Схема включения трехфазного счетчика с трансформаторами тока: Подключение счетчика через трансформаторы тока

Содержание

Подключение счетчика через трансформаторы тока

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

В статье про схемы подключения электросчетчиков прямого включения мы познакомились с подключением однофазных и трехфазных электросчетчиков прямого, или его еще называют, непосредственного включения в сеть. В той же статье я упоминал, что существует способ подключения электросчетчиков и через трансформаторы тока и напряжения.

Давайте рассмотрим на примере трехфазных счетчиков самые распространенные схемы.

Счетчики необходимы для учета электроэнергии потребителями в трехпроводных и четырехпроводных сетях переменного тока с частотой 50 (Гц).

Трехфазные счетчики электрической энергии выпускаются на напряжение 3х57,7/100 (В) или 3х230/400 (В).

Подключение счетчиков электрической энергии к вышеперечисленным сетям осуществляется через измерительные трансформаторы тока (ТТ) со вторичным током 5 (А) и трансформаторы напряжения (ТН) со вторичным напряжением 100 (В).

При подключении счетчика необходимо строго следить за полярностью начала и конца обмоток трансформаторов тока, как первичной (Л1 и Л2), так и вторичной (И1 и И2). Также необходимо соблюдать полярность обмоток трансформатора напряжения (подробнее об этом Вы можете почитать в статье про трансформатор напряжения НТМИ-10).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.

 

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.

 

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока

ТТ1 — ТТ3 — трансформаторы тока. 

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик ЦЭ6803В 3х220/380 (В), 1-7,5 (А).

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моей статьи про схему подключения трехфазного счетчика ПСЧ-4ТМ.05.04 в четырехпроводную сеть напряжением 380/220 (В) с помощью 3 трансформаторов тока.

 

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока

ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.

 

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 2 трансформаторов напряжения

ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

Рекомендую Вам при подключении счетчиков электроэнергии обязательно применять цифровую и буквенную маркировку проводов вторичных цепей, чтобы облегчить Вам и Вашим коллегам дальнейшую эксплуатацию и обслуживание.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как подключить счётчик через трансформатор тока

Не во всех случаях есть возможность измерять израсходованную электроэнергию с помощью простого подключения устройства учёта, то есть счётчика, в сеть. В электрических цепях с переменным напряжением 0,4 кВ (380 Вольт), силой тока больше чем 100 Ампер и с потреблением мощности соответственно больше 60 кВт применяется подключение трёхфазного электросчётчика через измерительный трансформатор тока. Такое подключение называется косвенным и только оно даёт точные показатели при измерении таких мощностей. Для начала перед рассмотрением самих схем соединения, нужно разобраться в принципе работы измерительного трансформатора.

Принцип работы измерительных трансформаторов

Принцип измерительного и обычного трансформатора тока (ТТ) не имеют различия кроме точности передачи тока во вторичной обмотке.

Не измерительные ТТ применяются в цепях токовой релейной защиты, однако, в любом случае принцип их работы одинаков. По первичной обмотке, включенной последовательно в линию, будет протекать электрический ток такой же, как и в нагрузке. Иногда, это зависит от конструкции ТТ, первичной обмоткой может служить алюминиевая или медная шина, идущая от источника энергии, к потребителю. За счёт прохождения тока и наличия магнитопровода во вторичной обмотке возникает тоже ток но уже меньшей величины, который уже можно измерять с помощью обычных измерительных приборов, или же счётчиков. При расчете израсходованной электроэнергии нужно учитывать коэффициент, определяющий окончательную величину затрат. Фазный ток, протекающий по линии, будет в разы больше чем ток вторичной обмотки, и зависит он от коэффициента трансформации.

Таким образом, данная манипуляция и установленный трансформатор тока обеспечивает не только возможность измерять большие тока, но и способствуют безопасности проведения таких измерений.

Интересным является тот факт что все ТТ выдают при определённом номинале, на который он рассчитан в первичной обмотке, всего лишь 5 Ампер во вторичной. Например, если номинальный ток первичной обмотки будет 100А, то во вторичной будет 5 А. Если оборудование более мощное и выбирается измерительный трансформатор 500А, то всё равно коэффициент трансформации выбран таким образом, что во вторичной обмотке будет опять-таки 5 Ампер. Поэтому выбор счётчика здесь очевиден и несложен, главное, чтоб он был рассчитан на 5 Ампер. Вся ответственность лежит на выборе именно измерительного трансформатора. Ещё один важный фактор работы такой цепочки это частота переменного напряжения, она должна быть строго 50 Гц. Это стандартная величина частоты, которая чётко контролируется компанией поставщиком электроэнергии и её отклонение недопустимо для работы любого, применяемого в странах постсоветского пространства стандартного электрооборудования. По всей плане эта частота регламентируется другими величинами.

Одной из важных особенностей ТТ является также невозможность работы его без нагрузки, а когда это необходимо какими-либо мероприятиями, то стоит закоротить концы вторичной обмотки, чтобы не было пробоя.

Схема подключения к трёхфазной цепи

Существует несколько схем предназначенных для подключения счетчика через трансформаторы тока, вот самая распространённая из них

Как видно, измерительный трансформатор имеет клеммы, которые обозначены Л1 и Л2. Л1 обязательно подключается к источнику электроэнергии, а Л2 к нагрузке. Перепутывать их и переставлять местами нельзя.

А также имеются и клеммы идущие непосредственные на подключение непосредственно к счётчику, они обозначены как И1 и И2. Для цепей измерительного трансформатора рекомендуется использовать провода с сечением не меньше 2,5 мм2. Желательно иметь и выполнять монтаж соответствующего цвета проводами, для упрощения их коммутации. Стандартная раскраска жил и токоведущих шин:

  • Жёлтый — это фаза А;
  • Зелёный — В;
  • Красный — С;
  • Синий проводник или чёрный обозначает земляной или нулевой провод.

При монтаже лучше использовать клеммные коробки для соединения, чтобы было легче в случае неисправности производить диагностику или замену какого-либо узла или элемента. Это связано с тем что сами счётчики пломбируются.

Схема подключения соединенных ТТ звездой также применяется в электроустановках, как видно вторичная обмотка подлежит заземлению. Это делается для того, чтобы обезопасить, и устройства учета, и персонал обслуживающий их от возможного появления, в результате пробоя во вторичных цепях, высокого напряжения.

Недостатки такого подключения

  1. Ни в коем случае в трёхфазной цепи нельзя использовать трансформаторы с разными коэффициентами трансформации, подключаемые к одному и тому же счётчику.
  2. Существенный недостаток, который был замечен при применении устаревших индукционных электросчётчиков. При низких показателях тока в первичной цепи его вращающийся механизм может оставаться без движения, а значить не учитывать электроэнергию. Такой эффект получается из-за того, что сам индукционный прибор имеет значительное потребление и возникающий в его цепи ток уходил в его электромагнитный поток. С цифровыми современными приборами учёта такая ситуация невозможна.

Как подключить через ТТ счётчик в однофазной цепи

Очень редко появляется необходимость подключать счетчик через трансформаторы тока в однофазных сетях, так как токи в них не достигают больших величин. Но всё же если такая необходимость есть нужно воспользоваться схемой, приведённой ниже.

На рисунке «а» изображено обычное прямое подключение счётчика, на рисунке «б» через измерительный ТТ. Катушки напряжения в этих схемах подключены идентично, а вот токовые цепи подключаются через трансформатор тока. В таком случае производится гальваническая развязка, за счёт которой и возможно данное подключение.

В любом случае измерение затраченной электроэнергии необходимо, так как только так можно законно покупать этот вид продукции.

Схемы подключения счетчика через трансформаторы тока | Энергофиксик

Мы все знакомы с прямым подключением приборов учета. Ведь все однофазные и множество трехфазных счетчиков в частном секторе именно так и подключены. Но в случае того, если потребление электроэнергии превышает показатель в 100 Ампер, то прямое включение не подойдет. В таких случаях прибор учета подсоединяется через трансформаторы тока.

В данном материале я покажу наиболее распространенные схемы подключения счетчиков электроэнергии через трансформаторы тока и трансформаторы напряжения.

Схема подключения трехфазного электрического счетчика через три ТТ (трансформатор тока) и три ТН (трансформатор напряжения).

Под обозначением ТН1-ТН3 подразумеваются трансформаторы напряжения, а соответственно ТТ1-ТТ3 — это трансформаторы тока. Также посмотрите на пунктирное обозначение: так показана общая точка заземления трансформаторов, которая выполняется с целью обеспечения безопасности, но она может также и отсутствовать.

Схема присоединения трехфазного счетчика через три ТТ

На этой схеме также пунктиром обозначено соединение, которое может и не быть.

Схема соединения счетчика с применением двух трансформаторов тока

Схема присоединения счетчика через парочку трансформаторов тока и тройку трансформаторов напряжения

Схема присоединения прибора учета через два ТТ и два ТН

Схемы взяты с сайта zametkielectrika. ru

Выводы

Выше были приведены самые распространенные схемы присоединения приборов учета. Но хочу так же напомнить, что у подавляющего числа приборов учета (непосредственно на крышке или же в паспорте) присутствует схема подключения.

Еще важно учесть, что токовые цепи монтируются медными проводами с минимальным сечением в 2,5 квадрата, а цепи напряжения допустимо выполнять проводами сечением 1,5 квадрата. Причем использовать алюминий категорически запрещено.

Если статья оказалась вам полезна, то ставьте палец вверх.

Спасибо за внимание!

Схема подключения счетчика Меркурий 230 через трансформаторы тока

На чтение 6 мин. Просмотров 88 Опубликовано Обновлено

Для учета электроэнергии в трехфазных цепях применяются счетчики особой конструкции, регистрирующие ее расход по каждой из фаз. Особенности рабочих режимов в силовых линиях вынуждают применять для снятия показаний специальные преобразователи – трансформаторы тока (ТТ). Прямое подключение трехфазного счетчика Меркурий, например, в такую цепь допускается лишь при одном условии. Наличие ограничений объясняется тем, что протекающие в контролируемой линии токи не должны превышать предельного значения в 60 Ампер.

Преимущества установки и эксплуатации изделия Меркурий 230

Трансформатор тока Меркурий 230

Электросчетчики рассматриваемого класса представляют собой приборы учета, с помощью которых удается замерять расходуемую в трехфазных цепях энергию. К преимуществам этого типа электронных устройств относят:

  • возможность учета электроэнергии по различным тарифам;
  • допустимость эксплуатации в трехфазных сетях, включение в которые осуществляется напрямую или через трансформаторы тока;
  • возможность работы в индивидуальном режиме или в составе диспетчерского оборудования;
  • расширенный функционал, обеспечиваемый особенностями включения в общую энергосистему.

Приборы успешно эксплуатируются не только на промышленных предприятиях и других производственных объектах, но и в частных домах, где три питающих фазы используются довольно часто.

Потребность в питании 380 Вольт объясняется применением силового оборудования, в состав которого входят электродвигатели. Они успешно работают только при наличии трех фазных напряжений и применяются в скважных насосах, станках и других образцах техники, используемой в личных целях.

Характеристики электросчетчика

К эксплуатационным показателям прибора Меркурий 230, полностью характеризующим его в качестве устройства учета, относят следующие возможности:

  • Отображение на дисплее данных по потребленной электроэнергии для любого из предусмотренных режимов работы: ночного, дневного, льготного и т. п.
  • Учет энергопотребления по одному из 4-х тарифных режимов с 16-ю зонами перекрытия по времени.
  • Подсчет и регистрация токовых и частотных параметров.
  • Контроль потребления через интерфейс (с центрального диспетчерского пункта).
  • Сохранение в памяти устройства до 10-ти важнейших событий, а также моментов пропадания отдельных фаз, превышения ими допустимых значений, дат вскрытия и изменений тарифного режима.

В счетчике также предусмотрен особый вид защиты, исключающий возможность несанкционированного проникновения при попытках хищения электроэнергии. В этих приборах снятие показаний ведется по алгоритму «с нарастающим итогом», не зависящим от мгновенного направления тока.

Зачем нужны ТТ

Подключение трехфазных счетчиков через трансформаторы тока Меркурий дает возможность расширить диапазон измеряемых параметров до нескольких сотен Ампер. Достичь этого удается за счет применения преобразующих устройств с фиксированным коэффициентом трансформации (чаще всего он равен 20-ти). Поскольку счетчики типа Меркурий рассчитаны на токи не более 60-ти Ампер – использование трансформатора позволяет снимать показания при их значениях в питающих цепях, достигающих многих сотен Ампер.

У других моделей ТТ коэффициент трансформации имеет «свои» значения (5, 30, 40 и т. д.).

Выбор конкретного образца преобразователя зависит от расчетного уровня токовой нагрузки в потребительской сети. Если значение тока не превышает 60-ти Ампер, что случается крайне редко, допускается прямое подсоединение счетчика в контролируемую цепь.

Схемы подключения

Схема полукосвенного подключения

Схема подключения счетчика через трансформаторы тока Меркурий 230 предусматривает несколько способов его включения, отличающихся коммутацией линейных проводников: полукосвенное подключение; прямое включение; косвенный способ.

Полукосвенное включение

Полукосвенным называется вид подсоединения, при котором для снятия показаний применяется только один преобразователь – трансформатор тока, изготавливаемый в виде отдельного модуля. Это прибор позволяет понизить значение токовой составляющей, непосредственно воздействующей на исполнительный узел электросчетчика. С его помощью удается расширить диапазон мощностей, подлежащих учету в действующих электрических сетях. Кроме того, их применение гарантирует нормальное функционирование подключенного к ним оборудования.

Прямое подключение

В простейшей схеме подключения счетчиков Меркурий 230 используется принцип прямого подсоединения его рабочих обмоток в разрыв фазных питающих проводов. Подключать таким способом электрические счетчики допускается лишь при условии, что ток, протекающий в контролируемых цепях, не превышает значения 60-ти Ампер. Это ограничение касается каждой из фаз, подлежащих обязательному учету.

Используется этот способ крайне редко, поскольку при трехфазном питании пусковые токи в электродвигателях, например, достигают нередко сотен Ампер.

Косвенное включение

Косвенное подключение посредством 10 проводящих жил

При косвенном соединении электрический счетчик включается в контролируемую цепь по нескольким схемам, разработанным специально для данного способа. Одна из них – подсоединение посредством десяти отдельных проводящих жил. С ее помощью удается реализовать раздельный учет тока и напряжения, что повышает эффективность и безопасность работы прибора во всех режимах. Недостатком этого способа считается большое количество коммутационных элементов, снижающих надежность выполнения счетчиком своих функций.

К данной категории относится схема, позволяющая подключить счетчик к трехфазной трехпроводной сети посредством 2-х трансформаторов тока и 2-х преобразователей напряжения. При ее применении удается несколько сократить число необходимых коммутаций и повысить надежность и безопасность эксплуатации учетного оборудования.

Нюансы подключения счетчика через ТТ

При самом распространенном (полукосвенном) методе цепочки снятия показаний напряжения включаются напрямую, а токовые – через ТТ. В указанной ситуации важно научиться различать следующие способы коммутации:

  • Десятипроводная схема.
  • Семипроводный ее аналог.
  • Схема с совмещенными цепями.

В первом случае к распределительной коробке счетчика подводятся три провода от каждой из фазных линий плюс нейтраль и по две жилы от 3-х ТТ. К достоинствам этого подхода относят необязательность отключения питающей линии при необходимости замены электросчетчика или при проведении ремонтных работ. Кроме того, при этом способе коммутации повышается надежность его функционирования и безопасность эксплуатации. Недостаток этого метода – больше количество соединительных проводов.

При применении семипроводной схемы три ответных конца трансформаторов тока объединяются и соединяются с «землей» (10-3=7). Одновременно с удобством ремонта электрооборудования в данном случае уменьшается число коммутируемых проводов. Это упрощает монтаж и ремонт электрооборудования и заметно снижает риски при его эксплуатации в нормальных режимах. Подключить электрический счетчик можно и по совмещенной схеме, когда цепи напряжения объединяют с токовыми отводами за счет установки перемычек в соответствующих точках трансформаторов. Обычно они устраиваются между отводами И1 трансформаторов тока и соответствующей фазной линией. Число соединительных проводников в этом случае остается тем же – семь жил.

При выборе подходящего варианта подключения электросчетчика Меркурий 230 в первую очередь исходят из соображений безопасности. Лишь после выполнения этого требования рассматриваются вопросы экономичности и удобства обслуживания или ремонта.

Подключение трехфазного счетчика через трансформаторы тока

Каждый потребитель электроэнергии обязан иметь учетное устройство, позволяющее контролировать расход потребляемого электричества. Электрические счетчики отличаются по внешнему виду, способу подсоединения и имеют различную нагрузку. Трехфазные устройства подключаются посредством трансформаторов тока, преобразовывающих ток до оптимальных значений, при которых устройство может нормально работать.

Подключение через измерительные трансформаторы

В электроцепях напряжением 380 В, применяется схема подключения трехфазного счетчика через ТТ — трансформаторы тока, позволяющая выполнять замеры при помощи учетных приборов, необходимых для потребляемой мощности менее 60 кВт и силой тока в 100 А.

Основа работы схемы заключается в преобразовании электротока, проходящего по первичной катушке в ток меньшего напряжения при подходе ко вторичной обмотке. Это происходит благодаря электромагнитной индукции, равномерно распределяющей энергию в обмотках электрического измерителя.

Учитывая, что преобразованное напряжение внутри ТТ, меньше входящего, то показатели устройства умножаются на коэффициент разницы преобразования, а при выходе на цифровой панели указываются цифры окончательного результата начального напряжения. Таким образом, учетные трансформаторы нужны для стабилизации электрической нагрузки в целях безопасности и точности измерений. Они рассчитываются на номинальную силу тока в 5 А и оптимальную частоту 50 Гц.

Такие измерительные устройства, запланированные на силу тока 100 А, имеют коэффициент преобразования 100/5, следовательно, начальное значение преображается в 20 раз. Подобные схемы подключения счетчиков через трансформаторы тока является отличным экономическим решением, позволяющим отказаться от потребности установки более дорогих и мощных моделей. Она предохраняет прибор от перегрузки и короткого замыкания, а вышедший из строя ТТ заменить значительно легче и дешевле, чем устанавливать новый.

>Однако такие измерители имеют некоторые недостатки. При незначительном энергопотреблении ток может упасть до минимума, который спровоцирует остановку устройства. Такое часто случается со старыми моделями, которые имеют повышенное потребление электроэнергии. В современных устройствах учтен этот фактор и сведен к минимуму.

Кроме этого, индукционные измерители требуют соблюдение полярности. Входящие контакты первичной обмотки маркируются как Л1 и Л2. А контакты измерительной катушки обозначены литерами И1 — вход и выход — И2. Вторичные контакты подключаются при помощи жил сечением не меньше 2,5 кв. мм. Согласно ПУЭ, все контакты счетчиков должны осуществляться в соответствии с маркировками выходов с проводами. Иногда вторичные цепи ТТ подключаются через специальный блок, который затем пломбируется. Благодаря этому, замену устройства можно произвести без отключения от сети и снятие напряжения для использования потребителем.

Схематичность соединения счетчиков с ТТ имеет несколько вариантов, которые могут использоваться при подключении. И на сегодняшний день все зависит от того, как подключается трехфазный счетчик, учитывая множество дополнительных устройств, которые монтируются в цепь (преобразователи, автоматы и т. п.). При электромонтажных работах, касающихся монтажа и обслуживания учетных приборов необходимо соблюдать технику безопасности и правила установки электроприборов.

Запрещается подключать к трехфазному счетчику различные измерительные приборы, если они не предусмотрены для этого. Также нельзя подключать ТТ в одном приборе с разным коэффициентом трансформации.

Схемы подключения счетчика через трансформаторы тока

Схематичность соединения датчиков с ТТ имеет несколько вариантов, которые могут использоваться при подключении.

Подключение счетчиков через трансформатор подразделяется на несколько групп:

  • косвенное;
  • полукосвенное;
  • звезда.

Полукосвенное

Полукосвенным подключением пользуются многие крупные производства и предприятия, питающиеся от электросети мощностью свыше 0,4 кВт при силе тока более 100 А.

Подсоединениетрехфазных измерителей с использованием ТТ, может выполняться тремя способами:

  1. Семипроводная схема подключения трехфазного счетчика применяется реже других. Это обуславливается тем, что все электроцепи и соединения пребывают под нагрузкой, что снижаетбезопасность обслуживания.
  2. Более безопасным способом подключения является десятипроводная схема. Здесь отсутствует гальваническая связь электроцепей с прибором учета.
  3. Самым распространенным подсоединением счетчиков через тт, является схема, с включением клеммной испытательной коробки икк. Этот метод позволяет осуществлять ремонт и обслуживание прибора, без обесточивания цепи.

Звезда

В некоторых случаях, когда подключаются три трансформатора с изолированной нейтралью применяют схему звезды. Три фазы подсоединяют на клемму Л1 к каждому ТТ. От Л1 первого ТТ подключается 2-й контакт счетчика, от Л1 второго ТТ — 5-й контакт и клемма третьего трансформатора к 8-му контакту прибора. Л2 каждого ТТ подсоединяют к нагрузке.

Контакт счетчика, маркированный единицей, присоединяют ко вторичной обмотке И1 первого ТТ. Зажим 4 — к И1 ТТ2, а седьмая клемма к И1 ТТ3. Контакты 3, 6, 9, 10 подкидывают на клемму 11.

Косвенное

Метод косвенного включения применяют в тех случаях, когда электросчетчик подсоединяется посредством ТТ и трансформатора напряжения ТН. Подобные схемы чаще всего применяют на производстве, где требуются источники высокого напряжения. В зависимости от того, как подключать электросеть используя трехфазный измеритель, может понадобится дополнительные трансформаторные подстанции.

Такие устройства имеют от 10 до 11 клемм. Таким образом клеммы 1, 3, 4, 6, 7 и 9 применяют для контакта с ТТ, а клеммы 2, 5 и 8 подключают к трансформаторам напряжения. Иногда данную схему применяют при полукосвенном подключении или напрямую.

Выбор трансформатора

При выборе трансформатора необходимо руководствоваться ПУЭ. В пункте 1.5.17 указаны оптимальные значения, которые требуются для подсоединения и бесперебойного функционирования прибора. Потребление вторичной катушки ТТ не должно быть менее 40% от номинального при предельной нагрузке и менее 5% при минимальной. Кроме этого, нужно учитывать последовательность подсоединения силовых жил. Для этого обычно применяют специальный прибор — фазометр. При этом нужно обращать внимание на нормативные показатели напряжения и силы тока. Если нет возможности установить трехфазный электросчетчик, то можно вместо него использовать три однофазных устройства, но к ним нужны будут индивидуальные преобразователи.

Устройства прямого или непосредственного включения

Схема подсоединения приборов прямого соединения аналогична монтажу однофазного электросчетчика. Ее можно найти в соответствующей документации, прилагаемой к прибору, либо на внутренней стороне крышки. Подключение этого типа основано на соблюдении порядка соединения проводов по маркировке и цветам. Нечетные провода подключаются к нулевой жиле, а четные к фазе.

Последовательность присоединения считается слева направо по следующей схеме:

  • 1ж — вход;
  • А2 ж — выход;
  • А3 з — вход;
  • В4 з — вход;
  • В5 к — вход;
  • С6 к — выход;
  • С7 с — ноль;
  • ввод 8 с — ноль, выход.

Включение в однофазную цепь

Фазный провод цепи выступает в роли начальной обвивки в однофазных трансформаторах, где оптимальные показатели силы тока приближаются к 100 А или более. Вторичная катушка пропускает ток не более 5 А. Монтаж электросчетчика производится методом разрыва основного силового кабеля. При этом запрещается подсоединять перед установленным устройством какие-либо коммуникации для потребительских нужд.

В цепи однофазного электросчетчика монтируются два автомата: один предназначается для снятия электротока при смене устройства, а другой непосредственно для отключения внутренней проводки потребителя для замены разводки или ремонта неполадок в цепи. Схему установки электрического счетчика можно найти на обратной панели самого прибора.

При монтаже прибора каждая фаза и нейтраль подсоединяется по следующей схеме: клемма 1 соединяется с силовым выходом, вторая — к отводящей силовой клемме, 3-й зажим к нулевой жиле, а клемма 4 — к отводящей нейтрали.

В заключении можно сказать, что при монтаже электрических учетных измерителей необходимо учитывать все факторы, влияющие на работу. Их можно устанавливать независимо от технических характеристик. Это обуславливается возможность подключения ТТ и других элементов, стабилизирующих их работу.

Самые распространенные схемы включения однофазных и трехфазных электросчетчиков

В этой статье мы рассмотрим основные схемы включения однофазных и трёхфазных электросчётчиков. Сразу хочу отметить, что схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.

Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.

Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.

При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).

Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.

Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении. Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.

Основные схемы включения однофазных счетчиков

На рисунке 1 изображены принципиальные схемы включения однофазного счетчика активной энергии. Первая схема (а) – непосредственного включения – является наиболее распространенной. Иногда, однофазный электросчётчик включают и полукосвенно – с использованием трансформатора тока (б).

Рисунок 1. Схемы включения однофазного счетчика активной энергии: а — при непосредственном включении; б — при полукосвенном включении. Далее рассмотрим схемы включения трёхфазных электросчётчиков.

Самыми распространёнными являются схемы непосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть:

Рисунок 2. Схема непосредственного включения трёхфазного счетчика активной энергии

Рисунок 3. Схема полукосвенного включения трёхфазного счетчика активной энергии.

При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.

Основные схемы включения трёхфазных электросчётчиков

Кроме полукосвенной схемы, часто применяется и схема косвенного включения трёхфазных электросчётчиков. При этой схеме используют не только трансформаторы тока, но и трансформаторы напряжения.

На рисунке 4 показана схема включения с тремя однофазными трансформаторами напряжения в трёхпроводную сеть, первичные и вторичные обмотки которых соединены в звезду. При этом общая точка вторичных обмоток в целях безопасности заземляется. Это же относится и к вторичным обмоткам трансформаторов тока.

Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т.к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.

Рисунок 4. Схема косвенного включения трёхфазного счетчика активной энергии в трёхпроводную сеть

Помимо трёхэлементных трёхфазных электросчётчиков, используют и двухэлементные. Принципиальные схемы включения трехфазного двухэлементного счетчика активной энергии типа САЗ (САЗУ) приведены на рисунке 5.

Здесь особо отметим, что к зажиму с цифрой 2 обязательно подключается средняя фаза, т.е. та фаза, ток которой к счетчику не подводится. При включении счетчика с трансформаторами напряжения зажим этой фазы заземляется.

На схеме заземлены зажимы со стороны источника питания (т.е. зажимы И1 трансформаторов тока), но можно было бы заземлять зажимы и со стороны нагрузки.

Счетчики типа САЗ применяются главным образом с измерительными трансформаторами (НТМИ), и поэтому приведенная схема является основной при учете активной энергии в электрических сетях 6 кВ и выше.

Рисунок 5. Схема полукосвенного включения трёхфазного двухэлементного счетчика активной энергии в трёхпроводную сеть

Необходимо отметить один момент, который я упустил раньше. Рабочее напряжение индукционных электросчётчиков, включаемых по схеме непосредственного и полукосвенного включения, равно 220/380 В. В схемах косвенного включения, т. е. с трансформаторами напряжения, применяют электросчётчики на рабочее напряжение 100 В. Некоторые электронные электросчётчики имеют диапазон входного напряжения 100-400 В, что теоретически позволяет использовать их в схемах с любым типом включения.

При монтаже учётов электроэнергии по схеме полукосвенного или косвенного включения, очень большое значение имеет правильное чередование фаз. Для определения чередования фаз применяют различные приборы, например Е-117 «Фаза-Н».

Схемы включения счетчиков реактивной энергии

Довольно часто, вместе с индукционными электросчётчиками активной энергии, применяют электросчётчики реактивной энергии.

На рисунке 6 приведены схемы полукосвснного включения счетчиков в четырехпроводную сеть (380/220 В). Эта схема требует для монтажа меньшего количества провода или контрольного кабеля. При ее сборке значительно уменьшается риск неправильного включения счетчиков, так как исключается несовпадение фаз (А, В, С) тока и напряжения.

Проверить правильность схемы можно упрощенными способами без снятия векторной диаграммы. Для этого достаточным является измерение фазных напряжений, определение порядка следования фаз и проверка правильности включения токовых цепей с помощью поочередного вывода двух элементов счетчиков из работы и фиксацией при этом правильного вращения диска.

Рисунок 6. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с совмещенными цепями тока и напряжения.

Недостаток схемы заключается в том, что проверка правильности включения токовых цепей вызывает необходимость трижды отключать потребителей и принимать особые меры по технике безопасности при производстве работ, так как вторичные цепи трансформаторов тока находятся под потенциалами фаз первичной сети.

Другим серьезным недостатком рассматриваемой схемы является то, что необходимо зануление или заземления вторичных обмоток измерительных трансформаторов.

В отличие от предыдущей схема на рисунке 7 имеет раздельные цепи тока и напряжения, поэтому она позволяет производить проверку правильности включения счетчиков и их замену без отключения потребителей, так как в этой схеме цепи напряжения могут быть отсоединены. Кроме этого, в ней соблюдены требования ПУЭ к занулению и заземлению вторичных обмоток трансформаторов тока.

Рисунок 7. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с раздельными цепями тока и напряжения.

И в заключение рассмотрим схему косвенного включения двухэлементных электросчётчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. Принципиальная схема данного включения приведена на рисунке 8.

Рисунок 8. Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ.

В данной схеме в качестве счетчика реактивной энергии принят двухэлементный электросчетчик с разделенными последовательными обмотками. Так как в средней фазе сети отсутствует трансформатор тока, то вместо тока Ib к соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная — Id.

На рисунке была показана схема включения с использованием трехфазного трансформатора напряжения типа НТМИ. На практике может применяться трехфазный трансформатор напряжения и с заземлением вторичной обмотки фазы В. Вместо трехфазного трансформатора напряжения также могут применяться два однофазных трансформатора напряжения, включенных по схеме открытого треугольника.

Как правило, схема включения счетчика обычно нанесена на крышке клеммной коробки. Однако, в условиях эксплуатации, крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.

Монтаж цепей напряжения электросчётчика полукосвенного и косвенного включения должен выполняться в соответствии с ПУЭ — медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.

При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.

На этом обзор схем включения электросчётчиков будем считать оконченным. Разумеется, нами были рассмотрены далеко не все существующие схемы, а только те, которые наиболее часто используются на практике.

Электрик.Инфо

Схемы подключения приборов учета

Подключение электросчетчика происходит по типовой схеме через контакты в клеммной колодке.

Схема подключения однофазного электросчетчика


На схеме показано подключение электросчетчика через вводной двухполюсной автомат.  После электросчетчика питание осуществляется через защитный однополюсной автомат.

Схемы включения индукционных и электронных электросчётчиков

Схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.



Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.

           Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.

           При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).

           Самыми распространёнными схемами включения трёхфазных электросчётчиков являются схемынепосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть.

Схема непосредственного включения трёхфазного счетчика активной энергии



Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т. к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.

При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.

Схема полукосвенного включения трёхфазного счетчика активной энергии


Монтаж цепей напряжения электросчётчика полукосвенного включения должен выполняться в соответствии с ПУЭ — медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.

При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.

В данном разделе приведены типовые схемы включения счетчиков электрической энергии, однако в каждом конкретном случае необходимо руководствоваться схемой подключения указанной заводом изготовителем на клеммной крышке данного счетчика или в его паспорте.

Отправить отзыв и предложения

послать Закрывать

Спасибо за отзыв!

В нашу команду было отправлено письмо с вашим отзывом.

Произошла ошибка при обработке вашей информации.

Приносим извинения за неудобства и уведомили члена команды.

Закрывать

Rep Наши продукты

Вы заинтересованы в представлении CaptiveAire и продаже нашей продукции?
Заполните следующую форму, и мы свяжемся с вами в ближайшее время.

0/500

Какое у вас образование?

0/500

Какие территории продаж вас интересуют?

0/500

Какие продуктовые линейки вас интересуют?

0/1000

Есть ли у вас другие комментарии?

послать Закрывать

Мы везде искали, но не нашли эту страницу.

Может быть, его поразил один из наших высокоэффективных вытяжных вентиляторов.

Возможно, вы хотите перейти на главную страницу?

Как подключить трансформаторы тока?

Как подключить трансформаторы тока?

Первичная обмотка трансформатора тока обычно имеет только один виток. На самом деле это не виток или виток вокруг сердечника, а просто проводник или шина, проходящие через «окно». У первичной обмотки никогда не бывает больше нескольких витков, в то время как вторичная обмотка может иметь очень много витков, в зависимости от того, насколько ток должен быть понижен.В большинстве случаев первичная обмотка трансформатора тока представляет собой одинарный провод или шину , а вторичная обмотка намотана на многослойный магнитопровод, размещенный вокруг проводника, в котором необходимо измерить ток, как показано на рисунке 1.

Если первичный ток существует и вторичная цепь ТТ замкнута, обмотка создает и поддерживает противоЭДС или обратную ЭДС относительно первичной силы намагничивания.

Если вторичная обмотка размыкается током первичной обмотки, счетчик ЭДС снимается; а сила намагничивания первичной обмотки создает во вторичной обмотке чрезвычайно высокое напряжение, которое опасно для персонала и может вывести из строя трансформатор тока.

Рисунок 1 — Трансформатор тока ВНИМАНИЕ:
По этой причине вторичная обмотка трансформатора тока всегда должна быть закорочена перед извлечением реле из его корпуса или удалением любого другого устройства, с которым работает ТТ. Это защищает ТТ от перенапряжения .

Трансформаторы тока используются с амперметрами, ваттметрами, измерителями коэффициента мощности, ватт-часами, компенсаторами, защитными и регулирующими реле и катушками отключения автоматических выключателей. Один трансформатор тока можно использовать для управления несколькими приборами, при условии, что совокупные нагрузки приборов не превышают тех, на которые рассчитан трансформатор тока.

Вторичные обмотки обычно рассчитаны на 5 ампер. На рисунке 2 показаны различные трансформаторы тока. Часто трансформаторы тока имеют несколько ответвлений на вторичной обмотке для регулировки диапазона тока, который можно измерить на первичной обмотке.

Рисунок 2 — Фотография трансформаторов тока

Соответствующее содержимое EEP с рекламными ссылками

Измерительные трансформаторы



ЦЕЛИ

• объяснить работу измерительного трансформатора напряжения.

• объяснить работу измерительного трансформатора тока.

• схема соединений трансформатора напряжения и трансформатора тока в однофазной цепи.

• указать, как следующие величины определяются для однофазной цепи содержащие измерительные трансформаторы: первичный ток, первичное напряжение, первичное мощность, полная мощность и коэффициент мощности.

• описать подключение измерительных трансформаторов в трехфазной, трехпроводной схема.

• описать подключение измерительных трансформаторов к трехфазной четырехпроводной система.

Измерительные трансформаторы используются для измерения и контроля переменного тока. токовые цепи. Прямое измерение высокого напряжения или сильных токов включает большие и дорогие приборы, реле и другие схемные компоненты много дизайнов. Однако использование измерительных трансформаторов позволяет использовать относительно небольшие и недорогие приборы и устройства управления стандартизированные конструкции.Измерительные трансформаторы также защищают оператора, измерительные приборы и контрольное оборудование от опасностей высоких Напряжение. Использование измерительных трансформаторов повышает безопасность, точность и удобство.

Существует два различных класса инструментальных трансформаторов: инструментальные трансформаторы. трансформатор напряжения и измерительный трансформатор тока. (Слово «инструмент» обычно опускается для краткости.)

ПОТЕНЦИАЛЬНЫЕ ТРАНСФОРМАТОРЫ

Трансформатор напряжения работает по тому же принципу, что и питание или распределение. трансформатор.Основное отличие состоит в том, что мощность трансформатора напряжения мала по сравнению с силовыми трансформаторами. Потенциальные трансформаторы имеют номиналы от 100 до 500 вольт-ампер (ВА). Сторона низкого напряжения обычно намотка на 115 вольт или 120 вольт. Нагрузка на стороне низкого напряжения обычно состоит из потенциальных катушек различных инструментов, но может также включать потенциальные катушки реле и другого контрольного оборудования. В целом нагрузка относительно небольшая и нет необходимости в трансформаторах напряжения емкостью от 100 до 500 вольт-ампер.

Первичная обмотка высокого напряжения трансформатора напряжения имеет то же номинальное напряжение первичной цепи. Когда необходимо измерить напряжение однофазной линии на 4600 вольт, первичная обмотка потенциала трансформатор будет рассчитан на 4600 вольт, а низковольтная вторичная быть рассчитанным на 115 вольт. Соотношение первичной и вторичной обмоток это:

4,600/115 или 40/1

Вольтметр, подключенный к вторичной обмотке трансформатора напряжения. указывает значение 115 вольт.Для определения фактического напряжения на высоковольтной цепи, показание прибора 115 вольт необходимо умножить на 40. (115 х 40 = 4600 вольт). В большинстве случаев вольтметр откалиброван для индикации фактическое значение напряжения на первичной стороне. В результате оператор не требуется применять множитель к показаниям прибора, а возможность ошибок снижена.

ил 22-1 иллюстрирует соединения трансформатора напряжения с первичный вход 4600 вольт и выход 115 вольт для вольтметра.Этот потенциал трансформатор имеет вычитающую полярность. (Все измерительные трансформаторы напряжения теперь производятся, имеют вычитающую полярность.) Один из вторичных выводов трансформатор, показанный на рисунке 22-1, заземлен, чтобы исключить опасность высокого напряжения.

Трансформаторы потенциала имеют высокоточное соотношение между значениями первичного и вторичного напряжения; как правило, ошибка составляет менее 0,5 процента. Мощность трансформаторы не предназначены для высокоточного преобразования напряжения.


ил. 22-1 Подключение трансформатора напряжения

ТРАНСФОРМАТОР ТОКА

Трансформаторы тока используются так, чтобы амперметры и катушки тока другие приборы и реле не нужно подключать напрямую к сильноточным линий. Другими словами, эти приборы и реле изолированы от высоких токи. Трансформаторы тока также понижают ток до известного коэффициента. Использование трансформаторов тока означает, что относительно небольшие и точные могут использоваться приборы, реле и устройства управления стандартизованной конструкции. в схемах.

Трансформатор тока имеет отдельные первичную и вторичную обмотки. В первичная обмотка, которая может состоять из нескольких витков толстого провода, намотанного на многослойный железный сердечник последовательно соединен с одним из линейных проводов. Вторичная обмотка состоит из большего количества витков меньшего размер проволоки. Первичная и вторичная обмотки намотаны на один сердечник.

Номинальный ток первичной обмотки трансформатора тока определяется. по максимальному значению тока нагрузки.Вторичная обмотка рассчитана на на 5 ампер независимо от номинального тока первичных обмоток.

Например, предположим, что номинальный ток первичной обмотки трансформатор тока 100 ампер. Первичная обмотка имеет три витка, а вторичная обмотка — 60 витков. Вторичная обмотка имеет стандартную текущий рейтинг 5 ампер; следовательно, соотношение между первичным и вторичным токами составляет 100/5 или 20 к 1. Первичный ток в 20 раз больше. чем вторичный ток.Так как вторичная обмотка имеет 60 витков, а первичная — 3 витка, вторичная обмотка имеет в 20 раз больше витков. витки как первичная обмотка. Для трансформатора тока тогда отношение первичного и вторичного токов обратно пропорционально отношению первичные и вторичные витки.

В fgr22-2 трансформатор тока используется для понижения тока в Однофазная цепь на 4600 вольт. Трансформатор тока рассчитан на 100 до 5 ампер, а коэффициент понижения тока составляет 20 к 1.Другими словами, в первичной обмотке 20 ампер на каждый ампер вторичной обмотка. Если амперметр на вторичной обмотке показывает 4 ампера, фактическое значение ток в первичной обмотке в 20 раз превышает это значение или 80 ампер.

Трансформатор тока на рисунке 22-2 имеет маркировку полярности в том смысле, что два высоковольтных первичных вывода имеют маркировку h2 и h3, а вторичные выводы помечены как X1 и X2. Когда h2 мгновенно положительно, X1 положительно в тот же момент.Некоторые производители трансформаторов тока маркируют только h2 и X1 или используйте метки полярности. При подключении трансформаторов тока в схемах вывод h2 подключается к проводу питания от источника, в то время как провод h3 подключен к линейному проводу, питающему нагрузку.


ил. 22-2 А трансформатор тока, используемый с амперметром

Вторичные провода подключаются непосредственно к амперметру. Обратите внимание, что один проводов вторичной обмотки заземлено в качестве меры предосторожности для устранения высокого напряжения опасности.

Осторожно: Вторичная цепь трансформатора никогда не должна открываться, когда в первичной обмотке есть ток. Если вторичная цепь разомкнута когда есть ток в первичной обмотке, то весь первичный ток ток возбуждения, который вызывает высокое напряжение во вторичной обмотке. Это напряжение может быть достаточно высоким, чтобы подвергнуть опасности жизнь человека.

Лица, работающие с трансформаторами тока, должны проверить, что вторичная цепь обмотки замкнута.Иногда может потребоваться отключить вторичная цепь прибора при наличии тока в первичной обмотке. Например, измерительная цепь может потребовать повторного подключения или другого ремонта. быть нужным. Для защиты рабочего подключается небольшой короткозамыкающий выключатель. в цепь на вторичных выводах трансформатора тока. Этот переключатель замкнут, когда цепь прибора должна быть отключена на ремонт или переналадка.

Трансформаторы тока имеют очень точное соотношение между первичной и вторичной обмотками. текущие значения: погрешность большинства современных трансформаторов тока меньше 0.5 процентов.

Когда первичная обмотка имеет большой номинальный ток, она может состоять из прямой проводник, проходящий через центр полого металлического сердечника. В вторичная обмотка намотана на сердечник. Эта сборка называется стержневой. трансформатор тока. Название происходит от конструкции первичного который на самом деле представляет собой прямую медную шину. Все стандартные трансформаторы тока с номиналом 1000 ампер и более являются трансформаторами стержневого типа. Некоторые текущие трансформаторы с более низкими номиналами также могут быть стержневыми.больной 22-3 показан трансформатор тока стержневого типа.

ill 22-4 показывает клещевой амперметр, который использует концепцию оконного типа. трансформатор тока. Открыв зажим, а затем закрыв его вокруг токопроводящий провод, ток в проводе измеряется на метр.


ил. Трансформатор тока 22-3 бар.

ил. 22-4 Зажимные амперметры / мультиметры.

ИНСТРУМЕНТНЫЕ ТРАНСФОРМАТОРЫ В ОДНОФАЗНОЙ ЦЕПИ


ил.22-5 Однофазные измерительные соединения

илл 22-5 показывает нагрузку прибора, подключенную через прибор. трансформаторы на однофазную высоковольтную линию. Инструменты включают вольтметр (22-6), амперметр и ваттметр. Трансформатор потенциала рассчитано на напряжение от 4600 до 115 вольт; трансформатор тока рассчитан на 50 к 5 ампер. Катушки потенциала вольтметра и ваттметра соединены параллельно низковольтному выходу трансформатора напряжения.Следовательно, напряжение на потенциальных катушках каждого из этих инструментов является одно и тоже. Катушки тока амперметра и ваттметра соединены в последовательно через вторичный выход трансформатора тока. Как результат, ток в токовых катушках обоих инструментов одинаков. Обратите внимание, что вторичная обмотка каждого измерительного трансформатора заземлена для обеспечения защиты от опасностей высокого напряжения, как это предусмотрено в статье 250 Национального электротехнического Код.

Вольтметр на рисунке 22-5 показывает 112,5 вольт, амперметр показывает 4 ампера, а ваттметр показывает 450 ватт. Чтобы найти первичное напряжение, первичный ток, первичная мощность, полная мощность в первичной цепи и коэффициент мощности, используются следующие процедуры:

Первичное напряжение

Множитель вольтметра = 4600/115 = 40

Первичное напряжение = 112,5 x 40

= 4500 вольт

Первичный ток

Множитель амперметра = 50 / S = 10

Первичный ток = 4 x 10

= 40 ампер


ил.22-6 Монтируемые на панели счетчики используют трансформаторы для контроля больших значений

Первичная мощность

Множитель ваттметра = множитель вольтметра x множитель амперметра

Множитель ваттметра = 40 x 10

= 400

Основная мощность = 450 x 400

= 180000 ватт или 180 киловатт

Полная мощность

Полная мощность первичной цепи, полученная путем умножения первичной значения напряжения и тока.

Полная мощность (вольт-амперы) = вольт x ампер

вольт-ампер = 4500 x 40

= 180000 Вт = 180000/1000 = 180 кВт

Коэффициент мощности

Коэффициент мощности = мощность в киловаттах / полная мощность в киловольт-амперах

= 180/180

= 1,00 или 100 процентов

ПРИБОРНЫЕ ТРАНСФОРМАТОРЫ НА ТРЕХФАЗНЫХ СИСТЕМАХ

Трехфазная, трехпроводная система

В трехфазной трехпроводной системе два одинаковых трансформатора напряжения необходимы два трансформатора тока одинакового номинала.Это это обычная практика в трехфазном измерении для соединения вторичного схемы. То есть соединения выполняются так, что один провод или устройство проводит комбинированные токи двух трансформаторов в разных фазах.

Низковольтные приборные соединения для трехфазной трехпроводной системы проиллюстрированы на 22-7. Обратите внимание, что два трансформатора напряжения подключены в разомкнутом треугольнике к трехфазной линии на 4600 Вольт. Это приводит к трем значения вторичного напряжения 115 вольт каждое.Два трансформатора тока соединены так, чтобы первичная обмотка одного трансформатора была последовательно с линией А и первичная обмотка второго трансформатора включены последовательно с линией С.


ил. 22-7 Измерительные соединения для трехфазной, трехпроводной системы

Обратите внимание, что во вторичной цепи низкого напряжения используются три амперметра. Эта система подключения подходит для трехфазной трехпроводной системы, и все три амперметра дают точные показания.Другие инструменты, которые можно используемые в этой схеме включают трехфазный ваттметр, трехфазный ватт-час измеритель мощности и трехфазный измеритель коэффициента мощности. Когда трехфазные инструменты подключены во вторичных цепях, эти приборы должны быть подключены правильно, чтобы сохранялись правильные фазовые соотношения. Если это меры предосторожности не соблюдаются, показания прибора будут неверными. В проверка соединений для этой трехфазной трехпроводной системы учета, Обратите внимание, что соединенные между собой вторичные обмотки потенциала и тока заземлены. для обеспечения защиты от опасностей высокого напряжения.

Трехфазная, четырехпроводная система


ил. 22-8 Измерительные соединения для трехфазной, четырехпроводной системы

илл. 22-8 показаны вторичные измерительные соединения для 2400/4152 вольт, трехфазная, четырехпроводная система. Подключены три трансформатора напряжения. в звезду, чтобы обеспечить трехфазный выход трех вторичных напряжений 120 вольт к нейтральному. Три трансформатора тока от 50 до 5 ампер используются в трех линейные проводники.Во взаимосвязанной вторичной обмотке используются три амперметра. схема. И взаимосвязанный потенциал, и текущие вторичные обмотки заземлен для защиты от возможных опасностей высокого напряжения.

РЕЗЮМЕ

Измерительные трансформаторы

специально разработаны для преобразования напряжения и тока в очень точных соотношениях. Потенциальные трансформаторы используются для преобразования высокое напряжение до значений 115 или 120 вольт для использования со стандартными приборами. Трансформаторы тока (ТТ) используются для преобразования больших значений переменного тока. до уровня 5 ампер, чтобы его можно было использовать со стандартными инструментами.ОКРУГ КОЛУМБИЯ текущие уровни обычно снижаются до приемлемого уровня за счет использования шунты. Шунт имеет номинальный ток первичной нагрузки, и тогда измеритель подключен через шунт. Счетчик рассчитан на работу при 50 милливольтах.

ВИКТОРИНА

1. Какие существуют два типа измерительных трансформаторов?

а.

г.

2. Почему вторичная цепь трансформатора тока должна быть замкнута, когда есть ток в первичной цепи? __________

3.Трансформатор рассчитан на 4600/115 вольт. Вольтметр, подключенный поперек вторичная обмотка показывает 112 вольт. Какое первичное напряжение?

4. Трансформатор тока рассчитан на 150/5 ампер. Амперметр во вторичной обмотке схема читает 3,5 ампера. Что такое первичный ток? _______

5. Трансформатор напряжения 2300/115 вольт и трансформатор тока 100/5 ампер. подключены к однофазной сети. Вольтметр, амперметр и ваттметр включены во вторичные обмотки измерительных трансформаторов.Вольтметр показывает 110 вольт, амперметр показывает 4 ампера, а ваттметр показывает 352 Вт. Нарисуйте соединения для этой схемы. Марк ведет H X и так далее. Показать все значения напряжения, тока и мощности.

6. Замкните цепь, используя измерительные трансформаторы для измерения напряжения и силы тока. Включите термическую маркировку.

ОТ ИСТОЧНИКА ДО ЗАГРУЗКИ

7. Какое первичное напряжение данной однофазной цепи? 5?

8.Какой первичный ток в амперах приведен в однофазной цепи в вопросе 5?

9. Какова первичная мощность в ваттах в данной однофазной цепи? в вопросе 5?

10. Каков коэффициент мощности рассматриваемой однофазной цепи? 5?

Выберите правильный ответ для каждого из следующих утверждений.

11. Вторичная обмотка трансформатора напряжения обычно наматывается на

а. 10 вольт. c. 230 вольт.

г. 115 вольт. d. 500 вольт.

12. Вторичные обмотки трансформатора потенциала заземлены на

.

а. стабилизировать показания счетчика.

г. застраховать показания с точностью до 0,5 процента.

г. доделать систему с праймериз.

г. исключить опасности, связанные с высоким напряжением.

13. Трансформатор, используемый для уменьшения значений тока до размера, при котором малые счетчики может их зарегистрировать — это

а. автотрансформатор. c. трансформатор напряжения.

г. распределительный трансформатор. d. трансформатор тока.

14. Первичная обмотка большого трансформатора тока может состоять из

а. много витков тонкой проволоки.

г. несколько витков тонкой проволоки.

г. много витков тяжелой проволоки.

г. прямоточный проводник.

15. Стандартный номинальный ток вторичной обмотки трансформатора тока. это

а. 5 ампер. c. 15 ампер.

г. 50 ампер. d.15 ампер.

16. Вторичная цепь трансформатора тока никогда не должна открываться. когда ток присутствует в первичной обмотке, потому что

а. счетчик перегорит.

г. счетчик не работает.

г. может возникнуть опасное высокое напряжение.

г. первичные значения могут быть прочитаны на счетчике.

Устройства для измерения трансформаторов тока

Главная »Справочная информация» Примечания по применению »Измерения трансформаторов тока

Трансформатор тока (CT) используется для измерения переменного тока в однофазных или трехфазных цепях сети.ТТ обычно имеет вторичную обмотку переменного тока 1 А или 5 А, которая подключается к счетчику тока, мощности или энергии. Это позволяет размещать счетчик вдали от сетевой проводки. Доступны трансформаторы тока различных размеров и стилей со стандартными соотношениями от 50: 5 до 4000: 5. Модели с разъемным сердечником легко модифицируются вокруг существующей проводки. Модели с твердым сердечником предлагают более низкую стоимость.

Некоторые системы мониторинга поставляются с трансформаторами тока с выходом напряжения. Полная шкала на этих устройствах не стандартизирована, но обычно находится между 0.3-2В переменного тока. Несмотря на отсутствие стандартизации, использование трансформатора тока с выходом по напряжению дает несколько преимуществ. Это устраняет необходимость в толстых проводах или высоком номинальном токе. Выходное напряжение также позволяет увеличить расстояние между ТТ и измерителем. Еще одно соображение — разомкнутый вторичный контур ТТ на 1 А или 5 А может создавать опасное высокое напряжение. Модели с выходным напряжением ограничены до безопасного уровня.

Трансформаторы тока различаются по размеру (номинальная мощность в ВА), коэффициенту передачи и точности. Номинальная мощность в ВА определяет максимальное вторичное сопротивление (провод + клемма + сопротивление измерителя), которое может работать с указанной точностью.Измерительные ТТ указаны для коэффициента мощности 0,9 при 60 Гц. Релейные трансформаторы тока указаны на уровне 0,5 пФ.

В преобразователях тока

также используется трансформатор с одножильным или раздельным сердечником для измерения переменного тока. Однако у них есть схема для преобразования выходного сигнала в сигнал постоянного тока низкого уровня, вольт или мА. Модели с выходным напряжением постоянного тока или током 1 мА могут иметь автономное питание. Для моделей с выходом 4–20 мА постоянного тока обычно требуется внешний источник питания.

См. Информацию о продукте для трансформаторов тока или преобразователей переменного тока.

Примечание по применению трансформатора тока

и таблица длин проводов (pdf) Характеристики трансформатора тока
для двигателей различных размеров (pdf)

Трансформаторы тока для измерения | Подсказка Energy Sentry Tech

Есть два типа электросчетчиков: автономные (с прямым приводом) и трансформатор номинальный.

Большинство счетчиков, используемых в домах или на фермах, являются автономными. Вся использованная электроэнергия проходит через счетчик.Эти счетчики предназначены для использования в сетях до 200 ампер. Трансформаторы тока содержатся внутри.

При потреблении тока более 200 ампер используются счетчики с трансформаторным номиналом. Как следует из названия, в этих типах счетчиков используются трансформаторы тока (ТТ) для измерения протекающего тока или общей потребляемой мощности. Информация регистрируется счетчиком.

В ТТ кольцевого типа имеется два проводника или обмотки. Первичная обмотка — это линейный проводник, проходящий через центр трансформатора тока.Вторичная обмотка представляет собой множество витков магнитной проволоки вокруг сердечника.

Трансформатор трансформатора тока преобразует первичный ток линейного проводника в меньший, более легко управляемый ток, который подается на измеритель, который прямо пропорционален первичному току. Этот ток обратно пропорционален количеству вторичных витков провода вокруг железного сердечника.

Для ТТ на 200: 5 А коэффициент трансформации составляет 40: 1, что дает вторичный ток 1/40 первичного тока. Для трансформатора тока на 400: 5 А соотношение витков составляет 80: 1, что дает вторичный ток, составляющий 1/80 первичного тока.

Номинальная нагрузка (B) — это полное сопротивление цепи, подключенной ко вторичной обмотке. Этот импеданс является полным противодействием протеканию тока в цепи переменного тока. Рейтинг нагрузки — это максимальное значение импеданса перед превышением минимальных пределов точности.

Разница коэффициента тока между фактическим (первичным) и измеренным (вторичным) током приводит к тому, что обычно называют множителем. Поправочный коэффициент — это коэффициент, на который необходимо умножить показания ваттметра, чтобы скорректировать влияние коэффициента ошибок и фазового угла трансформатора тока.

Ищете ТТ измерительного класса для вашей программы измерения теплового расхода?
У нас есть решение!

Измерительные трансформаторы тока высокого качества

Если ваша программа расчета теплового коэффициента требует учета накопленного тепла, тепла плинтуса, двойного топлива или любого другого электрического тепла, низкокачественные трансформаторы тока просто не подходят.

Наши измерительные трансформаторы тока изготовлены из сердечников из многослойной кремнеземной стали высшего качества и соответствуют стандарту IEEE C57.13. стандарты.

Доступные передаточные числа Точность при BO.1 / 60Hz Коэффициент мощности Частота Класс изоляции
100: 5A 1,2 1,5 @ 30 ° C 50-400 Гц 600 В
200: 5A 0,03 1,5 @ 30 ° C 50-400 Гц 600 В
Следующий технический совет: трансформаторы тока для контроллеров нагрузки

Как измерить электрическую мощность

Если продукт потребляет электроэнергию, то измерения энергопотребления и качества электроэнергии должны проводиться в рамках проектирования и тестирования продукта.Эти измерения необходимы для оптимизации конструкции продукта, соответствия стандартам и предоставления клиентам информации на паспортных табличках.

В этой статье обсуждаются передовые методы выполнения этих измерений, начиная с основ измерения мощности и заканчивая типами инструментов и связанных с ними компонентов, которые обычно используются для выполнения измерений. Статья завершится примерами из реальной жизни, которые применяют информацию, представленную ранее в статье, для решения практических задач измерения.Несмотря на то, что большинство из нас знакомо с основными уравнениями измерения мощности, для подведения итогов этой информации и демонстрации ее применимости к проектированию и испытаниям продукта может помочь учебник.

Основы измерения мощности

Измерение мощности постоянного тока относительно просто, так как уравнение просто ватт = вольт x ампер. Для измерения мощности переменного тока коэффициент мощности (PF) представляет сложность, поскольку ватты = вольт x амперы x PF. Это измерение мощности переменного тока называется активной мощностью, истинной мощностью или реальной мощностью.В системах переменного тока умножение вольт на ампер = вольт-ампер, также называемый полной мощностью.

Потребляемая мощность измеряется путем расчета ее во времени с использованием как минимум одного полного цикла. Используя методы оцифровки, мгновенное напряжение умножается на мгновенный ток, затем накапливается и интегрируется за определенный период времени, чтобы обеспечить измерение. Этот метод обеспечивает истинное измерение мощности и истинное среднеквадратичное значение для любой формы сигнала, синусоидального или искаженного, включая содержание гармоник вплоть до полосы пропускания прибора.

Измерение однофазной и трехфазной мощности

Преобразование Блонделя утверждает, что общая мощность измеряется на один ваттметр меньше, чем количество проводов в системе. Таким образом, для однофазной двухпроводной системы потребуется один ваттметр, для однофазной трехпроводной системы потребуется два ваттметра (Рисунок 1), для трехфазной трехпроводной системы потребуется два ваттметра и один трехфазная, четырехпроводная система потребует три ваттметра.

Рисунок 1. Метод двух ваттметров позволяет измерять мощность при прямом подключении к системе 3P3W. Pt = P1 + P2

В этом контексте ваттметр — это устройство, которое измеряет мощность с использованием одного входа тока и одного входа напряжения. Многие анализаторы мощности и DSO имеют несколько входных пар ток / напряжение, способных измерять ватт, фактически действуя как несколько ваттметров в одном приборе. Таким образом, можно измерить трехфазную 4-проводную мощность с помощью одного правильно подобранного анализатора мощности.

В однофазной двухпроводной системе (рис. 2) напряжение и ток, измеряемые ваттметром, равны полной мощности, рассеиваемой нагрузкой.Напряжение измеряется между двумя проводами, а ток измеряется в проводе, подающем питание на нагрузку, часто называемом горячим проводом. Напряжение обычно можно измерить непосредственно анализатором мощности до 1000 В RMS. Более высокие напряжения потребуют использования ТН (трансформатора напряжения) в системе переменного тока для понижения напряжения до уровня, который может быть измерен прибором. Как правило, токи могут быть измерены непосредственно анализатором мощности до 50 А, в зависимости от прибора. Более высокие токи потребуют использования трансформатора тока (CT) в системе переменного тока.Существуют разные типы CT. Некоторые размещаются прямо в линию. В других есть окно, через которое проходит токоведущий кабель. Третий вид — зажимной. Для постоянного тока обычно используется шунт. Шунт помещается в линию, и прибор измеряет низкий уровень сигнала в милливольтах.

Рис. 2. Однофазная двухпроводная система использует трансформатор тока и трансформатор напряжения.

В однофазной трехпроводной системе (рис. 3) полная мощность представляет собой алгебраическую сумму двух показаний ваттметра.Каждый ваттметр подключен от одного из проводов под напряжением к нейтрали, и ток измеряется в каждом проводе под напряжением. Общая мощность рассчитывается как Pt = P1 + P2.

Рисунок 3. Два ваттметра подключаются к однофазной трехпроводной системе (1P3W).

В трехфазной четырехпроводной системе (рис. 4) каждый из трех ваттметров измеряет напряжение от горячего провода до нейтрали, а каждый ваттметр измеряет ток в одном из трех горячих проводов. Полная мощность для трех фаз — это алгебраическая сумма трех измерений ваттметра, поскольку каждый измеритель, по сути, измеряет одну фазу трехфазной системы.Pt = P1 + P2 + P3

Рис. 4. В этой трехфазной четырехпроводной системе используются три ваттметра.

В трехфазной трехпроводной системе (рис. 5) два ваттметра измеряют фазный ток в любых двух из трех проводов. Каждый ваттметр измеряет линейное напряжение между двумя из трех линий питания. В этой конфигурации общая мощность в ваттах точно измеряется алгебраической суммой двух значений ваттметра. Pt = P1 + P2.Это верно, если система сбалансирована или несбалансирована.

Если нагрузка несимметрична, то есть фазные токи разные, общая мощность будет правильной, но общая ВА и коэффициент мощности могут быть ошибочными. Однако анализаторы мощности могут иметь специальную схему подключения 3V3A для обеспечения точных измерений в трехфазных, трехпроводных системах со сбалансированной или несимметричной нагрузкой. Этот метод использует три ваттметра для контроля всех трех фаз. Один ваттметр измеряет напряжение между фазами R и T, второй ваттметр измеряет напряжение между фазами S и T, а третий ваттметр измеряет напряжение между фазами R и S.Фазные токи измеряются каждым ваттметром. Метод двух ваттметров все еще используется для расчета полной мощности. Pt = P1 + P2. Однако общая VA рассчитывается как (√3 / 3) (VA1 + VA2 + VA3). Все три напряжения и тока используются для точных измерений и расчетов несимметричной нагрузки.

Рис. 5. Трехфазная трехпроводная система использует метод трех ваттметров для достижения точных измерений при несимметричной нагрузке.

Измерение коэффициента мощности

Коэффициент мощности необходимо часто измерять, и это значение следует поддерживать как можно ближе к единице (1. 0)
В системе электроснабжения нагрузка с низким коэффициентом мощности потребляет больше тока, чем нагрузка с высоким коэффициентом мощности при том же количестве передаваемой полезной мощности. Более высокие токи увеличивают потери энергии в системе распределения и требуют более крупных проводов и другого оборудования. Из-за затрат на более крупное оборудование и потери энергии электрические компании обычно взимают более высокую плату с промышленных или коммерческих потребителей, демонстрирующих низкий коэффициент мощности.

На рисунке 6 показано текущее запаздывание напряжения на 44.77 °, что дает коэффициент мощности 0,70995. Полная мощность S1 составляла 120,223 ВА. Реальная мощность, или реальная мощность, P1, однако, составляла всего 85,352 Вт.

Рис. 6. Экран анализатора мощности показывает разность фаз между напряжением и током.

Если энергопотребляющие устройства имеют хорошие коэффициенты мощности, то и вся энергосистема тоже будет, и наоборот. Когда коэффициент мощности падает, часто приходится использовать устройства коррекции коэффициента мощности, что требует значительных затрат.Эти устройства обычно представляют собой конденсаторы, поскольку большая часть потребляющих мощность нагрузок является индуктивной.

Ток отстает от напряжения в катушке индуктивности; это известно как запаздывающий коэффициент мощности. Ток приводит к напряжению в конденсаторе; это известно как ведущий коэффициент мощности. Двигатель переменного тока является примером индуктивной нагрузки, а компактная люминесцентная лампа — примером емкостной нагрузки.

Для определения общего коэффициента мощности в трехфазной 4-проводной системе требуются три ваттметра.Каждый измеритель измеряет ватты, а также измерения в вольтах и ​​амперах. Коэффициент мощности рассчитывается путем деления общей мощности каждого счетчика на общее количество вольт-ампер.

В трехфазной трехпроводной системе коэффициент мощности следует измерять с использованием метода трех ваттметров вместо метода двух ваттметров, если нагрузка несимметрична, то есть если фазные токи разные. Поскольку метод двух ваттметров позволяет выполнять измерения только для двух ампер, любые различия в показаниях усилителя на третьей фазе вызовут неточности.

Измерение мощности бытовой техники

Типичным приложением для измерения мощности является резервное питание для бытовых приборов, основанных на стандартах Energy Star или IEC62301. Оба стандарта определяют требуемую точность мощности, разрешение и другие параметры измерения мощности, такие как гармоники. В стандарте IEC62301 есть еще 25 стандартов, которые определяют конкретные параметры испытаний для различных устройств. Например, IEC60436 определяет методы измерения производительности электрических посудомоечных машин.

Режим ожидания определяется как режим с самым низким энергопотреблением, который не может быть отключен пользователем и который может сохраняться неопределенное время, когда приложение подключено к основному источнику электроэнергии и используется в соответствии с инструкциями производителя. Мощность в режиме ожидания — это средняя мощность в режиме ожидания, измеренная в соответствии со стандартом.

Существует три основных метода измерения энергопотребления в режиме ожидания или других подобных приложениях.Если значение мощности стабильно, можно использовать мгновенные показания прибора в любой момент времени. Если значение мощности нестабильно, возьмите среднее значение показаний прибора с течением времени или измерьте общее потребление энергии. Ватт-часы можно измерить за определенный период времени и затем разделить на это время.

Измерение общего энергопотребления и деление на время дает наиболее точные значения как при постоянной, так и при колеблющейся мощности, и это метод, обычно используемый при использовании анализаторов мощности нашей компании.Но для измерения общего энергопотребления требуется более сложный инструмент, потому что мощность должна постоянно измеряться и суммироваться.

Инструменты для измерения мощности

Мощность обычно измеряется с помощью цифрового анализатора мощности или DSO (цифрового запоминающего осциллографа) с микропрограммным обеспечением для анализа мощности. Большинство современных анализаторов мощности полностью электронные и используют дигитайзеры для преобразования аналоговых сигналов в цифровую форму. Анализаторы более высокого уровня используют методы цифровой обработки сигналов для выполнения вычислений, необходимых для определения значений.

DSO для анализа мощности используют специальную прошивку для точных измерений мощности. Однако они несколько ограничены, поскольку основаны на выборочных данных из оцифрованных форм волн. Их датчики тока и напряжения делают их хорошо подходящими для работы на уровне плат и компонентов, где абсолютная точность не является обязательной, а частота сети относительно высока.

Анализаторы мощности обычно могут измерять до 50 A RMS непосредственно при уровнях напряжения до 1000 V RMS, поэтому большинство тестируемых продуктов можно подключать напрямую.С другой стороны, DSO потребует использования пробников напряжения и тока для измерения мощности.

Трансформаторы

рассчитываются по отношению входного тока к выходному, например 20: 5. Другими важными параметрами ТТ являются точность, фазовый сдвиг и частотный диапазон для измерения мощности переменного тока. ТН используются для понижения фактического напряжения до уровня, который может быть принят прибором измерения мощности. Например, если тестируемый продукт рассчитан на 480 В переменного тока, а прибор ограничен до 120 В переменного тока, то требуется от 4 до 1 ТН.

DSO обычно не обеспечивает точность анализатора мощности и не может напрямую принимать входные сигналы высокого тока и напряжения, но может измерять мощность на гораздо более высоких частотах до 500 МГц с помощью соответствующих пробников. Он также обеспечивает другие преимущества перед анализаторами мощности в определенных приложениях, включая специальные пробники для простоты подключения, фазовую компенсацию пробника и до восьми многоканальных входов.

Типичным приложением для DSO может быть любой тип измерения на уровне платы, например, при разработке печатных плат для импульсного источника питания. Параметры, которые обычно измеряются и анализируются с помощью DSO или анализатора мощности, включают, помимо прочего, потери мощности переключения, потребляемую мощность устройства, уровень шума переключения, гармоники, выходную мощность и стабильность выхода.

При использовании DSO необходимое оборудование будет включать датчики дифференциального напряжения и датчик тока (рисунок 7). Токовый пробник подключается к одному из основных токоведущих проводов, как показано на рисунке. Часто напряжения компонентов не относятся к уровню земли.Поэтому для изоляции заземления DSO от заземления компонентов требуется датчик дифференциального напряжения. В дополнение к анализатору мощности или DSO, а также трансформаторам тока и трансформатору тока, если необходимо, другими вспомогательными компонентами для измерения мощности являются зонды, зажимы и провода. Когда все необходимые инструменты и компоненты будут под рукой, следующим шагом будет определение того, какие именно инструменты необходимы и как эти инструменты должны быть подключены к нагрузке.

Рис. 7. Используйте пробники напряжения и токовый пробник с осциллографом для измерения напряжения и тока.

Анализаторы мощности

, как правило, являются предпочтительным инструментом для измерения мощности бытовой техники и других измерений мощности с относительно высокими уровнями напряжения, низкими частотами и высокими требованиями к точности. Однако для измерений на уровне платы обычно используется DSO.

Используя информацию, представленную выше, можно выбрать и подключить правильные инструменты и инструменты для различных приложений измерения мощности. Информация, полученная с помощью этих инструментов, затем может быть использована для оптимизации конструкции, соответствия стандартам и предоставления информации на паспортной табличке.

3 совета по успешной установке измерителя ТТ

Что такое измеритель ТТ?

Измеритель ТТ — это устройство, которое измеряет силу тока в одном или нескольких проводниках с помощью датчиков, называемых трансформаторами тока (ТТ). Трансформаторы тока бывают разных размеров и номинальных значений силы тока, что позволяет одним измерителем измерять все виды электрических нагрузок. Помимо силы тока, эти измерительные приборы измеряют напряжение, чтобы в конечном итоге рассчитать мощность. Обычно эти измерители используются для контроля мощности отдельных цепей в электрическом распределительном щите.Они бывают самых разных форм-факторов и могут выполнять такие задачи, как измерение использования серверных стоек в киловатт-часах или подсчет количества арендаторов. Универсальность CT-счетчиков делает их популярным выбором для многих профессионалов в области энергетики. Однако универсальность может усложнить их установку и настройку. Установщики, которые придерживаются трех приведенных ниже советов, сталкиваются с меньшей головной болью и более счастливыми клиентами.

Общие сведения о фазировании

Фаза электрической системы представляет собой одну линию питания.Обычно электрические панели имеют несколько фаз, питающих выключатели внутри нее. Например, жилая панель на 120/240 В переменного тока имеет две отдельные фазы (часто называемые фазой «А» и фазой «В»), и выключатели в этой панели получают питание от одной фазы или другой. При измерении мощности цепи необходимо умножить результат измерения напряжения на измерение тока. Кроме того, чтобы правильно рассчитать мощность, ток выключателя на фазе A необходимо умножить на напряжение фазы A. Это означает, что расчет мощности будет неточным, если вы умножите измеренный ток на напряжение другой фазы.

Чтобы избежать смешения фаз тока и напряжения, возьмите с собой портативный амперметр на место установки и проверьте разность потенциалов (в вольтах) между клеммой фазы A на главном выключателе и выключателем, на котором находится трансформатор тока. Если разность потенциалов равна нулю, значит, они синфазны.

Запишите свою работу

Запишите все, прежде чем покинуть место установки. Включите информацию о расположении и номере модели ТТ, положении входа, к которому ТТ подключается на счетчике, рабочем напряжении и т. Д.… Используйте свой телефон, чтобы сделать несколько снимков, если у вас есть возможность. Наличие этой информации под рукой после ухода с места установки может предотвратить опрокидывание грузовика для устранения неполадок в дальнейшем. Помните, что к некоторым системам измерения ТТ могут быть подключены десятки ТТ, поэтому запись информации важна для того, чтобы все было организовано.

Поговорите с сетевыми администраторами

Если вы хотите расстроить сетевого администратора, лучше всего начать подключать к его сети случайные устройства, а не рассказывать им об этом.Более здоровый подход — спросить производителя счетчика, есть ли у него технический документ или заявление по безопасности с описанием технических деталей сетевого подключения, и передать его администратору сети. Кроме того, им нужно время, чтобы ознакомиться с ними, поэтому лучше не ждать, пока вы установите систему, чтобы доставить их им.


Автор: Эд Пантзар, менеджер по маркетингу eGauge Systems

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *