Схема подключения люминесцентной лампы с дросселем: с дросселем, стартером, без них

Содержание

Подробная схема подключения люминесцентной лампы, устройство 

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются.

Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника.

Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

Схемы подключения люминесцентных ламп дневного света



Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)
Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа.
После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем

. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Подключение люминесцентных ламп — схема и варианты монтажа

Отличительный принцип схемы подключения люминесцентных светильников заключается в необходимости включения в нее приборов пускового типа, от них зависит длительность эксплуатации.

Для того чтобы разбираться в схемах необходимо понимать принцип работы данных светильников.

Технические характеристики люминесцентных ламп

Устройство светильника люминесцентного типа – это герметичный сосуд, наполненный особой консистенцией из газа. Расчёт смеси производился с целью растрачивания меньшей энергии ионизации газов в сравнении с обычными лампами, за счет этого можно хорошо сэкономить на освещении дома или квартиры.

Для постоянного освещения необходимо удержание тлеющего разряда. Этот процесс обеспечивается с помощью подачи нужного напряжения. Проблема заключается лишь в следующей ситуации — такой разряд появляется от подающего напряжения, которое выше рабочего. Но и эта задача была решена производителями.

На двух сторонах лампы устанавливаются электроды, которые принимают напряжение, и поддерживают разряд. Каждый электрод имеет два контакта, с которыми происходит соединение источника тока. За счет этого происходит нагревание зоны, которая окружает электроды.

Светильник загорается впоследствии нагрева каждого электрода. Происходит это за счет воздействия на них высоковольтных импульсов и последующей работы напряжения.

При воздействии разряда газы находящиеся в емкости лампы активизируют излучение ультрафиолетового света, который не воспринимается глазом человека. Для того чтобы зрение человека различало это свечение колба внутри покрыта люминофорным веществом, которое смещает частотный интервал освещения в видимый интервал.

Изменяя структуру данного вещества происходит изменение гаммы цветовых температур.

Важно! Нельзя попросту включить светильник в сеть. Дуга появится после обеспечения прогревания электродов и импульсного напряжения.

Специальные балласты помогают обеспечить такие условия.

Подключение через электромагнитный балласт

Нюансы схемы подключения

Цепь данного вида должна включать в себя наличие дросселя и стартера.

Стартер выглядит как небольшой по мощности источник неонового освещения. Для его питания необходима электросеть с переменным значением тока, также он оснащен некоторым количеством биметаллических контактов.

Подключение дросселя, стартерных контактов и электродных нитей происходит последовательно.

Другой вариант возможен при замещении стартера на кнопку от входного звонка.

Напряжение будет осуществляться удержанием кнопки в состоянии нажатия. Когда светильник зажжётся ее необходимо отпустить.

1-й способ подключения люминесцентных ламп

  • подключенный дроссель сохраняет электромагнитную энергию;
  • с помощью стартерных контактов поступает электричество;
  • перемещение тока осуществляется с помощью вольфрамовых нитей нагревания электродов;
  • нагрев электродов и стартера;
  • затем размыкаются контакты стартера;
  • энергия, которая аккумулируется с помощью дросселя освобождается;
  • светильник включается.

Для того чтобы увеличить показатель полезного действия, уменьшить помехи в модель схемы вводятся два конденсатора.

Плюсы данной схемы:

— простота;

— демократичная цена;

— она надежна;

Недостатки схемы:

— большая масса устройства;

— шумная работа;

— лампа мерцает, что не хорошо сказывается на зрении;

— потребляет большое количество электроэнергии;

— включается устройство около трех секунд;

— плохое функционировании при минусовых температурах.

Очередность подключения

Подключение с помощью вышеописанной схемы происходит со стартерами. Рассматриваемый ниже вариант имеет модель стартера S10 мощностью 4-65Вт., лампу на 40Вт и такую же мощность у дросселя.

Этап 1. Подключение стартера к штыревым контактам лампы, которые имеют вид нитей накаливания.

Этап 2. Остальные контакты подключается к дросселю.

Этап 3. Конденсатор подключается к контактам питания параллельным образом. За счет конденсатора компенсируется уровень реактивной мощностью, и происходит уменьшение количества помех.

Подключение люминесцентных ламп через электронный балласт

Особенности схемы подключения

За счет электронного балласта лампе обеспечивается долгий период функционирования и экономия затрат электроэнергии. При работе с напряжением до 133 кГц свет распространяется без мерцания.

Микросхемами обеспечивается питание светильников, подогрев электродов, тем самым повышается их продуктивность и увеличиваются сроки эксплуатации. Имеется возможность совместно с лампами данной схемы подключения использовать диммеры – это устройства, которые плавно регулируют яркость свечения.

Электронный балласт преобразует напряжение. Действие постоянного тока трансформируется в ток высокочастотного и переменного вида, который переходит на нагреватели электродов.

Повышается частота за счет этого происходит уменьшение интенсивности нагревания электродов. Использование электронного балласта в схеме подключения позволяет подстроиться под свойства светильника.

Плюсы схемы данного вида:

  • большая экономия;
  • лампочка плавно включается;
  • отсутствует мерцание;
  • бережно прогреваются электроды лампы;
  • допустимая эксплуатация при низких температурах;
  • компактность и маленькая масса;
  • долговременный срок действия.

Минусы схемы данного вида:

  • усложненность схемы подключения;
  • большая требовательность к установке.
Порядок подключения ламп

Светильник подключается в три этапа:

— происходит прогревание электродов, за счет чего аккуратно и размеренно запускается устройство;

— создается мощный импульс, который требуется для поджигания;

— рабочее напряжение балансируется и подается на лампу.

Подключение люминесцентных ламп последовательно

Очередность подключения

Этап 1. Параллельное подсоединение стартера к каждой лампе.

Этап 2. Последовательное подсоединение с помощью дросселя свободных контактов к сети.

Этап 3. Параллельное подсоединение конденсаторов к контактам лампы. За счет этого происходит снижение помех, а также компенсирование реактивной мощности.

Видео — Подключение люминесцентных ламп

Поделитесь если вам понравилось:

Похожие материалы

Схема подключения люминесцентной лампы

Люминисце́нтный светильник был изобретен в 1930-е годы, как источник света, получил известность и распространение с конца 1950-х.

Его преимущества неоспоримы:

  • Долговечность.
  • Ремонтопригодност.
  • Экономичность.
  • Теплый, холодный и цветной оттенок свечения.

Длительный срок службы обеспечивает правильно спроектированное разработчиками устройство пуска и регулировки работы.

Люминисцентный светильник промышленного производства

ЛДС (ла́мпа дневного света) намного экономичнее, чем привычная лампочка накаливания, впрочем, аналогичное по мощности светодиодное устройство превосходит по этому показателю люминесцентное.

С течением времени светильник перестает запускаться, мигает, «гудит», одним словом, не выходит в нормальный режим. Нахождение и работа в помещении становятся опасными для зрения человека.

Для исправления ситуации пробуют включить заведомо исправную ЛДС.

Если простая замена не дала положительных результатов, человек, не знающий как устроен люминесце́нтный светильник, заходит в тупик: «Что делать дальше?» Какие запчасти покупать рассмотрим в статье.

Кратко об особенностях работы лампы

ЛДС относится к газоразрядным источникам света низкого внутреннего давления.

Принцип работы заключается в следующем: герметичный стеклянный корпус устройства заполнен инертным газом и парами ртути, давление которых невелико. Внутренние стенки колбы, покрыты люминофором. Под воздействием электрического разряда, возникающего между электродами, ртутный состав газа начинает светиться, генерируя невидимое глазу ультрафиолетовое излучение. Оно, оказывая действие на люминофор, вызывает свечение в видимом диапазоне. Меняя активный состав люминофора, получают холодный или теплый белый и цветной свет.

Принцип работы ЛДС

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Бактерицидные приборы устроены также как ЛДС, но внутренняя поверхность колбы, изготовленной из кварцевого песка, люминофором не покрыта. Ультрафиолет беспрепятственно излучается в окружающее пространство.

к содержанию ↑

Подключение с применением электромагнитного балласта или ЭПРА

Особенности строения  не позволяют подключить ЛДС непосредственно в сеть 220 В – работа от такого уровня напряжения невозможна. Для запуска требуется напряжение не ниже 600В.

С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.

Режимы работы:

  • розжиг;
  • свечение.

Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.

Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов. Накаливание помогает легче запустить разряд, нить при этом меньше перегревается и дольше служит.

После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.

Подключение с применением ЭПРАсхема подключения

В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):

  • электромагнитный пускорегулирующий аппарат ЭмПРА;
  • электронный пускорегулирующий аппарат – ЭПРА.

Схемы предусматривают различное подключение, оно представлено ниже.

Схема с ЭмПРА

Подключение с применением ЭмПРА

В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:

  • дроссель;
  • стартер;
  • компенсирующий конденсатор;
  • люминесцентная лампа.
схема включения

В момент подачи питания через цепь: дроссель – электроды ЛДС, на контактах стартера появляется напряжения.

Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в цепи светильника создается замкнутый контур: контакт 220 В – дроссель – электроды стартера – электроды лампы – контакт 220 В.

Нити электродов, разогреваясь, испускают электроны, которые создают тлеющий разряд. Часть тока начинает течь по цепи: 220В – дроссель – 1-й электрод – 2-й электрод – 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По законам физики в этот момент возникает ЭДС самоиндукции на контактах дросселя, что приводит к возникновению высоковольтного импульса на электродах. Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.

В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.

Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, снижая до 30 % коэффициент полезного действия светильника.

Внимание! С целью уменьшения потерь энергии в схему включают компенсирующий конденсатор, без него светильник будет работать, но электропотребление увеличится.

Схема с ЭПРА

Внимание! В рознице ЭПРА часто встречаются под наименованием электронный балласт. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент.

Внешний вид и устройство ЭПРА

Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп, мощностью 36 ватт каждая.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Запрещено включать ЭПРА без нагрузки в виде люминесцентных ламп. Если устройство предназначено для подключения двух ЛДС, нельзя использовать его в схеме с одной.

В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предусмотрено предварительное нагревание электродов, что увеличивает срок службы лампы.

Вид ЭПРА

На рисунке показан внешний вид ЭПРА для различных по мощности устройств.

Размеры позволяют разместить ЭПРА даже в цоколе Е27.

ЭПРА в цоколе энергосберегающей лампы

Компактные ЭСЛ – один из видов люминесцентных могут иметь цоколь g23.

Настольная лампа с цоколем G23

 

Функциональная схема ЭПРА

На рисунке представлена упрощенная функциональная схема ЭПРА.

к содержанию ↑

Схема для последовательного подключения двух ламп

Существуют светильники, конструктивно предусматривающие подключение двух ламп.

В случае замены деталей сборка осуществляется по схемам, различным для ЭмПРА и ЭПРА.

Внимание! Принципиальные схемы ПРА рассчитаны на работу с определенной мощностью нагрузки. Этот показатель всегда имеется в паспортах изделий. Если подсоединить лампы большего номинала, дроссель или балласт могут перегореть.

Схема включения двух ламп с одним дросселем

Если на корпусе прибора есть надпись 2Х18 – балласт предназначен для подключения двух ламп мощностью по 18 ватт каждая. 1Х36 – такой дроссель или балласт способен включать одну ЛДС мощностью 36 Вт.

В случаях, когда используется дроссель, лампы должны подключаться последовательно.

Запускать их свечение будут два стартера. Подсоединение этих деталей осуществляется параллельно с ЛДС.

к содержанию ↑

Подключение без стартера

Схема ЭПРА в своем составе стартера не имеет изначально.

Кнопка вместо стартера

Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включенный последовательно подпружиненный выключатель – проще говоря, кнопка. Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.

Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания.

Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.

Схема без стартера

На схеме представлен двухполупериодный диодный умножитель напряжения.

Электроды закорачиваются, к ним подключается однопроводная линия. Напряжение будет около 600 В, чего достаточно, чтобы между ними в газовой среде протекал постоянный ток.

Собранный по таким схемам бесстартерный блок питания способен заставлять светиться даже устройства с перегоревшими спиралями электродов.

к содержанию ↑

Видео – Схема подключения люминесцентных ламп

Предыдущая

ЛюминесцентныеЧто делать если разбилась люминесцентная лампа

Следующая

ЛюминесцентныеОсобенности и отличия люминесцентных ламп от светодиодных

Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп

Схема подключения люминесцентных ламп — это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.

Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные  лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.

Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.

 

Как происходит процесс включения лампы дневного света

Люминесцентная лампа — это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов. Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц. Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель. В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы. Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание. Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Неисправность дросселя легко можно проверить при помощи обычной лампы накаливания. Один провод подсоединяют непосредственно к патрону лампы, а второй провод – через проверяемый дроссель. Если дроссель исправен, то при включении цепи в сеть лампочка должна гореть.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт. В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются. В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Для того, чтобы снизить потери энергии, в цепь схемы можно включить конденсатор ёмкостью до 5 мкФ. Включение выполняют параллельно сети.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.

При использовании электромагнитного балласта вместо стартера можно применить обычную кнопку для входного звонка. Он включается в схему так, чтобы после его нажатия происходила подача электроэнергии, а после того как люминесцентная лампа засветится, можно прекратить удержание кнопки.

Схема для подключения нескольких ламп

Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.

Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Выбирая светильник с люминесцентными лампами нужно уделять внимание качеству выключателей – повышенные стартовые токи могут стать причиной «залипания» контактов.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели. Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя. B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов. Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа. Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда. Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Как подключают люминесцентную лампу, у которой сгорели нити накала

Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.

Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.

Опытные электрики советуют раз в год переворачивать лампу дневного света, меняя местами контакты подключения – такая маленькая хитрость значительно увеличивает эксплуатационный срок люминесцентных ламп.

Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.

Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.

Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика

Схема включения люминесцентных ламп

Лампы дневного света с самых первых выпусков и частично до сих пор зажигаются с помощью электромагнитной пускорегулирующей аппаратуры – ЭмПРА. Классический вариант лампы выполнен в виде герметичной стеклянной трубки со штырьками на концах.

Как выглядят люминесцентные лампы

Внутри она заполнена инертным газом с парами ртути. Ее установка производится в патроны, через которые подается напряжение на электроды. Между ними создается электрический разряд, вызывающий ультрафиолетовое свечение, которое действует на слой люминофора, нанесенный на внутреннюю поверхность стеклянной трубки. В результате появляется яркое свечение. Схема включения люминесцентных ламп (ЛЛ) обеспечивается двумя основными элементами: электромагнитным балластом L1 и лампой тлеющего разряда SF1.

Схема включения ЛЛ с электромагнитным дросселем и стартером

Схемы зажигания с ЭмПРА

Устройство с дросселем и стартером работает по следующему принципу:

  1. Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления. Он поступает через стартер (Ст) (рис. ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
  2. Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
  3. Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) возникает импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
  4. Через газовую среду лампы проходит ток, после запуска лампы он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.

Схема включения люминесцентной лампы

Конденсаторы (С1) и (С2) в схеме предназначены для снижения уровня помех. Емкость (С1), подключенная параллельно лампе, способствует снижению амплитуды импульса напряжения и увеличению его продолжительности. В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С2) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).

Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.

Широко распространен способ включения с одним дросселем и двумя лампами дневного света.

Включение двух ламп дневного света с общим дросселем

2 лампы подключаются последовательно между собой и дросселем. Для каждой из них необходима установка параллельно подключенного стартера. Для этого используется по одному выводному штырьку с торцов лампы.

Для ЛЛ необходимо применять специальные выключатели, чтобы у них не залипали контакты от высокого пускового тока.

Зажигание без электромагнитного балласта

Для продления жизни сгоревших ламп дневного света можно установить одну из схем включения без дросселя и стартера. Для этого используют умножители напряжения.

Схема включения ламп дневного света без дросселя

Нити накала замыкают накоротко и подают на схему напряжение. После выпрямления оно увеличивается в 2 раза, и этого достаточно, чтобы светильник загорелся. Конденсаторы (С1), (С2) подбирают под напряжение 600 В, а (С3), (С4) – под 1000 В.

Способ подходит также для исправных ЛЛ, но они не должны работать с питанием постоянным током. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает. Чтобы ее восстановить, надо перевернуть лампу, тем самым изменив полярность.

Подключение без стартера

Применение стартера увеличивает время разогрева лампы. При этом срок его службы небольшой. Электроды можно подогревать без него, если установить для этого вторичные трансформаторные обмотки.

Схема подключения люминесцентной лампы без стартера

Там, где не используется стартер, на лампе есть обозначение быстрого старта – RS. Если установить такую лампу со стартерным запуском, у нее могут быстро перегореть спирали, так как для них предусмотрено большее время разогрева.

Электронный балласт

Электронная схема управления ЭПРА пришла на смену старым источникам дневного света для устранения присущих им недостатков. Электромагнитный балласт потребляет лишнюю энергию, часто шумит, выходит из строя и при этом портит лампу. Кроме того, светильники мерцают из-за низкой частоты напряжения питания.

ЭПРА представляет собой электронный блок, который занимает мало места. Люминесцентные светильники легко и быстро запускаются, не создавая шума и обеспечивая равномерное освещение. В схеме предусмотрено несколько способов защиты лампы, что увеличивает срок эксплуатации и делает ее работу безопасней.

ЭПРА работает следующим образом:

  1. Разогрев электродов ЛЛ. Запуск происходит быстро и мягко, что увеличивает срок службы лампы.
  2. Поджиг – генерирование импульса высокого напряжения, пробивающего газ в колбе.
  3. Горение – поддержание небольшого напряжения на электродах лампы, которого достаточно для стабильного процесса.

Схема электронного дросселя

Вначале переменное напряжение выпрямляется с помощью диодного моста и сглаживается конденсатором (С2). Следом установлен полумостовой генератор высокочастотного напряжения на двух транзисторах. Нагрузкой служит тороидальный трансформатор с обмотками (W1), (W2), (W3), две из них включены противофазно. Они поочередно открывают транзисторные ключи. Третья обмотка (W3) подает резонансное напряжение на ЛЛ.

Параллельно лампе подключен конденсатор (С4). Резонансное напряжение поступает на электроды и пробивает газовую среду. К этому времени нити накала уже разогрелись. После зажигания сопротивление лампы резко падает, вызывая снижение напряжения до достаточной величины, чтобы поддерживать горение. Процесс запуска продолжается менее 1 с.

Электронные схемы имеют следующие преимущества:

  • пуск с любой заданной задержкой времени;
  • не требуется установка стартера и массивного дросселя;
  • светильник не моргает и не гудит;
  • качественная светоотдача;
  • компактность устройства.

Использование ЭПРА дает возможность установить его в цоколь лампы, которую также уменьшили до размеров лампы накаливания. Это дало начало новым энергосберегающим лампам, которые можно вворачивать в обычный стандартный патрон.

В процессе эксплуатации лампы дневного света стареют, и для них требуется увеличение рабочего напряжения. В схеме ЭмПРА напряжение зажигания тлеющего разряда у стартера уменьшается. При этом может происходить размыкание его электродов, что вызовет срабатывание стартера и отключение ЛЛ. После она снова запускается. Подобное мигание лампы приводит к ее выходу из строя вместе с дросселем. В схеме ЭПРА подобное явление не происходит, поскольку электронный балласт автоматически подстраивается под изменение параметров лампы, подбирая для нее благоприятный режим.

Ремонт лампы. Видео

Советы по ремонту люминесцентной лампы можно получить из этого видео.

Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик. Важно уметь выбирать подходящие модели и правильно их эксплуатировать.

Оцените статью:

Схема подключения люминесцентной лампы к сети: краткий анализ возможных вариантов

Люминесцентные лампы дают более приятный свет и потребляют меньше энергии, чем традиционные «лампочки Ильича».

Но в отличие от ламп накаливания, их нельзя подключать к электросети напрямую — требуется пускорегулирующий аппарат.

Разговор в данной статье пойдет о том, какой может быть схема включения люминесцентной лампы и какими достоинствами обладает каждый из вариантов.

Особенности работы

В люминесцентных светильниках, также именуемых разрядными или газоразрядными, источником света является не раскаленная металлическая нить, как в обычной лампочке, а электрическая дуга (дуговой разряд) в газовой среде.

Производимый дугой свет в чистом виде является непригодным «к употреблению», так как в значительной мере состоит из невидимого ультрафиолетового излучения, а видимая составляющая имеет зеленовато-голубой цвет.

Ситуацию исправляет нанесенный на внутреннюю поверхность колбы люминофор — особое вещество, которое при облучении ультрафиолетом начинает светиться красноватым светом. Этот свет смешивается с зелено-голубым, так что в итоге свечение лампы становится почти белым.

Для люминесцентных светильников характерны следующие особенности:

  1. Для поддержания дуги требуется гораздо меньшее напряжение (его называют напряжением горения), чем для ее создания (напряжение зажигания или пробоя газового промежутка).
  2. Чтобы обеспечить длительный срок службы лампы, электроды ее перед включением, то есть созданием дуги, следует прогреть.
  3. При попытке уменьшить проходящий через лампу ток ее электроды остывают и лампа гаснет, что делает невозможным ее регулирование (диммирование) традиционными способами.
  4. Сопротивление газовой среды в устоявшемся режиме, то есть когда дуга уже возникла, чрезвычайно мало, поэтому для ограничения силы тока последовательно с лампой обязательно нужно включать сопротивление. Поскольку лампа работает на переменном токе, это сопротивление может быть индуктивным (дроссель).
Дроссель называют балластом, потому что он является дополнительной нагрузкой, но при этом не производит какой-либо полезной работы.

Подключение через электромагнитный балласт со стартером

Самым простым, дешевым, а потому и наиболее распространенным является электромагнитный балласт. В нем применен самый обычный дроссель, рассчитанный на переменный ток с частотой 50 Гц. Одним из важных недостатков такого дросселя является смещение фазы тока относительно фазы напряжения, при котором эффективность любого электрического устройства снижается.

Схема подключения ЭПРА

В характеристиках обычно указывают не угол, на который происходит смещение, а его косинус — cosφ. Чтобы уменьшить угол расхождения и тем самым увеличить cosφ, приблизив его к единице, в пусковое устройство вводится компенсирующий конденсатор. Подключаться он может по-разному, чаще всего — по схеме параллельной компенсации.

Неотъемлемой частью данной схемы является стартер — газоразрядная лампа в миниатюре, заполненная неоном. У стартера имеются две особенности:

  1. Объем неона в нем подобран таким образом, чтобы напряжение зажигания было выше напряжения горения основной лампы, но ниже сетевого напряжения.
  2. Один из контактов представляет собой биметаллическую пластину, которая по достижении определенной температуры изгибается (из-за разности коэффициентов линейного расширения входящих в ее состав металлов) и при этом прикасается ко второму контакту стартера.

Стартер подключен между электродами лампы последовательно с ними, как бы в обход разрядного промежутка, то есть параллельно ему.

Подключение люминесцентных ламп через ЭПРА

Вот как работает эта схема:

  1. При подаче напряжения на лампу газовый промежуток в стартере пробивается и возникает дуга, замыкающая цепь «дроссель — 1-й электрод — стартер — 2-й электрод». По этой цепи течет ток, величина которого ограничивается дросселем. Он заставляет греться электроды лампы, также от дугового разряда в стартере греются его электроды.
  2. Когда биметаллический контакт стартера достаточно разогревается, он сгибается и прикасается ко второму контакту, вследствие чего ток направляется мимо стартера и тот начинает остывать.
  3. Остыв, биметаллический контакт отсоединяется от второго контакта и из-за размыкания цепи на дросселе возникает значительный импульс напряжения. Если этот импульс возникнет в момент однонаправленной фазы сетевого напряжения, то суммарное напряжение на дросселе окажется достаточным для пробоя промежутка между электродами лампы и та включится. Вероятность такого совпадения относительно невелика, поэтому описанный цикл успевает обычно повториться несколько раз. При этом происходит характерное мигание лампы, что считается одним из недостатков светильников этого типа.

Во время повторяющихся попыток включения стартер становится источником радиочастотных помех, для подавления которых параллельно ему подключается конденсатор.

Подключение через электронный балласт

Рассчитанный на частоту в 50 Гц дроссель имеет два недостатка:
  • большие размеры;
  • хорошо слышимый жужжащий звук.

В электронном балласте перед дросселем устанавливается инвертор, похожий на те, что имеются в современных сварочных аппаратах.

Инвертор состоит из двух модулей:

  1. Выпрямитель (обычный диодный мост), преобразующий сетевой переменный ток в постоянный.
  2. Собственно, инвертор: электронный узел с двумя быстропереключаемыми транзисторами, которые, работая под управлением микросхемы, превращают постоянный ток в переменный, но с очень большой частотой — порядка 20 – 40 кГц.

С повышением частоты переменного тока габариты всех индуктивных устройств — дросселей, трансформаторов — уменьшаются. Устраняется и жужжание, а кроме того, лампа работает более ровно (уменьшается коэффициент мерцания).

Электромагнитные балласты

Еще одно отличие данной схемы: стартер заменен конденсатором. Как известно, цепочка «дроссель – конденсатор» представляет собой резонансный контур, в котором токи при подаче переменного напряжения с резонансной частотой возрастают до бесконечности. При запуске микросхема инвертора формирует ток с частотой, близкой к резонансной. Вследствие этого в цепи появляется необходимый для прогрева электродов ток и при этом на конденсаторе формируется напряжение зажигания лампы.

После ее включения микросхема инвертора сразу меняет частоту формируемого переменного тока с тем, чтобы через лампу протекал ток нужной силы.

В схеме с электронным балластом часто присутствует блок управления, который играет роль стабилизатора (исправляет отклонения напряжения в сети) и корректирует некоторые параметры преобразованного тока.

С его же помощью пользователь может менять в определенных пределах частоту напряжения на выходе инвертора, регулируя тем самым светимость люминесцентной лампы.

Одноламповые схемы включения

Все вышеописанные схемы являются одноламповыми. Подключение стартера осуществляют так: один его контакт подключают к штыревому выводу с одной стороны лампы, второй — к штыревому выводу с другой стороны. Таким образом, с каждой стороны лампы останется по одному свободному выводу — их через дроссель нужно подключить к сети. Компенсирующий конденсатор подключается параллельно питающим контактам лампы.

Для подключения двух ламп применяется несколько иная схема.

Двухламповые схемы включения

Для подключения двух ламп требуются два стартера, но всего один дроссель. Стартеры подключаются так же, как в одноламповой схеме: контакты каждого из них нужно подключить к штыревым выводам с каждой стороны соответствующей лампы. Не задействованные контакты ламп через дроссель подключаются по последовательной схеме к сети.

Схема подключения двух люминесцентных ламп на один дроссель

Компенсирующие же конденсаторы, по одному на каждую лампу, нужно подключить параллельно питающим контактам.

Если по приведенной схеме подключаются лампы мощностью 18 Вт, мощность дросселя должна составлять 36 Вт, стартеров — от 4 до 22 Вт.

Схема включения люминесцентных ламп

Полезно рассмотреть способы подключения светильников, к которым можно прибегнуть при отсутствии того или иного элемента:

Без дросселя

Дроссель, представляющий собой индуктивное сопротивление, можно заменить сопротивлением активным. В этом качестве может использоваться обычная лампочка накаливания, имеющая ту же мощность, что и люминесцентный светильник. Последний нужно подключить к сети через выпрямитель из двух диодов и двух конденсаторов, на выходе которого получается двойное напряжение.

Схема подключение люминесцентных ламп без дросселя и стартера

После включения питания и до того, как в лампе возникнет дуговой разряд, на ее электроды будет подано двукратное напряжение сети, что приведет к зажиганию. После пробоя межэлектродного промежутка в лампе установятся рабочие ток и напряжение, при этом в работу включится лампа накаливания.

Отметим, что при таком подключении лампа зажигается без предварительного разогрева электродов, что очень негативно скажется на сроке ее службы.

Без стартера

Самый простой вариант — подключить вместо стартера кнопку от дверного звонка. Для включения лампы кнопку нужно нажать, а как только она загорится — отпустить.

Другое решение — запитать лампу через удваивающий выпрямитель и ввести в схему стабилитроны. До зажигания лампы двукратное напряжение на выходе выпрямителя будет удерживать стабилитроны в открытом положении, вследствие чего под этим же напряжением окажутся электроды лампы.

После ее розжига напряжение упадет и работа удвоителя станет невозможной. Соответственно, закроются стабилитроны и напряжение в лампе станет рабочим (ограничивается дросселем).

Видео на тему

Принцип работы люминесцентной лампы и схема подключения

Привет, на этой странице мы обсудим люминесцентные лампы. Люминесцентная лампа — это тип лампы, работающей на явлении люминесценции. Люминесцентные лампы имеют более высокий световой поток по сравнению с лампами накаливания. он появился в 19 веке. Эти лампы дают свет белого цвета за счет фосфорного покрытия внутренней поверхности стеклянной трубки.

Принципиальная схема

Эти лампы состоят из нескольких основных частей: —

  • Балласт или (Электрический дроссель)
  • Стартер
  • Электроды
  • Лампа

Балласт — Магнитный балласт (электрический дроссель) содержит катушку с медным проводом.Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода.

Стартер — В системе люминесцентного освещения балласт регулирует ток, подаваемый на лампы, и обеспечивает напряжение, достаточное для запуска ламп. Без балласта для ограничения тока люминесцентная лампа, подключенная непосредственно к источнику питания высокого напряжения, быстро и неконтролируемо увеличивает потребление тока.Через секунду лампа перегреется и перегорит.

Электроды — Люминесцентная лампа состоит из стеклянной трубки, заполненной смесью аргона и паров ртути. Металлические электроды на каждом конце покрыты оксидом щелочноземельного металла, который легко испускает электроны.

Лампа — Люминесцентная лампа состоит из длинного стержня трубки, заполненного смесью газа под низким давлением.

Схема работы

При включении источника переменного тока. Эта подача достигла электродов, но эта мгновенная подача также поступает к пускателю через электрический дроссель (балласт).Эти стартеры содержат биметаллический контакт. Когда напряжение достигает стартера, возникает короткое замыкание и происходит нагрев биметаллической ленты. За счет нагрева биметаллическая полоса изгибается в сторону контакта и замыкает цепь. Напряжение на пускателе уменьшается, поскольку ток вызывает падение напряжения на катушке индуктивности (балласт). При пониженном или нулевом напряжении на пускателе газовый разряд больше не происходит, и, таким образом, биметаллическая полоса охлаждается и размыкает контакт.В момент размыкания контактов пускателя ток прерывается, и, следовательно, в этот момент на индукторе (балласте) возникает большой скачок напряжения. Это высокое напряжение создает в трубке смесь газов. Смесь аргона и ртути создает ультрафиолетовый свет, невидимый человеческому глазу. Из-за покрытия порошка фосфора на внутренней поверхности трубки. Этот ультрафиолетовый свет излучает белый свет, видимый человеческим глазом.

Нравится:

Нравится Загрузка…

Связанные

[Разъяснение] Подключение лампового света со схемой


Подключение лампового света

Подключение Tube Light очень просто. Здесь вы найдете Tube Light Connection с подробным объяснением. Собственное название лампового света — флуоресцентный ламповый свет. Здесь вы узнаете, как подключить Tube Light к Choke, Starter at Home. Здесь приведена правильная принципиальная схема Tube Light .Также показаны внутренние части лампового светильника.

Подключение лампы накаливания с электрическим дросселем:

Как вы видите на приведенной выше схеме подключения Tube Light , вся схема состоит из трех частей: 1. Люминесцентная лампа 2. Электрический дроссель 3. Ламповый стартер Вы можете видеть, что одна клемма каждой нити накала подключена через стартер. Стартер состоит из биметаллических контактов, помещенных в неоновый газ.Внутри стартера к биметаллическим контактам подключен конденсатор для устранения радиопомех. Другой вывод каждой нити накала подключен к источнику питания. Электрический дроссель соединен последовательно с лампой. Внутри дросселя находится катушка индуктивности, которая создает высокое напряжение во время включения лампового света. Электрический дроссель имеет следующие недостатки: 4. Не может работать при низком напряжении. 5. Нужен ламповый стартер.

Подключение лампы накаливания с электронным дросселем:

Схема подключения лампы Tube Light с электронным дросселем очень проста.Здесь нет необходимости в ламповом стартере. Электронный дроссель имеет один вход и два выхода. Как вы видите на диаграмме выше, вход электронного дросселя подключен к плате переключателя для источника питания. Выход 1 соединен с правой нитью накала, а выход 2 — с левой нитью накала. Вы также можете подключить выход 1 к левой нити накала, а выход 2 — к правой нити. Электронный дроссель дает следующие преимущества: 3. Нет необходимости в ламповом стартере 5. Может работать при низком напряжении.Это была схема подключения Tube Light с электрическим дросселем и электронным дросселем.

Читайте также:

Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений.

Электропроводка балласта — электрическая 101

Для работы люминесцентных ламп требуется балласт. Схема люминесцентной лампы включает балласт, провода, патроны и лампы.

Лампа против лампы

Электрики обычно называют лампочку лампой. Производители лампочек используют термин «лампа», когда относятся к люминесцентным лампам. На этой странице мы будем называть люминесцентную лампу лампой или трубкой.

Индивидуальные и общие провода балласта

Каждый провод балласта подключается к патрону на одной стороне каждой трубки. Общий провод (а) подключается ко всем патронам на другой стороне трубок.

Цвета проводов балласта

Цвета проводов для отдельных и общих соединений на люминесцентных балластах будут различаться в зависимости от типа балласта, марки и количества поддерживаемых ламп. Балласты имеют определенные цвета для отдельных проводов к патронам и другие цвета для общих проводов к патронам.

Магнитные балласты и электронные балласты

Старые магнитно-люминесцентные балласты обычно быстро запускаются и подключаются последовательно. Более новые электронные балласты — это мгновенный запуск (подключенные параллельно), быстрый запуск (подключенные последовательно), запрограммированный запуск (подключенные последовательно — параллельных, регулируемые балласты и балласты CFL.

Быстрый запуск и балласты мгновенного запуска

Когда балласт быстрого запуска (соединенный последовательно) работает с несколькими лампами и одна лампа выходит из строя, цепь размыкается, и другие лампы не загораются.

Когда пусковой балласт (включенный параллельно) управляет несколькими лампами в цепи, лампы работают независимо друг от друга. Если одна лампа выходит из строя, другие могут продолжать работать, поскольку цепь между ними и балластом остается непрерывной.

С некоторыми запрограммированными пусковыми балластами на 3 и 4 лампы (подключенных последовательно — параллельно), если одна лампа в одной ветви выходит из строя, лампа (и) в параллельной ветви продолжает работать.

  • ПРА для быстрого пуска можно подключать только последовательно в соответствии со схемой на пускорегулирующем аппарате.
  • ПРА для мгновенного пуска можно подключать параллельно только в соответствии со схемой на пускорегулирующем аппарате.
  • Изменение проводки люминесцентного светильника с быстрого запуска на мгновенное включает изменение проводки с последовательного на параллельное.

Схема балласта для быстрого пуска 1 лампы

Схема балласта 1 для мгновенного пуска лампы

Заземление балласта

Заземление балласта очень важно.Заземление обычно происходит автоматически, если светильник заземлен должным образом.

Заземляющий провод от источника питания должен быть подключен к осветительной арматуре. Металлический балласт, установленный на металлической осветительной арматуре, автоматически заземляет балласт.

Если балласт имеет клемму заземления, к ней должен быть подключен заземляющий провод.

Подключение лампового освещения с дросселем и стартером

Подключение лампы накаливания с дросселем и стартером

Сайт с лучшими ссылками на изображения

Соединение лампы с дросселем и стартером . Я показал подключение лампы накаливания без стартера i. От другой клеммы переключателя провод выводится до ламповой установки и подключается к порту 1.

Pin En Electricidad с сайта www.pinterest.com

Схема внутренней цепи люминесцентной лампы. Здесь вы узнаете, как подключить ламповый светильник к дроссельному пускателю в домашних условиях. Здесь нам не нужен стартер.

Здесь вы узнаете, как в домашних условиях подключить ламповый светильник к дроссельному пускателю.

Электропроводка с дроссельной трубкой электронного балласта проста, как обычная ламповая лампа, или даже просто. Этот принцип дросселя используется при освещении люминесцентной лампы. Принципиальная схема лампового света. Также показаны внутренние части ламповой лампы.

Источник: in.pinterest.com

Одна клемма дросселя или балласта подключена к порту 1, а другая клемма подключена к контакту 1 клеммы 1.

Источник: www. pinterest.com

Здесь еще один вывод в ламповой лампе напрямую подключен к источнику переменного тока для ионизации атомов ртути в ламповом пусковом элементе, который используется после того, как операция ионизации стартера не требуется для люминесцентной лампы.

Источник: www.pinterest.com

Здесь используются две ламповые лампы, в нашем случае каждая по 20 Вт каждая, каждая ламповая лампа будет иметь две нити накала с четырьмя выводами, соединяющими элемент стартера с любой на стороне лампового света, после этого соедините фазовую линию с переключателем балластного дросселя.

Источник: www.pinterest.com

Этот принцип дросселя используется при освещении люминесцентных ламп.

Источник: В.pinterest.com

Здесь используются две ламповые лампы, в нашем случае каждая по 20 Вт каждая, каждая ламповая лампа будет иметь две нити накала с четырьмя выводами, соединяющими элемент стартера с любой на стороне лампового света, после этого соедините фазовую линию с переключателем балластного дросселя.

Источник: www.pinterest.com

В этом видео я покажу вам подключение к люминесцентной лампе, а также представлю электрическую схему подключения.

Источник: www.pinterest.com

Здесь используются две ламповые лампы, в нашем случае каждая по 20 Вт каждая, каждая ламповая лампа будет иметь две нити накала с четырьмя выводами, соединяющими элемент стартера с любой на стороне лампового света, после этого соедините фазовую линию с переключателем балластного дросселя.

Источник: www.pinterest.com

Здесь дана правильная электрическая схема лампового света.

Источник: www.pinterest.com

Здесь вы узнаете, как в домашних условиях подключить ламповый светильник к дроссельному пускателю.

← подключение трехпозиционного переключателя с питанием к первому свету Схема подключения при добавлении гаражного потребителя →

DMCA Контакт Политика конфиденциальности Авторские права Балластные весы

— Как работают люминесцентные лампы

В предыдущем разделе мы видели, что газы проводят электричество не так, как твердые тела. Одним из основных различий между твердыми телами и газами является их электрическое сопротивление (сопротивление протекающему электричеству). В твердом металлическом проводнике, таком как провод, сопротивление является постоянным при любой заданной температуре, что зависит от размера проводника и природы материала.

В газовом разряде, таком как люминесцентная лампа, ток вызывает уменьшение сопротивления. Это связано с тем, что по мере прохождения большего количества электронов и ионов через определенную область они сталкиваются с большим количеством атомов, что освобождает электроны, создавая больше заряженных частиц.Таким образом, ток будет расти сам по себе в газовом разряде, пока есть соответствующее напряжение (и бытовой переменный ток имеет большое напряжение). Если ток в люминесцентном свете не контролируется, он может перегореть различные электрические компоненты.

Балласт люминесцентной лампы контролирует это. Самый простой тип балласта, обычно называемый магнитным балластом , работает как индуктор. Базовая катушка индуктивности состоит из катушки с проволокой в ​​цепи, которая может быть намотана на кусок металла.Если вы читали, как работают электромагниты, вы знаете, что когда вы пропускаете электрический ток по проводу, он создает магнитное поле. Расположение провода концентрическими петлями усиливает это поле.

Поле такого типа влияет не только на объекты вокруг цикла, но и на сам цикл. Увеличение тока в контуре увеличивает магнитное поле, которое прикладывает напряжение, противоположное течению тока в проводе. Короче говоря, намотанный на катушку провод в цепи (индуктор) препятствует изменению тока, протекающего через него (подробности см. В разделе «Как работают индукторы»).Элементы трансформатора в магнитном балласте используют этот принцип для регулирования тока в люминесцентной лампе.

Балласт может только замедлить изменения тока — он не может их остановить. Но переменный ток, питающий флуоресцентный свет, постоянно реверсирует сам , поэтому балласт должен только блокировать увеличение тока в определенном направлении на короткое время. Посетите этот сайт для получения дополнительной информации об этом процессе.

Магнитные балласты модулируют электрический ток с относительно низкой частотой цикла , что может вызвать заметное мерцание.Магнитные балласты также могут вибрировать с низкой частотой. Это источник слышимого жужжания, которое люди ассоциируют с люминесцентными лампами.

Современные конструкции балластов используют передовую электронику для более точного регулирования тока, протекающего через электрическую цепь. Поскольку они используют более высокую частоту цикла, вы обычно не замечаете мерцания или жужжания, исходящего от электронного балласта. Разным лампам требуются специальные балласты, предназначенные для поддержания определенных уровней напряжения и тока, необходимых для различных конструкций ламп.

Люминесцентные лампы бывают всех форм и размеров, но все они работают по одному и тому же основному принципу: электрический ток стимулирует атомы ртути, что заставляет их испускать ультрафиолетовые фотоны. Эти фотоны, в свою очередь, стимулируют люминофор, излучающий фотоны видимого света. На самом базовом уровне это все, что нужно сделать!

Чтобы узнать больше об этой замечательной технологии, включая описания различных конструкций ламп, перейдите по ссылкам ниже.

Связанные статьи HowStuffWorks

Дополнительные ссылки

Полное руководство по балластам для люминесцентных ламп

Люминесцентная лампа использует электричество, чтобы ртуть испускала ультрафиолетовый (УФ) свет.Когда этот ультрафиолетовый свет (который невидим невооруженным глазом) взаимодействует с покрытием из порошка люминофора внутри трубки, он светится и излучает свет, который мы видим и используем в наших домах.

Но всякий раз, когда мы используем электричество, мы должны контролировать его, иначе мы рискуем разрушить устройство и даже подвергнуть себя опасности. Чтобы регулировать ток, протекающий через люминесцентные лампы, мы используем так называемый балласт.

Что такое балласт в люминесцентном свете?

Балласт (иногда называемый пускорегулирующим аппаратом) — это небольшое устройство, подключенное к электрической цепи светильника, которое ограничивает количество электрического тока, проходящего через него.

Поскольку напряжение в электросети вашего дома выше, чем требуется для работы фонаря, балласт дает свету небольшое повышение напряжения для включения, а затем достаточное количество питания для безопасной работы.

Зачем нужны балласты?

Процесс, который происходит внутри флуоресцентного света, включает в себя молекулы газообразной ртути, нагретые электричеством и делающие их более проводящими. Без балласта, чтобы контролировать это, свет будет пропускать слишком большой ток, и он перегорит и, возможно, даже загорится.

Как работает балласт люминесцентного света?

В люминесцентных лампах используется электронный или магнитный балласт. В настоящее время магнитные балласты — это довольно устаревшая технология, от которой производители отказываются, и поэтому они обычно используются только в старых типах фонарей.

Магнитные балласты

Они основаны на принципах электромагнетизма: когда электрический ток проходит по проводу, он естественным образом создает вокруг себя магнитную силу.

Магнитный балласт (также называемый дросселем) содержит катушку из медной проволоки. Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода. Если вы иногда слышите легкое жужжание или видите, как оно мерцает, причиной этого является изменение тока.

Менее совершенная по конструкции, чем электронные модели, некоторые магнитные балласты не могут работать без стартера.Этот небольшой цилиндрический компонент находится за осветительной арматурой и заполнен газом, который при нагревании позволяет свету включиться. Это называется методом предварительного нагрева.

Метод предварительного нагрева
  1. Включен выключатель света. Внутри обоих концов светильника находятся металлические электроды с прикрепленными нитями. Ток входит в нити, но на данный момент слишком слаб, чтобы зажечь свет, хотя его достаточно, чтобы нагреть газ (неон или аргон) внутри стартера.
  2. Нагретый газ заставляет компоненты внутри стартера пропускать полный ток в нити.Это быстро нагревает газообразную ртуть внутри светильника.
  3. По мере того, как стартер остывает, он блокирует путь тока к нитям и заставляет его искать другой путь. Если газообразная ртуть нагревается в достаточной степени, она проводит ток, генерирует свет и затем продолжает гореть. Если он недостаточно горячий, электричество вернется через стартер и снова запустит процесс. Это то, что вызывает мерцание некоторых старых люминесцентных ламп.
  4. Теперь, когда поступает больше электричества, балласт начинает выполнять свою работу по его регулированию.

Поскольку для завершения этого процесса может потребоваться несколько секунд, вы можете увидеть задержку между моментом, когда вы щелкнете выключателем, и моментом, когда флуоресцентный свет начнет светиться.

Метод быстрого запуска

Если в вашем осветительном приборе есть две или более люминесцентных лампы, скорее всего, он будет использовать другой метод, известный как быстрый запуск. Этот метод используется в старых пробирках T12 и некоторых T8 и работает без стартера.

  1. В отличие от предварительного нагрева, когда нити получают ток через стартер только для нагрева газообразной ртути, при быстром запуске балласт поддерживает небольшое количество тока, непрерывно протекающего через нити.
  2. Это вызывает ионизацию газообразной ртути, то есть заряд, позволяющий ей проводить электричество.
  3. Поскольку это всего лишь слабый ток, сначала свет будет тускло. Но по мере того, как балласт продолжает проталкивать ток через нити, газ становится все горячее и заряженным, и в результате свет становится ярче. Если ваш свет загорается сразу, но для полного его яркости требуется несколько секунд, значит, у него есть пусковой балласт для быстрого запуска.

Одним из преимуществ метода быстрого пуска является то, что, обеспечивая низкий постоянный ток, а не сильный скачок, он продлевает срок службы люминесцентного света.Однако он потребляет больше энергии.

Электронные балласты

Используя более сложные схемы и компоненты, балласты могут управлять током, протекающим через люминесцентные лампы, с большей точностью. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и — благодаря подаче питания на гораздо более высокой частоте — с меньшей вероятностью будут вызывать мерцание или жужжание.

Некоторые старые электронные балласты используют метод быстрого запуска, описанный выше, в то время как новые и более совершенные модели используют то, что известно как мгновенный запуск и программный запуск.

Метод мгновенного запуска

Эти балласты были разработаны таким образом, чтобы свет можно было включать и работать с максимальной яркостью при первом нажатии переключателя. Вместо предварительного нагрева электродов в балласте используется повышенное высокое напряжение (около 600 вольт) для нагрева и зажигания нитей, а затем ртутного газа. Хотя это делает их энергоэффективными, это также сокращает их жизнь, поскольку скачки напряжения каждый раз, когда они включаются, со временем повреждают их. По этой причине их обычно используют в помещениях, где свет остается включенным на длительное время, например, в офисах, магазинах и на складах.

Метод запрограммированного запуска

Эти балласты, разработанные для областей, в которых освещение постоянно включается и выключается, предварительно нагревают электроды контролируемым током перед подачей более высокого напряжения для включения света. Часто это функция освещения, которая активируется датчиками движения (например, в туалетах на рабочих местах или в общественных местах) и позволяет люминесцентному свету длиться долгое время.

Признаки неисправности вашего магнитного балласта

Когда ломаются магнитные балласты, в этом часто винят лампочку.Обратите внимание на знаки, указывающие на то, что это ваш балласт:

  • Отложенный старт
  • Жужжание
  • Мерцание
  • Низкая мощность
  • Несоответствие уровней освещения

Вы можете узнать, связана ли проблема с балластом, стартером или лампой, с помощью нашего руководства — Простые решения для медленного запуска, мерцания или неисправных люминесцентных ламп.

Проверка балласта мультиметром / вольт-омметром

Чтобы убедиться, что проблема связана с балластом, вам нужно проверить его с помощью мультиметра.Мультиметр предназначен для измерения электрического тока, напряжения и сопротивления. Они недорогие, и их можно найти в большинстве магазинов электроники.

Эти инструкции предназначены только для ознакомления — убедитесь, что вы ссылаетесь на электрические схемы производителя. Если вам не хватает инструкции по эксплуатации, большинство крупных производителей разместят опи на своих сайтах.

Для проверки вашего балласта:

Вам понадобится

Как к

  1. Отключить питание светильника
  2. Снять кожух фары
  3. Снимите лампочки
  4. Снимите балласт с приспособления
  5. Если балласт выглядит сгоревшим, его обязательно нужно заменить.
  6. Установите мультиметр на значение сопротивления
  7. Вставьте первый щуп мультиметра в провод, соединяющий красные провода вместе
  8. Коснитесь вторым щупом зеленого и желтого проводов
  • Если мультиметр не двигается, значит балласт сдох
  • Если мультиметр все еще работает, стрелка мультиметра должна переместиться вправо.

Если проблема не в балласте, возможно, вам потребуется заменить люминесцентную лампу.Вы можете узнать, как это сделать безопасно, из Руководства по безопасной замене и переработке люминесцентных трубок.

Могу ли я сам заменить балласт?

Да, если у вас есть немного технических ноу-хау, хотя, если вы не уверены, лучше всего попросить электрика сделать это за вас, так как это может быть сложная работа. Более дешевые балласты, вероятно, потребуют большего количества переустановок, чем фитинг с фирменным балластом. Стоит потратить немного больше, чтобы сэкономить деньги и силы в будущем.

Фирменные балласты могут служить долго, поэтому, если вы их замените, вам, вероятно, не придется менять его снова в течение 10 или более лет.

Замена магнитных балластов на электронные

Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?

Вам понадобится:

  • Электронный балласт
  • Кусачки
  • Проволочные гайки

Как к

  1. Отключить питание прибора
  2. Открыть приспособление и снять лампу и кожух балласта
  3. Используя кусачки, перережьте оба провода питания (коричневый) и нейтральный (синий), входящие в приспособление.
  4. Закройте провода проволочными гайками.
  5. Используйте кусачки, чтобы отрезать провода, подключенные к розеткам.
  6. Снять магнитный балласт
  7. Вкрутите ЭПРА в крепление, там же, где был магнитный.
  8. Используйте гайки для соединения проводов розетки.
  9. Подключите силовой и нейтральный провода к соответствующим проводам балласта
  10. Закрепите провода проволочными гайками.
  11. Установить лампу и корпус балласта обратно
  12. Снова включите питание.

При замене балласта существует риск поражения электрическим током, поэтому, если вы не уверены, попросите электрика сделать эту работу за вас.

Нужен ли моей люминесцентной лампе как пускатель, так и балласт?

Отдельные стартеры встречаются только в более старых механизмах управления, поэтому, если приспособлению меньше 15 лет, у него, вероятно, не будет стартера. В более новых лампах процесс, обеспечиваемый стартером, встроен, что делает функцию отдельного стартера избыточной. Если в светильнике есть стартер, это будет очевидно.Вы должны найти небольшой серый цилиндр, подключенный к осветительной арматуре.

В чем разница между пусковым переключателем и высокочастотным ПРА?

Высокая частота

Высокочастотный пускорегулирующий аппарат — это современный одиночный балласт, который выполняет функции всех различных компонентов в стандартной пусковой цепи переключателя. Лампы, работающие с высокочастотным балластом, не мерцают, а вместо этого загораются мгновенно из-за того, что частота намного выше.

Пуск выключателя

Switch start — это устройство управления, которое используется в промышленности в течение многих лет.Обычно они считаются устаревшими технологиями, и их создают все меньше производителей. Для запуска выключателя требуется дроссель балласта с проволочной обмоткой. Для запуска переключателя можно заменять различные части, а не весь блок, что можно рассматривать как преимущество.

Как подключить двухпроводной балласт | Руководства по дому

Балласт — это электрический блок управления, который регулирует и распределяет мощность для люминесцентных ламп. Обычно скрытый от глаз балласт устанавливается внутри потолочного люминесцентного светильника и закрывается экраном или пластиной.Изношенный балласт необходимо заменить, так как он может вызвать опасное короткое замыкание или электрические всплески. Это также может привести к преждевременному перегоранию люминесцентных ламп. Существует много типов балластов, но самый простой обычно встречается в двухтрубных светильниках. Балласт имеет горячий и нейтральный провод на одном конце для подачи питания и два синих провода и красный провод на другом конце для подачи питания на фонари.

Выключите автоматический выключатель, подающий питание на свет в коробке автоматического выключателя.

Снимите прозрачную пластиковую крышку с осветительной арматуры, чтобы открыть люминесцентные лампы. Снимите трубки и отложите их в сторону.

Снимите внутреннюю крышку светильника. Некоторые пластины защелкиваются, а другие удерживаются винтами.

Прикоснитесь концом тестера напряжения к черному проводу существующего балласта, чтобы убедиться в отсутствии напряжения.

Открутите гайки, соединяющие провода, затем разъедините провода. Открутите винты крепления балласта к светильнику, затем снимите балласт.

Зачистите примерно 1/2 дюйма с концов каждого провода нового балласта.

Закрепите новый балласт на осветительной арматуре в соответствии с инструкциями производителя. Новые винты обычно поставляются с балластом вместе с инструкциями, показывающими монтажные отверстия в основании балласта.

Подключите провода от балласта к проводам на осветительной арматуре следующим образом: один синий провод от балласта к одному синему проводу от осветительного прибора; второй синий провод от балласта к оставшемуся синему проводу от осветительной арматуры; черный провод балласта к черному (горячему) проводу здания; белый провод балласта к белому (нулевому) проводу здания; красный провод балласта к обоим красным проводам светильника.Выполните соединения, соединив концы соединяемых проводов вместе, а затем навинтив проволочную гайку на оголенную медь. Не затягивайте слишком сильно, так как медный провод может сломаться.

Установите на место внутреннюю крышку, затем установите лампочки и прозрачную пластиковую крышку. Включите автоматический выключатель и включите выключатель света, чтобы проверить, работает ли свет.

Справочные материалы

Наконечники

  • Некоторые люминесцентные лампы снимаются или устанавливаются в подпружиненные гнезда, и их необходимо сдвинуть горизонтально, чтобы штифты освободились.Другие трубки необходимо повернуть на четверть оборота, прежде чем их можно будет снять или установить. Будьте осторожны, чтобы не сломать штифты на концах трубок.

Предупреждения

  • Никогда не работайте с электрическими приборами, не убедившись, что электричество к прибору отключено.

Писатель Биография

Эмра Орук — генеральный подрядчик, писатель-фрилансер и бывший механик по гоночным автомобилям, который профессионально пишет с 2000 года. Он был опубликован в журнале «Семейный разнорабочий» и имеет опыт работы консультантом по разработке и доставке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *