут находиться в состоянии отсечки.
 

Таким образом, приведённая конфигурация позволяет на 100 процентов переключать ток базы транзистора Q2 (а следовательно и управлять всей схемой, включая напряжение на выходе) посредством управления направлением движения тока на левом диоде.

Если вернуться к нашей изначальной схеме, то мы увидим, что высокий логический уровень на входе поддерживается переключателем (соединённым с линией Vcc), при этом левый диод не проводит (падение напряжения 0 В.) Тем не менее, правый диод проводит ток на базу Q2 через резистор R1:

 

При наличии тока базы, транзистор Q2 будет включён. Более того, он будет находиться в режиме насыщения, поскольку резистор R1 будет обеспечивать более чем достаточный ток на его базе. Если транзистор Q2 находится в режиме насыщения, падение напряжения на резисторе R3 будет достаточным, чтобы обеспечить прямое смещение перехода база-эмиттер транзистора Q4, что также приведёт к его насыщению:

 

Если транзистор Q4 находится в состоянии насыщения, то его выход будет практически напрямую соединён с землёй, то есть напряжение на его выходе будет (по отношению к земле) равно почти 0 вольт, что соответствует уровню логического нуля. Благодаря диоду D2, между базой и эмиттером Q3 будет недостаточное напряжение для того, чтобы он был открыт, а следовательно он будет находиться в режиме отсечки.
 

Давайте теперь посмотрим, что произойдёт, если мы поменяем логический уровень на ноль, путём перевода переключателя в другое положение:

 

Теперь будет ток на левом диоде транзистора Q1 и отсутствовать ток на правом диоде: Это устраняет ток базы Q2, вследствие чего этот транзистор будет отключён. Когда отключён транзистор Q2, отсутствует путь для тока базы транзистора Q4, и следовательно транзистор Q4 также перейдёт в состояние отсечки. Транзистор Q3, с другой стороны, будет иметь достаточное напряжение между базой и землёй для прямого смещения перехода база-эмиттер и перехода в состояние насыщения, следовательно на его выходе будет напряжение, соответствующее высокому логическому уровню. В действительности, выходное напряжение будет лежать приблизительно на уровне 4 В в зависимости от степени насыщения и тока нагрузки, однако этого достаточно для обеспечения высокого логического уровня.
 

Теперь работа схемы рассмотрена полностью: логическая единица даёт на выходе ноль и наоборот.

Проницательный наблюдатель обратит внимание на то, что состояние с плавающим входом (когда он не соединён ни с Vcc, ни с землёй), будет восприниматься схемой как высокий логический уровень на входе. Когда вход не соединён ни с линией питания, ни с общей линией, на левом диоде Q1 ток будет отсутствовать, при этом весь ток R1 будет поступать на базу Q2, что приведёт к насыщению транзистора Q2, а следовательно на выходе будет напряжение низкого логического уровня:

Такая ситуация свойственна для всех логических схем подобного типа, называемых Транзисторно Транзисторными Логическими, схемами  или ТТЛ-схемами. Вместе с тем, из этой ситуации можно извлечь выгоду и упростить выход схемы, поскольку очень часто сигналы с выходов логических схем обычно подаются на другие схемы. Если плавающий вход воспринимается ТТЛ-схемой как состояние высокого логического уровень, то выход любой логической схемы, сигнал с которого поступает на вход ТТЛ-схемы, должен лишь обеспечивать путь к земле для низкого логического уровня и быть плавающим для получения высокого логического уровня. Эту концепцию стоит объяснить подробнее.
 

Логическая схема, как мы уже проанализировали, может пропускать ток в двух направлениях. Технически, это называется вытекающим и втекающим током. Когда на выходе схемы высокий логический уровень, ток протекает с выхода на Vcc через верхний выходной транзистор (Q3), что позволяет току протекать от земли через нагрузку к выходу схемы, через эмиттер Q3, и наконец, наверх к Vcc (плюс источника питания):

Чтобы упростить эту концепцию, мы можем изобразить выход схемы в виде переключателя на два направления, который может соединять выход либо с линией Vcc, либо с землёй, в зависимости от своего состояния. Если на выходе схемы высокий логический уровень, то комбинация транзисторов Q3 в насыщении и Q4 в режиме отсечки аналогична переключателю на два направления в положении «Vcc», что открывает току путь через заземлённую нагрузку:

 

Имейте ввиду, что переключатель на два направления, показанный внутри условного обозначения схемы представлен транзисторами Q3 и Q4, попеременно соединяющими выход схемы с линией Vcc или землёй, а не показанным ранее переключателем, подающим входной сигнал.
 

И наоборот, когда на выходе схемы низкий логический уровень, подаваемый на нагрузку, схема подобна переключателю на два направления установленному в положение «земля». Когда нагрузка соединена с Vcc , ток будет течь в другом направлении: с земли, через эмиттер транзистора Q4, через выход схемы, нагрузку и обратно на линию Vcc. В этом состоянии ток будет втекающим:  

 

Комбинация из транзисторов Q3 и Q4, работающих по двутактной схеме (так называемый выходной двухтранзисторный каскад) может либо проводить ток к линии Vcc, либо проводить его с общей линии к нагрузке. Тем не менее, на вход стандартной ТТЛ-схемы поступает только втекающий ток. То есть, мы знаем, что при плавающем входе, ТТЛ-схема воспринимает это состояние как высокий логический уровень, а следовательно любой сигнал должен лишь обеспечивать логический ноль (втекающий ток):

 

Следовательно мы можем упростить выходной каскад логической схемы и полностью устранить транзистор Q3. В результате мы получим выход с открытым коллектором:

 

Для обозначения выхода с открытым коллектором используется оособый знак внутри стандартного условного обозначения. Здесь показано условное обозначение инвертора с выходом с открытым коллектором:

 

Следует помнить, что высокий логический уровень по умолчанию при плавающем входе верен только в случае ТТЛ-схем, и не обязателен для схем других типов, особенно для логических схем на полевых транзисторах.
 

·         РЕЗЮМЕ:

·         Инвертор, или логическая схема НЕ инвертирует логический уровень входного сигнала. То есть, сигнал логического нуля на входе инвертируется в сигнал логической единицы на выходе, и наоборот.

·         Схемы, подобные приведённой в этой статье, и состоящие из резисторов и биполярных транзисторов называются ТТЛ-схемами. ТТЛ — сокращение от транзисторно-транзисторная логика. Существуют также логические схемы на полевых транзисторах.

·         Ток логической схемы называется вытекающим, когда он течёт между выходом схемы и положительной линией питания (Vcc). Другими словами, в таком варианте выход схемы соединён с источником питания (+V).

·         Ток логической схемы называется втекающим, когда он течёт между выходом схемы и общей линией питания. Другими словами, выход схемы соединён с землёй.

·         Если в логической схеме используется каскадный выход, то она может включаться как в разрыв положительной, так и общей линии питания. Логические схемы с выходом с открытым коллектором могут быть включены только в разрыв общей линии питания. Схемы с открытым коллектором применяются в тех случаях, когда выходной сигнал подаётся на вход другой ТТЛ-схемы, поскольку ТТЛ-схемам не требуется вытекающий ток.

 

 

Цепи транзисторов

Цепи транзисторов

Главная | Карта | Проекты | Строительство | Пайка | Исследование | Компоненты | 555 | Символы | FAQ | Ссылки
На этой странице объясняется работа транзисторов в схемах. Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, включены в Страница транзисторов.

Общие: Типы | Токи | Функциональная модель | Пара Дарлингтона
Коммутация: Введение | Использовать реле? | Выход чипа | для NPN | и ПНП | Датчики | Инвертор

Следующая страница: Аналоговые и цифровые системы
См. Также: Транзисторы (пайка, идентификация выводов)

Типы транзисторов

Обозначения схемы транзистора
Есть два типа стандартных транзисторов, NPN и PNP , с разными обозначениями схем.Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Эта страница в основном посвящена транзисторам NPN, и если вы новичок в электронике, лучше всего начните с изучения того, как их использовать.

Выводы обозначены цифрами , база (B), коллектор , (C) и эмиттер , (E).
Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, так что относитесь к ним как к ярлыкам!

Пара Дарлингтона — это два транзистора, соединенных вместе чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярных) транзисторов, есть полевые транзисторы , которые обычно обозначаются как FET s. У них разные символы схем и свойства, и они (пока) не рассматриваются на этой странице.


Токи транзисторов

На схеме показаны два пути тока через транзистор. Вы можете построить эта схема с двумя стандартными 5-миллиметровыми красными светодиодами и любым универсальным маломощным Транзистор NPN (например, BC108, BC182 или BC548).

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут небольшой ток течет в основание (B) транзистор. Этого достаточно, чтобы светодиод B тускло светился. Транзистор усиливает этот небольшой ток, чтобы позволить большему току течь через его коллектор (C) к его эмиттеру (E). Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

Когда переключатель разомкнут Базовый ток не течет, поэтому транзистор отключается коллекторный ток.Оба светодиода выключены.

Транзистор усиливает ток и может использоваться как переключатель.

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток) а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом . Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.


Функциональная модель NPN-транзистора

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры.Более полезно использовать эту функциональную модель:
  • Переход база-эмиттер ведет себя как диод.
  • A базовый ток I B течет только при напряжении V BE через переход база-эмиттер составляет 0,7 В или более.
  • Ток малой базы I B управляет током большого коллектора Ic.
  • Ic = h FE × I B (если транзистор не открыт и не насыщен)
    h FE — это усиление по току (строго по постоянному току), типичное значение для h FE — 100 (у него нет единиц измерения, потому что это соотношение)
  • Сопротивление коллектор-эмиттер R CE контролируется током базы I B :
    • I B = 0 R CE = бесконечный транзистор выключен
    • I B малый R CE пониженный транзистор частично включен
    • I B увеличено R CE = 0 транзистор полностью открыт («насыщен»)
Дополнительные замечания:
  • Резистор часто требуется последовательно с базой, чтобы ограничить базу. ток I B и предотвратить повреждение транзистора.
  • Транзисторы имеют максимальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться , даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется « насыщенный ».
  • Когда транзистор насыщен, напряжение коллектор-эмиттер В CE снижается почти до 0В.
  • При насыщении транзистора определяется ток коллектора Ic. питающим напряжением и внешним сопротивлением в цепи коллектора, а не коэффициент усиления транзистора по току.В результате соотношение Ic / I B для насыщенного транзистора коэффициент усиления по току меньше FE .
  • Ток эмиттера I E = Ic + I B , но Ic намного больше, чем I B , поэтому примерно I E = Ic.
На плате есть таблица с техническими характеристиками некоторых популярных транзисторов. страница транзисторов.

Схема сенсорного переключателя

Пара Дарлингтона

Это два транзистора, соединенных между собой так, что ток усиливается первым усиливается вторым транзистором.Общий коэффициент усиления по току равен два индивидуальных выигрыша, умноженные вместе:

Коэффициент усиления по току пары Дарлингтона, ч FE = h FE1 × h FE2
(h FE1 и h FE2 — коэффициенты усиления отдельных транзисторов)

Это дает паре Дарлингтона очень высокий коэффициент усиления по току, например 10000, так что для включения пары требуется лишь крошечный базовый ток.

Пара Дарлингтона ведет себя как одиночный транзистор с очень высокий коэффициент усиления по току. Имеет три вывода ( B , C и E ) которые эквивалентны выводам стандартного отдельного транзистора. Для включения должно быть 0,7 В на обоих соединенных переходах база-эмиттер. последовательно внутри пары Дарлингтона, поэтому для включения требуется 1,4 В.

Пары Дарлингтона доступны в виде полных пакетов, но вы можете составить свои собственные. от двух транзисторов; TR1 может быть маломощным, но обычно TR2 должен быть высоким. власть.Максимальный ток коллектора Ic (max) для пары одинаков. как Ic (max) для TR2.

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме. Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любыми. транзисторы малой мощности назначения. 100 тыс. резистор защищает транзисторы, если контакты соединены куском провода.


Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ . . В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю. и транзистор называется насыщенным , потому что он больше не может проходить ток коллектора Ic. Устройство вывода, переключаемое транзистором, обычно называется «нагрузкой».

Мощность, развиваемая переключающим транзистором, очень мала:

  • В состоянии ВЫКЛ. : мощность = Ic × V CE , но Ic = 0, поэтому мощность равна нулю.
  • В состоянии полный ВКЛ : мощность = Ic × V CE , но V CE = 0 (почти), поэтому мощность очень мала.
Это означает, что транзистор не должен нагреваться при использовании, и вам не нужно рассмотрите его максимальную номинальную мощность. Важные характеристики в схемах переключения — максимальный ток коллектора Ic (макс.) и минимальный коэффициент усиления по току h FE (мин) . Номинальное напряжение транзистора может быть проигнорировано, если вы не используют напряжение питания более 15 В.На плате есть таблица с техническими характеристиками некоторых популярных транзисторов. страница транзисторов.

Для получения информации о работе транзистора см. функциональная модель выше.

Защитный диод
Если нагрузка — двигатель , реле или соленоид (или любое другое устройство с катушкой) диод должен быть подключен к нагрузке для защиты транзистор (и микросхема) от поломки при отключении нагрузки.На диаграмме показаны как это связано «в обратном направлении», так что обычно НЕ будет проводить. Только проведение возникает при выключении нагрузки, в этот момент ток пытается продолжить течь через катушку и безвредно отводится через диод. Без диода нет ток может течь, и катушка вызовет разрушительный выброс высокого напряжения в ее попытаться сохранить текущее течение.
Когда использовать реле
Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они обычно не лучший выбор для коммутации больших токов (> 5A).В этих случаях потребуется реле, но учтите, что для переключения тока катушки реле все же может потребоваться маломощный транзистор!

Преимущества реле:

  • Реле могут переключать переменного тока и постоянного тока, транзисторы могут переключать только постоянный ток.
  • Реле могут переключать высокое напряжение , транзисторы — нет.
  • Реле — лучший выбор для переключения больших токов (> 5A).
  • Реле могут переключать много контактов одновременно.
Недостатки реле:
  • Реле на более громоздкие, чем транзисторы для коммутации малых токов.
  • Реле не могут переключаться быстро , транзисторы могут переключаться много раз в секунду.
  • Реле потребляют больше энергии из-за тока, протекающего через их катушку.
  • Реле требуют большего тока, чем могут обеспечить многие микросхемы , поэтому низкое энергопотребление Транзистор может понадобиться для переключения тока катушки реле.


Подключение транзистора к выводу микросхемы

Большинство микросхем не могут обеспечивать большие выходные токи, поэтому может потребоваться транзистор. для переключения большего тока, необходимого для выходных устройств, таких как лампы, двигатели и реле. Микросхема таймера 555 необычна, потому что она может обеспечивать относительно большой ток до 200 мА, которого достаточно для некоторых устройств вывода, таких как слаботочные лампы, зуммеры и многие катушки реле без необходимости использования транзистора.

Транзистор также можно использовать для включения микросхемы, подключенной к источнику низкого напряжения (например, 5 В). для переключения тока для выходного устройства с отдельным источником более высокого напряжения (например, 12 В). Два источника питания должны быть соединены, обычно это делается путем соединения их 0В соединений. В этом случае следует использовать транзистор NPN.

Резистор R B необходим для ограничения тока, протекающего в базе транзистор и предотвратить его повреждение.Однако R B должен быть достаточно низким, чтобы убедитесь, что транзистор полностью пропитан, чтобы предотвратить его перегрев, это особенно важно, если транзистор коммутирует большой ток (> 100 мА). Безопасное правило — сделать базовый ток I B примерно в пять раз больше, чем значение, которое должно просто насыщать транзистор.

Выбор подходящего NPN-транзистора
На принципиальной схеме показано, как подключить NPN транзистор , он включится нагрузка при выходе микросхемы высокая .Если вам нужно обратное действие, с включенной нагрузкой, когда выход микросхемы низкий (0V) пожалуйста см. схему транзистора PNP ниже.

В приведенной ниже процедуре объясняется, как выбрать подходящий переключающий транзистор.

Транзисторный переключатель NPN
(нагрузка включена, когда выходной сигнал микросхемы высокий)


Использование единиц измерения в расчетах
Не забудьте использовать V, A и или
В, мА и k.Подробнее
см. страницу Закона Ома.

  1. Максимальный ток коллектора транзистора Ic (max) должен быть больше тока нагрузки Ic.
    ток нагрузки Ic = напряжение питания Vs
    сопротивление нагрузки R L
  2. Минимальное усиление тока транзистора h FE (мин) должно быть не менее пяти раз деленного тока нагрузки Ic по максимальному выходному току с микросхемы.
    ч FE (мин)> 5 × ток нагрузки Ic
    макс. ток микросхемы
  3. Выберите транзистор, который соответствует этим требованиям, и запишите его свойства: Ic (max) и h FE (мин).
    Есть таблица с техническими характеристиками некоторых популярных транзисторов. на странице транзисторов.
  4. Рассчитайте приблизительное значение базового резистора:
    R B = Vc × h FE где Vc = напряжение питания микросхемы
    (в простой схеме с одним источником питания это Vs)
    5 × Ic

    Для простой схемы, в которой микросхема и нагрузка используют один и тот же источник питания (Vc = Vs) вы можете предпочесть использовать: R B = 0.2 × R L × h FE

    Затем выберите ближайшее стандартное значение для базового резистора.

  5. Наконец, помните, что если нагрузкой является двигатель или катушка реле, требуется защитный диод.

Пример
Выход КМОП-микросхемы серии 4000 необходим для работы реле с 100 катушек.
Напряжение питания составляет 6В как для микросхемы, так и для нагрузки. Чип может обеспечивать максимальный ток 5 мА.

  1. Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА.
  2. Максимальный ток от микросхемы 5мА, поэтому транзистор должен иметь h FE (мин)> 60 (5 × 60 мА / 5 мА).
  3. Выберите транзистор BC182 малой мощности общего назначения с Ic (макс.) = 100 мА и h FE (мин) = 100.
  4. R B = 0,2 × R L × h FE = 0.2 × 100 × 100 = 2000 г. поэтому выберите R B = 1k8 или 2k2.
  5. Для катушки реле требуется защитный диод.

Транзисторный переключатель PNP
(нагрузка включена, когда выходной сигнал микросхемы низкий)
Выбор подходящего транзистора PNP
На принципиальной схеме показано, как подключить транзистор PNP , он включится нагрузка при выходе микросхемы низкий (0В).Если вам нужно обратное действие, с включенной нагрузкой, когда выход чипа высокий пожалуйста см. схему для NPN-транзистора выше.

Процедура выбора подходящего транзистора PNP точно такая же. как для NPN-транзистора, описанного выше.


Использование транзисторного ключа с датчиками

Светодиод загорается, когда LDR находится в темноте
Светодиод загорается, когда LDR имеет яркость
На верхней принципиальной схеме показан LDR (датчик освещенности). подключен так, чтобы светодиод загорался, когда LDR находится в темноте.Переменный резистор регулирует яркость, при которой транзистор включается и выключается. В этой схеме можно использовать любой транзистор малой мощности общего назначения.

Постоянный резистор 10 кОм защищает транзистор от чрезмерного базового тока (который приведет к его разрушению), когда переменная резистор уменьшен до нуля. Чтобы переключить эту схему на подходящую яркость, вы можете необходимо поэкспериментировать с разными значениями постоянного резистора, но оно не должно быть меньше 1к.

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле, помните для добавления защитного диода к нагрузке.

Действие переключения можно инвертировать , поэтому светодиод загорается, когда LDR ярко освещен, если поменять местами LDR и переменный резистор. В этом случае фиксированный резистор можно не устанавливать, потому что сопротивление LDR не может быть уменьшено до нуля.

Обратите внимание, что переключающее действие этой схемы не очень хорошее, потому что будет промежуточная яркость, когда транзистор будет частично на (не насыщенный).В этом состоянии транзистор находится в опасности перегрева, если он не переключает небольшой ток. Нет проблем с небольшим током светодиода, но с большим током лампа, двигатель или реле могут вызвать перегрев.

Другие датчики, такие как термистор, могут использоваться с этой схемой, но для них может потребоваться другой переменный резистор. Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя мультиметр для определения минимального и максимального значений сопротивления датчика (Rmin и Rmax):

Переменный резистор, Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100, Rmax = 1M, поэтому Rv = квадратный корень из (100 × 1M) = 10к.

Вы можете сделать гораздо лучшую схему переключения с датчиками, подключенными к подходящему IC (чип). Действие переключения будет намного более резким без частичного включения.


Транзисторный инвертор (НЕ затвор)

Инверторы (НЕ вентили) доступны на логических микросхемах, но если вам нужен только один инвертор, как правило, лучше использовать эту схему. Выходной сигнал (напряжение) является инверсией входного сигнала:
  • Когда на входе высокий уровень (+ Vs), на выходе низкий уровень (0V).
  • Когда на входе низкий уровень (0 В), на выходе высокий уровень (+ Vs).
Можно использовать любой маломощный NPN-транзистор общего назначения. Для общего пользования R B = 10 тыс. и R C = 1k, тогда выход инвертора можно подключить к устройству с входным сопротивлением (сопротивлением) не менее 10к например, логическая микросхема или таймер 555 (входы триггера и сброса).

Если вы подключаете инвертор к входу логической микросхемы CMOS (очень высокий импеданс) вы можете увеличить R B до 100 тыс. и C до 10 тыс., это уменьшит ток, используемый инвертором.


Следующая страница: Аналоговые и цифровые системы | Изучение электроники

© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker.

Как работает логический вентиль в микрочипе? Затвор кажется устройством, которое должно открываться и закрываться, но микрочипы выгравированы на кремниевых пластинах, у которых нет движущихся частей.Итак, как ворота открываются и закрываются?

Ларри Виссел, инженер по приложениям ASIC в IBM Microelectronics, отвечает:

«Те из нас, кто разрабатывает логические вентили для компьютеров, редко вспоминают, как вошли в употребление термины, которые мы используем для описания технологий. Видение качающегося взад и вперед ворот явно не представляет буквально структуры на кремниевом кристалле. Но причина для Использование термина «вентиль» для компьютерной логики можно понять, исследуя основную функцию шлюза: управление потоком.

«На ферме ворота могут использоваться для управления« потоком »овец или коз между загонами. В этом случае ворота представляют собой физический барьер, положение которого контролируется фермером. Фермер принимает решение о потоке овец или коз. животных, а затем перемещает физический барьер, чтобы обеспечить желаемый поток.

«В компьютере затвор управляет прохождением электрического тока через цепь. Затвор состоит из транзисторов; транзисторы выбираются разработчиком микросхемы из двух основных типов (транзисторы PMOS и NMOS), которые встречаются в широко распространенных CMOS (дополнительных металл-оксидный полупроводник) технология.Ток, протекающий через затвор, устанавливает напряжение в определенной точке цепи. Это напряжение представляет собой один бит информации. Напряжение может быть высоким (представляющим значение «1») или низким (представляющим значение «0»).

«Чтобы установить единицу в цепи, ток направляется в цепь (управляется) путем« включения »транзистора PMOS, подключенного между цепью и положительным напряжением питания. Напряжение питания обычно является стандартным для отрасли значением, например 3.3 или 5,0 вольт. В течение очень короткого интервала, необходимого для переключения логического элемента (порядка наносекунды или миллиардной доли секунды), ток будет течь через транзистор PMOS от положительного источника питания к схеме.

«Ток, который заряжает узел схемы до 0, направляется от схемы через другой тип транзистора (NMOS), подключенный между схемой и отрицательным напряжением питания или электрическим заземлением. Опять же, ток будет течь через транзистор NMOS. в течение очень короткого интервала, но для NMOS ток находится между цепью и отрицательным питанием.В любом случае протекание тока приводит к изменению напряжения в цепи, а напряжение в цепи представляет собой бит информации. Итак, когда вентиль управляет потоком тока, он фактически контролирует поток информации.

«Возвращаясь к аналогии между фермой и компьютерным чипом, очевидно, что поток отличается (сельскохозяйственные животные по сравнению с информацией) и что сам затвор отличается (физический барьер по сравнению с транзистором в технологии CMOS).Но самое главное отличие — это способы управления потоком. На ферме фермер сбрасывает местоположение ворот, принимая решение, а затем перемещая физический барьер. Поток животных через сложный лабиринт ворот потребует участия фермеров у каждых ворот.

«Но в компьютерном чипе механизм управления — это напряжение на управляющем выводе транзистора. Это напряжение включает транзистор, изменяя его характеристики с разомкнутой цепи (положение« выключено ») на такое, которое может проводить небольшой ток.Это управляющее напряжение, в свою очередь, уже доступно внутри микросхемы как напряжение в точке другой цепи. И, будучи напряжением в цепи, этот механизм управления представляет другой бит информации.

«Подавляющая вычислительная мощность логических вентилей проистекает из того факта, что на выходе любого конкретного логического элемента есть напряжение, которое, в свою очередь, может использоваться для управления другим вентилем. Таким образом, компьютерный чип может быть спроектирован так, чтобы принимать сложные решения о потоке информации внутри сам.Эта способность позволяет создавать сложные системы, соединяя до миллиона вентилей в одной микросхеме. И все это без фермеров и движущихся частей ».

Так Нин из IBM T.J. Watson Research Center добавляет некоторые дополнительные сведения:

«Логический вентиль в микрочипе состоит из определенного расположения транзисторов. Для современных микрочипов используются транзисторы типа, называемые полевым транзистором металл-оксид-полупроводник (MOSFET), а в качестве полупроводника используется кремний.МОП-транзистор имеет три компонента или области: область истока, область стока и область канала с затвором над ней. Эти три области расположены горизонтально рядом друг с другом, с областью канала посередине.

«В схеме с логическим затвором каждый из полевых МОП-транзисторов работает как переключатель. Переключатель замкнут или полевой МОП-транзистор включен, если электрический ток может легко течь от истока к стоку. Переключатель разомкнут, или МОП-транзистор включен. отключается, если электрический ток не может течь от источника к стоку.

«Области истока и стока полевого МОП-транзистора изготовлены так, чтобы они были заполнены электронами, готовыми к переносу тока. С другой стороны, область канала спроектирована так, чтобы в нормальных условиях не было электронов, что блокирует движение тока. Следовательно, в нормальных условиях полевой МОП-транзистор выключен (или открыт), и ток не может течь от истока к стоку.

«Если на затвор (который находится наверху области канала) приложено положительное напряжение, то электроны, которые имеют отрицательный заряд, будут притягиваться к затвору.Эти электроны собираются в области канала полевого МОП-транзистора. Чем больше напряжение затвора, тем больше концентрация электронов в области канала. Значительная концентрация электронов в канале обеспечивает путь, по которому электроны могут легко перемещаться от истока к стоку. Когда это происходит, полевой МОП-транзистор находится в состоянии «включено» (или «закрыт»), и ток может свободно течь от источника к стоку.

Таким образом, полевой МОП-транзистор в микрочипе включается путем приложения напряжения к затвору, чтобы привлечь электроны в область канала, и выключается путем приложения напряжения к затвору для отталкивания электронов от области канала.В кремнии есть движение зарядов, но нет никаких механических движущихся частей ».

Интегральные схемы — обзор

10.2.4 RE на уровне платы

Целью RE на уровне платы является идентификация всех компонентов на плата и соединения между ними. Все компоненты, используемые в конструкции, называются спецификацией материалов (BOM) [1]. Компоненты и части печатной платы могут быть любыми из следующих: микропроцессоры, микроконтроллеры, разделительные конденсаторы, дифференциальные пары, DRAM, вспышки NAND, последовательные EEPROM, последовательные вспышки NOR и кристаллы / генераторы.Там может быть шелкография, высокоскоростные последовательные / параллельные порты, программные / отладочные порты, JTAG, DVI, HDMI, SATA, PCI, Ethernet, порты программирования / отладки и порты дисплея [3,48]. Чтобы идентифицировать компоненты, контрольные точки и части печатной платы, часто используется шелкография [1]. Например, D101 может быть диодом, а Z12 — стабилитроном.

Идентификация ИС по маркировке микросхемы и кристалла . Некоторые электронные компоненты, установленные на печатной плате, можно легко идентифицировать по маркировке IC, но полностью изготовленные по индивидуальному заказу или частично изготовленные по индивидуальному заказу IC трудно идентифицировать.Использование стандартных готовых деталей с аннотациями шелкографии поможет процессу RE. Если на микросхемах нет маркировки, то логотип производителя может дать представление о функциональности микросхемы. Пользовательские устройства, которые разрабатываются собственными силами, трудно идентифицировать [1], потому что пользовательское устройство может быть недокументировано или документация может быть предоставлена ​​только в соответствии с соглашением о неразглашении.

Маркировку IC можно разделить на следующие четыре части [49]:

Первый — это префикс, который представляет собой код, который используется для идентификации производителя.Это может быть одно- или трехбуквенный код, хотя у производителя может быть несколько префиксов.

Вторая часть — это код устройства, который используется для идентификации конкретного типа ИС.

Следующая часть — это суффикс, который используется для обозначения типа упаковки и диапазона температур. Производители часто изменяют свои суффиксы.

Для даты используется четырехзначный код, где первые две цифры обозначают год, а последние две — номер недели.Кроме того, производители могли зашифровать дату в форме, известной только им.

Условные обозначения микросхемы Texas Instruments (TI) для первой и второй строк показаны на рис. 10.10. Чипы TI могут иметь необязательную третью и четвертую строку с информацией, относящейся к товарному знаку и авторскому праву. После определения производителя и маркировки ИС, реверс-инженер мог найти подробную функциональность микросхемы в таблицах данных, которые доступны в Интернете [50,51].

Рисунок 10.10. Условные обозначения на микросхемах TI для (A) первой строки и (B) второй строки.

Если маркировка IC не читается, потому что она исчезла из-за предыдущего использования в полевых условиях или производитель не разместил маркировку в целях безопасности, обратный инженер может снять упаковку и прочитать маркировку штампа, чтобы идентифицировать производитель и функциональность микросхемы [49]. Маркировка штампа может помочь идентифицировать номер маски, номер детали, дату завершения сборки штампа или регистрации авторских прав, логотип компании и символ товарного знака.Маркировка штампа может совпадать с маркировкой упаковки в зависимости от производителя. Затем информацию из таблицы можно использовать для оценки штампа. Маркировка кристаллов аналогична внутри семейств микросхем одного производителя [52]. Таким образом, если кто-то может найти функциональные возможности одного чипа, то этот человек также может определить функциональность семейства чипов из-за почти одинаковой маркировки кристаллов, которую имеют чипы в этом семействе. Например, процессор Qualcomm MSM8255 идентичен MSM7230 как по функциональности, так и по конструкции, и оба чипа относятся к семейству микросхем Snapdragon [52].Единственная разница между этими двумя чипами — это их тактовая частота. После идентификации компонентов печатной платы обратный инженер может захотеть определить тип печатной платы, который может быть любым из следующих: односторонний (один медный слой), двусторонний (два медных слоя) или многослойный. В многослойных печатных платах микросхемы соединены друг с другом спереди и сзади, а также через внутренние слои. Некоторые внутренние слои используются как слои питания и заземления. Проводники разных слоев соединяются переходными отверстиями, и для идентификации этих соединений необходима задержка.

Разрушающий анализ печатных плат. Перед задержкой печатной платы снимаются изображения размещения и ориентации компонентов всех внешних слоев [1]. Затем компоненты можно было удалить, можно было наблюдать положения просверленных отверстий и можно было определить, есть ли скрытые или глухие переходные отверстия. Процесс задержки PCB аналогичен описанному для микросхем и поэтому не будет обсуждаться далее. После задержки печатной платы можно делать изображения каждого слоя [48].Затем следует отметить состав и толщину слоев. Важно отслеживать контроль импеданса высокоскоростных сигналов и характеристики печатной платы. Также необходимо определить диэлектрическую проницаемость, толщину переплетения препрега и тип смолы [1].

Неразрушающее трехмерное изображение печатных плат с помощью рентгеновской томографии. Рентгеновская томография — это неинвазивный метод визуализации, который позволяет визуализировать внутреннюю структуру объекта без вмешательства верхних и нижних структур.Принцип этого метода состоит в том, чтобы получить стопку 2D-изображений, а затем использовать математические алгоритмы, такие как прямое преобразование Фурье и теория центрального среза [53], для восстановления 3D-изображения. Эти 2D-проекции собираются под разными углами, в зависимости от качества, необходимого для окончательного изображения. Свойства объекта, такие как размер и плотность материала, расстояние от источника / детектора до объекта, мощность источника, объектив детектора, фильтр, время экспозиции, количество проекций, смещение центра и жесткость луча, важны для рассмотрения при выборе процесса томографии. параметры.Внутренние и внешние структуры будут готовы к анализу после реконструкции трехмерного изображения [48]. Обсуждение того, как выбрать правильные значения для любого из этих параметров, выходит за рамки данной статьи. Подробнее о параметрах томографии можно прочитать в [54].

В качестве примера анализируются следы и сквозные отверстия четырехслойной специальной печатной платы с использованием рентгеновского аппарата Zeiss Versa 510 [55]. Чтобы убедиться, что функции на плате можно наблюдать, они выбрали мелкий размер пикселей, что дает нам достаточно высокое качество изображения.После нескольких раундов оптимизации выбираются параметры томографии для получения изображений наилучшего качества. Процесс полностью автоматизирован после настройки параметров, может выполняться без надзора и должен быть широко применим к большинству печатных плат.

Для четырехслойной специализированной платы на рис. 10.11 четко зафиксированы все трассы, соединения и переходные отверстия. Чтобы проверить эффективность метода томографии, результаты сравниваются с файлами дизайна платы, которые ранее использовались для изготовления печатной платы.Плата состоит из лицевой стороны, тыльной стороны и двух внутренних слоев. Внутренние слои соответствуют силе и земле. Отверстия соединяют дорожки на двух сторонах платы, а также подключаются к слоям питания или заземления. Внутренний силовой слой представлен в проектной схеме на рис. 10.12.

Рисунок 10.11. Печатная плата установлена ​​на держателе образца.

Рисунок 10.12. Компоновочное оформление внутреннего силового яруса.

Трехмерное изображение платы реконструируется с использованием комбинации тысяч виртуальных двумерных срезов.Эти срезы можно просматривать и анализировать отдельно. Толщина каждого из них такая же, как размер пикселя (то есть 50 мкм). На рис. 10.13 представлен один срез, который показывает информацию внутреннего уровня мощности.

Рисунок 10.13. Виртуальная нарезка представляет собой слой мощности.

Сравнивая результаты томографии и конструктивную схему платы, можно увидеть четкую разницу между сквозными отверстиями, которые соединяются, и теми, которые не соединены с внутренним слоем.Паяные соединения представляют собой материал с высокой степенью поглощения рентгеновских лучей и приводят к белому контрасту связанных пикселей. Однако пластик имеет меньшую плотность и более прозрачен для рентгеновских лучей, что приводит к темному контрасту. Таким образом, можно легко определить, какие сквозные отверстия связаны с внутренним слоем. Тот же принцип позволит нам обнаружить следы на боковых слоях платы из-за наличия меди на следах, как показано на рис. 10.14.

Рисунок 10.14. Реконструированные (A) верхний и (B) нижний слои печатной платы.

Извлечение списка соединений после создания образа. После получения изображений печатной платы с помощью задержки или рентгеновской томографии можно было обнаружить соединения между всеми компонентами, что дало бы список соединений компоновки печатной платы. Затем можно было использовать коммерческие инструменты для преобразования компоновки обратно в схему [56]. Чтобы создать список соединений из собранных образов, необходимо проверить следующее:

соединение между компонентами исходной платы (таблица данных может помочь найти соединение для исходной функциональности),

неожиданное короткое замыкание и зависание Vdd,

контактов между компонентами.

В предшествующей работе [57,60] для анализа рентгеновских изображений использовалось несколько методов. Wu et al. [57] использует систему визуального контроля печатных плат. Используется метод вычитания исключения, который вычитает идеальное изображение печатной платы (шаблон) из проверенного изображения и определяет местонахождение дефектов на печатной плате. Mat et al. [58] применил технику структурирования к необработанному изображению печатной платы (входному) с помощью морфологической операции. После этого применяется функция растяжения и эрозии, чтобы можно было получить детально сегментированное изображение дорожек печатной платы.Koutsougeras et al. [59] применил автоматический генератор моделей Verilog HDL, который включает в себя технику обработки изображений, которая используется для идентификации компонентов и их соединений. После этого получается принципиальная схема, соответствующая примитивной принципиальной схеме платы. Наконец, Verilog HDL генерируется из графа схемы. Симулятор Verilog XL используется для тестирования производительности. Слои сборок печатных плат / печатных плат разделены с помощью рентгеновского стереоизображения в [60].Основное внимание уделяется выявлению паяных соединений и следов на разных слоях многослойной печатной платы. В автоматизированном техпроцессе фотографии берутся с одно- или двухслойных печатных плат. Затем программа на C ++ используется для автоматического реинжиниринга списка соединений.

NMOS — Цифровые логические схемы

Для реализации электронных логических вентилей используется комбинация источников напряжения, точек заземления и контактов ввода / вывода. Вместо того, чтобы объяснять мучительные подробности заранее, может быть лучше сначала увидеть очень простую реализацию логического элемента.

Этот затвор имеет один источник напряжения вверху (\ (V_ {cc} \) и \ (V_ {dd} \) могут использоваться взаимозаменяемо), одно заземление внизу, один вход слева (A), и один выход справа (НЕ А). Резистор в затворе используется для уменьшения тока, протекающего по цепи. Элементом схемы на стыке входа, выхода и земли является транзистор. Транзисторы могут действовать как электронные переключатели — они контролируют, открыт или закрыт контур цепи, в зависимости от того, высокий или низкий уровень их входной линии.Этот транзистор позволяет току течь на землю, когда он активируется высоким входом, и разрывает свою часть цепи, когда он деактивируется низким входом. Этот разрыв заставляет ток течь через выходной контакт. Таким образом, выход является инвертированным входом — высокий, когда вход низкий, и низкий, когда вход высокий.
Транзистор на схеме — это транзистор NMOS , что означает, что это MOSFET (полевой транзистор металл-оксид-полупроводник), естественное состояние которого открыто.Когда его вход активен, транзистор NMOS «опускается» в положение, позволяющее току течь через его мост, что приводит к названию «выпадающая сеть» для набора транзисторов, которые выполняют логику в NMOS- реализованы ворота.

Основные операторы логической алгебры (НЕ, И, ИЛИ) плохо переносятся в транзисторную логику. Должно быть довольно легко увидеть, как функциональность логического элемента И реализована с транзисторами, включенными последовательно, и как функциональность ИЛИ может быть построена с использованием параллельных транзисторов.Проблема в том, что когда входы транзисторов соответствуют условию «1» в соответствующей таблице истинности, ток течет на землю . Это заставляет логику транзистора NMOS естественно инвертировать . Транзисторная реализация AND дает NAND, а естественная реализация OR дает NOR. НЕ уже является инвертирующим вентилем, поэтому его реализация показана выше. Чтобы получить соответствующий базовый оператор, за любой функцией естественного инвертирования должно следовать НЕ. Вот реализация NMOS логической функции \ (a (b + c) \) в комплекте с конечным инвертором:

Как сделать Not Gate, используя транзистор на макетной плате

Я уверен, что вы должны быть знакомы с воротами НЕ, это таблица истинности, логический символ и их работа.Но знаете ли вы, что вы можете создать свой собственный НЕ Gate на макетной плате? Итак, в этом посте вы узнаете, как сделать НЕ-вентиль, используя транзистор на макетной плате.

** Прочтите аналогичную статью: И ворота с использованием диодов

Что такое NOTGate?

Символ выхода НЕ

Шлюз

НЕ является логическим шлюзом и называется так, потому что НЕ означает «противоположный». В вентиле НЕ есть только один вход и один выход. Таким образом, когда вход равен 0, выход равен 1, а когда вход равен 1, выход равен 0.

Вы также можете посмотреть видео ниже для быстрой справки:

Таблица истинности:

Таблица истинности ворот НЕ

Необходимые компоненты:

1. BC547 Транзистор X 2

2. Резистор 1 кОм, 100 Ом

3. Светодиод

4. Аккумулятор 9 В

5. Соединительные провода

СХЕМА:

НЕ затвор с использованием транзистора

Это схема, которую мы собираемся построить на макетной плате.

1. Коллектор подключается к плюсовой клемме АКБ через резистор 1 кОм

2. Логические входы подаются на базу транзистора через резистор 100 Ом.

3. Излучатель идет на массу, т. Е. На отрицательную клемму аккумулятора.

4. Индикатор выхода, т.е. светодиод подключен между коллектором и эмиттером (Gnd).

5. Земля — ​​отрицательный полюс аккумуляторной батареи.

РАБОЧИЙ:

BC547 Транзистор действует как переключатель в этой цепи.Когда на базе возникает какое-то пороговое напряжение, транзистор действует как замкнутый переключатель с коллектора на эмиттер. И всякий раз, когда на базе нет или меньше порогового напряжения, это действует как разрыв цепи от коллектора к эмиттеру.

** из принципиальной схемы

ВАРИАНТ 1: вход A = 0

В этом случае на базе транзистора нет напряжения. Таким образом, он действует как открытый переключатель от коллектора к эмиттеру, то есть бесконечное сопротивление между коллектором и эмиттером.И из-за этого ток от коллектора к земле не течет. Весь ток течет от резистора к светодиоду, а затем к земле, то есть по пути минимального сопротивления. Следовательно, загорится светодиод, т.е. 1 на выходе.

ВАРИАНТ 2: вход A = 1

В этом случае на базе транзистора присутствует некоторое пороговое напряжение. Таким образом, он действует как замкнутый переключатель от коллектора к эмиттеру, то есть почти нулевое сопротивление между коллектором и эмиттером. Благодаря этому ток не течет от резистора к светодиоду, а затем к земле.Весь ток течет от коллектора к земле, то есть по пути минимального сопротивления. Следовательно, светодиод гаснет, т. Е. 0 на выходе.

** Следовательно, мы получаем 0 (светодиод не горит) на выходе, когда вход равен 1, и 1 (светодиод горит) на выходе, когда вход равен 0.

Моделирование:

Примечание. Перед построением схемы на макете она сначала моделируется в приложении «Каждая схема». Вы можете скачать приложение здесь.

** Схема в точности аналогична приведенной выше.

НЕ затвор с использованием транзистора

** Слайд-шоу

ВАРИАНТ 1: вход A = 1, выход = 0 (светодиод не горит)

ВАРИАНТ 2: вход A = 0, выход = 1 (светодиод горит)

(1). выход равен 0 (2). выход 1

Давай сделаем это!

1. Поместите транзистор на макетную плату, как показано на рисунке ниже. Клеммы транзистора слева направо: КОЛЛЕКТОР, БАЗА, ЭМИТТЕР.

** Слайд-шоу

2. Подключите резистор 100 Ом от коллектора к положительной клемме батареи, как показано ниже:

** Слайд-шоу

(1) (2)

3. Теперь подключите резистор 1 кОм от базы транзистора к входной логике.

(1) (2)

4.Теперь подключите перемычку на входе.

5. Подключите эмиттер к земле, т. Е. Отрицательную клемму аккумулятора:

(1) (2)

6. Подключите клеммы 9-вольтовой батареи, как показано ниже:

7. Теперь подключите светодиод от коллектора (более длинная ножка) к эмиттеру (более короткая ножка).

** Слайд-шоу

(1) (2)

ВАРИАНТ 1: Вход A = 0, выход = 1 (светодиод горит)

ВЫХОД 1 ВЫХОД 1

В этом случае на базе транзистора нет напряжения.Таким образом, он действует как открытый переключатель от коллектора к эмиттеру, то есть бесконечное сопротивление между коллектором и эмиттером. И из-за этого ток от коллектора к земле не течет. Весь ток течет от резистора к светодиоду, а затем к земле, то есть по пути минимального сопротивления. Следовательно, загорится светодиод, т.е. 1 на выходе.

ВАРИАНТ 2: Вход A = 1, выход = 0 (светодиод не горит)

ВЫХОД 0 ВЫХОД 0

В этом случае на базе транзистора присутствует некоторое пороговое напряжение.Таким образом, он действует как замкнутый переключатель от коллектора к эмиттеру, то есть почти нулевое сопротивление между коллектором и эмиттером. Благодаря этому ток не течет от резистора к светодиоду, а затем к земле. Весь ток течет от коллектора к земле, то есть по пути минимального сопротивления. Следовательно, светодиод гаснет, т. Е. 0 на выходе.

** Следовательно, мы получаем 0 (светодиод не горит) на выходе, когда вход равен 1, и 1 (светодиод горит) на выходе, когда вход равен 0.

Вы также можете посмотреть видео ниже для быстрой справки:

Двумерные транзисторы с изменяемой полярностью для защищенных схем

  • 1.

    Новоселов К.С. и др. Двумерные атомные кристаллы. Proc. Natl Acad. Sci. США 102 , 10451–10453 (2005).

    Артикул Google ученый

  • 2.

    Дас, С., Чен, Х.Й., Пенумача, А.В., Аппенцеллер, Дж. Высокопроизводительные многослойные транзисторы MoS 2 со скандиевыми контактами. Nano Lett. 13 , 100–105 (2013).

    Артикул Google ученый

  • 3.

    Das, S. & Appenzeller, J. WSe 2 полевых транзисторов с улучшенными амбиполярными характеристиками. Заявл. Phys. Lett. 103 , 103501 (2013).

    Артикул Google ученый

  • 4.

    Liu, H. et al. Фосфорен: неизведанный двумерный полупроводник с высокой подвижностью дырок. САУ Нано 8 , 4033–4041 (2014).

    Артикул Google ученый

  • 5.

    Li, L. et al. Полевые транзисторы с черным фосфором. Nat. Nanotechnol. 9 , 372–377 (2014).

    Артикул Google ученый

  • 6.

    Wu, P. et al. Комплементарные туннельные полевые транзисторы с черным фосфором. САУ Нано 13 , 377–385 (2019).

    Артикул Google ученый

  • 7.

    Penumatcha, A. V., Салазар, Р. Б. и Аппенцеллер, Дж. Анализ транзисторов с черным фосфором с использованием аналитической модели полевого МОП-транзистора с барьером Шоттки. Nat. Commun. 6 , 8948 (2015).

    Артикул Google ученый

  • 8.

    Роббинс, М. К. и Кестер, С. Дж. Чернофосфорные p- и n-МОП-транзисторы с электростатически легированными контактами. IEEE Electron Device Lett. 38 , 285–288 (2017).

    Артикул Google ученый

  • 9.

    Tosun, M. et al. Инверторы с высоким коэффициентом усиления на основе комплементарных полевых транзисторов WSe 2 . САУ Нано 8 , 4948–4953 (2014).

    Артикул Google ученый

  • 10.

    Шульман Д. С., Арнольд А. Дж. И Дас С. Контактная инженерия для 2D-материалов и устройств. Chem. Soc. Ред. 47 , 3037–3058 (2018).

    Артикул Google ученый

  • 11.

    Prakash, A., Ilatikhameneh, H., Wu, P. & Appenzeller, J. Понимание контактного стробирования в транзисторах с барьером Шоттки из двухмерных каналов. Sci. Отчетность 7 , 12596 (2017).

    Артикул Google ученый

  • 12.

    Мур, Г. Э. Втиснуть больше компонентов в интегральные схемы. Proc. IEEE https://doi.org/10.1109/JPROC.1998.658762 (1998).

  • 13.

    Франклин А. Д. Наноматериалы в транзисторах: от высокопроизводительных до тонкопленочных приложений. Наука 349 , aab2750 (2015).

    Артикул Google ученый

  • 14.

    Скотницки, Т., Хатчби, Дж. А., Кинг, Т. Дж., Вонг, Х. С. П. и Бёф, Ф. Конец масштабирования КМОП: введение новых материалов и структурные изменения для улучшения характеристик полевого МОП-транзистора. IEEE Circuits Devices Mag . https://doi.org/10.1109/MCD.2005.1388765 (2005).

  • 15.

    Rabaey, J. M., Chandrakasan, A.И Николич Б. Цифровые интегральные схемы 2-е изд. (Пирсон, 2003 г.).

  • 16.

    Servanton, G. et al. Усовершенствованная характеристика ПЭМ для разработки узлов с длиной волны 28–14 нм на основе технологии полностью обедненного кремния на изоляторе. J. Phys. Конф. Сер. 471 , 012026 (2013).

    Артикул Google ученый

  • 17.

    Holler, M. et al. Трехмерное изображение интегральных схем с увеличением от макро до нанометров. Nat. Электрон. 2 , 464–470 (2019).

    Артикул Google ученый

  • 18.

    Holler, M. et al. Неразрушающее трехмерное изображение интегральных схем с высоким разрешением. Природа 543 , 402–406 (2017).

    Артикул Google ученый

  • 19.

    Ву П. и Аппенцеллер Дж. К CMOS-подобным устройствам из материалов с двумерным каналом. APL Mater. 7 , 100701 (2019).

    Артикул Google ученый

  • 20.

    Коули, А. М. и Сзе, С. М. Поверхностные состояния и высота барьера в системах металл – полупроводник. J. Appl. Phys. 36 , 3212–3220 (1965).

    Артикул Google ученый

  • 21.

    Appenzeller, J., Zhang, F., Das, S. & Knoch, J. в 2D Materials for Nanoelectronics (eds Houssa, M.и др.) гл. 8, 207–240 (Тейлор и Фрэнсис, 2016).

  • 22.

    Nakaharai, S. et al. Электростатически обратимая полярность амбиполярных транзисторов α-MoTe 2 . САУ Нано 6 , 5976–5983 (2015).

    Артикул Google ученый

  • 23.

    Yu, W. J. et al. Адаптивные логические схемы с амбиполярными транзисторами из углеродных нанотрубок, не требующими допирования. Nano Lett. 9 , 1401–1405 (2009).

    Артикул Google ученый

  • 24.

    Lin, Y. F. et al. Амбиполярные транзисторы MoTe 2 и их применение в логических схемах. Adv. Матер. 26 , 3263–3269 (2014).

    Артикул Google ученый

  • 25.

    Ren, Y. et al. Последние достижения в области амбиполярных транзисторов для функционального применения. Adv. Функц. Матер. 29 , 1–65 (2019).

    Google ученый

  • 26.

    Реста, Г. В. и др. Не требующие допинга дополнительные логические элементы, обеспечиваемые двумерными транзисторами с контролируемой полярностью. САУ Нано 12 , 7039–7047 (2018).

    Артикул Google ученый

  • 27.

    Bi, Y. et al. Повышение безопасности оборудования с помощью новых транзисторных технологий. В Proc. Международный симпозиум по Великим озерам 2016 г. по VLSI , GLSVLSI , 305–310 (IEEE, 2016).

  • 28.

    Rajendran, J. et al. Нано встречает безопасность: изучаем наноэлектронные устройства для приложений безопасности. Proc. IEEE 103 , 829–849 (2015).

    Артикул Google ученый

  • 29.

    Patnaik, S. et al. Повышение безопасности оборудования с помощью полиморфных и стохастических устройств на эффекте спин-Холла. В Proc. Конференция по проектированию, автоматизации и тестированию в Европе 2018 г. Конференция и выставка ( ДАТА ) 97–102 (IEEE, 2018).

  • 30.

    Bi, Y. et al. Разработка примитивов для обеспечения безопасности оборудования на основе новейших технологий. J. Emerg. Technol. Comput. Syst. 13 , 3 (2016).

    Артикул Google ученый

  • 31.

    Dupuis, S. & Flottes, M.-L. Логическая блокировка: обзор предлагаемых методов и показателей оценки. J. Electron. Тестовое задание. 35 , 273–291 (2019).

    Артикул Google ученый

  • 32.

    Рой, Дж. А., Кушанфар, Ф. и Марков, И. Л. EPIC: прекращение пиратства интегральных схем. В Proc. Конференция по проектированию , Автоматизация и испытания в Европе ( ДАТА ) 1069–1074 (IEEE, 2008).

  • 33.

    Плаза, С. М. и Марков, И. Л. Решение проблемы третьей смены в пиратстве ИС с помощью логической блокировки с учетом тестирования. IEEE Trans. Comput. Помощь Дес. Интегр. Circuits Syst. 34 , 961–971 (2015).

    Артикул Google ученый

  • 34.

    Раджендран, Дж., Синаноглу, О. и Карри, Р. Метрика безопасности на основе тестирования СБИС для маскировки ИС. В 2013 Международная конференция по тестированию IEEE ( ITC ) https://doi.org/10.1109/TEST.2013.6651879 (IEEE, 2013).

  • 35.

    Раджендран, Дж., Сэм, М., Синаноглу, О. и Карри Р. Анализ безопасности маскировки интегральных схем. В Proc. 2013 Конференция ACM SIGSAC по компьютерной и коммуникационной безопасности 709–720 (ACM, 2013).

  • 36.

    Шиодзаки, М., Хори, Р. и Фуджино, Т. Программируемое диффузионное устройство: устройство для предотвращения обратной инженерии. IACR Cryptol. ePrint Arch. 2014 , 109 (2014).

    Google ученый

  • 37.

    Малик, С., Беккер, Г. Т., Паар, К. и Берлесон, У. П. Разработка инструмента аппаратной обфускации на уровне макета. В Proc. 2015 Ежегодный симпозиум компьютерного общества IEEE по СБИС 204–209 (IEEE, 2015).

  • 38.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  • 39.

    Heinzig, A., Slesazeck, S., Kreupl, F., Mikolajick, T. & Weber, W.M. Реконфигурируемые транзисторы на кремниевых нанопроводах. Nano Lett. 12 , 119–124 (2012).

    Артикул Google ученый

  • 40.

    Heinzig, A., Mikolajick, T., Trommer, J., Grimm, D. & Weber, W.М. Двойно активные кремниевые нанопроволочные транзисторы и схемы с равным переносом электронов и дырок. Nano Lett. 13 , 4176–4181 (2013).

    Артикул Google ученый

  • 41.

    De Marchi, M. et al. Контроль полярности в полевых транзисторах из кремниевых нанопроволок с двойным затвором и круговым затвором. Тех. Копать землю. Int. Электронные устройства встречают . 8.4.1–8.4.4 (2012).

  • 42.

    Larentis, S. et al.Реконфигурируемые комплементарные однослойные полевые транзисторы MoTe 2 для интегральных схем. САУ Нано 11 , 4832–4839 (2017).

    Артикул Google ученый

  • 43.

    Bao, R. et al. Решения с несколькими Vt в технологии нанолистов для высокопроизводительных приложений с низким энергопотреблением. В Proc. Международная конференция по электронным устройствам IEEE, 2019 г., 234–237 (IEEE, 2019).

  • 44.

    Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. Высокоподвижная транспортная анизотропия и линейный дихроизм в многослойном черном фосфоре. Nat. Commun. 5 , 4475 (2014).

    Артикул Google ученый

  • 45.

    Цай, Й., Чжан, Г. и Чжан, Ю. В. Зависимое от слоев выравнивание полос и работа выхода многослойного фосфорена. Sci. Отчетность 4 , 6677 (2014).

    Артикул Google ученый

  • 46.

    Haratipour, N., Namgung, S., Oh, S.-H. И Кестер, С. Дж. Фундаментальные ограничения подпороговой крутизны в полевых транзисторах с черным фосфором истока / стока Шоттки. САУ Нано 10 , 3791–3800 (2016).

    Артикул Google ученый

  • 47.

    Haratipour, N. et al. Высокопроизводительные полевые МОП-транзисторы с черным фосфором, использующие контроль ориентации кристалла и контактную инженерию. IEEE Electron Device Lett. 38 , 685–688 (2017).

    Артикул Google ученый

  • 48.

    Das, S., Demarteau, M. & Roelofs, A. Амбиполярный фосфореновый полевой транзистор. САУ Нано 8 , 11730–11738 (2014).

    Артикул Google ученый

  • 49.

    Liu, Y. & Ang, K. W. Монолитно интегрированные гибкие дополнительные схемы инвертора с черным фосфором. САУ Нано 11 , 7416–7423 (2017).

    Артикул Google ученый

  • 50.

    Kirsch, P. D. et al. Модель диполя, объясняющая настройку порогового напряжения полевого транзистора с высоким k / металлическим затвором. Заявл. Phys. Lett. 92 , 092901 (2008).

    Артикул Google ученый

  • 51.

    Кочер, П., Яффе, Дж. И Джун, Б.Дифференциальный анализ мощности. Proc. CRYPTO 99 , 388–397 (1999).

    МАТЕМАТИЧЕСКИЙ Google ученый

  • Транзистор

    Библиотека: Электропроводка
    Введено: 2.7.0
    Внешний вид:

    Поведение

    Транзистор

    A имеет два входа, называемых затвором и истоком , и один выход, называемый сток .На схеме источник вход и сток выход соединены пластиной; Logisim рисует стрелку, чтобы указать направление потока от входа к выходу. Вход вентиль соединен с пластиной, параллельной пластина, соединяющая исток с стоком . Logisim поддерживает два типа транзисторы с немного другим поведением, описанным ниже; P-тип транзистор обозначен кружком, соединяющим вход затвора с его пластина, а у транзистора N-типа такой окружности нет.

    В зависимости от значения, найденного в воротах , значение источника может быть передано на сток ; или может не быть связи с источник , итак сток оставлен плавающим. Определение передачи или отключения зависит от типа транзистора: Транзистор P-типа (обозначен кружком на линии gate ) передает когда затвор равен 0, а транзистор N-типа (у которого нет такого круга) передает, когда вентиль равен 1.Поведение резюмируется следующие таблицы.

    P-образный
    вентиль
    0 1

    0 Z X
    источник 1 1 Z X
    Z Z Z Z
    X X Z X
    Тип N
    ворота X / Z
    0 Z 0 X
    источник 1 Z 1 X
    Z Z Z Z
    X Z X X

    Или в обобщенном виде:

    P-тип
    затвор сток
    0 исток
    X / Z X *
    Тип N
    вентиль сток

    9 915

    Z
    1 источник
    X / Z X *

    * Если источник — Z, сток — Z; иначе сток — это Х.

    Если атрибут Data Bits больше 1, вход вентиль все еще один бит, но его значение применяется одновременно к каждому из источник входных бит.

    Транзистор N-типа ведет себя очень похоже на Контролируемый буфер. Основное отличие заключается в том, что транзистор предназначен для более простых схем.

    Штифты (при условии, что компонент обращен на восток, линия затвора вверху / слева)

    Западный край (вход, разрядность соответствует атрибуту Data Bits)
    Источник компонента вход, который будет передавать на выход если запускается входом вентиль .
    Северный край (вход, разрядность 1)
    Элемент вентиль вход. Для транзисторов P-типа транзистор будет передавать, если значение ворот равно 0; для транзисторов N-типа, это запустит транзистор, если значение затвора равно 1.
    Восточный край (вывод, разрядность соответствует атрибуту Data Bits)
    Выход компонента, который будет соответствовать источнику входу если указано входом вентиль , или будет плавающим, если вентиль ввод — это отрицание того, что указывает отрицание.Если ворота плавающие или значение ошибки, тогда на выходе будет значение ошибки.

    Атрибуты

    Когда компонент выбран или добавлен, Alt-0 — Alt-9 изменяет его атрибут Data Bits а клавиши со стрелками изменяют его атрибут Facing .

    Тип
    Определяет, является ли транзистор P-типом или N-типом.
    Облицовка
    Направление компонента (его выход относительно его входа).
    Расположение ворот
    Расположение ворот входа.
    Биты данных
    Разрядность входов и выходов компонента.

    Поведение Poke Tool

    Нет.

    Поведение инструмента текста

    Нет.

    Вернуться к Ссылка библиотеки

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *