Схема с открытым коллектором: Основы на пальцах. Часть 4

Содержание

Основы на пальцах. Часть 4

Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.

Миром правит цифра!

Краеугольным камнем цифровой схемотехники служит понятие нуля и единицы, понятие это совершенно условное, т.к. фактически нет никакого нуля и нет никакой единицы, есть лишь уровни напряжения – высокий и низкий, а также некий порог после которого данный уровень напряжения принято считать высоким или низким. Скажем все, что ниже 0.7 вольт считаем за низкий уровень, т.е. 0, все что выше 2.4 вольт высоким, т.е. единица. Между 0.7 и 2.4 вольта, когда не ясно какой уровень, это состояние совершенно неопределенное его нельзя оценивать как входную величину, иначе на выходе системы в таком случае будет непредсказуемый результат.


Сопротивление входов очень высокое, практически можно считать его бесконечным.

Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =)

Выход в микросхеме бывает разных типов. Различают push-pull и open drain (в нашей литературе его называют Открытым Коллектором или ОК). Отличие заключается в способе выдачи сигнала на выход. В Push-Pull выходе когда нужен низкий уровень, то выход тупо и беспрекословно замыкается на землю, имеющую нулевой потенциал, а когда высокий, то на напряжение питания.
В открытом коллекторе все несколько иначе. Когда нам надо получить низкий уровень, то мы сажаем ногу на землю, а вот высокий уровень получается подтягивающим резистором (

pullup), который, в отсутствии посадки на землю и большого сопротивления висящей на выходе нагрузке, заводит на ногу высокий потенциал. Тут можешь вспомнить закон Ома и посчитать какое будет напряжение выхода на открытом коллекторе если подтягивающий резистор обычно порядка 1КилоОм, а сопротивление входа больше 1МегаОм. Тип выхода определяется из документации на микросхему, некоторые микрухи имеют программируемый выход, например, все контроллеры AVR. Исходя из этого становится понятен смысл регистров Port и DDR в контроллере
AVR
– они определяют тип выхода Open Drain+PullUp, Push-Pull или просто Open Drain.

О микросхемах дискретной логики И, ИЛИ, НЕ я рассказывать не буду, каждую описать, так это справочник не на одну сотню страниц будет. Да и постепенно они уходят в прошлое, вытесняемые контроллерами и программируемыми матрицами. Скажу лишь главное – работают они по жесткой таблице истинности, которую можно найти в соответствующем datasheet.

Аналог рулит!
Цифра может и правит миром, но я вот последнее время люблю аналоговую технику. Ряд задач автоматики и регулирования на аналоговых цепях сделать в разы проще, чем на микроконтроллере или цифровой логике. Основное отличие от цифровых микрух в том, что тут

нет четких состояний, а вход и выход могут изменяться плавно от минус питания до плюс питания. Основой аналоговой схемотехники является операционный усилитель.
Адская вещь, скажу тебе. Содержит выход и два входа. Один вход прямой, другой инверсный. Внутри напряжения по этим двум входам математически складываются (с учетом знака входа), а результат умножается на коэффициент усиления и выдается на выход. Коэффициент усиления этого девайса в идеальном случае достигает бесконечности, а в реальном близок к сотням тысяч.
В чем это выражается? А в том, что подаешь ты на вход скажем 1 милливольт, а выход сразу же зашкаливает под максимум – выдавая сразу напряжение питания. Как же тогда работать, если его зашкаливает от малейшего сигнала? А просто. Ну во первых зависит от задачи. Например если нам нужно сравнивать два сигнала, то один мы подаем на отрицательный вход, а другой на положительный. В данном случае выход нам покажет либо минимум напряжения, либо максимум, в зависимости от того больше сигнал на отрицательном входе или на положительном. Такой режим работы операционного усилителя называется компаратором. Я его применил недавно, чтобы отследить просадку напряжения питания на устройстве. Смотри на схему, видишь на минус у меня идет опорное напряжение со стабилитрона. Оно всегда равно 3.3 вольта – за этим следит стабилитрон. А вот на второй вход идет напряжение с делителя – оно зависит от общего напряжения питания. В нормальном режиме, когда на входе 12 вольт, то с делителя идет порядка 4 вольт, это выше чем 3.
3 опорного и с компаратора выходит +5 вольт (максимум питающего). При просадке напруги ниже определенного порога с делителя начинает выходить уже менее 3.3 вольт и компаратор резко перекидывается в противоположное положение – 0 вольт (минимум питающего). Этот переход отслеживает микроконтроллер и дает сигнал тревоги.

Испльзование операционных усилителей

Если от операционного усилителя надо получить усиление, то нужно как то обуздать его бешеный коэффициент. Для этого ему добавляют отрицательную обратную связь. Т.е. берут и с выхода подают сигнал на отрицательный вход, подмешивая его к основному входному сигналу. В итоге, выходной сигнал вычитается из входного. А коэффициент усиления становится равным отношению резисторов на входе и выходе (смотри схему).

Но это далеко не все фишки которые умеет делать операционный усилитель. Если в обратную связь сунуть конденсатор, то получим интегратор, выдающий на выходе интеграл от функции входного сигнала.

А если скомбинировать конденсатор с резистором, да индуктивность на вход… В общем, тут можно книгу писать, а занимается этими занятными процессами отдельная наука – автоматическое управление. Кстати, именно на операционных усилителях сделаны аналоговые компьютеры, считающие дифференциальные уравнения с такой скоростью, что все цифровые компы нервно курят в уголке.

Полная версия статьи была опубликована в журнале «Хакер»

3.2.4. Типы выходных каскадов Микросхемы с открытым коллектором

Выходы некоторых микросхем выполнены так, что верхний выходной транзистор и относящиеся к нему элементы отсутствуют. Это так называемые элементы со свободным (открытым) коллектором. На их выходе формируется сигнал только низкого уровня. Поэтому для нормальной работы выходного транзистора коллектор такой микросхемы следует подключить к источнику питания через внешнюю нагрузку (рис. 3.29): резистор, элемент индукции, реле и т.п.

Рис. 3.29. Логический элемент с открытым коллектором

Для выпуска таких микросхем есть по меньшей мере две причины:

1. Выходной транзистор может быть использован для управления внешними устройствами, которые к тому же могут работать от других источников питания (см. рис. 3.29 – Uпн). Например, микросхема 155ЛА11 позволяет подводить к выходному транзистору до 30 В. Эти микросхемы легко также вводить в линейный (усилительный) режим.

2. Логические элементы с открытым коллектором допускают параллельное подсоединение нескольких выходов к общей нагрузке. Такое объединение выходов называют монтажной (проводной) логикой.

При подключении к внешнему резистору элемент выполняет функцию И–НЕ. В условном графическом обозначении элемента с открытым коллектором имеется специальный значок – ромб (или подчеркнутый ромб).

Имея дело с монтажной логикой, следует учитывать, что каждый компонент схемы утрачивает самостоятельность и действует как элемент общей системы. Так, если на одном выходе (рис. 3.30) низкий потенциал, то тот же потенциал окажется на выходе всей системы. Чтобы обеспечить логическую 1 на общем выходе, необходимо иметь логические 1 на всех выходах.

Каждый из логических элементов (см. рис. 3.30) производит операцию И-НЕ:

Следовательно,

Преобразовав последнее выражение на основе закона де Моргана, получим

или, можно показать, что

Из этих выражений следует, что логические элементы с объединенными выходами функционируют подобно элементам И–ИЛИ–НЕ, выполняя операцию ИЛИ–НЕ по отношению к входным переменным, связанным операциями И в каждом логическом элементе. Такое толкование послужило причиной наименования монтажное ИЛИ. Однако для положительной логики верно монтажное И.

Рис. 3.30. Псевдомонтажное И: а – схема соединения; б – условное обозначение

Расчет величины сопротивления нагрузки Rн в микросхемах с открытым коллектором можно посмотреть, например, в [9].

Пример микросхем с открытым коллектором серии 155:

ЛН2 – 6 элементов НЕ;

ЛН3 – 6 НЕ с повышенным напряжением питания Uк;

ЛН4 – 6 буферных формирователей;

ЛН5 – 6 элементов НЕ с повышенным Uк;

ЛА7 – 2×4 И –НЕ;

ЛА8 – 4×2 И–НЕ;

ЛА11 – 4×2 И–НЕ с повышенным Uк

ЛА13 – 4×2 И–НЕ буферных формирователей;

ЛА18 – 2×2 И–НЕ с мощным выходом;

ЛИ5 – 2×2 И с мощным выходом;

ЛЛ2 – 2×2 ИЛИ с мощным выходом.

3.2.5. Микросхемы с тремя логическими состояниями

Устройства, оперирующие дискретной информацией, при высоком уровне выходного напряжения имеют малое сопротивление между выводом Выход и шиной питания. В противоположном состоянии у Выхода малое сопротивление по отношению к общей шине. В обоих случаях выходной вывод имеет определенный электрический потенциал, который воздействует на входы последующих приборов.

Существует категория микросхем, способных принимать и третье состояние, когда выход микросхемы отключен от нагрузки. В третьем состоянии выходной ток микросхемы пренебрежимо мал. Такое состояние называют высокоимпедансным. Перевод микросхем в это состояние осуществляется по специальному входу Z. Этот вход часто обозначают ЕZ или ОЕ (Output Enable). В зависимости от конкретного типа микросхемы отключение выхода может осуществляться 1 или 0.

Упрощенная электрическая схема элемента с тремя состояниями и ее условное обозначение представлены на рис. 3.31.

Когда на входе Z низкий уровень, то VT3 заперт и не влияет на работу схемы. Если вход Z имеет высокий уровень, то транзистор VT3 открыт, коллектор транзистора VT2 имеет нулевой потенциал и, следовательно, ток через него не протекает. При этом эмиттер VT2 также имеет нулевой потенциал. Поскольку базы транзисторов VT4 и VT5 соединены с коллектором и эмиттером VT2,то транзисторы VT4 и VT5 закрыты и выходной провод микросхемы отключен и от плюса источника питания и от общего провода.

То есть состояние в отличие от 1 и 0 обозначается буквой Z, и символ такого выхода – ромб с поперечной чертой (рис.3.31.б).

а б

Рис. 3.31. Микросхема с тремя состояниями: а – электрическая схема;

б – условное графическое обозначение

Другой простой вариант перевода микросхемы в третье состояние представлен на рис. 3.32.

В том случае, когда диод VD3 подключен к эмиттеру и коллектору транзисторов VT1 и VT2, а на катод диода подается управляющий сигнал Z с высоким уровнем напряжения (лог. 1), схема работает как элемент 2И–НЕ. Если управляющий сигнал Z представлен низким уровнем напряжения (лог. 0), то эмиттер транзистора VT1 и коллектор транзистора VT2 (а соответственно и база транзистора VT4) подключен через открытый диод VD3 к общему проводу. В этом случае все транзисторы закрыты, и элемент переходит в третье состояние (Z-состояние).

Рис. 3.32. Второй вариант перевода схемы в третье состояние

В третьем варианте (рис. 3.33) для перевода схемы в Z-состояние используются транзистор и два диода. Здесь транзистор VT3 соединен непосредственно с базами транзисторов VT4 и VT5 и его состояние определяет потенциал баз этих транзисторов. Диоды VD3 и VD4 между базами транзисторов VT4 и VT5 и коллектором VT3 включены для исключения влияния цепей друг на друга. Если Z = 0, то транзистор закрыт и микросхема работает в обычном режиме. Если Z = 1, то транзистор VT3 открыт, базы транзисторов VT4 и VT5 через диоды и открытый VT3 соединены с общим проводом, т. е имеют нулевой потенциал и транзисторы VT4 и VT5 закрыты.

Рис. 3.33. Вариант схемы с тремя состояниями

В результате связь логической части элемента с его выходом разрывается, элемент со стороны выхода приобретает высокий импеданс. Уровень потенциала на выходе неопределенный (плавающий) – он может быть любым в зависимости от соотношения токов утечки транзисторов VT4 и VT5, если выход схемы ни к чему не подключен.

Переход в третье состояние может происходить из 1 в Z, или из 0 в Z. Для элементов с тремя состояниями вводятся следующие временные параметры для задания задержек распространения:

t0Z и t1Z – длительность задержки при переходе из низкого или высокого уровней в третье состояние;

tZ0 и tZ1 – длительность задержки при переходе из третьего состояния в состояние низкого или высокого уровней соответственно.

О микросхемах, выходной сигнал которых может принимать значения 0 или 1, говорят, что это микросхемы типа 2С. Микросхемы с открытым коллектором обозначают ОК (ОС), микросхемы с третьим состоянием – 3С (ТС).

Элементы с третьим состоянием выхода разработаны специально для применения в качестве выходного управляемого буфера для подключения цифровых блоков к магистралям, шинам данных. Буфером называют устройство, предназначенное для увеличения мощности, отдаваемой в нагрузку источником сигнала (для увеличения нагрузочной способности источника сигнала). Для этой цели используют микросхемы с выходом ОК. Другая функция буферов – создание двунаправленных линий и мультиплексирование. В этом случае буферы имеют выход 3С.

Под двунаправленными линиями понимаются такие линии, сигналы по которым могут распространяться в двух противоположных направлениях. В отличие от однонаправленных линий, которые идут от одного выхода к одному или нескольким входам, к двунаправленной линии могут одновременно подключаться несколько выходов и несколько входов. Двунаправленные линии могут организовываться только на основе выходов 3С, поэтому почти все буферы имеют именно такие выходы.

Мультиплексированием называется передача сигналов по одним и тем же линиям в разные моменты времени между разными устройствами. Основная цель мультиплексирования состоит в сокращении общего количества соединительных линий. Двунаправленная линия обязательно является мультиплексированной, а мультиплексированная линия может быть как однонаправленной, так и двунаправленной. Но в любом случае к ней присоединяется несколько выходов, только один из которых в каждый момент времени находится в активном состоянии. Остальные выходы в это время отключаются.

С тремя состояниями выхода выпускаются микросхемы различного функционального назначения как комбинационного, так и последовательностного типов. При поочередном действии таких приборов их выходы можно соединять между собой и подключать к общей нагрузке. На рис. 3.34 представлена схема мультиплексирования при работе на общую нагрузку. Выходные сигналы y1, y2,…yn поступают в нагрузку с того элемента, на входе Z которого имеется разрешающий сигнал. Таким способом удается уплотнить каналы передачи данных, а также создавать магистрали с двунаправленными потоками информации.

Поскольку выходной каскад буфера построен на основе двух последовательно включенных транзисторов, подача разрешающих сигналов на Z-входы сразу двух буферов магистрали недопустима: результат будет такой же, как и при объединении выходов двух обычных логических элементов.

Рис. 3.34 схема мультиплексирования

В микропроцессорных устройствах в настоящее время широко используют двунаправленные шинные усилители ДНШУ. Следует отметить, что в таких устройствах обычно используются в качестве выходных каскадов не ключевые элементы, выход которых имеет состояние Z. Это позволяет уменьшить уровень импульсных полей – «иголок», возникающих при коммутации мощных быстродействующих ключей. Если в каждый проводник шины данных установить такой усилитель, то, подав на микросхему команду, можно разрешить передачу сигналов по шине данных слева направо или наоборот. На рис. 3.35, а приведена схема одного двунаправленного канала усиления образованного буферными элементами DD1.1 и DD1.2 Эти составные части ДНШУ имеют взаимно инверсные входы разрешения передачи данных: дляDD1.1 и Z для DD1.2. Если на вход Z подать напряжение низкого уровня, канал будет передавать данные слева направо через DD1. 1 (вход х1, выход у1), поскольку выход нижнего по схеме усилителя DD1.2 разомкнут. При напряжении высокого уровня Z = 1 данные можно передавать по проводнику шины данных справа налево через DD1.2 (вход х2,выход у2). Выход элемента DD1.1 окажется отключенным.

На рис. 3.35, б оба элемента имеют разрешающий вход высокого уровня Z = 1.

Рис. 3.35. Функциональная схема двунаправленного шинного усилителя:

а – передача сигнала по одной линии в обоих направлениях; б – при передаче справа налево – выход на другую линию

Для управления направлением передачи сигнала в этой схеме в линию Z одного из элементов следует поставить инвертор. Тогда при Z = 1 сигнал передается справа налево через элемент DD1.2, при Z = 0 – через элемент DD1. 2 слева направо.

На рис. 3.36 показан пример организации двунаправленной шины с помощью буфера К555АП6. Этот восьмиканальный буфер может передавать данные между двумя двунаправленными шинами А и В в заданном направлении.

Рис. 3.36. Включение двунаправленного буфера

При единичном уровне на управляющем входе Т (сигнал Направл.) данные передаются из шины А в шину В, а при нулевом уровне – из шины В в шину А. Единичный уровень на входе ЕZ отключает микросхему от обеих шин.

Микросхемы буферов в отечественной системе обозначений имеют разнообразные обозначения: ЛН, ЛП, АП, ИП, что иногда затрудняет их выбор. Буферы с буквами ЛН имеют инверсию, буферы АП и ИП могут быть с инверсией или без инверсии. Все параметры у буферов довольно близки, отличие в инверсии, в количестве разрядов и в управляющих сигналах

Еще два типа выходных каскадов – с открытым эмиттером и с программируемой схемой выхода – будут рассмотрены при изучении микросхем эмиттерно-связанной логики и микросхем на полевых транзисторах.

Использование открытого коллектора в качестве обычного выхода 5В

Я пытаюсь использовать следующую микросхему: SN74S289BJ, чтобы выходной сигнал составлял 5 В при ВЫСОКОМ и ~ 0 В при НИЗКОМ, однако у меня возникли проблемы из-за его природы с открытым коллектором, поскольку я записал данные по определенному адресу и транзистор не будет поглощать ток подтягивания (это означает, что выходные светодиоды, которые я использую для проверки данных, всегда включены) в соответствии с таблицей данных, когда есть данные на конкретном выходе, транзистор будет насыщен и вызовет это направить поток тока к земле.

В настоящее время у меня есть 5 В через 330 Ом на коллектор IC 74S289BJ и светодиод, чтобы показать состояние.

Какой будет правильный способ его настройки?

Вот мои текущие настройки, предположим, что адрес и данные подготовлены и IC находится в режиме чтения (МЫ ВЫСОКО).

Кроме того, выходные данные инвертированы, потому что в соответствии с таблицей данных выходные данные являются дополнением данных.

Примечание: IC U2 / 3/4/5 в приведенной выше схеме являются преобразователями SN74H04N HEX

проезжий

Типичная установка светодиодов с открытым коллектором:

смоделировать эту схему — схема, созданная с использованием CircuitLab

По сути, вы создаете два пути, два основания, которые являются переменными и не идеальными. Существует также падение напряжения CE. Если вы измеряете напряжение выходного контакта по сравнению с землей, когда выходной контакт должен быть низким (активный коллектор активен), что вы получите? Список данных, который макс был бы 0.8v. U2-U5, они буферы? Какой уровень напряжения активирует буферы? И какой номер детали?

alexan_e

Выходы с открытым коллектором обычно используются в качестве переключателей на стороне низкого уровня, подключая эмиттер к земле, а затем подавая нагрузку на землю со стороны коллектора. При использовании таким способом открытый коллектор может либо подвести ток (обеспечить заземление) к нагрузке, когда он включен, либо оставить выходной сигнал плавающим (высокое сопротивление на транзисторе), когда выключен, подтягивающий резистор может вызвать состояние ВЫСОКОЕ, находясь в этом состоянии. режим высокого сопротивления.

В вашей конкретной схеме проблема может быть в пороге НИЗКОГО уровня U2 / 3/4/5 (74H04), который составляет около 1,5 В при питании 5 В.

Еще одним соображением является максимальный ток микросхемы 74HC04, который составляет 50 мА, а при отсутствии светодиодных резисторов это может быть большой проблемой.
Резисторы, которые находятся на входе 74H04, не будут играть никакой роли в ограничении тока светодиода.

Открытый коллектор принцип работы

Открытый коллектор и светодиод
Есть у меня 7-сегментный светодиодный индикатор и схема с открытым коллектром (ОК), например.

подскажите транзистор который нормально открытый
необходим транзистор который в начальном состоянии нормально открыт. гугл что-то не отвечает (

Гарбедж коллектор
Всем привет! такой код: public class Solution < private String source, sol; public.

Коллектор трафика сети
Имеется офис до 30 компьютеров и сетевых устройств. Была попытка вторжения в систему. Хочу.

Прокладка на коллектор двигателя Москвич 408
Приветствую Вас многоуважаемые форумчане. Начал капиталить одну из самых раритетных авто.

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc – 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:

где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» – когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Элементы с открытым коллектором имеют выходную цепь, заканчивающуюся одиночным транзистором, коллектор которого не соединен с какими-либо цепями внутри микросхемы (Рис. 2.18,а). Транзистор управляется от предыдущей части схемы элемента так, что может находиться в насыщенном или запертом состоянии. Насыщенное состояние транзистора трактуется как отображение логического нуля, запертое, как логической единицы.

Поэтому для формирования высокого уровня напряжения на выходе элементов с открытым коллектором (типа ОК) требуется подключение внешних резисторов величиной порядка сотен Ом (или другие нагрузки), соединенные с источником питания.

Выход с открытым коллектором ОК можно считать состоящим из одного выключателя, замкнутому состоянию которого соответствует сигнал логического нуля, а разомкнутому – отключенное, пассивное состояние (Рис.2.18.б.).

Несколько выходов типа ОК можно соединять параллельно, подключая их к общей для всех выходов цепочке Ucc – R (Рис.2.18.в). При этом можно получит режим поочередной работы на общую линию, как и для элементов с тремя состояниями, если активным будет лишь один элемент, а выводы всех остальных окажутся запертыми. Если же разрешить активную работу элементов, выходы которых соединены, то можно получить дополнительную логическую операцию, называемую операцией монтажной логики.

При реализации монтажной логики высокое напряжение на общем выходе возникает только при запирании всех транзисторов, т.к. насыщение хоты бы одного из них снижает выходное напряжение до уровня U = Uкэн. То есть для получения логической единицы на выходе требуется единичное состояние всех выходов: выполняется монтажная операция И. Поскольку каждый элемент выполняет операцию Шеффера над своими входными переменными, общий результат окажется следующим:

F = X1X2 X3X4 … Xm-1 Xm = X1X2+X3X4+ …+Xm-1 Xm

Микросхемы с открытым коллектором

⇐ ПредыдущаяСтр 13 из 24Следующая ⇒

 

Выходы некоторых микросхем выполнены так, что верхний выходной транзистор и относящиеся к нему элементы отсутствуют. Это так называемые элементы со свободным (открытым) коллектором. На их выходе формируется сигнал только низкого уровня. Поэтому для нормальной работы выходного транзистора коллектор такой микросхемы следует подключить к источнику питания через внешнюю нагрузку (рис. 3.29): резистор, элемент индукции, реле и т.п.

 

 

Рис. 3.29. Логический элемент с открытым коллектором

 

Для выпуска таких микросхем есть по меньшей мере две причины:

1. Выходной транзистор может быть использован для управления внешними устройствами, которые к тому же могут работать от других источников питания (см. рис. 3.29 – Uпн). Например, микросхема 155ЛА11 позволяет подводить к выходному транзистору до 30 В. Эти микросхемы легко также вводить в линейный (усилительный) режим.

2. Логические элементы с открытым коллектором допускают параллельное подсоединение нескольких выходов к общей нагрузке. Такое объединение выходов называют монтажной (проводной) логикой.

При подключении к внешнему резистору элемент выполняет функцию И–НЕ. В условном графическом обозначении элемента с открытым коллектором имеется специальный значок – ромб (или подчеркнутый ромб).

Имея дело с монтажной логикой, следует учитывать, что каждый компонент схемы утрачивает самостоятельность и действует как элемент общей системы. Так, если на одном выходе (рис. 3.30) низкий потенциал, то тот же потенциал окажется на выходе всей системы. Чтобы обеспечить логическую 1 на общем выходе, необходимо иметь логические 1 на всех выходах.

 
 

Каждый из логических элементов (см. рис. 3.30) производит операцию И-НЕ:

Следовательно,

 
 

Преобразовав последнее выражение на основе закона де Моргана, получим
 
 

или, можно показать, что

Из этих выражений следует, что логические элементы с объединенными выходами функционируют подобно элементам И–ИЛИ–НЕ, выполняя операцию ИЛИ–НЕ по отношению к входным переменным, связанным операциями И в каждом логическом элементе. Такое толкование послужило причиной наименования монтажное ИЛИ. Однако для положительной логики верно монтажное И.

 

Рис. 3.30. Псевдомонтажное И: а – схема соединения; б – условное обозначение

Расчет величины сопротивления нагрузки Rн в микросхемах с открытым коллектором можно посмотреть, например, в [9].

Пример микросхем с открытым коллектором серии 155:

ЛН2 – 6 элементов НЕ;

ЛН3 – 6 НЕ с повышенным напряжением питания Uк;

ЛН4 – 6 буферных формирователей;

ЛН5 – 6 элементов НЕ с повышенным Uк;

ЛА7 – 2×4 И –НЕ;

ЛА8 – 4×2 И–НЕ;

ЛА11 – 4×2 И–НЕ с повышенным Uк

ЛА13 – 4×2 И–НЕ буферных формирователей;

ЛА18 – 2×2 И–НЕ с мощным выходом;

ЛИ5 – 2×2 И с мощным выходом;

ЛЛ2 – 2×2 ИЛИ с мощным выходом.

 

Поиск по сайту:

Шинные формирователи

Мультиплексоры предназначены для объединения нескольких выходов в тех случаях, когда заранее известно сколько выходов нужно объединять. Часто это неизвестно. Более того, часто количество объединяемых микросхем изменяется в процессе эксплуатации устройств. Наиболее яркий пример — это компьютеры, в которых в процессе эксплуатации изменяется объем оперативной памяти, количество портов ввода-вывода, количество дисководов. В таких случаях невозможно для объединения нескольких выходов воспользоваться логическим элементом «ИЛИ».

Для объединения нескольких выходов на один вход в случае, когда заранее не известно сколько микросхем нужно объединять, используется два способа:

  1. монтажное ИЛИ;
  2. шинные формирователи.

Исторически первой схемой объединения выходов были схемы с открытым коллектором (монтажное «ИЛИ»). Схема монтажного «ИЛИ» приведена на рисунке 1.

Рисунок 1. Схема монтажного «ИЛИ».

Такое объединение микросхем называется шиной и позволяет объединять до 10 микросхем на один провод. Естественно для того, чтобы микросхемы не мешали друг другу только одна из микросхем должна выдавать информацию на общий провод. Остальные микросхемы в этот момент времени должны быть отключены от шины (то есть выходной транзистор должен быть закрыт). Это обеспечивается внешней микросхемой управления не показанной на данном рисунке.

На принципиальных схемах такие элементы обозначаются как показано на рисунке 2.

Рисунок 2. Обозначение микросхемы с открытым коллектором на выходе

Недостатком приведенной схемы объединения нескольких микросхем на один провод является низкая скорость передачи информации, обусловленная затягиванием переднего фронта. Это явление связано с различным сопротивлением заряда и разряда паразитной Јмкости шины. Заряд паразитной Јмкости происходит через сопротивления R1 и R2, которые много больше сопротивления открытого транзистора. Величину этого сопротивления невозможно уменьшить меньше некоторого предела, определяемого напряжением низкого уровня, который определяется в свою очередь допустимым током потребления всей схемы в целом. Временная диаграмма напряжения на шине с общим коллектором приведена на рисунке 3.

Рисунок 3. Временные диаграммы напряжения на входе и выходе микросхемы с открытым коллектором.

Естественным решением этой проблемы было бы включение транзистора в верхнее плечо схемы, но при этом возникает проблема сквозных токов, из-за которой невозможно соединять выходы цифровых микросхем непосредственно. Причина возникновения сквозных токов поясняется на рисунке 4.

 

Рисунок 4. Путь протекания сквозного тока при непосредственном соединении выходов цифровых микросхем.

Эта проблема исчезает, если появляется возможность закрывать транзисторы как в верхнем, так и в нижнем плече выходного каскада. Если в микросхеме закрыты оба транзистора, то такое состояние выхода микросхемы называется третьим состоянием или z-состоянием выхода микросхемы. Такая возможность появляется в специализированных микросхемах с третьим состоянием на выходе микросхемы. Принципиальная схема выходного каскада микросхемы с тремя состояниями на выходе микросхемы приведена на рисунке 5.

Рисунок 5. Принципиальная схема выходного каскада микросхемы с тремя состояниями на выходе

На принципиальных схемах такие элементы обозначаются как показано на рисунке 6.

Рисунок 6. Обозначение микросхемы с тремя состояниями на выходе

Часто в микросхеме, содержащей элементы с тремя состояниями выходного каскада  объединяют управляющие сигналы всех элементов в один провод. Такие микросхемы называют шинными формирователями и изображают на схемах как показано на рисунке 7.

Рисунок 7. Обозначение шинного формирователя.


[Назад] [Содержание] [Вперёд]

Порты микроконтроллера с открытым стоком

Есть два распространенных применения с открытым стоком (или с открытым коллектором, в случае BJT):

1) Подключение более одного выхода к одной линии. Это называется проводной ИЛИ. Например, у вас может быть нормально высокий контакт сброса на устройстве, который сбрасывается как с контакта микроконтроллера, так и с другого источника, скажем, кнопки. Штырь сброса имеет высокое сопротивление с помощью подтягивающего резистора. Микроконтроллер настроен как выход с открытым стоком. Кнопка нажимается на землю при нажатии. Если микроконтроллер установит выходной сигнал на 0 или нажмет кнопку, устройство будет сброшено.

Обратите внимание, что когда микроконтроллер устанавливает свой выходной вывод на 1, этот вывод фактически отсоединяется от линии. Он не управляет линией («источником») с любым напряжением, поэтому, когда кнопка нажимает на линию на землю, короткого замыкания не происходит.

Поскольку конфигурация проводного ИЛИ очень полезна, именно поэтому выводы, такие как сброс на микроконтроллере, линии прерывания, очистка и включение линий на устройствах, таких как триггеры, все имеют «активный низкий уровень» — это означает, что они обычно привязаны к высокому уровню (снова через подтягивающий резистор), и любое из нескольких устройств, сконфигурированных как открытый сток, может снизить их. Такие входы обычно обозначаются как активный-низкий либо с полосой в верхней части имени сигнала, либо с лидирующей! (! CLR) или завершающий знак # (CLR #).

2) Управляющие устройства подключены к различным напряжениям питания. Скажем, у вас есть реле, которое требует 20 мА, но напряжение 5 вольт. Но ваш выход микроконтроллера может приводить контакты только в напряжение питания (VCC) 3.3В. С выходом с открытым стоком вы можете подключить одну сторону реле к 5 В, а другую — к выходному контакту микроконтроллера. Когда выход микроконтроллера в 1 равен 1, ничего не происходит (опять же, действует как разъединенный вывод). Когда он установлен в 0, это заземляет нижнюю сторону реле, замыкая цепь и управляя реле. В таком случае важно поместить «обратный» диод поперек катушки реле, чтобы предотвратить повреждение микроконтроллера при обесточивании устройства.

Для драйверов вывода, таких как ULN2803 (транзисторная матрица Дарлингтона), вы можете управлять нагрузками, подключенными к напряжению до 50 В, и управлять ими с помощью логически совместимого входа.

Общие сведения о реле с открытым коллектором — Global Electronic Services

Открытые коллекторы — это электрические компоненты, управляющие входными сигналами для различных устройств. Эти выходные данные имеют простой дизайн, но играют важную роль в приложениях, охватывающих несколько отраслей. Вот посмотрите, что это такое, как они работают и что делают в электрических реле.

Что такое открытый коллектор?

Открытые коллекторы — это выходы, которые можно найти на различной электронике и большинстве плат интегральных схем (ИС).Они работают с питанием постоянного тока и ведут себя так же, как переключатели питания или твердотельные реле (SSR), позволяя переключать входной сигнал для включения или выключения различных схем. Открытый коллектор либо полностью выключен, либо полностью включен — они также не усиливают и не ослабляют. Иногда в серию включают диод с открытым коллектором для защиты от неожиданных скачков напряжения.

Как используются открытые коллекторы?

Выходы

с открытым коллектором представляют собой особый тип конфигурации транзисторов BJT (биполярный переход).Помимо коллектора, выход с открытым коллектором также имеет базу и эмиттер. Эти транзисторы имеют выход с пассивным открытым коллектором, который либо подключается к заземлению, либо генерирует плавающее напряжение.

Компонент принимает входной сигнал от платы IC и активируется. Во время работы транзистора с открытым коллектором BJT-транзистор посылает выходной сигнал на отрицательно-положительно-отрицательный (NPN) транзистор. В отличие от стандартных цифровых выходов, открытый коллектор не питает нагрузку.Вместо этого эти компоненты включают переключатель, который подключает цепь под напряжением к электрическому заземлению.

Каковы применения выходов с открытым коллектором?

Являясь неотъемлемой частью многих микросхем IC, выходы с открытым коллектором полезны для бесчисленных приложений, но для их работы обычно требуются подтягивающие резисторы. Каждый раз, когда вы используете открытый коллектор с плавающей землей, вам необходимо иметь подтягивающий резистор между VCC (общий коллектор напряжения) и землей, чтобы остановить ваши схемы и логические элементы от самосмещения и отправки ложных сигналов.

С помощью подтягивающего резистора можно изменить режим работы транзистора с открытым коллектором для передачи сигналов с разными напряжениями. Эта возможность делает их полезными для управления внешними схемами, такими как питание 12-вольтного реле или взаимодействие с устройствами, требующими различных уровней входного напряжения, такими как цифровые логические вентили, усилители, датчики, серводвигатели и логарифмические преобразователи.

Почему в реле используются открытые коллекторы?

Транзисторы

с открытым коллектором обеспечивают лучшую гибкость по напряжению и току, чем стандартные логические вентили.Компонентная конструкция позволяет подключать несколько выходов к одной подключенной линии. С открытыми разъемами вы можете без помех выбирать, какие устройства хотите активировать. Реле с открытым коллектором также не требует согласования входного напряжения. Вы можете использовать их в 5-вольтовых логических схемах, которые управляют компонентами, требующими напряжения в пять, 10 или более чем в 20 раз выше.

Экспертная проверка и ремонт выходов с открытым коллектором

Поскольку реле играют жизненно важную роль во многих электронных устройствах, неисправности или короткое замыкание являются признаком того, что вам может потребоваться проверить выход с открытым коллектором.Если ваши серводвигатели вышли из строя или вообще перестали работать, Global Electronic Services может оценить их и вернуть в рабочее состояние. Мы обслуживаем клиентов со всего мира, предоставляя быстрые услуги по тестированию, техническому обслуживанию и ремонту.

Заполните нашу форму, чтобы запросить расценки и узнать, что мы можем сделать для вашей компании. Мы составим подробную смету и быстро выполним утвержденный ремонт, чтобы свести к минимуму время простоя.

сигналов с открытым коллектором (примечание по приложению) | LabJack

Это примечание к приложению написано для всех LabJack, кроме U12.U12 имеет нагрузку на 1 МОм, а не на 100 кОм на всех других устройствах.

Открытый коллектор (также называемый открытым стоком, NPN или PNP) — очень распространенный тип цифрового сигнала. Вместо того, чтобы обеспечивать низкий импеданс 5 В и землю, как двухтактный или сигнальный, сигнал с открытым коллектором обеспечивает разомкнутость и землю. Этот тип сигнала можно представить как выключатель, подключенный к земле. Различные термины используются несколько вольно, и часто все варианты просто называются «открытый коллектор», но наиболее часто используется следующее:

Открытый коллектор = NPN = Переключение между открытым и низким.

Открытый сток = PNP = Переключение между открытым и высоким.

Поскольку цифровые входы LabJack имеют внутренний подтягивающий резистор 100 кОм, который удерживает их на высоком уровне, когда ничего не подключено, сигнал NPN является естественным подходом и, как правило, может быть подключен непосредственно ко входу. Когда сигнал NPN неактивен, он не генерирует никакого напряжения, а подтягивающий резистор переводит цифровой вход на высокий логический уровень. Когда сигнал NPN активен, он генерирует 0 вольт, который подавляет подтягивание и переводит цифровой вход на низкий логический уровень.Иногда устанавливается внешний подтягивающий усилитель (например, 4,7 кОм от напряжения Vs к цифровому входу) для увеличения скорости и силы (т. Е. Большей невосприимчивости к электромагнитным помехам) состояния высокого логического уровня.

Рис. 1. Общее подключение открытого коллектора (NPN) к цифровому входу

Rground обычно составляет 0 Ом, но иногда используется последовательный резистор для предотвращения протекания больших токов в землю.

Rseries обычно составляет 0 Ом, за исключением случаев, когда требуется создать RC-фильтр нижних частот или если необходимо ограничить ток для напряжений, существенно превышающих 5 вольт.Если есть некоторая неуверенность в том, является ли сигнал на самом деле открытым коллектором или может вызывать напряжение выше 5 вольт, используйте Rseries 22 кОм, как описано в примечании к приложению Driven Signals.

Rpullup (внешний подтягивающий резистор) обычно не требуется, но используется гораздо чаще, чем Rground и Rseries. Иногда добавляется 4,7 кОм, если требуется более сильное подтягивание, чтобы избежать ложных минимумов из-за EMI. Единственным недостатком добавления этого внешнего подтягивания является то, что VS должен подавать небольшой дополнительный ток, а переключатель NPN должен потреблять этот дополнительный ток, но он составляет всего около 1 мА с 4.7кОм.

Без дополнительных резисторов рисунок 1 упрощается до рисунка 2, который является наиболее распространенным подключением:

Рис. 2. Типовое подключение с открытым коллектором (NPN) к цифровому входу

Для переключателя PNP требуется Rpulldown (а не Rpullup) с цифрового входа на GND. Добавьте понижающий резистор 4,7 кОм, который подавляет внутреннее повышение сопротивления 100 кОм и поддерживает низкий уровень цифрового входа, когда PNP неактивен (разомкнут).Когда PNP активен (высокий), он подавляет понижение и удерживает высокий уровень цифрового входа. Обратите внимание, что если высокое напряжение PNP больше 5 вольт, Rseries необходим для защиты цифрового входа, как обсуждалось ранее. В этом случае Rseries объединяется с Rpulldown для создания делителя напряжения (а также внутреннего повышения 100 кОм до 3,3 В, но мы проигнорируем это для грубых расчетов). Rseries = 10k и Rpulldown = 4.7k, означает усиление примерно x0,32, поэтому входной сигнал 12 В будет разделен до ~ 3.8 вольт. Rseries = 22k и Rpulldown = 4.7k, означает усиление около x0,18, поэтому входной сигнал 24 В будет разделен до ~ 4,3 вольт.

Другой вариант для переключателей PNP — LJTick-Divider.

Наше самое старое устройство, U12, имеет нагрузку на 1 МОм, а не на 100 кОм на каждой цифровой линии. Мы рекомендуем всегда использовать подтягивающий резистор 4,7 кОм (до +5 В) с сигналами NPN или подтягивающий резистор 4,7 кОм (к заземлению) с сигналами PNP.

Выше были упомянуты различные способы защиты от напряжений более 5 вольт.Фактические ограничения можно найти в Приложении A к спецификации каждого устройства. U12 начинает фиксироваться с VS + 0,3, а U3, U6, UE9, T4 и T7 начинают фиксироваться с фиксированного значения 5,8 вольт, поэтому для напряжений, превышающих эти уровни, следует подумать о добавочном последовательном резисторе.

Обратите внимание, что отдельное заземление LabJack часто не требуется для каждого сигнала. Любые сигналы, питаемые от одного и того же внешнего источника или иным образом относящиеся к одному и тому же внешнему заземлению, должны по возможности совместно использовать одно заземление с LabJack.

Открытый коллектор против открытого дренажа — Digilent Blog

В чем разница между Pmod OD1 и Pmod OC1 ? В чем разница между выходом с открытым стоком и выходом с открытым коллектором ? В чем разница между MOSFET (металлооксидный полевой транзистор) и BJT (биполярный транзистор)? Оказывается, это, по сути, один и тот же вопрос! Однако для осознания этого может потребоваться некоторое время, особенно если вы новичок в понимании различных транзисторных технологий.Чтобы найти ответ, мы начнем с последней версии вопроса и вернемся к первой.

Краткий обзор транзисторов

BJT и MOSFET — это два разных типа транзисторов. У них схожие функции, но разные характеристики. С точки зрения функциональности, они оба могут использоваться как усилители или переключатели. Как усилители, они принимают небольшой ток на одном конце и производят гораздо больший ток на другом конце. Это особенно полезно в аналоговых схемах, где транзисторы составляют основу таких компонентов, как операционные усилители.

В качестве переключателей небольшой ток через одну часть транзистора может включать больший ток через другую его часть. Другими словами, транзистор может находиться в двух различных состояниях и представлять два разных значения; 0 или 1, выключено или включено. Это особенно полезно в цифровых схемах и является основой работы всех компьютерных микросхем.

Все транзисторы сделаны из кремния, электрически нейтрального химического элемента, определенного как полупроводник , что означает, что он не является ни сильным проводником электричества, ни отличным изолятором.Что такого полезного в кремнии, так это то, что его поведение можно изменить известным способом, добавив примеси, с помощью процесса, называемого «легирование». Если кремний легирован определенными химическими веществами, он получает дополнительные «свободные» электроны и может легче переносить электрический ток. Этот тип кремния известен как n-тип или отрицательный тип.

Можно сделать и обратное, создав p-типа или положительного типа, который имеет меньше свободных электронов и часто описывается как имеющий дырок, там, где должны быть электроны.Однако обратите внимание, что кремний n-типа или p-типа не заряжен электрически. Следовательно, их можно соединить вместе, и электроны и дырки не начнут пересекать n-p переход, пока не будет приложен электрический ток (BJT) или напряжение (MOSFET). Различные конфигурации кремния n-типа и p-типа — вот что приводит к разнице между BJT и MOSFET.

БЮЦ

Биполярные переходные транзисторы (BJT) — это токовые устройства , которые бывают двух типов: NPN и PNP.Как следует из названия, NPN BJT имеют два слоя кремния n-типа, окружающие один слой кремния p-типа (и наоборот для PNP). У каждого слоя есть определенное имя: эмиттер, база и коллектор. См. Рисунок 1.

Рис. 1. Две разные конфигурации биполярного транзистора (BJT).

Принципы работы каждого типа BJT практически идентичны; Функциональное отличие заключается в основном в смещении переходов. Например, когда на базу NPN-транзистора подается положительное смещение, устройство включается, и ток течет от эмиттера к коллектору.Также известный как переключатель нижнего уровня, эмиттер подключается к GND , а коллектор подключается к нагрузке. Напротив, когда отрицательное смещение (или 0 В / GND) применяется к базе транзистора PNP, устройство включается, и ток течет от коллектора к эмиттеру в противоположном направлении от устройства NPN. Также известный как переключатель верхнего плеча, эмиттер подключается к источнику напряжения , а коллектор подключается к нагрузке.

Рисунок 2. Изображение BJT с контактами, обозначенными E для эмиттера, B для базы и C для коллектора.

С точки зрения плюсов и минусов, BJT удобны для управления маломощными светодиодами и аналогичными устройствами от обычных микроконтроллеров, которые могут выдавать постоянное напряжение только 5 В, таких как chipKIT и Arduino. Полевые МОП-транзисторы логического уровня можно использовать таким же образом, но, как правило, они дороже и их труднее найти, чем стандартные МОП-транзисторы, для включения которых требуется 10 В или более. BJT также переключаются быстрее, чем MOSFET, поэтому они хороши для высокочастотных приложений, однако они менее энергоэффективны, поэтому не всегда являются отличным выбором для приложений с батарейным питанием, где нагрузка является переменной.

Для получения дополнительной информации о теории, лежащей в основе BJT, см. Ссылку по ссылке , а для получения поучительной анимации перейдите по ссылке , здесь .

МОП-транзисторы

Металлооксидные полевые транзисторы (MOSFET) — это управляемые напряжением устройства и похожи на BJT в том, что они имеют три разных вывода: исток , (аналог эмиттера), сток , (аналог коллектора) , и ворота (аналог основания).Как и BJT, полевые МОП-транзисторы состоят из кремния n-типа и p-типа, но они устроены несколько иначе. См. Рисунок 3.

Рисунок 3. Конфигурация секций n-типа и p-типа полевого МОП-транзистора.

Существует несколько подкатегорий полевых МОП-транзисторов, но я упомяну две подкатегории: N-канал и P-канал . Разница между ними заключается в приложенном напряжении и в том, какой тип носителя заряда отвечает за протекание тока. Для N-канального полевого МОП-транзистора источник соединен с землей , и устройство активируется путем подачи положительного напряжения на затвор .Это создает электрическое поле, «эффект поля», и позволяет электронам течь по тонкому каналу от истока к стоку. Для P-канального MOSFET источник подключается к Vcc , и устройство активируется путем подключения затвора к земле . Здесь носителями заряда выступают дырки, а не электроны. Чаще всего используются полевые МОП-транзисторы N-типа.

Примечание. Поскольку через полевой МОП-транзистор проходит только один тип заряда (электрон или дырка), они являются «униполярными» транзисторами в отличие от биполярных транзисторов, которые позволяют обоим типам зарядов проходить через переходы NP / PN.

Рис. 4. МОП-транзистор, показывающий выводы истока, стока и затвора, в отличие от выводов эмиттера, коллектора и базы BJT.

С точки зрения плюсов и минусов, полевые МОП-транзисторы имеют бесконечно высокое входное сопротивление, что делает их полезными в усилителях мощности. Они также более энергоэффективны, чем BJT, и более терпимы к нагреву. Хотя BJT могут переключаться быстрее, полевые МОП-транзисторы по-прежнему достаточно быстры для приложений с частотой менее 1 МГц и сегодня являются наиболее часто используемыми транзисторами. В общем, вы можете думать, что высокий входной импеданс и низкое энергопотребление = MOSFET, а работа на очень высоких частотах и ​​возможность высокого тока привода = BJT.

Дополнительные сведения о полевых МОП-транзисторах см. В этой статье.

В чем разница между выходом с открытым стоком и выходом с открытым коллектором?

Я уверен, что после прочтения вышеперечисленных разделов вы догадались, как ответить на эту версию вопроса. Если вы сказали, что разница между MOSFET и BJT, вы были бы правы! Выходной вывод с открытым стоком или открытым коллектором — это просто вывод, управляемый одним транзистором, либо MOSFET, либо BJT соответственно. С точки зрения использования, ответ отражает приведенное выше обсуждение плюсов и минусов самих MOSFET и BJT.Конечно, их также можно комбинировать, чтобы создавать очень интересные схемы, используя сильные стороны каждой.

В чем разница между Pmod OD1 и Pmod OC1?

Наконец, мы подошли к последней форме вопроса, и снова ответ теперь очевиден. Pmod OD1 — это модуль вывода с открытым стоком с четырьмя выходными контактами с открытым стоком, каждый из которых управляется N-канальным полевым МОП-транзистором. Pmod OC1 — это модуль с открытым коллектором с четырьмя выходными контактами с открытым коллектором, каждый из которых управляется NPN BJT.Оба модуля используются для потребления более высокого тока, чем могут обеспечить контакты на вашем Digilent FPGA или микроконтроллере.

Рисунок 5. Pmod OD1 слева и Pmod OC1 справа.

Pmod OC1 был разработан для управления устройствами с чуть более высоким током при 200 мА, такими как небольшая лампа или реле, и имеет более высокий рейтинг ESD, чем Pmod OD1. Поэтому он особенно прочен и подходит для студентов, которые учатся использовать эту схему. Он рассчитан на напряжение до 20 В. Pmod OD1 имеет винтовые клеммы на каждом штыре и был разработан специально для привода шаговых двигателей.Однако он также может использоваться для многих других приложений с высоким током до 3 А. Он рассчитан на напряжение до 40 В.

Для получения дополнительной информации о Pmod OD1 или Pmod OC1 посетите Digilent wiki или оставьте комментарий ниже!

Список литературы

Как использовать MOSFET — Учебное пособие для начинающих

Как использовать биполярный переходной транзистор BJT — Учебное пособие для начинающих

Как работают транзисторы

Основы: Выходы с открытым коллектором

Разница между BJT и MOSFET

Открытый коллектор — Википедия

Открытый коллектор

Простая схема открытого коллектора интегральной схемы (ИС).

Открытый коллектор — это распространенный тип выхода, встречающийся во многих интегральных схемах (ИС). Вместо вывода сигнала с определенным напряжением или током выходной сигнал подается на базу внутреннего NPN-транзистора, коллектор которого выведен наружу (открыт) на вывод IC. Эмиттер транзистора внутренне соединен с заземляющим контактом. Если устройство вывода представляет собой полевой МОП-транзистор, выход называется с открытым стоком, и работает аналогичным образом.

Функция

На рисунке выше база транзистора помечена как «IC Output».Это внутренний выход внутренней логики ИС на транзистор. С точки зрения транзистора, это вход, который управляет переключением транзистора. Внешний выход — это коллектор транзистора, а транзистор действует как интерфейс между внутренней логикой ИС и частями, внешними по отношению к ИС.

Выход, по сути, действует либо как разомкнутая цепь (нет соединения ни с чем), либо как соединение с землей. На выходе обычно есть внешний подтягивающий резистор, который повышает выходное напряжение, когда транзистор выключен.Когда какой-либо транзистор, подключенный к этому резистору, включается, на выходе устанавливается напряжение почти 0 вольт. Выходы с открытым коллектором могут быть полезны для аналогового взвешивания, суммирования, ограничения и т. Д., Но такие приложения здесь не обсуждаются.

Логическое устройство с тремя состояниями отличается от устройства с открытым коллектором, поскольку оно имеет транзисторы для подачи и приема тока в обоих логических состояниях, а также средство управления для отключения обоих транзисторов и изоляции выхода.

Применение устройств с открытым коллектором

Поскольку подтягивающий резистор является внешним и его не нужно подключать к напряжению питания микросхемы, вместо него можно использовать более низкое или более высокое напряжение.Поэтому цепи с открытым коллектором иногда используются для сопряжения различных семейств устройств с разными уровнями рабочего логического напряжения или для управления внешними цепями, требующими более высокого напряжения (например, реле на 12 В).

Еще одно преимущество — возможность подключения более одного выхода с открытым коллектором к одной линии. Если все выходы, подключенные к линии, находятся в состоянии с высоким импедансом (то есть с логической 1), подтягивающий резистор будет удерживать провод в состоянии высокого напряжения. Если 1 или более выходов устройства находятся в земле (т.е., логический 0), они будут потреблять ток и подтягивать линейное напряжение к земле.

Устройства с открытым коллектором обычно используются для подключения нескольких устройств к шине (т. Е. Одно устройство передает сигналы прерывания или разрешения записи). Это позволяет одному устройству управлять шиной без помех от других неактивных устройств — если устройства с открытым коллектором не используются, то выходы неактивных устройств будут пытаться поддерживать высокое напряжение на шине, что приведет к непредсказуемому выходу.

При связывании выходов нескольких открытых коллекторов вместе общая линия становится логическим элементом «соединенное И» (положительная-истинная логика) или «проводное ИЛИ» (отрицательная-истинная логика).«Проводное И» ведет себя как логическое И двух (или более) вентилей в том смысле, что это будет логическая 1, когда (все) находятся в состоянии высокого импеданса, и 0 в противном случае. «Проводное ИЛИ» ведет себя как логическое ИЛИ для логики «отрицательная-истина», где на выходе НИЗКИЙ уровень, если на любом из его входов низкий уровень. Такие конструкции схем называются «соединенным И» и «соединенным ИЛИ» соответственно.

Транзистор с открытым коллектором может быть рассчитан на то, чтобы выдерживать более высокое напряжение, чем напряжение питания микросхемы. Такие устройства обычно используются для управления такими устройствами, как лампы Nixie и вакуумные флуоресцентные дисплеи, которые требуют более высоких рабочих напряжений, чем обычный 5-вольтовый логический источник питания.

Устройства

SCSI-1 используют открытый коллектор для электрической сигнализации. [1] SCSI-2 и SCSI-3 могут использовать EIA-485.

Одной из проблем устройств с открытым коллектором является энергопотребление, поскольку они обычно требуют более высоких минимумов тока для правильной работы. Даже в выключенном состоянии они часто имеют ток утечки в несколько наноампер (точное количество зависит от температуры).

Проводное ИЛИ с активным низким уровнем / Проводное И с активным высоким уровнем с использованием вентилей с открытым стоком.

МОП-транзистор

Аналогичное соединение, используемое с МОП-транзисторами, представляет собой соединение с открытым стоком.Выходы с открытым стоком могут быть полезны для аналогового взвешивания, суммирования, ограничения, а также для цифровой логики. Клемма открытого стока соединена с землей в состоянии низкого напряжения (логический 0), но имеет высокий импеданс в состоянии логической 1. Это запрещает протекание тока, но в результате для такого устройства требуется внешний подтягивающий резистор, подключенный к шине положительного напряжения (логическая 1).

Обратите внимание, что микроэлектронные устройства, использующие сигналы с открытым стоком (например, микроконтроллеры), могут обеспечивать «слабый» внутренний подтягивающий резистор для подключения рассматриваемого терминала к источнику / шине положительного напряжения, например V dd устройства. «Обзор стандартов и кабелей SCSI». http://www.scsita.org/terms/SCSI_Overview.html. 081214 scsita.org

Внешние ссылки

[1]

л

Поставщики и ресурсы беспроводной связи RF

О компании RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи. На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP. В нем также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей.В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система очистки туалетов самолета. • Система измерения столкновений • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Умная парковка на базе Zigbee • Система умной парковки на основе LoRaWAN


RF Беспроводные статьи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, связанные с испытаниями и измерениями, по тестированию на соответствие, используемым для тестов на соответствие устройств RF / PHY. УКАЗАТЕЛЬ СТАТЬИ ДЛЯ ССЫЛКИ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье описываются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Используемые в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается структурная схема сотового телефона 5G с внутренними модулями 5G Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются обучающие материалы по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Частотные диапазоны руководство по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Испытательное оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура или иерархия кадров GSM, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы работы с мобильным телефоном, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF-фильтра ➤Система VSAT ➤Типы и основы микрополосковой печати ➤ОсновыWaveguide


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования ИУ на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Каркасная конструкция ➤SONET против SDH


Поставщики беспроводных радиочастотных устройств, производители

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здравоохранении *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: часто мойте их
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Беспроводные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Сюда входят такие беспроводные технологии, как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤Калькулятор антенн Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Датчики разных типов


Поделиться страницей

Перевести страницу

Что такое открытый сток на полевом транзисторе и как он используется?

Если вы работаете с интегральной схемой (ИС), и в техническом описании упоминается открытый сток или открытый коллектор, это инженерные слова говорят о приемнике тока на выходном контакте.Для тех, кто не знаком с терминологией, «сток тока» означает, что ток течет в вывод (или узел и т. Д.), А не из вывода. (Понятно? Кухонная мойка сливает воду. В этом случае сток отводит ток .) Противоположностью стока тока является «источник тока», когда штырь управляет выходным током и, следовательно, подает ток на все, что подключено к этому выводу (Продолжая аналогию с кухней, источником тока будет водопроводный кран.)

Напомним, что транзистор — это, по сути, переключатель ВКЛ / ВЫКЛ, встроенный в кремний. То, что контролирует поведение транзистора при переключении, — это база. (, рис. 1. ). Если выход IC проходит в базу, он включает ток через транзистор (т. Е. Транзисторный ключ находится в положении «ON»). Если нет потока или слишком маленький поток через IC выход для управления транзистором, тогда ток через транзистор не течет (т. е. переключатель транзистора находится в положении «ВЫКЛ.».Таким образом, транзисторы управляют потоком тока и управляющими потенциалами напряжения в цепи, состоящей из сотен и миллиардов транзисторов, в зависимости от ИС.

Рисунок 1: Открытый сток означает то же, что и открытый коллектор, за исключением типа устройства (полевой транзистор или биполярный транзистор / биполярный транзистор).

Термин «открытый сток» означает, что сток есть, но на полевом транзисторе, например, на полевом МОП-транзисторе. (МОП-транзистор похож на транзистор, который может работать с более высокими напряжениями, но работает примерно так же.)

Термин «открытый коллектор» относится к потребителю тока на транзисторном выходе. Если транзистор NPN не подключен или открыт, но подключен к внешнему выводу, это открытый коллектор. Транзистор переключается на землю, когда он активен, таким образом «втягивая» ток (т. Е. Соединяется с землей, и, таким образом, ток шунтируется на землю для «рециркуляции» в плоскости заземления). И источник тока, и приемник тока имеют ток, текущий, но в разных направлениях.

В обоих случаях основной смысл термина «открытый сток или коллектор» состоит в том, что часть выходного транзистора напрямую подключается к выводу, который является внешним по отношению к корпусу ИС.

Устройства с открытым коллектором и отводом потребляют ток, когда они переведены в одно состояние, и не имеют тока (т. Е. Выдают состояние с высоким импедансом) в другом состоянии. Довольно часто используются открытые стоки (открытые коллекторы) вместе с подтягивающим резистором. Подтягивающий резистор подключен к высокому уровню (напряжение питания) на одном конце и подключен к одному или нескольким внешним контактам устройств с открытым стоком / коллектором, соединенных вместе. Таким образом, если какое-либо из устройств с открытым стоком (с открытым коллектором) настроено на прием тока, ток для всех устройств будет опускаться на землю, поскольку все они подключены в одной точке.

, который удерживает сигнальную линию на высоком уровне до тех пор, пока устройство на проводе не потребляет достаточно тока, чтобы подтянуть линию до низкого уровня. К сигнальному проводу можно подключить многие устройства. Если все устройства, подключенные к проводу, находятся в неактивном состоянии, подтягивание будет удерживать провод под высоким напряжением. Если одно или несколько устройств находятся в активном состоянии, напряжение сигнального провода будет низким. Обычно в схеме есть резистор между ней и цепью до 5В (подтягивающий резистор). Подтягивающие резисторы используются так, что, когда полевой транзистор (транзистор) находится в положении «ВЫКЛ», провод будет плавать до высокого напряжения, которое обычно является напряжением питания для схемы.

Часто задаваемые вопросы по открытому коллектору / открытому дренажу

Часто задаваемые вопросы по открытому коллектору / открытому дренажу
Цепь с открытым коллектором / открытым стоком FAQ (Часто
задаваемые вопросы)

Что такое цепь с открытым коллектором / открытым стоком?

Открытый коллектор / открытый сток — это схемотехника, которая позволяет использовать несколько устройства для двунаправленной связи по одному проводу.

Устройства с открытым коллектором / открытым стоком потребляют (пропускают) ток в своем низком напряжении активном (логический 0) состоянии, или имеют высокий импеданс (ток не течет) в их неактивное состояние высокого напряжения (логическая 1). Эти устройства обычно работают с внешним подтягивающим резистором, который удерживает сигнальную линию на высоком уровне до тех пор, пока устройство на проводе потребляет достаточно тока, чтобы понизить уровень сигнала в линии. Многие устройства можно прикрепить к сигнальному проводу. Если все устройства подключены к проводу находятся в неактивном состоянии, подтягивание будет удерживать провод на высоком уровне Напряжение.Если одно или несколько устройств находятся в активном состоянии, сигнальный провод напряжение будет низким.

Сигнальный провод с открытым коллектором / открытым стоком также может быть двунаправленным. Двунаправленный означает, что устройство может как выводить, так и вводить сигнал на провод одновременно. Помимо контроля состояния своего контакт, который подключен к сигнальному проводу (активному или неактивному), устройству также может определять уровень напряжения сигнального провода. Хотя на выходе устройства с открытым коллектором / открытым стоком могут находиться в неактивном (высоком) состоянии, провод, подключенный к устройству, может находиться в активном (низком) состоянии из-за активность другого устройства, подключенного к проводу.

Двунаправленность устройства с открытым коллектором / открытым стоком что делает эту схему такой важной для соединения многих устройств на общая линия. Шина I2C и SMBus используют этот метод для подключения до 127 устройств.

Открытый сток относится к клемме стока МОП-полевого транзистора. Открытый коллектор та же концепция на биполярном устройстве.

Не можете найти здесь ответ на свой вопрос? Тогда отправьте свой вопрос по электронной почте обращайтесь к нам по адресу support @ mcc-us.ком

I 2 C на расстоянии одного щелчка мыши TM


.

Добавить комментарий

Ваш адрес email не будет опубликован.