Схема подключения ограничителя импульсных перенапряжений: Ограничитель импульсных перенапряжений и схема установки разрядника

Содержание

ОИН-1 ограничитель импульсных напряжений: схема подключения, принцип работы

На каждой установке с воздушных выводом должны быть ограничители, которые помогают справиться со скачками напряжения. В этой статье говорится о том, как подключить ограничитель, а также приведены несколько схем.

Предназначение и принцип действия ОИН-1

Устройство ограничителя импульсных напряжений необходимо для предохранения сети с показателем 380/220 В. Это классическое напряжение для работы электросетей. Резкие перепады напряжения могут образовываться из-за ударов молний. Из-за грозы также образуется контактная разность в почве.

Как выглядит устройство

Также напряжение может меняться из-за всплеска в электросети. Они образуются при подключении или выключении различных приборов в одну сеть. Резкие скачки могут образовываться при присоединении мощных электрических приборов или каких-нибудь систем.

Принцип действия прибора: изнутри ОИН-1 оснащен варистором. По принципу работы они похожи на разрядники, которые применялись раньше.

УЗИП в щитке

В таком случае устройство будет устанавливаться параллельно предохраняемой электроцепи.

Если же по каким-то причинам величина напряжения в сети станет больше разрешенной, прибор просто замкнет проводку, таким образом предупредив угрозу от включенных за ним бытовых приборов.

Чтобы понять, исправен прибор или нет, необходимо обратить внимание на цвет индикатора. Если он зеленый, то модуль будет в исправном состоянии, а если красный, то его необходимо поменять.

Сфера применения

Ограничитель типа ОИН-1 используется достаточно часто. Его подключают в вводные щитки или для учёта потребителей. Желательно подключать его до счетчика, чтобы обезопасить и его.

Маркировка от производителя

Если необходимо построить дом и подсоединить всю территорию усадьбы к источнику электрической энергии – в техническом плане для такого подключения уже прописана норма установки ОИН-1 для защиты от скачков напряжения. Но это указание выполняется в основном, как прописано в правилах устройства электроустановок – при воздушном вводе провода.

Технические параметры

Таблица основных характеристик ОИН-1:

Стандартное напряжение220 В
Номинальный разрядный ток6
Максимальный РТ13
Остаточное напряжение2200
Уровень защитыне ниже IР21
Температурный режимот -50 до +55
Параметры устройства (размеры)80 × 17,5 × 66,5
Вес0,12 кг
Срок службы3–3,5 года

Схемы подключения прибора

Подключение может быть однофазное и трехфазное. У прибора ОИН-1 есть ряд похожих устройств от различных производителей бытовых приборов, потому все схемы подключения почти похожи. Стандартная схема описана ниже. Ее можно применять под все типы устройств.

ОИН 1 схема подключения

В первом случае подключение выполнено параллельно к цепи, а во втором – последовательно с размыкателем. Проще говоря, в итоге включения ОИН-1 во время скачков напряжения размыкатель будет обрывать цепь питания, чтобы миновать риск возникновения пожара в системе и прохождения тока по электродуге.

Внимание!  Кроме грамотной установки нулевого и фазного проводников, достаточно важную роль играет длина самого кабеля.

От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см.

Что использовать перед УЗИП — автоматы или предохранители

Для постоянного снабжения помещения энергией рекомендуется подключать автоматический выключатель, который будет выключать УЗИП.

После попадания молнии

Подключение этого автомата определяется также тем, что в период отвода импульса образуется, как говорят, сопровождающий ток.

Но гораздо легче приобрести модульные предохранители. Рекомендуется выбирать устройство типа GG.

Они могут защищать весь диапазон сверхтоков. Даже если ток вырос несильно, то предохранитель такого типа все равно его выключит.

Возникновение ошибок при подключении

Одна из популярных ошибок – это подключение УЗИП в щит с неправильным контуром заземления. Смысла от этой защиты вообще не будет. И при первом попадании молнии щиток сгорит.

Вторая ошибка – это неверная установка, исходя из системы заземления. Необходимо следовать техдокументации УЗИП, а получить консультацию у профессионального мастера или просто вызвать электрика на дом.

Типы ограничителей

Третье заблуждение – применение УЗИП неподходящего типа. Существует всего три типа импульсных защитных приборов, и все они должны использоваться, подключаться в свои щитки.

Схему подключения ОИН-1 (ограничитель импульсных напряжений) можно найти на специализированных сайтах для электриков. Там же мастера могут дать полезный совет и рассказать о пошаговом подключении своими руками.

В заключение необходимо отметить, что ограничители импульсных напряжений должны быть в каждой электрической цепи. Это поможет предотвратить замыкания и риск возникновения пожаров. Если у человека нет опыта работа с проводкой, то желательно вызвать профессионального электрика.

Ограничители импульсного перенапряжения: подключение УЗИП


Установка УЗИП — ограничители импульсного перенапряжения, правильный монтаж и подключение

Ограничители импульсного перенапряжения — скачкообразное напряжение атмосферного происхождения является основной причиной выхода из строя электронного оборудования и простоев производства. Наиболее опасный тип перенапряжения вызван прямыми ударами молнии.

Фактически, молния создает пики тока, которые генерируют перенапряжения в сети электропередачи и передачи данных, последствия которых могут быть чрезвычайно нежелательными и опасными для систем, сооружений и людей. У разрядников для защиты от перенапряжений есть много применений, от защиты дома до коммунальной подстанции.

Они устанавливаются на автоматических выключателях внутри жилого дома, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях. В данной публикации мы расскажем как правильно подключать ограничители импульсного перенапряжения, и покажем схемы соединения. В частности здесь речь пойдет о конкретном устройстве ОИН-1.

Для чего нужен ОИН-1 и его функциональные возможности

Прибор ограничителя импульсных напряжений в первую очередь нужен для защиты электрической сети переменного тока 380/220v. Скачкообразные, импульсные напряжения, многократно превышающие штатные значения, могут возникать из-за грозовых разрядов.

Кроме этого, действующее сетевое напряжение может изменяться в следствия бросков тока в электросети. Возникают они как правило во время подсоединения к сети либо отключения каких либо мощных электрических устройств.

В схему прибора ОИН-1 включен мощный варистор, выполняющий функции разрядника, которые применялись в устройствах более старшего поколения.


Устройство защиты от импульсных перенапряжений в силовом щитке

В этом варианте прибор подключен к защищаемой электрической цепи по параллельной схеме.

В случае каких либо возникших аварийных ситуаций, когда штатное напряжение начинает периодически «прыгать» до критического уровня, тогда устройство защиты мгновенно сработает.

Принцип действия защиты заключается в следующем. Во время образования в силовой цепи внезапного подъема напряжения, например, от грозового разряда. При этом на варисторе снижается сопротивление, и как следствие возникает короткое замыкание, после чего срабатывает автомат и отключает электрическую цепь. Установленные в этом силовом тракте, после варистора, различные приборы не получат повреждений, благодаря тому, что вовремя сработали ограничители импульсного перенапряжения.

В процессе эксплуатации ОИН-1 он может получить повреждения, чтобы убедится в его исправности, нужно ориентироваться на показание встроенного индикатора. В случае, если индикатор отображается зеленым цветом, то прибор находится в рабочем состоянии, а если индикатор покраснел, тогда устройство защиты подлежит замене.

Область использования

Защитный ограничитель напряжения ОИН-1 очень востребован при монтаже электро сетей, его практически всегда устанавливают в распределительных щитках на входе в помещение. А подключается он в цепь непосредственно перед прибором учета электроэнергии, то есть и сам счетчик будет под защитой от перенапряжения.

Кроме этого, данный прибор используется для защиты от перенапряжений, начиная от жилого дома до коммунальной подстанции. Они устанавливаются на автоматических выключателях внутри жилого помещения, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях.

Технические параметры

Таблица основных характеристик ОИН-1:Значение
1Стандартное напряжение220 В
2Номинальный разрядный ток6
3Максимальный РТ13
4Остаточное напряжение2200
5Уровень защитыне ниже IР21
6Температурный режимот -50 до +55
7Параметры устройства (размеры)80 × 17,5 × 66,5
8Вес0,12 кг
9Срок службы3–3,5 года

Ограничители импульсного перенапряжения — как подключить прибор

Существуют схемы подключения как по одной фазе, так и по трем фазам. Кроме описываемого здесь устройства ОИН-1 есть множество идентичных защитных ограничителей напряжения от разных брендов, потому принцип их подключения ничем не отличается друг от друга. Типовую схему, представленную ниже, практически можно использовать с любыми видами устройств.

В первом варианте прибор подключен к цепи по схеме параллельного соединения, второй вариант показывает последовательное с разъединителем подключение. Из этого вытекает, что во время срабатывания ограничителя импульсного перенапряжения при резком повышении сетевого напряжения разъединитель разомкнет питающую цепь.

Внимание! Помимо правильного монтажа фазового и заземляющего кабеля, существенно большое значение имеет сечение и длина монтажного провода.

От точки подключения на клеммной колодке устройства до шины заземления длина монтажного провода не должна составлять более 500 мм.

Что нужно устанавливать перед устройством защиты — автоматический выключатель или предохранитель

Чтобы обеспечить гарантированную подачу электроэнергии в помещение, нужно устанавливать автомат-выключатель для корректного отключения УЗИП, а для надежности можно еще и предохранитель.


Последствия удара молнии в распределительный щит

Из всего выше сказанного образуется такой вывод: ограничители импульсных перенапряжений желательно устанавливать как в сетях промышленного потребления, так и в домашних электро сетях. Такая защита поможет вам избежать воспламенения установленного оборудования, следовательно и пожара.

Ограничитель импульсных напряжений. Как грамотно подключить.

Ограничитель импульсных перенапряжений: принцип работы, схемы подключения

В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.

Принцип работы

В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.

Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.

Конструкция

Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.

В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.

  • Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
  • Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.

На изображении цифрами обозначены следующие конструктивные элементы:

  • 1 — корпус;
  • 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
  • 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
  • 4 — индикатор, показывающий текущий ресурс работы устройства;
  • 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.

Технические характеристики

Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.

  • Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
  • Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
  • При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
  • Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
  • Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.

Виды

Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:

  • от замыканий на высокой стороне низковольтных сетей;
  • от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
  • от возможных перенапряжений, вызванных электромагнитными факторами.

В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.

  • Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
  • Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.

Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.

Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.

  • Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
  • Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
  • Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.

Что означает аббревиатура УЗИП

УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).

Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.

Как подключить УЗИПы в домашних условиях

Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН  1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.

Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.

На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.

В схеме:

  • фаза — обозначена черным проводом;
  • нулевой — обозначен синим проводом;
  • зеленый — защитный заземляющий провод.

На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.

В схеме:

  • черный провод — первая из трех фаз;
  • красный провод — вторая из трех фаз;
  • коричневый — третья фаза;
  • синий — нулевой заземляющий провод;
  • зеленый — защитный провод заземления.

Рекомендации по монтажу

Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.

  • Важно иметь очень надежное заземление. Защита с ненадежным контуром заземления даже при не очень большом скачке импульса напряжения приведет к аварийной ситуации в виде сгоревших электроприборов и самого щитка.
  • Необходимо соблюдать соответствие класса защищенности УЗИП с местом установки щитка. Если щиток находится на улице, а устройство предназначено для работы в помещении то в лучшем случае оно выйдет из строя, в худшем нанесет вред домашней электросети.
  • Для обеспечение надежной защиты в некоторых случаях требуется установка УЗИП разных классов защищенности.
  • Не всякое защитное устройство подходит к конкретному виду заземления домашней электросети. Следует внимательно изучить техническую документацию приобретаемого устройства, чтобы не выбрасывать на ветер деньги на достаточно дорогое устройство.
  • Важно правильно подключить схему, без нарушений. В случае отсутствия навыков электрика не стоит браться за работу. Квалифицированный специалист выполнит ее правильно, без особых затруднений.

Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.

Видео по теме

Схема подключения УЗИП

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта «начинка» щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать «фазу», а куда «ноль» можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно…

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Нет постояннее соединения, чем временная скрутка!

УЗИП и схемы его подключения


Чтобы бытовая техника работала долгосрочно и исправно, необходимо качественно подавать электроэнергию на вход каждого устройства. К сожалению, сейчас многие дома хорошо укомплектованы, но владельцы не заботятся о защите своего имущества от внезапных скачков напряжения. Удар молнии может прийти в сеть не только при попадании в сам дом или участок. Она может пробить воздух как раз над линией, подходящей к вашему домовладению. А это означает потерю всех дорогостоящих приборов и бытовой техники одним махом.

Уповать на встроенные стабилизаторы напряжения не стоит, ведь они способны только немного корректировать ток. Если произойдет скачок с показателем в несколько киловольт, то всё дружно выгорит в доли секунды. Особенно опасно так называемое импульсное избыточное напряжение, возникающее в момент грозы. Воздействие оказывается не только на электрическую проводку, но также и на коммутационные каналы. Поэтому лучше всего устанавливать в щиток так называемый УЗИП. Его название расшифровывается как устройство защиты от импульсных перенапряжений.

Ложное мнение

Люди, далекие от электротехники, считают, что это защита на все случаи жизни. Но это не так. От обычного перенапряжения УЗИП никак не поможет. Если напряжение выросло с 220 до 400 вольт, то он не сработает. Ему необходим импульс, резкий скачок. А постепенно эта величина может расти практически бесконечно долго. Поэтому лучше устанавливать в цепь также классический стабилизатор напряжения.

Проблемы с проверяющими органами

УЗИП не разрешено устанавливать перед счетчиком. Считается, что он может стать точкой подключения для воровства электроэнергии. Для этого также имеется собственное решение. Нужно приобрести специальный опечатываемый бокс для устройства, а потом уже вызывать проверку. Они могут поставить свою печать на любую закрываемую коробку. Так можно будет обезопасить от скачка импульсного перенапряжения счетчик. А это очень актуально в загородных домах, деревнях, на дачах. В некоторых районах России приборы учёта можно считать расходным материалом. Поэтому лучше защитить всё своё имущество.

Основные варианты подключения в щитке

Лучше доверить эту задачу профессионалу, потому что ошибка может привести к отсутствию защиты. Технический паспорт изделия обычно содержит простейшую схему, которой нужно следовать для достижения успеха. Способ сильно меняется в зависимости от наличия системы заземления и количества фаз в сети. Рассмотрим всё для однофазного варианта.

Наиболее простая и надежная схема, строго соответствующая всем требованиям, это TN-S. В ней нулевой провод рабочий, а защитный канал подключается отдельно. Они обозначаются как Т и PE соответственно.

Рис. 1 – Схема TN-S

Если говорить о более сложном варианте, то это TN-C-S. Он нужен тогда, когда нейтральный провод и защитный канал объединены в одну оболочку, подключаясь синхронно к распределительному устройству дома. Уже после разделителя начинается сепарация проводников. Но у этой схемы есть один существенный недостаток. Она не работает без заземления. Особенно часто случается так, что владелец надеется на данную схему в условиях старого жилого фонда, но при попадании молнии всё выгорает.

Более простым вариантом является TN-C. Она может использоваться в любой однофазной сети.


Рис. 2 – Схема TN-C

Любой из этих вариантов имеет право на существование, но выбор должен осуществлять профессионал на базе инженерных расчётов. Если не учесть все нюансы, то защита сработает лишь частично. Особенно это касается электроники.

Где приобрести качественный УЗИП

Эти устройства в широком ассортименте представлены в нашем интернет-магазине «ПрофЭлектро». У нас имеются самые лучшие решения для квартир, домов и офисов. Особенно актуальна установка этого оборудования для предотвращения выхода из строя коммутационного компьютерного оборудования. Каждая серверная комната должна быть оснащена целым рядом УЗИП, желательно отдельно на каждый узел. Тогда можно будет избежать больших проблем со сбоями в работе сверхточных систем. Доставка УЗИП возможна в любой город и регион России.

Ограничитель импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Преимущества в использовании ОПН

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Защита от импульсных перенапряжений

Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты, разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА.  Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах – варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии.  Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Правильная установка проводного устройства защиты от перенапряжения

Очень важно следовать инструкциям производителя по установке. Обратите особое внимание на требования к предохранителям или прерывателям, а также на длину проводов.

Также важно, чтобы электрическая распределительная система была заземлена и соединена в соответствии с Национальным электрическим кодексом®. Невыполнение этого требования может привести к повреждению SPD.

На характеристики параллельно подключенных устройств защиты от переходных процессов влияют соединительные провода.Как размер провода, так и длина, используемые для подключения SPD, будут влиять на его работу.

Соединительные провода:

Переходные процессы имеют быстрорастущие волновые фронты. Обычно скорость нарастания тока (di / dt), связанного с скачками, может составлять 100 ампер в микросекунду или быстрее. Самоиндукция (L) соединительной проводки значительна (0,1 мкГн на фут) и может препятствовать подавлению высоких напряжений во время прохождения волнового фронта.

Падение напряжения (V = L di / dt) на соединительных выводах добавляется к напряжению на элементах подавления, что ухудшает характеристики SPD из-за увеличения остаточного напряжения.

Рис. 1. Характеристики SPD зависят от длины соединительного провода.

Самоиндукция проводки пропорциональна как ее длине, так и логарифму ее толщины. Уменьшение длины соединительных проводов вдвое приводит к уменьшению индуктивности вдвое, но для достижения того же эффекта необходимо увеличить толщину в десять раз. Многожильные провода имеют большую эффективную толщину, чем сплошные проводники эквивалентного размера из-за скин-эффекта на общую площадь поверхности.

Толстые короткие многожильные соединительные провода обеспечивают наилучшие характеристики SPD.Однако короткая длина намного важнее, чем большой размер провода.

Рисунок 2. Пример процедуры установки

Пример процедуры установки производителя:

Расположите SPD как можно ближе к защищаемой панели.

Просверлите и пробейте отверстие в корпусе SPD, чтобы минимизировать длину соединительных проводов от наконечников SPD до автоматического выключателя в соседней панели (или наконечников разъединителя с предохранителями).

По возможности используйте соединение с закрытыми ниппелями, при этом провода идут непосредственно к первому выключателю в верхней части панели. Это обеспечивает оптимальную защиту всех подключенных к панели нагрузок.

Используйте многожильный провод AWG # 10 или больше (который легко доступен и легко устанавливается) для соединения между SPD и панелью выключателя. Избегайте резких изгибов и чрезмерной длины проводки. Аккуратные и аккуратные установки не обязательно являются самыми эффективными. Лучше всего короткие прямые соединения.

УЗИП

следует подключать через автоматический выключатель соответствующего номинала, а не в основные проушины панели. Если автоматические выключатели недоступны или непрактичны, следует использовать выключатель с предохранителем для подключения к линиям и облегчения обслуживания SPD.

ПРИМЕЧАНИЕ: Этот пример представляет один из многих допустимых способов установки проводных SPD. Обратитесь к производителю за предлагаемыми процедурами установки.

Как подключить устройство защиты от перенапряжения для всего дома

Обзор защиты от перенапряжения
Перенапряжение
Кратковременный всплеск перенапряжения или нарушение в линии питания переменного тока, длительностью несколько миллисекунд или меньше.
Скачок протекторы изнашиваются: устройства защиты от перенапряжения используются постоянно.
Есть 3 типа всплесков:
Разрушающий входит в электронику и вызывает неисправность логики и блокировку.
Диссипативный повторяется, пульсирует короткой продолжительностью, вызывая преждевременное прекращение оборудование.
Разрушительный это энергия высокого уровня, которая вызывает немедленный отказ оборудования.
Устройства защиты от перенапряжения используются постоянно. Они изнашиваются.

Скачок — это переходная волна напряжения или тока.Продолжительность не строго определен, но обычно составляет менее нескольких миллисекунд.
Скачки вызваны статическим разрядом, переключением питания заказчиком или коммунальным предприятием, неисправности, емкостные и индуктивные нагрузки, молнии забастовки, фотоэлектрические системы
и ветроэнергетика.
» большой скачки напряжения повреждают оборудование и другие компоненты в электрическом распределительная система. Небольшие скачки напряжения могут в совокупности повредить оборудование. и может вызвать срабатывание неприятного оборудования. Одно ограничение с помпажем конструкция защиты заключается в отсутствии отраслевого стандарта, описывающего каков приемлемый уровень защиты от перенапряжения для стандартных объектов или в жилых районах.
Существует ограничение на величину напряжения. может быть передан на объект или в жилое помещение. Выше определенного уровня, высокое напряжение вызовет пробой в системе изоляции электрооборудование и проводники. Перекрытие может вызвать изоляцию повреждения, поражения электрическим током и пожара ». Нет никакой защиты от этого кроме осветительных стержней, здания на более низкой высоте и вдали от тел воды.

Скачок защита защитит:
-защита от большинства, но не всех ближайших молний ударов за 100 футов… как в воздухе, так и с земли.
-защита от большинства скачков напряжения в сети, вызванных трансформатором энергокомпании Варианты
-защищают от большинства скачков напряжения, вызванных ударами молнии в электросеть поблизости … у местного трансформатора есть предохранитель / грозовой разрядник, который отключения открываются, но скачок напряжения все еще может перескочить на соседние провода.
-защита от скачков напряжения, вызванных возобновлением подачи электроэнергии после отключения электроэнергии.
Скачок защита НЕ защитит:
-от молнии удары в пределах 100 футов: установить громоотвод: подключить все заземление провода и заземляющие стержни в единый массив для защиты от перенапряжения и защитить автоматические выключатели.
-от под напряжением провода, превышающие допустимое значение перенапряжения
— перегорели или низкое напряжение: установите фазовый монитор
— могут не защитить домашние устройства от повторяющиеся перенапряжения, создаваемые оборудованием, таким как настольная пила или неисправный двигатель и т. д. Выключатели освещения, двигатели и воспламенитель печи могут быть генераторы импульсных перенапряжений: проверить защиту от перенапряжения на предмет периодической замены
Купить:
Целом домашние сетевые фильтры на Amazon
Разница между: всплеск, затухание, земля неисправность, линейный шум
Скачок: слишком много электронов движется по проводу: Причина: неисправность сети, моторы, молнии и т. д.Результат: моторы, электроника, станки, таймеры, приборы и т. д. могут перестать работать или перегореть. Решение: установить сетевой фильтр, описанный на этой странице.
Brownout: есть слишком мало электронов на проводе: пониженное напряжение для обычного дома обычно напряжение ниже 85% от номинального. Результат: лампочки тусклый, электроника перестает работать до восстановления нормального питания, двигатели тормозить и перегревать. Чтобы защитить двигатели и HVAC от перебоев, поверните выключенный власть. Установить фазовый монитор Также читайте про компрессор defender
Phase флуктуации: слишком мало или слишком много электронов на одном проводе и а не другой провод (а).Результатом является несимметричное напряжение, которое приводит к тому, что двигатели насосы и HVAC для замедления, перегрева и сгорания. Для защиты двигателей и HVAC. Установить фазовый монитор
Заземление неисправность: электроны неконтролируемо устремляются на землю. Также называется короткий. Сработает автоматический выключатель. Высокий риск поражение электрическим током, если ваше тело — это путь, по которому следуют электроны. Земля провод необходим для всех электроустановок. Зачем нужен заземляющий провод. GFCI мгновенно отреагирует на замыкание на землю, намного быстрее, чем автоматический выключатель.Установите выключатели и розетки GFCI для более опасных зон: ванная комната, кухня, прачечная, на открытом воздухе и т. д. Подробнее о GFCI
Line Noise: электроны ведут себя хаотично, а не движутся предсказуемо: скачок защита не предназначена для фильтрации линейных помех … если только указано.
Результат: Устройства и процессы воздействия линейного шума, которые требуется «чистая» электроэнергия. Производство микропроцессоров требует очень чистая электроэнергия. Сетевые фильтры уменьшают высокие частоты линия распространение шума на бытовые провода из-за использования копировального аппарата, дуги сварщик, диммер.
В современных электронных устройствах есть фильтры, а в некоторых нет. Например, некоторые цифровые таймеры могут не иметь фильтра. Линейный шум будет искажаться программирование таймера, в то время как скачок напряжения может полностью уничтожить функциональность таймера. Нажмите и удерживайте кнопку сброса, чтобы видишь ли, если функция возвращается.
Купить по моей партнерской ссылке:
Line фильтр шума
Электрооборудование сноски:
— Множественный скачок протекторы на одной линии или в нескольких местах полезны, и защитит лучше по мере увеличения расстояния… потому что всплеск, например молния, может попасть в провода где угодно.
-Несколько автоматических выключателей и предохранителей в одной линии или в нескольких локации защитят электрическую систему.
— Все устройства должны быть заземлены, и все заземления должны быть соединены вместе в единый массив для поглощения скачков напряжения, защиты от поражения электрическим током и увеличить ожидаемый срок службы автоматического выключателя. Сюда входят заземляющие провода для электрическое, спутниковое ТВ, кабельное телевидение, интернет-телефония и т. д.
-Множественные GFCI на одной линии вызовут отключение и неисправность.

Низковольтные ограничители перенапряжения в действии от молнии

Ограничители перенапряжения от молнии

Описание установки

Участок состоит из офисов (компьютерное оборудование, освещение и обогреватель), поста охраны (пожарная сигнализация, охранная сигнализация, контроль доступа, видеонаблюдение) и три производственных здания на 10 гектарах в регионе Авиньон во Франции (вероятность удара молнии 2 удара на км 2 в год).

Ограничители перенапряжения низкого напряжения в действии против молнии

В непосредственной близости от площадки есть деревья и металлические конструкции (пилоны). Все здания оборудованы громоотводами. Источники питания среднего и низкого напряжения находятся под землей.

Рисунок 1 — Схема установки нескольких ограничителей перенапряжения в каскаде

Возникшие проблемы

Ураган обрушился на площадку, разрушив установку низкого напряжения на посту безопасности и вызвав эксплуатационные потери 36,5 кЭ .Наличие молниеотводов предотвратило возгорание конструкции, но разрушенное электрооборудование не было защищено разрядниками, что противоречит рекомендациям стандартов UTE C-15443 и IEC 62305.

После анализа эквипотенциальности и заземления источника питания системы, с последующей проверкой установки молниеотводов и проверкой номиналов заземляющих электродов, было принято решение об установке разрядников для защиты от перенапряжений .

Ограничители перенапряжения были установлены в головной части установки (главный распределительный щит НН) и каскадно в каждом производственном здании (см. Рисунок 1 выше). Поскольку соединение нейтральной точки было TNC, защита будет обеспечиваться только в синфазном режиме (между фазами и PEN).

Рисунок 2 — Низковольтные ограничители перенапряжения

Рисунок 2 — УЗИП типов 2 и 3 — Защита от перенапряжения / переходных перенапряжений

  • I n (8/20 мкс) от 5 кА до 60 кА
  • I макс. (8/20 мкс) от 10 кА до 100 кА
  • U p от 1 кВ до 2,5 кВ
  • U c = 275 В, 320 В, 385 В, 440 В, 600 В
  • 1P до 4P, 1+ От 1 до 3 + 1
  • Моноблок и вставной
  • TT, TNS, IT
  • Переключающий контакт с плавающей точкой

В соответствии с руководством UTE C-15443 относительно работы при наличии молниеотводов, характеристики LSP ( Разрядник электрический) УЗИП SLP40 и FLP7 следующие:

  • В начале установки
    I n = 20 кА, I max = 50 кА, U p = 1,8 кВ
  • В каскаде (минимум 10 м друг от друга)
    I n = 10 кА , I max = 20 кА, U p = 1,0 кВ

В каскаде обеспечивается хорошая защита вторичных распределительных щитов (офисы и пост охраны).

Поскольку подключение нейтральной точки было преобразовано в TNS, необходимо было обеспечить защиту в синфазном (между фазой и защитным заземлением) и дифференциальном режиме (между фазами и нейтралью). В качестве отключающих устройств в данном случае используются выключатели с отключающей способностью 22 кА .

Учебное пособие // Установка устройства защиты от перенапряжения

На видео показана правильная установка защиты от перенапряжения в сочетании с резервной защитой (автоматический выключатель). Объяснение «Правило подключения 50 см» поможет вам понять правильность подключения в соответствии со стандартом установки IEC 60364-5-534.

Схема электрических соединений трехфазного устройства защиты от перенапряжения SPD

Обзор

Основная информация.

Модель NO. AL420-I-40T
Форма Кубоид
Материал ZnO
Сертификация ISO9001, CE
Марка Hykl
UC 420VAC
хромая 40ка
дюйм 40ка
вверх 1.8кв
Стандарт испытаний IEC61643.1
Время ответа 25 с
Имя1 SPD
Имя2 Устройство защиты от перенапряжения
Имя3 Ограничитель перенапряжения
Имя4 Устройство защиты от перенапряжения
ГБ ГБ18802.1
Товарный знак HYKL
Транспортная упаковка Коробка
Спецификация 54 * 60 * 90 мм
Происхождение Шаньдун
Код ТН ВЭД 8536300000

Описание продукта

Устройства защиты от перенапряжения серии

AL12VAC / DC-1500VAC / DC подходят для новых систем солнечной энергетики с рабочим напряжением 12-1500 В и обычных систем защиты от грозовых разрядов и перенапряжения переменного тока.Место установки — во всей системе электропитания цепи постоянного / переменного тока для защиты от воздействия непрямого тока молнии, постоянного тока молнии или других переходных перенапряжений и переходных скачков напряжения.

Параметр возможностей продукта
Модель продукта AL750-40T AL1000-PV-20T AL420-I-40T
Полюс 1 полюс, 2 полюса, 3 полюса, 4 полюса 1 полюс, 2 полюса, 3 полюса, 4 полюса 1 полюс, 2 полюса, 3 полюса, 4 полюса
Максимальное продолжительное рабочее напряжение Uc 750 В 1000 В 420 В
Уровень защиты по напряжению Up <2.4 кВ <3,6 кВ <2,2 кВ
Неустойчивый (10/350) 20KA 40KA
Номинальный ток разряда In (8/20 мкс) 20 кА 10 кА 20 кА
Максимальный ток разряда Imax (8/20 мкс) 40 кА 20 кА 40 кА
Материал оболочки Огнестойкий армированный нейлон
Рекомендуемая площадь
заземляющего провода
16 мм 2
многожильный гибкий провод
Максимальный резервный предохранитель 80 A gL
Воздушный зазор и путь утечки > 25 мм
Степень защиты IP20
Нормальная рабочая температура -40ºC ~ 80ºC
Модель AL1000-PV-20T, AL420-I-40T, AL750-40T
Цвет Белый и синий / красный
Сертификация SGS, CE, ISO
Назначение Устройства защиты от перенапряжения серии AL12VAC / DC-1500VAC / DC подходят для новых систем солнечной энергетики с рабочим напряжением 12-1500 В и обычных систем защиты от грозовых разрядов и перенапряжения переменного тока.Место установки — во всей системе электропитания цепи постоянного / переменного тока для защиты от воздействия непрямого тока молнии, постоянного тока молнии или других переходных перенапряжений и переходных скачков напряжения.
Функция Для шунтирования и давления для ограничения непрямого тока молнии, постоянного тока молнии или других мгновенных перенапряжений. И для защиты от разрушительного воздействия мгновенных скачков высокого напряжения, вызванных переменным током.
Характеристика 1. Устройство защиты от перенапряжения, вилка.
2. Цвет визуального окна в указанном рабочем состоянии протектора; зеленый (нормальный), красный (неисправный).
3. Двойная защита от течения расплава.
4. Интерфейс удаленной связи конфигурации, может осуществлять дистанционное управление.
Основные характеристики продукта 1. Безопасный сверхширокий электрический интервал и длина пути утечки, выдерживаемое высокое напряжение, соответствует требованиям к использованию на большой высоте.
2. Ток холостого хода не учитывается; Конструкция вилки и вытягивания, может быть заряжена замена, проста в обслуживании.
3. Встроенная технология цепи управления температурой, высокая безопасность, отсутствие остаточного потока.
4. Указывает, что зеленый цвет окна нормальный, а красный цвет указывает на сбой. Ясный и легко различимый.
5. Дополнительный интерфейс удаленного мониторинга можно использовать для удаленного мониторинга.
6. Высокое рабочее напряжение, высокий расход, высокая безопасность и стабильность.
Преимущество 1. Более 10 лет опыта в производстве и переработке
2. Более быстрое обновление продукции, специализация производства, своевременная доставка
3. Строгая процедура проверки качества

Подробнее о продукте

Схема подключения ограничителя перенапряжения

— BLANKETSTEALER

От входящего питающего соединения с общей длиной 1 м проводка, включая соединение предохранителя spd, будет пропускать напряжение 1500 В.Разработанный для электрических систем переменного и постоянного тока, он защищает как трансформаторные, так и бестрансформаторные инверторы, не влияя на GFP.

Mcg Защита от перенапряжения

Установка класса 1 и класса 2 для 3-х фаз.

Схема подключения ограничителя перенапряжения . Подключение телефонного устройства защиты от перенапряжения до четырех восемь дополнительных аналоговых телефонных линий четыре цифровых абонентских линии DSL или любая комбинация, всего четыре линии, могут быть подключены к ограничителю перенапряжения плюс.Ограничители перенапряжения среднего напряжения Ограничители перенапряжения используются для защиты электрооборудования от всех видов перенапряжений, вызываемых молниями или переключениями. Схемы подключения ограничителей перенапряжения 1 и 3 x dehnguard 275 и 1 x dehngap ct.

Шунтирующее соединение spd novaris sd sdd sdn последовательное соединение spd novaris ssp последовательное соединение фильтр перенапряжения novaris sfh sfm sfd рисунок 2 типичные конфигурации SPD. Плата ограничителей перенапряжения класса b и c должна быть подключена параллельно к системе.Компания Abb имеет более чем 100-летний опыт проектирования и производства ограничителей перенапряжения и устройств защиты.

Руководство по установке устройства защиты от перенапряжения Устройство защиты от перенапряжения midnite mnspd — это устройство типа 1, предназначенное для внутреннего и наружного применения. Перечень продукции: комбинированные разрядники для защиты от перенапряжения низкого напряжения. Это слепок схемы подключения ОПН.

Защита класса 1 и класса 2 для 380 В переменного тока. В классе b c класс сечения минимум 16 мм2, мы должны использовать минимум 6 мм2.Оборудование для обеспечения безопасности высокого напряжения.

Типовые характеристики ОПН. Наиболее распространенными ограничителями перенапряжения являются нелинейные металлооксидные резисторы в фарфоровом корпусе или корпусе из силиконовой резины, которые устанавливаются параллельно защищаемому объекту и подключаются к сети заземления. Защита от перенапряжения может быть потрачена впустую, если существуют слепые зоны.

Из тысяч фотографий в сети, касающихся схемы подключения перенапряжения, мы все выбираем самые лучшие коллекции с лучшим разрешением специально для вас всех, и это изображение — одна из коллекций изображений в нашей лучшей графической галерее, относящейся к схемам подключения перенапряжения надеюсь, вам это понравится.Защита от молнии и перенапряжения. Кроме того, воздушный терминал на объекте может улавливать энергию молнии, но без надежного заземления.

Когда подключение переменного тока завершено, часть переменного тока плюсового выключателя должна быть подключена в соответствии с одной из схем подключения. Например, установка устройства защиты от перенапряжения на блоке питания программируемого логического контроллера не имеет большого значения, если линии io также не защищены.

Uc 1300v Ul Certification Pv Солнечная энергия Источник питания Spd Устройство защиты от перенапряжений 80 A Surgetek Полезная информация Lv Ограничители перенапряжения в действии против молнии Eep 28 Схема подключения переключателя перенапряжения Блок питания Penangkal Petir Ограничитель перенапряжения Petir 28 Схема цепи разрядника молнии Защита от грозовых перенапряжений и перенапряжений Для кабельных сетей и новых устройств защиты от перенапряжения Spds для всех типов монтажа и всех уровней риска Принцип работы

, принципиальная схема, типы и применение

В настоящее время растет количество жалоб на потерю электроники, используемой в домах, из-за внезапного напряжения или возгорания.Таким образом, приборы не будут работать должным образом из-за внезапных колебаний входного напряжения. Поскольку напряжение резко возрастает до чрезвычайно высокого значения за короткий промежуток времени, это называется скачками напряжения. Для решения этой проблемы доступно стандартное оборудование, а именно сетевой фильтр. Обычно это устройство подключается к компьютерной системе. Доступны разные конструкции протекторов. Они позволяют нам подключать множество гаджетов или устройств к одной розетке. Это абсолютно полезное устройство.


Что такое сетевой фильтр?

Устройство защиты от перенапряжения — это электрическое устройство, которое защищает компьютерную систему, а также различные электронные устройства от внезапных скачков напряжения в пределах электрической мощности, в противном случае переходного напряжения, которое подается от источника питания. В Индии предел стандартного напряжения, используемого для дома, офиса или зданий, составляет 230 вольт. Если напряжение увеличивается более чем на эту величину, это считается переходным напряжением. Это напряжение может повредить все электронные устройства, подключенные к каналу.Хотя всплески такие короткие, они рассчитываются в наносекундах. Это может нанести огромный вред электронным устройствам.

Устройство защиты от перенапряжения

К счастью, устройство защиты от перенапряжения защищает электронные устройства от скачков напряжения. Хотя эти устройства не всегда защищают от скачков напряжения из-за молнии. Они определенно защищают устройства от скачков напряжения, которые могут быть вызваны многими причинами.

Как работает сетевой фильтр?

Принцип работы устройства защиты от перенапряжения заключается в том, что дополнительное напряжение направляется в заземляющий провод розеток, предотвращая его прохождение через устройства, и в то же время разрешая обычное напряжение для поддержания его линии.Скачки могут повредить компьютерную систему из-за воспламенения ее проводов, иначе со временем медленно изнашиваются внутренние компоненты оборудования, а также уничтожаются все сохраненные данные. Эти протекторы также используются для защиты кабелей и телефонных линий, поскольку они также задерживают электрический ток.

Эти устройства защиты обычно служат для защиты устройств от скачков напряжения. Эти типы скачков часто возникают в токовой электропроводке. Например, электронные устройства, такие как кондиционеры и холодильники, требуют использования большего количества энергии для управления двигателями, а также компрессорами, формируя скачки мощности, которые могут нарушить стабильный поток напряжения.

Скачки напряжения могут быть вызваны дефектной проводкой, неисправными устройствами и отключением линий электропередачи у источника питания, что также может вызвать скачки напряжения. Альтернативные названия устройств защиты от перенапряжений: ограничители перенапряжения, удлинители и ограничители переходных процессов.

Схема цепи устройства защиты от перенапряжения

Принципиальная схема устройства защиты от перенапряжения показана ниже. Эта схема помогает защитить оборудование от повреждений, вызванных переходными импульсными перенапряжениями, такими как удары молнии и переключение устройств.

Эта схема может быть построена с GDT (газоразрядная трубка), которая эффективно переключается в состояние малого импеданса для перенаправления энергии от оборудования всякий раз, когда обнаруживается перенапряжение. Эта газоразрядная трубка имеет вносимые потери, а также низкую емкость за счет высокоточной искры, превышающей напряжение, и используется для высокоточных конструкций.

принципиальная схема устройства защиты от перенапряжения

Подключение этой цепи может быть выполнено между проводом под напряжением и сетевым проводом, по которому обычно не протекает ток.Но когда напряжение между клеммами выше, чем величина номинального напряжения GDT и варистора, тогда ток будет протекать через используемые компоненты. Текущий ток никогда не будет превышать установленное значение, иначе предохранитель сломается, и эта цепь будет защищена. Как только ток становится обычным, предохранители настраиваются и сохраняют свою функцию.

Эта схема в основном предназначена для защиты чувствительных электронных устройств от перегрузки, короткого замыкания, переходных процессов перенапряжения при стандартном сетевом напряжении.Две лампы, такие как неоновая пилотная лампа, расположены для отображения состояния питания нагрузки, а также входа. Варистор защищает схему от перенапряжений, включая их в цепь.

Всякий раз, когда цепь активируется, они заставляют протекать ток, который образуется из-за перенапряжения, находящегося вдали от чувствительных компонентов. Эта схема в основном защищает чувствительные компоненты от переходных процессов перенапряжения, не контролируя нормальную работу устройства. Эта схема используется в различных приложениях, таких как линии электропередач, безопасность моторных устройств и телефонная линия.

Типы устройств защиты от перенапряжения

Устройства защиты от перенапряжения

подразделяются на четыре типа, включая следующие.

  • Служебный вход Тип
  • Панели перенапряжения отводов
  • Служебный вход типа
  • Модули защиты от перенапряжения
Разветвители питания

Как правило, этот тип устройств защиты от перенапряжения размещается над основным служебным вводом на опоре электросети со стороны линии, где бы ваша электрическая энергия ни поступала на панель обслуживания.

Этот тип устройства защиты от перенапряжения защищает от внешнего скачка напряжения. Как правило, этот тип скачков напряжения возникает при переключении батареи конденсаторов электросети, в противном случае — при ударе молнии. Этот тип сетевого фильтра не используется для защиты вашего дома. Но они рассчитаны на использование вне помещений, а некоторые защитные устройства имеют встроенную систему сигнализации, которая подает сигнал тревоги, когда жизненный цикл устройства заканчивается и его необходимо заменить.

Панели перенапряжения отводов

Устройства защиты от перенапряжения этого типа устанавливаются на стороне нагрузки у входа в главное обслуживание для защиты входа в электрические сети от поисков с помощью двигателей, энергии молнии и других внутренних скачков напряжения.

Основное назначение этого устройства защиты — защитить чувствительную электронику, а также различные нагрузки, основанные на микропроцессоре, посредством ограничения переходного напряжения. Эти панели для защиты от перенапряжения используются в различных приложениях, таких как коммерческое, остаточное и промышленное.

Разветвители питания

Это вторичные сетевые фильтры. Разветвитель питания используется для подключения к любому электрическому каналу. Эти полоски доступны с множеством каналов, так что к ним можно подключать несколько электрических устройств.Если произойдет скачок напряжения, удлинитель отключит питание. Это наиболее полезная функция для защиты устройств от повреждений.

Модули защиты от перенапряжения

Этот вид защиты обеспечивает другой тип защиты от перенапряжения, чем удлинители. Эти протекторы предлагают защиту для промышленных приложений, таких как ПЛК, автоматизация завода, приводы двигателей, которые доступны в обеих конфигурациях, таких как установка на DIN-рейку и стандартная настенная.Эти протекторы также обеспечивают защиту от перенапряжения для устройств, используемых в шкафах коммерческого и промышленного оборудования. На рынке доступно несколько типов устройств защиты от перенапряжения, которые могут защитить несколько устройств в доме, а также коммерческие службы во всей электрической системе.

Преимущества и недостатки

К преимуществам устройств защиты от перенапряжения можно отнести следующее.

  • Эти устройства защищают электрооборудование от скачков напряжения
  • Он контролирует напряжение в вашем электрооборудовании, чтобы поддерживать оборудование на безопасном уровне
  • Это доступные
  • Расходы на техническое обслуживание будут снижены
  • Снижение затрат на ремонт и замену

К недостаткам устройств защиты от перенапряжения можно отнести следующие.

  • Сетевой фильтр для дома сова дорого
  • Стоимость установки для совы дома тоже затратная
  • Его использование ограничено, и ленточные устройства защиты от перенапряжения не должны использоваться с машинами с проводным подключением, такими как плита или посудомоечная машина.

Приложения / Использование

Сетевые фильтры используются для защиты электронного оборудования от скачков напряжения. Оборудование, подвергающееся риску, включает следующее.

  • Динамики
  • ТВ-приемник
  • Компьютерные системы
  • ЖК и плазменные телевизоры
  • Маршрутизатор
  • Телефонная система
  • Игровые приставки

Итак, это все о сетевом фильтре.Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что с помощью этих защитных устройств электронные устройства, используемые в домах, такие как холодильники, стиральные машины, посудомоечные машины, также будут защищены от повреждений. Это обеспечивает целесообразность, открывая для вас дополнительные доступные торговые точки; однако они также могут сэкономить ваши деньги, если вы управляете несколькими устройствами одним движением ручки. Вот вам вопрос, в чем функция сетевого фильтра?

ПРИНЦИП И КОНСТРУКЦИЯ ЦЕПИ ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ

Схема защиты от перенапряжения — это та, которую многие называют защитой от скачков напряжения в линиях сети переменного тока; однако это не ограничивается конкретно линиями сети переменного тока.Устройство защиты от перенапряжения или устройство защиты от перенапряжения — это устройство, которое обеспечивает подавление перенапряжения или скачков напряжения, чтобы чувствительные устройства не были повреждены.

Устройство защиты от перенапряжения может выдерживать скачки напряжения до нескольких киловольт (в зависимости от типа устройства защиты от перенапряжения). Существуют также ограничители перенапряжения, рассчитанные только на несколько сотен вольт, и так далее. Хотя устройство защиты от перенапряжений спроектировано так, чтобы выдерживать скачки высокого напряжения в течение короткого периода времени, оно не рассчитано на работу с высокими напряжениями в течение длительного времени.

Что такое скачок?

Всплеск в целом — это внезапное увеличение уровня или величины от нормального или стандартного значения. В электричестве скачок напряжения часто используется для описания переходного процесса напряжения, скачка напряжения или скачков напряжения. Скачок или скачок напряжения или переходный процесс не являются постоянным событием. Это происходит только в течение короткого периода времени, но более чем достаточно для уничтожения устройств, если нет контрмер.

Скачок напряжения присутствует не только в линиях электропередач, но и в цепях с индуктивными свойствами.Однако скачок напряжения в линиях электропередач является наиболее разрушительным, поскольку может достигать нескольких киловольт.

На рисунке ниже показан скачок напряжения в сети переменного тока.

Устройство защиты от перенапряжения для переходных процессов в сети переменного тока обычно устанавливается в домах, офисах и зданиях, чтобы предотвратить повреждение приборов или устройств. Он должен быть установлен в том разделе, где все устройства или устройства получают свои источники. Таким образом, все устройства будут защищены от скачков и скачков напряжения в сети.Такой подход называется универсальной защитой от перенапряжения . Универсальный сетевой фильтр может не понадобиться, если все приборы или устройства имеют свою локальную схему защиты от перенапряжения.

Две основные категории схем защиты от перенапряжения, используемых в линиях электропередач

1. Первичный ограничитель перенапряжения

Устройство первичной защиты от перенапряжения устанавливается на вводе электропроводки дома, офиса или здания. Он защитит все устройства или устройства, которые подключаются к линии после точки входа.В основном, первичный сетевой фильтр очень мощный; однако он огромный и громоздкий, а также дорогой.

2. Вторичный сетевой фильтр

Вторичный сетевой фильтр не такой эффективный и мощный, как первичный.

Однако он портативен и удобен в использовании. В основном, этот тип устройства защиты от перенапряжения легко подключается к розеткам. Он обеспечивает защиту только устройствам, которые получают питание от розетки, к которой установлен вторичный сетевой фильтр.

На схеме ниже показано, как в здании устанавливаются первичные и вторичные устройства защиты от перенапряжения.

Общие типы вторичных цепей защиты от перенапряжения

Известно несколько вторичных схем защиты от перенапряжения. Один из них — это так называемые удлинители . Разветвители питания легко подключаются к розетке. Помимо этого, он поставляется с несколькими розетками, к которым могут подключаться несколько устройств и приборов, которые защищены от скачков напряжения.Наиболее важной особенностью удлинителя является возможность отключения питания в случае скачка напряжения.

Другой известный тип вторичного устройства защиты от перенапряжения — это хорошо известный ИБП или источник бесперебойного питания . Некоторые сложные ИБП имеют встроенное устройство защиты от перенапряжения, обеспечивающее те же функции безопасности, что и удлинитель.

Как работает сетевой фильтр?

Есть разновидность устройства защиты от перенапряжения

, который может отключать питание при скачке напряжения.Этот тип устройства защиты от перенапряжения сложнее, сложнее и, конечно, дорого. Основными компонентами этого типа являются датчик напряжения , контроллер и схема фиксации / разблокировки . Датчик напряжения будет контролировать линейное напряжение, контроллер считывает измеренное напряжение и решает, когда сигнализировать о прекращении напряжения в цепи фиксации / разблокировки. Схема фиксации / разблокировки представляет собой управляемый силовой контактор или выключатель питания, который может подключать или отключать сетевое напряжение.

Существует также устройство защиты от перенапряжения, которое не обеспечивает отключение напряжения, а просто ограничивает переходные процессы напряжения и поглощает энергию. Этот тип защиты от перенапряжения обычно используется как встроенная защита от перенапряжения, например, в импульсных источниках питания. Этот тип защиты эффективен до нескольких тысяч вольт. Этот тип защиты от перенапряжения лучше всего описать в схеме, показанной на рисунке ниже.

Устройство защиты от перенапряжения 1 в ЛИНИИ 1 и 2 переменного тока называется подавлением перенапряжения в дифференциальном режиме.В то время как оба устройства защиты от перенапряжения 2 и 3 называются синфазным подавлением перенапряжения. Подавление скачков напряжения в дифференциальном режиме ограничивает любые скачки напряжения на ЛИНИИ переменного тока 1 и 2. Он называется дифференциальным, поскольку устанавливается на двух проводах под напряжением. С другой стороны, общий режим — это термин, используемый для устройств защиты от перенапряжений 2 и 3, поскольку оба являются ограничением переходных процессов напряжения на отдельном горячем проводе по отношению к земле или земле. В не столь жестких требованиях к перенапряжениям уже достаточно устройства защиты от перенапряжения 1, чтобы соответствовать стандарту.Однако



Для очень строгих требований, таких как повышенное импульсное напряжение, добавляются устройства защиты от перенапряжения 2 и 3.

Причины скачков напряжения

Существует несколько факторов, вызывающих скачок напряжения. Это может быть из-за молнии, переключения энергосистемы, например, конденсаторных батарей, резонансных цепей с переключающими устройствами, неисправной проводки, а также внезапного включения и выключения переключателей, электродвигателей и других высокоиндуктивных приборов и устройств.Скачки напряжения в сети переменного тока присутствуют в любой точке мира. Поэтому рекомендуется защитить устройства и приборы от этого разрушительного события.

Некоторая распространенная среда перенапряжения

Это распространенный путь, по которому скачки напряжения или скачки напряжения могут попасть в устройства или устройства, использующие их.

Линии питания — это среда номер один для перенапряжения, поскольку все электрические и электронные устройства используют энергию от линии переменного тока. Скачки напряжения в сети переменного тока распространены во всем мире.

РЧ линии — включая антенну. Антенна восприимчива к ударам молнии. Молния способна вызвать очень высокий всплеск напряжения за короткое время. Когда молния ударяет в антенну, она проникает в РЧ-приемник.

Автомобильный генератор — В автомобильной электронике также определяется скачок напряжения. Это связано с тем, что генератор переменного тока может создавать выбросы высокого напряжения во время сброса нагрузки.

Индуктивные цепи / нагрузки — любые индуктивные цепи или нагрузки всегда создают импульсное напряжение.Чаще всего этот выброс называют индуктивной отдачей.

Стандарт перенапряжения, определенный в IEC

IEC 61000-4-5 определяет стандарт для перенапряжения в линиях питания переменного тока. В таблице ниже приведены конкретные объяснения классов и уровней напряжения. Таблица взята из ссылки ниже

В соответствии с этим стандартом максимальное переходное напряжение, которое устройство должно выдерживать и выдерживать, составляет 4 кВ в классе 4 (хотя есть класс 5, но он по-прежнему называет класс 4).

Переходное напряжение, определенное стандартом IEC 61000-4-5 , смоделировано с помощью рисунка ниже. Он имеет нарастание на 1,2 мсек при ширине импульса 50 мксек. Таблица взята из ссылки ниже

AN4275 компании STMicroelectronics.

IEC 61000-4-5 также определяет формы тока короткого замыкания, как показано на рисунке ниже. Он имеет нарастание 8 мксек и ширину импульса 20 мксек. Таблица взята из AN4275 компании STMicroelectronics.

В таблице ниже указан соответствующий уровень импульсного тока или тока короткого замыкания для каждого класса.Наихудшее значение — 2000 А. Таблица взята из AN4275 компании STMicroelectronics.

Что это за ток короткого замыкания согласно IEC 61000-4-5? Чтобы ответить на этот вопрос, позвольте мне начать с того, что все оборудование, подключенное к линиям электропередач, должно иметь защиту от перенапряжения. Защита от перенапряжения работает путем ограничения переходных процессов напряжения до более безопасного уровня. Как только цепь защиты от перенапряжения сработает, произойдет короткое замыкание от источника к устройству защиты и обратно к заземлению источника.

Как разработать схему защиты от перенапряжения

Спроектировать устройство защиты от перенапряжения несложно. Фактически, встроенная защита от перенапряжения для некоторого электронного оборудования может быть только одним устройством. Это может быть MOV, металлооксидный варистор или ограничители переходных напряжений TVS. Предположим, что на рисунке ниже устройства защиты от перенапряжения 1–3 могут быть MOV или TVS.

Иногда устройства защиты от перенапряжения между линиями переменного тока достаточно, чтобы соответствовать стандарту IEC.В некоторых случаях требуется схема защиты от перенапряжения между линией и землей. Это особенно важно при более высоких требованиях к импульсному напряжению (4 кВ и выше).

Использование MOV в качестве устройства защиты от перенапряжения

Основные свойства
  • MOV — Металлооксидный варистор; обычно используется защита от перенапряжения в линиях электропередач
  • MOV — резистор, зависящий от напряжения
  • MOV Принцип работы похож на диод, который имеет нелинейные и неомические характеристики тока и напряжения, но двунаправленный
  • Его работу также можно сравнить с диодом. двунаправленный ограничитель переходного напряжения TVS
  • Когда напряжение фиксации не достигается, он действует в разомкнутую цепь

Ниже представлена ​​кривая вольт-амперной характеристики MOV.Как видите, напряжение в квадрантах 1 и 3 практически постоянное, что делает его двунаправленным устройством. ZnO и SiC обозначают оксид цинка и карбид кремния соответственно. Это два распространенных материала, из которых изготавливается MOV.

Благодарим владельца этого фото

Выбор устройства

Для универсальной линии 90–264 В переменного тока обычное номинальное напряжение MOV будет 300 В среднеквадратического значения. 300Vrms — это среднеквадратичное значение или постоянное приложенное напряжение, которое может выдерживать MOV. Это еще не напряжение зажима.Например, мы собираемся использовать предохранитель TMOV14RP300ML2B7 от Littel, его номинальное напряжение переменного тока составляет 300 В переменного тока, но его напряжение фиксации составляет 775 В при пиковом токе 50 А, в соответствии с таблицей данных.

Следующее, что нужно проверить, это то, что номинальный импульсный ток MOV способен выдерживать уровень, указанный в таблице 2 выше (с учетом максимального уровня). Основываясь на выбранной таблице данных MOV ниже, при 2000 А и длительности импульса 20 мкс, MOV способен обрабатывать более 15 ударов, но менее 100 ударов.Я нанес пунктирную линию на графике устройства, оценивая 2000А.

Хотя в таблице данных указано напряжение зажима, оно может больше не действовать при 2000 А. График ниже показывает соответствующее напряжение ограничения при 2000 А с использованием выбранного MOV. Пересечение желтых линий — это напряжение зажима. Обратите внимание, что оно уже больше 1000 В. Убедитесь, что все устройства, используемые в оборудовании, могут выдерживать этот уровень напряжения. В противном случае рассмотрите другой MOV с более низким напряжением ограничения.

MOV Идеальное место для защиты от скачков напряжения в линии электропередач

MOV, который действует как устройство защиты от перенапряжения, должен быть установлен в непосредственной близости от предохранителя, как показано на рисунке ниже. При таком подключении, когда импульсный ток становится слишком большим, чтобы его мог обработать MOV, предохранитель выйдет из строя и разомкнет цепь и предотвратит возможный катастрофический отказ.

Подавление перенапряжения в автомобилестроении

Как упоминалось выше, скачки напряжения происходят не только в линиях электропередачи переменного тока.Скачки напряжения также очень распространены в автомобильных системах. В автомобильной системе используется только свинцово-кислотная батарея с типичным напряжением полной зарядки около 12,9 В для 6 последовательно соединенных ячеек с напряжением 2,15 В на каждую ячейку. В расчетах часто используется максимальное напряжение батареи 14 В. Этот уровень не является разрушительным, и устройств с рейтингом 30 В более чем достаточно, чтобы выжить в долгосрочной перспективе. Однако такое восприятие верно только в установившемся режиме, но не во время так называемого «сброса нагрузки». Сброс нагрузки — это термин, используемый для описания внезапного отключения аккумуляторной батареи во время ее зарядки генератором переменного тока.Для системы с напряжением 12 В сброс нагрузки может привести к скачку напряжения до 120 В, что более чем достаточно для разрушения устройств, если не принять во внимание.

Благодарим владельца этого фото

Чтобы противодействовать этому сценарию сброса нагрузки, часто используется схема защиты от перенапряжения, такая как варистор.

В автомобилестроении форма сигнала сброса нагрузки определяется стандартом ISO 7637, как показано на рисунке ниже. Пиковое напряжение составляет максимум 125 В. Нарастание и длительность импульса (T1 и T) больше по сравнению со стандартом, определенным в IEC 61000-4-5.

Идеальное расположение ограничителей перенапряжения в автомобилестроении Благодарим владельца этого фото

Пример выбора варистора для низкого напряжения постоянного тока, например для автомобильных систем

Требования к конструкции

Вход: 24 В постоянного тока

Форма волны тока при скачке напряжения 8/20 мкс; напряжение 1,2 / 50 мкс

Пиковый импульсный ток: 800A

Должен пережить 40 скачков

Чувствительные устройства для защиты рассчитаны на 250 В максимум

Определение постоянного напряжения варистора

Для системы на 24 В также не выбирайте варистор с номинальным напряжением 24 В.Вместо этого включите не менее 20% запаса прочности. Однако не следует также преувеличивать запас, поскольку он будет соответствовать физически большому варистору и более высокому напряжению ограничения.

Итак,

Напряжение варистора = 24 В x 1,2 = 28,8 В

На основании списка низковольтных варисторов Littelfuse, я бы предпочел использовать часть с напряжением 31 В постоянного тока

рейтинг.

Выберите деталь, которая соответствует импульсному току и количеству импульсов

Вышеуказанные части с номиналом 31 В постоянного тока являются кандидатами.Однако есть еще несколько критериев, которым необходимо удовлетворить. Рассмотрим пиковый импульсный ток и количество импульсов и выберем ту часть, которая сможет удовлетворить его с запасом.

Ниже представлена ​​длительность импульса в микросекундах в сравнении с допустимым пиковым импульсным током в амперах для детали диаметром 14 мм, указанной в таблице выше. Судя по графику, при 800А 14-миллиметровая деталь не может выдержать необходимое количество импульсов. Поэтому не выбирайте эту часть.

Ниже приведен график для детали диаметром 20 мм. При пиковом импульсном токе 800 А устройство может гарантировать более 40 импульсов.Поэтому выбирайте деталь размером 20мм.

Из приведенной выше таблицы есть две части размером 20 мм. Мы рассмотрим первый V20E25P. Как упоминалось ранее, мы не можем выбирать часть, потому что она будет соответствовать более высокому напряжению зажима.

Проверка напряжения зажима

Последний шаг — проверка напряжения зажима. Все, что мы сделали до сих пор, будет бесполезно, если максимальное напряжение фиксации превышает требуемое.Ниже указано максимальное напряжение зажима для деталей диаметром 20 мм. Как видно из графика, V20E25P — идеальное устройство для защиты от перенапряжения.

Связанные

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *