Схемы бп компьютеров на шим 2019: Схемы компьютерных блоков питания ATX Codegen JNS KME FSP Sunny Colors It PowerMaster InWin PowerMan Hiper Microlab Antech MaxPower Green Tech = Электроника и Медтехника

Содержание

Схемы компьютерных блоков питания ATX Codegen JNS KME FSP Sunny Colors It PowerMaster InWin PowerMan Hiper Microlab Antech MaxPower Green Tech = Электроника и Медтехника

Наименование Формат Размер, кБ
Схема блока питания LC-250 ATX ch. 200-ATX ver. 2.02B фирмы JNC Computer Co.
Основной источник: ШИМ DBL494, супервайзер LM339N, 3,3 В — A431 и магнитный стабилизатор
Источник дежурного питания +5V SB (дежурка): Высоковольтный ключ KSC5027 и стабилизатор 7805
GIF 110
Схема блока питания LC-B250ATX ch. Y-B200-ATX ver. 2.9 фирмы JNC Computer Co.
Основной: ШИМ и супервайзер 2003, 3,3 В — магнитный стабилизатор
Дежурка: Высоковольтный ключ — SSS2N60A, оптрон 1010, стабилизатор AZ431
GIF 103
Схема блоков питания 200XA1 и 250XA1 ch.
CG-07A и CG-11 фирмы Codegen
Основной: ШИМ KA7500B, супервайзер A6393D или KIA393P, 3,3 В — отдельный выпрямитель
Дежурка: Высоковольтный ключ и стабилизатор 7805
GIF 103
Схема источника +5V SB блока питания SY-300ATX ch. Y-B2002 ATX ver 1,0
Основной:
Дежурка: Высоковольтный ключ — BV-1 501, оптрон 817, стабилизатор 431
GIF 30
Схема источника +5V SB блока питания KME PX-230W ATX ch. KME-08-3A1
Основной:
Дежурка: Высоковольтный ключ — 2SC5353, стабилизатор 7805
GIF 24
Схема платы RD-DW-P009B источника +5V SB блока питания EN-8156901 model SFX-2015 (150W)
Основной:
Дежурка: Высоковольтный ключ — TFK617 BUF640, оптрон PC817, стабилизатор 431P
GIF 21
Схема источника +5V SB блока питания 300X ch. CG-13c фирмы Codegen
Основной:
Дежурка: Высоковольтный ключ — SSS2N60B, оптрон PC817, стабилизатор TL431-A
GIF 72
Статья о ремонте компьютерных блоков питания ATX (Ver.1.0) HTML 18
Транзисторы, применяемые в компьютерных блоках питания HTML 28
Микросхемы, применяемые в компьютерных блоках питания HTML 23
Импульсные блоки питания для IBM PC
В книге рассматриваются вопросы схемотехники, принципа работы, методика диагностики и ремонта компьютерных источников питания ATX
DJVU 2910
Блоки питания для системных модулей IBM PC XT AT
В книге освещаются вопросы схемотехники, принципа работы компьютерных источников питания на микросхеме TL494. Особое внимание уделяется вопросам поиска неисправностей и регулировке компьютерных блоков питания.
DJVU 900
Источники питания ПК и периферии (часть 1)
Подробно разобраны принципы работы отдельных узлов источников питания, алгоритмы и методики поиска неисправностей, типовые неисправности блоков питания компьютеров, мониторов и др. Рассматриваются вопросы построения качественных и энергоэффективных систем электропитания вычислительной техники.
RAR+DJVU 4000
Источники питания ПК и периферии (часть 2) RAR+DJVU 4000
Источники питания ПК и периферии (часть 3) RAR+DJVU 3627
Статья о методике доработки компьютерных блоков питания ATX, модернизация, повышение надежности, способы снижения помех и пульсаций
HTML 25
Схемы блоков питания ATX
Классическая схема блока питания ATX на TL494 и LM393, использованная фирмой Rolsen
Основной: ШИМ TL494, супервайзер LM393, 3,3 В — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 7805
GIF 57
Схема PowerMaster модель LP-8 v. 2.03 230W (AP-5-E v. 1.1), и FA-5-2 PCB FA_5-F v. 3.2
Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 159
Схема PowerMaster FA-5-2 v. 3.2 250W
Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, оптрон PC817, стабилизатор TL431
GIF 158
Схема блока питания ATX фирмы Microlab мощностью 350W
Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431
PDF 44
Схема БП Microlab ATX-5400X мощностью 400W
Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431
PDF 43
Схема SevenTeam ST-200HRK
Основной: ШИМ UTC51494, супервайзер LM339, 3,3 V формируется на отдельной плате ST-DD33 A60320 из источника +12V: ШИМ UC3843AN, полевой ключ 2SK1388
Дежурка: Высоковольтный ключ — 2SC4020, стабилизатор MC78L05ACP
GIF 184
Схема DTK PTP-2038 мощностью 250 Вт
Основной: ШИМ TL494, супервайзер LM393, 3,3 V — TL431C и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05
PNG
25
Схема Codegen ATX300W мощностью 300 Вт
Основной: ШИМ KA7500B, супервайзер на дискретных транзисторах, 3,3 V линейный параметрический стабилизатор на 40N03P и TL431
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон 817B, стабилизатор TL431
GIF 229
Схема блока питания 330U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — стабилизатор линейный параметрический на полевике 7030
Дежурка: Высоковольтный ключ — полевой SSS2N60, ШИМ на TDA865, оптрон PC817B
GIF 319
Схема блока питания 350T Фирмы Nuitek (COLORS iT)
Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK2648, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе.

Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431
PDF 62
Схема блока питания 350U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи MJE13009, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 63
Схема блока питания 400T Фирмы Nuitek (COLORS iT)
Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK1940, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431
PDF 62
Схема блока питания 400U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи 2SC2625, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 63
Схема блока питания 500T фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 64
Схема блока питания 600T фирмы Nuitek (COLORS iT)
Основной: ШИМ на UC3843, супервайзер — WT7525, силовые ключи 2SK2082, оптрон PC817, 3,3 V на источнике опорного напряжения TL431, регуляторе 2SB772, магнитный стабилизатор на дросселе
Дежурка: ШИМ и высоковольтный ключ на ICE3B0365, оптрон KPC817, источник опорного напряжения TL431
PDF 49
Схема FSP145-60SP от Fortron Source
Основной:
ШИМ и супервайзер на KA3511 на отдельной плате, 3,3 V — KA431 и магнитный стабилизатор
Дежурка: ШИМ с высоковольтным ключом на KA1H0165R, оптрон 817, стабилизатор KA431
GIF 48
Схема БП ATX-200W, ATX-250W, ATX-300W от Alim
Основной: ШИМ на TL494C, супервайзер на дискретных элементах, 3,3 V — источник опорного напряжения на TL431, регулятор 2SA1015 и магнитный стабилизатор на дросселе
Дежурка: Преобразователь на высоковольтном ключе на 2SC3150, стабилизатор 7805
PDF 395
Схема InWin IW-ISP300A3-1 PowerMan с корректором фактора мощности
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор, noise killer (регулятор скорости вращения вентилятора) на отдельной плате GDD-002 на LM358
Дежурка: Высоковольтный ключ — полевой 02N60P, оптрон PC817C
GIF 218
Схема InWin IW-P300A2-0 R1. 2
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой SSS2N60B или SPU02N60P, оптрон CT324 или EL817
GIF 51
Схема Sirtec HPC-360-302DF rev.C0 с активным корректором фактора мощности на отдельной плате
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817BY
Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x FQP9N50
PDF 176
Схема Sirtec HPC-420-302DF rev.C0 с активным корректором фактора мощности на отдельной плате
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817
Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x SPP11N60C3
PDF 182
Схема БП Delta Electronics DPS-200PB-59
Основной: ШИМ TL494, супервайзер на отдельной платеLM339D, 3,3 V на отдельной плате A431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05
GIF 236
Схема БП Delta Electronics DPS-260-2A c активным корректором фактора мощности, схемотехнически необычная, достаточно высокого уровня качества
Основной: ШИМ и АКФМ на отдельной плате DC-988 2960095601 на NE556 и ML4824-1, супервайзер на отдельной плате DC-989 2960095700 на LM339D, 2-х LM358 и TL431, однотактный инвертор на полевом ключе 2SK2611, 3,3 V на отдельной плате DC-986 2960095401 TL431 и магнитный стабилизатор
Дежурка: ШИМ + высоковольтный полевой ключ — TOP200, стабилизатор PQ05RF11
АКФМ: Высоковольтный ключ — полевой 2 x IRFP450
RAR+GIF 454
Фирменная схема JNC SY-300ATX на микросхеме AT2005
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой KSC5027, KSC5027-1, или BV-1 501 в корпусе TO-126, оптрон 817, стабилизатор 431
PDF 55
Фирменная схема JNC LC-B250ATX на микросхеме 2003
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме 2003, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой SSS2N60B, оптрон 817, стабилизатор 431
GIF 53
Схема БП фирмы JNC
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор MC7805
GIF 123
Фирменная схема блока питания KME PM-230W
Основной: ШИМ TL494, супервайзер LM393, 3,3 V линейный параметрический стабилизатор на STP40NE03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор PJ7805
GIF 63
Фирменная оригинальная схема Sunny ATX-230. Схема сильно отличается от других блоков питания!
Основной: ШИМ однотактный на UC3843, высоковольтный ключ — 2SK2545, оптрон TCET1109, стабилизатор TL431, супервайзер TPS5510P, цепь стабилизации напряжения питания ШИМ включает оптрон 817C, управляет которым супервайзер, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P3020L и TL431
Дежурка: Высоковольтный ключ — полевой 2SK3067, оптрон 817C, стабилизатор TL431
GIF 53
Фирменная схема Shido ATX-250W LP-6100
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — отдельный выпрямитель
Дежурка: Высоковольтный ключ — 2SC3150, оптрон 817, стабилизатор TL431
PNG 37
Схема PowerLink LPJ2-18 мощностью 300W
Основной: ШИМ и супервайзер на LPG-899, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон 817, стабилизатор 431
GIF 54
Схема Maxpower PX-300W
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NF03
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 51
Вариант схемы на SG6105 мощностью 250 Вт
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NE0
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 47
Схема блока питания AcBel API4PC01 мощностью 400W
Основной: без номиналов
Дежурка: без номиналов
PNG 96
Схема блока питания AcBel API3PCD2 ATX-450P-DNSS мощностью 450W
Основной: без номиналов
Дежурка: без номиналов
PNG 46
Схема БП Green Tech MAV-300W-P4
Основной: ШИМ TL494, супервайзер WT7510, 3,3 V линейный параметрический стабилизатор на полевом транзисторе P45N03L
Дежурка: Высоковольтный полевой ключ — PFB2N60, оптрон COSMO1010, стабилизатор TL431
GIF 203
Схема БП ATX-300P4 PFC ATX-310T v. 2.03. Корректор фактора питания пассивный
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3866, оптрон ???, стабилизатор TL431
PNG 37
Схема БП ShenZhon мощностью 350 Вт на микросхеме — супервайзере AT2005
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой KSC5027, оптрон 817, стабилизатор 431
PNG 332
Схема серии БП фирмы Linkworld мощностью 200W, 250W и 300W
Основной: ШИМ TL494C, супервайзер ???, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3150, оптрон ???, стабилизатор 7805
PDF 395
ШИМ и высоковольтные полевые ключи БП Hiper HPU-4K580
Основной: ШИМ TL3842P, однотактный инвертор на 2-х полевых ключах 2SK2607
Дежурка:
PNG 136
Часть схемы БП IP-P350AJ2-0 мощностью 350 Вт, включающая источник дежурного напряжения +5VSB
Основной: ШИМ AIC3843, супервайзер WT751002, 2 оптрона 817, однотактный инвертор на полевом ключе W12NK90Z
Дежурка: ШИМ и высоковольтный ключ — ICE2A0565Z, оптрон 817, стабилизатор TL431
PNG 24
Фрагмент схемы блока питания ATX Enlight HPC-250 и HPC-350
Основной: ШИМ TL494C, супервайзер LM339, опорное — TL431
Дежурка:
GIF 266
Источник дежурного напряжения +5VSB Codegen-300W model 300X v2. 03
Основной:
Дежурка: ШИМ и высоковольтный ключ — 5H0165R, оптрон LF311
GIF 40
Источник дежурного напряжения +5VSB Espada KPY-350ATX
Основной:
Дежурка: Высоковольтный полевой ключ — 02N60, оптрон
GIF 8
Источник дежурного напряжения +5VSB FSP ATX-300GTF
Основной:
Дежурка: Высоковольтный полевой ключ — 02N60, оптрон
GIF 8
Источник дежурного напряжения +5VSB FSP600 Epsilon FX600 GLN
Основной:
Дежурка: ШИМ и высоковольтный ключ — FSDM0265R, оптрон PC817, стабилизатор TL431
PNG 66
Часть схемы БП LEC971 мощностью 250 Вт, включающая источник дежурного напряжения +5VSB
Основной:
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 29
Еще одна схема БП ATX
Основной: ШИМ TL494
Дежурка:
BMP 391
Схемы блоков питания AT
Схема БП на TL494 и LM339 мощностью 200W GIF 44
Схема на TL494, KA34063F и LM393 GIF 369
Схема на mPC494C и HA17339 GIF 71
Схема на TL494C PNG 70
Схема на DBL494 PNG 177
Схема на TL494C и LM339 PNG 72
Схема Sunny CWT9200C-1 на KA7500(TL494) PNG 50
Схема Enermax мощностью 200W GIF 51
Схема AUVA VIP P200B мощностью 200W без номиналов PNG 45
Схема PE-050187 от Power Efficiency Electronic Co Ltd без номиналов PNG 51
Схема на mPC494C GIF 89
Еще одна схема БП AT GIF 65
Схема БП мощностью 200W PNG 36
Схема БП мощностью 200W без номиналов GIF 33
Схема БП без номиналов GIF 33
Схема БП без номиналов GIF 135
Еще одна схема БП без номиналов GIF 31

Революция в схемах компьютерных блоков питания полувековой давности / Хабр

Полвека назад улучшенные транзисторы и импульсные стабилизаторы напряжения произвели революцию в схемах компьютерных блоков питания.

Получила преимущества, к примеру, компания Apple – хотя не она запустила эту революцию, несмотря на заявления Стива Джобса.

Без Intel внутри: на рентгене видны компоненты импульсного блока питания, использованного в оригинальном микрокомпьютере Apple II, вышедшем в 1977 году

Компьютерным блокам питания не уделяется должного внимания.

Как энтузиаст технологий, вы наверняка знаете, какой у вашего компьютера микропроцессор и сколько у него физической памяти, однако есть вероятность, что вам ничего не известно о его блоке питания. Не тушуйтесь – даже производители разрабатывают БП в последнюю очередь.

А жаль, поскольку на создание БП для персональных компьютеров ушло довольно много сил, и это было серьёзное улучшение по сравнению с теми схемами, что питали другую потребительскую электронику вплоть до конца 1970-х. Этот прорыв стал возможен благодаря огромным скачкам в полупроводниковой технологии, сделанным полвека назад, в частности, улучшениям в импульсных стабилизаторах напряжения и инновациям в интегральных схемах. Но при этом данная революция прошла мимо внимания общественности, и даже неизвестна многим людям, знакомым с историей микрокомпьютеров.

В мире БП не обошлось без выдающихся чемпионов, включая и личность, упоминание которой может вас удивить: Стива Джобса. Согласно его авторизованному биографу, Уолтеру Айзексону, Джобс очень серьёзно относился к БП передового персонального компьютера Apple II и его разработчику, Роду Холту. Джобс, как утверждает Айзексон, заявлял следующее:

Вместо обычного линейного БП, Холт создал такой, который использовался в осциллографах. Он включал и выключал энергию не 60 раз в секунду, а тысячи раз; это позволяло ему сохранять энергию на гораздо меньших промежутках времени, в результате чего он испускал гораздо меньше тепла. «Этот импульсный БП был таким же революционным, как логическая плата Apple II, — сказал позже Джобс. – Рода не часто хвалят за это в книжках по истории, а должны были бы. Сегодня все компьютеры используют ИБП, и все они скопированы со схемы Рода Холта».

Это серьёзное заявление показалось мне не слишком достоверным, и я провёл своё расследование. Я обнаружил, что, хотя ИБП и были революционными, эта революция произошла в конце 1960-х и середине 1970-х, когда ИБП приняли эстафету у простых, но неэффективных линейных БП. Apple II, появившийся в 1977, получил преимущества этой революции, но не вызывал её.

Исправление джобсовской версии событий – не какая-то мелочь из инженерной области. Сегодня ИБП представляют собой повсеместный оплот всего, мы используем их ежедневно для зарядка наших смартфонов, планшетов, ноутбуков, камер и даже некоторых автомобилей. Они питают часы, радио, домашние аудиоусилители, и другую мелкую бытовую технику. Спровоцировавшие эту революцию инженеры заслуживают признания своих заслуг. Да и вообще, это весьма интересная история.

БП в настольных компьютерах, таких, как Apple II, преобразует переменный линейный ток в постоянный ток, и выдаёт очень стабильное напряжение для питания системы. БП можно сконструировать множеством разных способов, но чаще всего встречаются линейные и импульсные схемы.

Со всеми бородавками


В прошлом небольшие электронные устройства обычно использовали громоздкие БП-трансформаторы, получившие уничижительное прозвище «стенные бородавки». В начале XXI века технологические улучшения позволили начать практическое применение компактных импульсных источников питания малой энергии для питания небольших устройств. С падением стоимости импульсных AC/DC адаптеров они быстро заменили собой громоздкие БП у большинства домашних устройств.

Apple превратила зарядник в хитроумное устройство, представила прилизанную зарядку для iPod в 2001 году, внутри которой был компактный обратноходовой преобразователь под управлением интегральных схем (слева на картинке). Вскоре получили широкое распространение USB-зарядки, а ультракомпактный зарядник в виде дюймового куба от Apple, появившись в 2008, стал культовым (справа).

Самые модные зарядники высокого уровня подобного типа сегодня используют полупроводники на основе нитрида галлия, способные переключаться быстрее кремниевых транзисторов, и потому более эффективные. Развивая технологии в другом направлении, сегодня производители предлагают USB-зарядки уже по цене меньше доллара, хотя и экономя при этом на качестве питания и системах безопасности.

* * *

Типичный линейный БП использует громоздкий трансформатор для преобразования высоковольтного AC в розетке в низковольтный AC, который затем превращается в низковольтный DC при помощи диодов, обычно четырёх штук, подключенных в классическую схему диодного моста. Для сглаживания выходного напряжения диодного моста применяются крупные электролитические конденсаторы. Компьютерные БП используют схему под названием линейный стабилизатор, уменьшающую напряжение DC до нужного уровня и удерживающую его на этом уровне даже при изменениях в нагрузке.

Линейные БП тривиальны в проектировании и создании. Они используют дешёвые низковольтные полупроводниковые компоненты. Однако у них есть два больших минуса. Один – необходимость в использовании крупных конденсаторов и громоздких трансформаторов, которые никак нельзя запихнуть в нечто столь маленькоё, лёгкое и удобное, как зарядники, которые мы все используем для наших смартфонов и планшетов. Другой – схема линейного стабилизатора, основанная на транзисторах, превращает излишнее напряжение DC – всё, что выше необходимого уровня – в паразитное тепло. Поэтому такие БП обычно теряют более половины потребляемой энергии. И им часто требуются крупные металлические радиаторы или вентиляторы, чтобы избавляться от этого тепла.

ИБП работает на другом принципе: линейный вход AV превращается в высоковольтный DC, который включается и выключается десятки тысяч раз в секунду. Высокие частоты позволяют использовать гораздо более мелкие и лёгкие трансформаторы и конденсаторы. Особая схема точно управляет переключениями для контроля выходного напряжения. Поскольку таким БП не нужны линейные стабилизаторы, они теряют очень мало энергии: обычно их эффективность достигает 80-90%, и в итоге они гораздо меньше греются.

Однако ИБП обычно гораздо более сложные, чем линейные, и их сложнее проектировать. Кроме того, они выдвигают больше требований к компонентам, и нуждаются в высоковольтных транзисторах, способных эффективно включаться и выключаться с высокой частотой.

Должен упомянуть, что некоторые компьютеры использовали БП, не являвшиеся ни линейными, ни импульсными. Одной грубой, но эффективной техникой было запитать мотор от розетки и использовать его для раскрутки генератора, выдававшего необходимое напряжение. Мотор-генераторы использовались несколько десятилетий, по меньшей мере, с момента появления машин от IBM с перфокартами в 1930-х и до 1970-х, питая, среди прочего, суперкомпьютеры Cray.

Ещё один вариант, популярный с 1950-х и вплоть до 1980-х, использовал феррорезонансные трансформаторы – особый тип трансформаторов, дающих на выходе постоянное напряжение. Также в 1950-х для регулирования напряжения ламповых компьютеров использовался дроссель насыщения, контролируемая катушка индуктивности. В некоторых современных БП для ПК он вновь появился под именем «магнитного усилителя», давая дополнительное регулирование. Но в итоге все эти старые подходы уступили место ИБП.

Принципы, лежащие в основе ИБП, известны инженерам-электрикам с 1930-х, однако эта технология редко использовалась в эру электронных ламп. В то время в некоторых БП использовались специальные ртутные лампы, тиратроны, и их можно считать примитивными, низкочастотными импульсными стабилизаторами. Среди них — REC-30, питавшая телетайп в 1940-х, а также блок питания компьютера IBM 704 от 1954 года. Но с появлением в 1950-х силовых транзисторов ИБП начали быстро улучшаться. Pioneer Magnetics начала производить ИБП в 1958. General Electric выпустила ранний проект транзисторного ИБП в 1959.

В 1960-е НАСА и аэрокосмическая индустрия стала основной движущей силой в развитии ИБП, поскольку для аэрокосмических нужд преимущества малого размера и высокой эффективности имели приоритет перед большой стоимостью. К примеру, в 1962-м спутник Telstar (первый спутник, начавший передачу телевидения) и ракета «Минитмен» использовали ИБП. Годы шли, цены пали, и ИБП начали встраивать в потребительскую технику. К примеру, в 1966 Tektronix использовала ИБП в портативном осциллографе, что позволяло ему работать как от розетки, так и от батареек.

Тенденция ускорялась по мере того, как производители начали продавать ИБП другим компаниям. В 1967 RO Associates представила первый ИБП на 20 КГц, который назвала первым коммерчески успешным примером ИБП. Nippon Electronic Memory Industry Co. начала разработку стандартизованных ИБП в Японии в 1970. К 1972 году большинство производителей БП продавали ИБП или готовились к их выпуску.

Примерно в это время индустрия компьютеров начала использовать ИБП. Среди ранних примеров – микрокомпьютер PDP-11/20 от Digital Equipment 1969 года, и микрокомпьютер 2100A от Hewlett-Packard 1971 года. В публикации 1971 года заявлялось, что среди компаний, использующих ИБП, отметились все главные игроки рынка: IBM, Honeywell, Univac, DEC, Burroughs и RCA. В 1974 в списке микрокомпьютеров, использующих ИБП, отметились Nova 2/4 от Data General, 960B от Texas Instruments и системы от Interdata. В 1975 ИБП использовались в терминале HP2640A, похожем на пишущую машинку Selectric Composer от IBM, и в портативном компьютере IBM 5100. К 1976 году Data General использовала ИБП в половине своих систем, а HP – в мелких системах типа 9825A Desktop Computer и 9815A Calculator. ИБП начали появляться и в домашних устройствах, например, в некоторых цветных телевизорах к 1973 году.

ИБП часто освещались в электронных журналах той эпохи, как в виде рекламы, так и в статьях. Ещё в 1964 году Electronic Design рекомендовал использовать ИБП из-за более высокой эффективности. На обложке от октября 1971 года журнала Electronics World красовался ИБП на 500 Вт, а название статьи гласило: «Блок питания с импульсным стабилизатором». Computer Design в 1972 детально описывал ИБП и постепенный захват ими компьютерного рынка, хотя упомянул и о скептицизме некоторых компаний. На обложке Electronic Design 1976 года было написано «Переключаться внезапно стало легче», и описывалась новая интегральная схема управления ИБП. В журнале Electronics была длинная статья на эту тему; в Powertec были двухстраничные рекламные материалы о преимуществах ИБП со слоганом «The big switch is to switchers» [большие изменения для переключателей]; Byte объявлял о выпуске ИБП для микрокомпьютеров компанией Boschert.

Роберт Бошерт, уволившийся с работы и начавший собирать БП у себя на кухне в 1970-м, был ключевым разработчиком этой технологии. Он концентрировался на упрощении схем, чтобы сделать импульсные БП конкурентными по цене с линейными, и к 1974 году уже выпускал недорогие БП для принтеров в промышленных количествах, а потом в 1976 выпустил и недорогие ИБП на 80 Вт. К 1977 Boschert Inc. выросла до компании из 650 человек. Она делала БП для спутников и истребителя Grumman F-14, а позже – компьютерные БП для HP и Sun.

Появление недорогих высоковольтных высокочастотных транзисторов в конце 1960-х и начале 1970-х, выпускаемых такими компаниями, как Solid State Products Inc. (SSPI), Siemens Edison Swan (SES) и Motorola, помогло вывести ИБП в мейнстрим. Более высокие частоты переключения повышали эффективность, поскольку тепло в таких транзисторах рассеивалось в основном в момент переключения между состояниями, и чем быстрее устройство могло совершать этот переход, тем меньше энергии оно тратило.

Частоты транзисторов в то время увеличивались скачкообразно. Транзисторная технология развивалась так быстро, что редакторы Electronics World в 1971 могли заявлять, что БП на 500 Вт, представленный на обложке журнала, невозможно было произвести всего на 18 месяцев ранее.

Ещё один заметный прорыв случился в 1976, когда Роберт Маммано, сооснователь Silicon General Semiconductors, представил первую интегральную схему для контроля ИБП, разработанную для электронного телетайпа. Его контроллер SG1524 кардинально упростил разработку БП и уменьшил их стоимость, что вызвало всплеск продаж.

К 1974 году, плюс-минус пару лет, каждому человеку, хотя бы примерно представлявшему себе состояние индустрии электроники, было ясно, что происходит реальная революция в конструкциях БП.


Лидеры и последователи: Стив Джобс демонстрирует персональный компьютер Apple II в 1981 году. Впервые представленный в 1977, Apple II выиграл от промышленного сдвига от громоздких линейных БП к небольшим и эффективным импульсным. Но Apple II не запустил этот переход, как позже утверждал Джобс.

Персональный компьютер Apple II представили в 1977. Одной из его особенностью был компактный ИБП без вентилятора, дававший 38 Вт мощности и напряжение в 5, 12, –5, и –12 В. Он использовал простую схему Холта, ИБП с топологией обратноходового офлайнового преобразователя. Джобс заявил, что сегодня каждый компьютер копирует революционную схему Холта. Но была ли эта схема революционной в 1977? И скопировал ли её каждый производитель компьютеров?

Нет и нет. Похожие обратноходовые преобразователи в то время уже продавали Boschert и другие компании. Холт получил патенты на парочку особенностей своего БП, но их так и не стали широко использовать. А создание управляющей схемы из дискретных компонентов, как сделали для Apple II, оказалось технологическим тупиком. Будущее ИБП принадлежало специализированным интегральным схемам.

Если и был микрокомпьютер, оказавший долгосрочное влияние на проектирование БП, это был IBM Personal Computer, запущенный в 1981. К тому времени, всего через четыре года после выхода Apple II, технология БП серьёзно изменилась. И хотя оба этих ПК использовали ИБП с топологией обратноходового офлайнового преобразователя и несколькими выходами, это и всё, что между ними было общего. Контуры питания, управления, обратной связи и стабилизации были разными. И хотя БП для IBM PC использовал контроллер на интегральной схеме, в нём было почти в два раза больше компонентов, чем в БП от Apple II. Дополнительные компоненты давали дополнительную стабилизацию выходного напряжения и сигнал «качественное питание», когда все четыре напряжения были верными.

В 1984 году IBM выпустила значительно обновлённую версию ПК, под названием IBM Personal Computer AT. Его БП использовал множество новых схем, полностью отказавшись от обратноходовой топологии. Он быстро стал стандартом де факто и оставался таковым до 1995 года, когда Intel представила форм-фактор ATX, который, как и другие вещи, определившие БП ATX, по сей день остаётся стандартом.

Но, несмотря на появление стандарта ATX, компьютерные системы питания стали сложнее в 1995 году, когда появился Pentium Pro – микропроцессор, требовавший меньшего напряжения и больших токов, чем БП ATX мог дать напрямую. Для такого питания Intel представил модуль регулирования напряжения (VRM) – импульсный преобразователь DC-DC, устанавливаемый рядом с процессором. Он уменьшал 5 В от БП до 3 В, используемых процессором. В графических картах многих компьютеров тоже есть VRM, питающий установленные в них высокоскоростные графические чипы.

Сегодня быстрому процессору от VRM может требоваться целых 130 Вт – что гораздо больше, чем полватта мощности, которые использовал процессор Apple II, 6502. Современный процессор в одиночку может использовать в три раза больше мощности, чем целый компьютер Apple II.

Растущее потребление энергии компьютерами стало причиной беспокойства, связанной с окружающей средой, в результате чего появились инициативы и законы, требующие более эффективных БП. В США правительственный сертификат Energy Star и промышленный 80 Plus требуют от производителей выдавать более «зелёные» БП. Им удаётся это сделать при помощи различных технологий: более эффективного энергопотребления в режиме ожидания, более эффективных стартовых схем, резонансных схем, уменьшающих потери питания в импульсных транзисторах, схемы типа active clamp, заменяющие импульсные диоды более эффективными транзисторами. Улучшения в технологиях силовых транзисторов MOSFET и высоковольтных кремниевых выпрямителей, произошедшие в последние десять лет, также послужили увеличению эффективности.

Технология ИБП продолжает развиваться и другими путями. Сегодня, вместо аналоговых схем, многие поставщики используют цифровые чипы и программные алгоритмы, контролирующие выход. Разработка контроллера БП стала как вопросом проектирования железа, так и вопросом программирования. Цифровое управление питанием позволяет поставщикам общаться с остальной системой с большей эффективностью и вести логи. И хотя эти цифровые технологии по большей части используются в серверах, они начинают влиять на разработку настольных ПК.

Сложно увязать всю эту историю с мнением Джобса о том, что Холт должен быть известен шире, или что «Рода не часто хвалят за это в книжках по истории, а должны были бы». Даже самые лучшие разработчики БП не становятся известными за пределами крохотного сообщества. В 2009 году редакторы Electronic Design пригласили Бошерта в свой «Инженерный зал славы». Роберт Маммано получил награду «достижения всей жизни» в 2005 году от редакторов Power Electronics Technology. Руди Севернс получил другую такую награду в 2008 году за инновации в ИБП. Но никто из этих светил в области проектирования БП даже не отмечен в Википедии.

Часто повторяемое мнение Джобса о том, что Холта незаслуженно не заметили, привело к тому, что работу Холта описывают в десятках популярных статей и книжек про Apple, от «Реванша нердов» Пола Киотти, появившейся в журнале California в 1982, до биографии Джобса, бестселлера за авторством Айзексона, вышедшего в 2011. Так что весьма иронично, что, хотя его работа над Apple II вовсе не была революционной, Род Холт, вероятно, стал самым известным разработчиком БП всех времён.

Как переделать компьютерный блок питания в зарядное устройство


Появилась необходимость зарядить аккумулятор авто. Можно взять ЛБП, но его использую в мастерской. Решил собрать зарядное устройство для гаража.

Обдумываю идею


Продумывая конструкцию, решил остановиться на переделке БП компьютера. Изучив информацию из интернета, задача довольно простая. Нашелся в наличии блок питания на интересной микросхеме 2003. Она в себе совмещает ШИМ и контроль отклонения основных выходных напряжений блока. Такой вот модели блок. Скорей всего бывают и другие, но у меня именно этот.

Открываю и чищу от пыли. Блок питания должен быть рабочим.

Вот крупным планом микросхема. Информации о ней очень мало. Поиски замкнулись на схеме самого БП и все практически понятно.

Схема компьютерного блока


Схема имеет такой первоначальный вид. Хоть и на схеме указано 300 ватт, мой блок собран так же, разница видимо в некоторых компонентах.

Переделка блока в зарядник своими руками


Нужно удалить элементы отмеченные красным. Резистор желтого цвета, меняем на 2.4 кОм. Отмеченный голубым, нужно заменить на подстроечный резистор. Так же отпаял радиатор с диодами, без него удобно искать компоненты для удаления. Отмеченные напряжения зеленым цветом, будут распаяны на плату обхода ошибок.

На фото отлично видно удаленные детали. Так же пока удалил конденсатор С27 и резистор R53. Запаяю резистор обратно позже, он нужен для бесперебойной работы зарядки. PS-ON проводом подпаял на минус, для запуска блока.

На линию 12 вольт установил дополнительный дроссель, снял его с 5-ти вольтовой линии. Сдвоенный диод применил с линии 5 вольт.

Дроссель групповой стабилизации освободил от лишних обмоток. Сечения провода, для моих целей, достаточно.

Для обхода контроля отклонения основных напряжений, я сделал отдельную плату. Плату сделал на такой себе макетке. Питаться плата будет от 17 вольт дежурки. Понижать напряжение буду с помощью LM317, собран стабилизатор на 12 вольт. От 12 вольт будут питаться стабилизаторы на TL431. Собрал два стабилизатора, на 5 и 3.3 вольта. Пропущенный резистор на средней схеме 130 Ом.

Такая вот плата получилась. Собрал за полчаса.

Распаиваю провода соответственно нашей схемы. Синий и белый провода, это провода с подстроечного резистора. При включении им настраиваю на выходе 14.3 вольт.

Замеряю, сопротивление резистора, получилось около 12 кОм. Впаиваю сборный резистор из двух.

Выходные провода взял первые попавшиеся, только припаял к ним «крокодилы».

Сетевой провод размыкаю советским выключателем ТВ2-1.

Плату БП прикручиваю на штатные отверстия. Плату «обманку» прикрутил к радиатору. На выход установил сдвоенный диод, простенькая защита от переполюсовки. Нужно быть внимательными, защита от КЗ отсутствует, соберу позже. Подпаиваю выходные провода. Вентилятор подключил к плате «обманке», на 12 вольт. Индикаторный светодиод припаял на выход зарядки.

Забыл упомянуть. Пока дорабатывал плату БП, затерялся корпус, в котором была первоначально плата. Подобрал подобный ящичек. Благо их у меня в достатке.

Светодиод закрепил термоклеем.

Переднюю панель, изготовил из плексигласа. К панели прикручиваю тумблер, вывожу выходные провода и устанавливаю светодиод. Панель прикрутил винтами. Одеваем, и прикручивает крышку.

Итог


Такое вот зарядное устройство у меня получилось. Для гаража самое то, что нужно. Если не разряжать аккумулятор до предела, ток примерно составляет 5 Ампер. По мере заряда, ток падает.

Смотрите подробное видео


ATX блоки питания компьютеров: схемы и устройство | Ремонт компьютеров Троещина Киев: компьютерная помощь, сборка компьютеров на заказ

Производя ремонт компьютеров очень часто приходится заглядывать под крышку БП: осматривать его узлы, замерять напряжения, иногда перепаивать компоненты.

Блоки питания компьютеров, являясь высоковольтными силовыми устройствами, выходят из строя намного чаще других комплектующих компьютера. Не зависимо от производителя и цены, устройство и принцип работы блока питания ATX неизменны. Схематически устройство блока питания компьютера можно разделить на:

  • Входную цепь (1)
  • Сетевой выпрямитель (2)
  • Автогенераторный источник питания (3)
  • Силовой каскад (4)
  • Вторичные выпрямители (5)

Внутреннее устройство блока питания ATX

Входная цепь состоит из сетевого фильтра гасящего помехи в сети от работы БП. Сетевой выпрямитель блока питания компьютера включает в себя диодную сборку (мост) и выпрямительные конденсаторы. Автогенераторный источник питания работает когда компьютер выключен (не из сети, разумеется, а кнопкой Power) он подает дежурное напряжение питания +5VStb на контроллеры материнской платы. На силовой каскад  от выпрямителя подается напряжение +310В. Транзисторы силового каскада блока питания ATX работают по двутактной схеме совместно с силовым трансформатором и управляются микросхемой ШИМ. Со вторичных обмоток силового трансформатора напряжение подается на вторичные низковольтные выпрямители. Микросхема ШИМ запускается по сигналу от материнской платы «Power On» запуская, соответственно, транзисторно-трансформаторный преобразователь и подавая  напряжения на его вторичные обмотки. Во вторичных обмотках блока питания компьютера, кроме диодных сборок (на радиаторах) задействованы дроссели.

Схема блока питания компьютера (кликните для увеличения).

 

Блок питания компьютера является импульсным устройством. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Сетевое напряжение 220в поступает через сетевой фильтр на выпрямитель состоящий из диодов и двух последовательно соединенных электролитических конденсаторов. Так же запитывается автогенераторный источник питания формирующий дежурное напряжение +5v stb. С выпрямителя, напряжение величиной 310в поступает на силовой каскад реализованный на мощных транзисторных ключах и трансформаторе. Силовой каскад управляется импульсами поступающими от микросхемы-генератора ШИМ (Широтно Импульсная Модуляция) через согласующий трансформатор на базы ключей. Генерируемое импульсное напряжение снимается со вторичных обмоток силового трансформатора, выпрямляется диодами и конденсаторами. Величина выходного напряжения контролируется специальной схемой защиты, которая формирует сигнал Power-Ok (Power-Good). В случае отклонения выходных напряжений от номиналов сигнал Power-Ok не подается на контроллер материнской платы, тем самым блокируя запуск компьютера.

 

PowerMaster_230W

PowerMaster_250W

Maxpower_PX-300W

jnc

dtk_ptp-2038

colors_it_330

codegen_atx_300w

Codegen-330w

Gembird-350W

Распиновка разъемов ATX блока питания компьютера

                    Распиновка разъемов блока питания ATX

Ремонт блоков питания компьютеров следует начинать с проверки подачи сетевого напряжения ~220в на выпрямитель. Далее, необходимо проконтролировать наличие +310в на выходе выпрямителя (не забывайте, что конденсаторы выпрямителя блока питания компьютера включены последовательно и напряжение на их выводах будет составлять приблизительно по 150-160в). Удостоверьтесь в наличии напряжений +5v stb и Power-Ok (розовый и зеленый провода). Если они отсутствуют следует проверить автогенераторный источник питания дежурного режима и микросхему ШИМ (если нет напряжения Power-Ok). Если генерация дежурного напряжения +5v stb и Power-Ok в норме, сосредоточьте свое внимание на силовых ключах и вторичном выпрямителе блока питания. Не забывайте, что для проверки полупроводников и конденсаторов их лучше выпаять из схемы.

ШИМ-контроллер. Устройство и принцип работы.

В далекие, теперь уже времена прошлого века, в блоках питания для понижения или повышения напряжения применялись линейные трансформаторы. Диодный мост и электролитический конденсатор сглаживал пульсацию. Далее напряжение стабилизировалось линейными или интегральными стабилизаторами. Вес таких источников питания был достаточно большой, ничуть не меньше были и габариты. Чем большая мощность требовалась от БП, тем в несколько раз был объемнее и тяжелее сам блок питания.

Если заглянуть в современную бытовую технику, то сейчас вы увидите импульсный источник питания, или блок питания – сокращенно ИБП. В таких модулях питания используется в качестве управления специальная микросхема-контроллер Широтно-импульсной модуляции, или сокращенно ШИМ. Здесь мы и поговорим об устройстве и назначении этого элемента.

Преимущества и определения ШИМ-контроллера

ШИМ-контроллер это совокупность нескольких функциональных схем для того чтобы управлять выходными силовыми каскадами, собранными обычно на транзисторах. Управляются они исходя из той информации, которую микросхема ШИМ получает от выходных цепей. В зависимости от тока или выходного напряжения на выходе блока питания ШИМ-контроллер регулирует время открытия ключевого транзистора. Таким образом, получается замкнутый круг. Эта часть блока питания называется обратная связь или ОС.

В литературе и интернет источниках можно встретить случаи, когда ШИМ-контроллерами называют различные генераторы сигналов с регулировкой широты импульса, НО без обратной связи! К таким генераторам (на NE555 и др.) не совсем корректно применять понятие контроллер, скорее регулятор или генератор.

Широтно-импульсная модуляция – это тот метод, когда сигнал модулируется не с помощью изменения амплитуды или частоты, а с помощью длительности импульса. Далее, после интеграции импульсов при помощи LC-фильтров происходит сглаживание модулированного сигнала.

Характеристики ШИМ.

Для Широтно-модулированного сигнала характеристик всего две:

  1. Частота следования импульсов
  2. Скважность импульсов, или коэффициент заполнения. По сути это одно и то же. Разница лишь в обозначении: для скважности -это D, для заполнения используем литеру S. Коэффициент заполнения = единица / период сигнала T

S=1/T

T – Период сигнала

T=1/f

D=T/1=1/S

F – Частота сигнала

Таким образом, коэффициент заполнения ничто иное как интервал от периода сигнала. Отсюда следует что он (коэффициент заполнения) всегда будет меньше единицы, что не скажешь о скважности – она всегда будет больше 1.

Возьмем пример:

Частота сигнала = 50 кГц.

Период сигнала = 20 мкс.

Теперь предположим, что ключ выхода ШИМ открывается на 4 мкс. Коэффициент заполнение составит минус 20%, а скважность будет равна 5.

Конечно же, в расчет необходимо брать конструкцию ШИМ, исходя из количества силовых ключей.

Отличительные особенности импульсных и линейных БП.

Существенным преимуществом импульсных источников питания перед линейными является хороший КПД (около 90%)

Структура ШИМ

Давайте рассмотрим структуру любого ШИМ-контроллера. Хоть в своем огромном семействе разные ШИМ-ы и обладают дополнительными функциональными особенностями, но все же они все похожи.

Заглянув в микросхему, мы увидим полупроводниковый кристалл, в котором находятся следующие функциональные составляющие:

  1. Генератор последовательных импульсов.
  2. Источник опорного напряжения.
  3. Схема обратной связи (ОС), усилитель ошибки.
  4. Генератор прямоугольных импульсов, управляющий транзисторами, которые в свою очередь коммутируют силовые ключевые каскады.

Количество этих ключей, зависит от предназначения самого ШИМ-контроллера. Например, простые обратноходовые схемы построены на 1-м силовом ключе, полу мостовые на 2-х, а мостовые преобразователи на 4-х ключах.

Выбирая ШИМ-контроллер необходимо исходит из того какой ключ используется. Например, если в блоке питания в качестве выходного каскада стоит биполярный транзистор, то подойдет большая часть контроллеров. Связано это с тем, что управлять таким силовым ключом достаточно просто – подавая импульсы на базу транзистора, мы открываем и закрываем его.

А вот если мы будем использовать полевые транзисторы с изолированным затвором (MOSFET) или IGBT транзисторы, то здесь уже немного сложнее. Выходной транзистор-ключ мало того что нужно открыть – путем заряда затвора, так нам его еще надо и закрыть, естественно разряжая затвор ключа. Для таких схем используются соответствующие ШИМ-контроллеры. У них на выходе стоит 2 транзистора – один заряжает затвор ключа, а другой разряжает, замыкая его на землю.

На заметку:

Многие ШИМ-контроллеры совмещаются с силовыми ключами в один корпус. Если этот контроллер для маломощного блока питания, то выходные транзисторы устанавливаются прямо в микросхему контроллера.

В случае же если блок питания достаточно мощный, то интеграция происходит в обратную сторону – микросхема ШИМ-контроллер устанавливается в корпус силового ключа. Такую микросхему легко установить на радиатор. Соответственно количество выводов у такой микросхемы не как у транзистора.

Грубо говоря, ШИМ-контроллер представляет собой  компаратор, на один из входов которого приходит сигнал обратной связи, на другой пилообразный сигнал генератора. Когда первый по амплитуде превышает второй, на выходе формируется импульс.

Тем самым ширина импульса на выходе зависит от соотношения входных сигналов. Предположим, что мы подключили более мощную нагрузку к выходу БП, и напряжение дало просадку. На обратной связи будет тоже падение. Что же произойдет?

В периоде сигнала начнет преобладать пилообразный сигнал, длительность импульсов на выходе увеличится и напряжение компенсируется. Происходит это все в доли секунды.

Частота работы генератора ШИМ-а задается RC-цепью

Пример использования ШИМ-контроллера на базе TL494 – довольно распространённой микросхемы. Далее рассмотрим назначение отдельных выводов этой микросхемы.

Давайте разберем назначение и название этих выводов:

  • Vcc (Ucc, Vss)– вывод питания микросхемы.
  • GND (Ground – земля) – земля или общий провод
  • OUT – выход контроллера. С этого вывода и выходит управляющий сигнал для переключения ключей. Иногда выходные выводы обозначают HO и LO (для полумоста)
  • Vc (Uc) – Вывод контролирующий питание. При пониженном питании возможен перегрев и выход из строя ключей. Контрольный  вывод заблокирует работу контроллера в таком случае.
  • Vref – опорное напряжение, чаще всего на этот вывод вешается конденсатор, соединенный с землей.
  • ILIM – сигнал с измерителя тока. Соединен с обратной связью для ограничения тока.
  • ILIMREF – регулировочный вывод для сработки по току
  • SS – мягкий старт контроллера. Используется для плавного запуска блока питания и выхода в штатный режим работы.
  • RtCt – выводы RC-цепи, которая и задает частоту работы ШИМ.
  • CLOCK – выходной сигнал тактовых синхроимпульсов. Предназначен для синхронизации работы нескольких ШИМ-контроллеров в одной схеме.
  • RAMP – сравнивающий вывод. На нем присутствует пилообразный сигнал генератора и сигнал обратной связи для формирования ШИМ -сигнала.
  • INV и NOINV – входы компаратора, формирующие сигнал усилителя ошибки. От величины напряжения на INV зависит длительность импульса ШИМ.
  • EAOUT – дополнительный выход усилителя ошибки.

Для того чтобы закрепить сказанное выше рассмотрим пару примеров использования ШИМ-контроллеров, а так же их схем включения. Сделаем это на примере микросхем:

Эти микросхемы часто используются в различных блоках питания, в том числе и компьютерных. Когда дело доходит до переделки компьютерного блока питания в лабораторный бп или зарядное устройство для аккумулятора, то, как раз стараются подобрать бп на TL494.

Обзор ШИМ TL494

Технические характеристики ШИМ-контроллера TL494

Ниже на рисунке дана распиновка TL494:

  1. Неинвертирующий вход первого компаратора ошибки
  2. Инвертирующий вход первого компаратора ошибки
  3. Вход обратной связи
  4. Вход регулировки мертвого времени
  5. Вывод для подключения внешнего времязадающего конденсатора
  6. Вывод для подключения времязадающего резистора
  7. Общий вывод микросхемы, минус питания
  8. Вывод коллектора первого выходного транзистора
  9. Вывод эмиттера первого выходного транзистора
  10. Вывод эмиттера второго выходного транзистора
  11. Вывод коллектора второго выходного транзистора
  12. Вход подачи питающего напряжения
  13. Вход выбора однотактного или же двухтактного режима работы микросхемы
  14. Вывод встроенного источника опорного напряжения 5 вольт
  15. Инвертирующий вход второго компаратора ошибки
  16. Неинвертирующий вход второго компаратора ошибки

Обзор микросхемы UC3843

Еще одна популярная микросхема используемая в качестве ШИМ-контроллеров компьютерных и не только блоков питания – это микросхема 3843. распиновка её находится ниже. Как видно, у нее 8 выводов, но функции такие же как у TL949. Можно встретить эту микросхему в 14-выводном корпусе и часть выводов у неё (NC) – то есть не используется.

Рассмотрим назначение выводов:

  1. Вход компаратора (усилителя ошибки).
  2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.
  3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.
  4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.
  5. Общий.
  6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.
  7. Напряжение питания микросхемы.
  8. Выход источника опорного напряжения (5В, 50 мА)

Структура микросхемы UC3843

Можно заметить, что и эта микросхема тоже похожа на все остальные ШИМ-контроллеры.

Простой блок питания на UC3842

Микросхема ШИМ с силовым ключом в одном корпусе

Подобные ШИМ-контроллеры используются как в импульсных блоках питания на базе импульсного трансформатора, так и в DC-DC понижающих или повышающих преобразователях.

Можно привести в пример одну из самых распространенных микросхем в этом сегменте – LM2596. На её базе можно найти большое количество схем преобразователей, в том числе и изображенная ниже.

LM2596 включает в себя все технические решения, описанные выше, плюс в неё еще интегрирован силовой ключ на ток до 3 Ампер.

Структура микросхемы LM2596

Как можно увидеть больших отличий от микросхем, которые мы рассматривали ранее в ней нет.

Еще один пример блока питания для светодиодных лент на ШИМ-контроллере 5L0380R – У неё всего 4 вывода. Как можно заметить в схеме отсутствует силовой ключ. Естественно он в микросхеме, а сама микросхема выполнена в корпусе транзистора и крепится на радиатор.

Микросхема ШИМ 5L0380R

Изучая ШИМ-контроллеры можно сделать несколько выводов: Если мы имеем дело с мощным источником питания и нам необходима достаточная гибкость использования этого контроллера, то такая микросхема как TL494 (и подобные) подходит для таких задач лучше. А если блок питания средней и невысокой мощности, то вполне свою роль выполнят ШИМ-контроллеры с интегрированными в них силовыми ключами. В таких бп нет больших требований к пульсациям и помехам, а выходные цепи можно сгладить фильтрами. Обычно это блоки питания для бытовой техники, светодиодных лент, ноутбуков, зарядных адаптеров.

И напоследок.

Ранее мы уже говорили о том,  что ШИМ-контроллер это механизм, который на базе сформированных импульсов за счет изменения ширины импульсов формирует среднее значение напряжения управляемое с цепей обратной связи. Хочу заметить, что классификация и название у каждого автора могут быть абсолютно разными. ШИМ-контроллером могут называть простой регулятор напряжения. В то же время сам ШИМ-контроллер в блоке питания может быть назван – “блокинг-генератор”, “интегральный субмодуль”, “задающий генератор” От того как его назвал тот или иной автор суть не меняется, но могут возникнуть непонимания и разночтения.

Виды электрических схем блока питания компьютера

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

Кроме этих заявленных величин существует и дополнительное величины:

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.

Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.

ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».

Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.

В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:

  • установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
  • закрепить БП к задней панели системного блока специальными винтами;
  • подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы: 

  • индикатор напряжения;
  • кнопки изменения режима работы вентилятора;
  • переключатель входящего напряжения;
  • USB-порты, встроенные в БП.

В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.

Каждый цвет провода подает определенное напряжение:

  • желтый — +12 В;
  • красный — +5 В;
  • оранжевый — +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.

Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.

Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.

Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Советы по выбору источника

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.

Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

Что такое дежурка и ШИМ? Самостоятельный ремонт блока питания компьютера. | mdex-nn.ru

Неисправные блоки питания при ремонте компьютеров, как правило просто заменяют новыми. Дело в том, что стоимость ремонта компьютерных блоков питания начального уровня сопоставима, а то и превосходит покупку нового, потому и нет особого резона заморачиваться. Но бывают и исключения.

К примеру, в свободной продаже попросту не найти блоки питания для корпусов формата mini-ITX. Я уже касался этой темы когда рассказывал про большие проблемы с маленькими mini-ITX и о самостоятельный ремонте импульсного блока питания компьютера.

Прошлый ремонт такого нестандартного блока питания CFI-S150X оказался довольно простым, достаточно было заменить неисправный варистор, который выбило в результате скачка напряжения. Он прекрасно показал себя в деле, защитив блок питания компьютера от выгорания. Если слово «варистор» вам не знакомо, оправляю вас к предыдущей статье, дабы не повторяться.

В этот раз мне в руки попался блок питания POWER MAN IP-AD160-2 (используется в корпусах Inwin) и тут всё оказалось гораздо сложнее, особенно для меня, как начинающего радиолюбителя. Взялся за данный ремонт на ради денег, а чтобы попрактиковаться и прокачать собственные навыки.

Опишу проблему. При подключении блока питания к сети (всегда подключаем неисправное устройство к сети через лампочку), дежурка +5VSB стабильно показывает 5.06V, то есть как и должно быть:

Проверка дежурного напряжения 5V компьютерного блока питания

После запуска блок питания (замыкаем зелёный контакт PS-ON на общий чёрный провод) дежурка начинает «скакать» (0…3.9V). На линиях 3.3V, 5V и 12V наблюдаются аналогичные пляски, но в других диапазонах. То есть блок питания пытается запуститься и тут же уходит в защиту, и так до бесконечности. Чтобы было немного понятнее что и где мы меряем, приведу картинку с распиновкой разъёма ATX:

распиновка контактов блока питания ATX

Что такое дежурка и ШИМ?

«Дежуркой» называют дежурное питание (+5V), которое всегда присутствует на материнской плате и используется для питания схемы включения (свечение зелёного светодиода на материнской плате компьютера показывает, что на неё подаётся дежурное напряжение с блока питания).
ШИМ — это аббревиатура, обозначающая Широтно Импульсную Модуляцию. В блоке питания используется микросхема, для управления рабочими напряжениями 3.3V, 5V и 12V и там применена данная технология, поэтому на сленге её просто называют ШИМ.

В данном блоке питания используется микросхема ШИМ CM6903AG, супервизор WT7510, который следит за сигналом PS_ON и руководит включением/выключением БП, а дежурка построена на контроллере ICE3A1065LJ. Так как блок питания уже не первой свежести и в принципе работает, то подозрение пало на электролиты. Даже если они выглядят вполне нормальными (как в моём случае), это ещё ничего не значит.

В импульсных блоках питания не малую роль играет ещё такая характеристика конденсаторов, как ESR (Equivalent Series Resistance). Об этом расскажу отдельно, в одной из следующих статей, а также о новом тестере транзисторов и измерите ESR с Aliexpress.

ESR тестера у меня пока нет, потому на всякий случай заменил все электролиты основной платы на новые. Изменений никаких. Уже отчаявшись, решил посмотреть дополнительную плату, на которой собрана дежурка и заменить мелкие электролиты (они редко выходят из строя). Тут-то и выявилась причина неисправности — конденсатор на 100mF 25V, стоящий в цепи ШИМа на дополнительной плате.

Причина неисправности блока питания IP-AD160-2

Заменил его на 100mF 35V и блок питания благополучно заработал. Пока это был мой самый сложный ремонт, потому получил огромное удовольствие от самого процесса.

Конденсатор 100mF 25V

Подписывайтесь на канал Яндекс. Дзен и узнавайте первыми о новых материалах, опубликованных на сайте.

ЕСЛИ СЧИТАЕТЕ СТАТЬЮ ПОЛЕЗНОЙ,
НЕ ЛЕНИТЕСЬ СТАВИТЬ ЛАЙКИ И ДЕЛИТЬСЯ С ДРУЗЬЯМИ.
https://mdex-nn.ru/page/remont-ip-ad160-2.html

Импульсные источники питания для навигационного компьютера Apollo

Недавно мы восстановили навигационный компьютер Apollo, революционный компьютер, который помог добраться до Луны и приземлиться на ее поверхность. В то время, когда большинство компьютеров заполняло комнаты, компьютер Apollo Guidance Computer (AGC) занимал всего лишь кубический фут. В этом сообщении блога обсуждаются небольшие, но сложные импульсные блоки питания, которые помогли сделать AGC компактным. достаточно, чтобы поместиться на борту космического корабля.

Внутри навигационного компьютера Apollo.Источники питания — это спутанные провода слева.

На фотографии выше показан компьютер управления Apollo после разделения двух лотков. Лоток A слева содержит логические и интерфейсные модули, а лоток B справа — схему памяти. У AGC есть два источника питания в лотке A слева: источник питания + 4 В и источник питания + 14 В; на фото блоки питания выглядят как путаница проводов. Логическая схема, полностью построенная из вентилей ИЛИ-НЕ, питалась от 4 вольт.Схема интерфейса и память использовали источник питания 14 В.

Космический корабль генерировал 28 вольт от топливных элементов, которые объединяли водород и кислород для производства воды и электричество.3 Задача источников питания состояла в том, чтобы преобразовать 28 вольт космического корабля в 4 и 14 вольт, необходимые для компьютер.2 Блок питания на 4 В может выдавать около 10 ампер (т. Е. 40 Вт), а блок питания на 14 В может выдавать около 5 ампер (т. Е. 70 Вт) .4 Таким образом, блоки питания примерно эквивалентны зарядным устройствам для ноутбуков (хотя зарядное устройство для ноутбуков работает с более сложными напряжениями в сети переменного тока).

Модуль питания перед АРУ. Модуль в позиции A30 подает +14 вольт, а (идентичный) модуль в позиции A31 обеспечивает +4 вольт.

Источники питания, как и другие нелогические модули AGC, были построены с строительство из дровяной древесины. В этом методе высокой плотности цилиндрические компоненты вставлялись в отверстия в модуле, проходя через модуль с выводами с обеих сторон. В левой части фото ниже показаны резисторы, конденсаторы и диоды.Из-за конструкции из дров, компоненты не видны, за исключением того, что концы их выводов протыкают отверстия. Двухточечная проводка соединяла компоненты сварными соединениями. (Другая сторона модуля аналогична, соединяя другие концы компонентов.) Блестящий прямоугольник справа — это реле, которое используется для отключения питания в режиме ожидания. Под реле видны концы больших конденсаторов фильтра.

Деревянная конструкция в блоке питания.Слева компоненты монтируются вертикально через модуль, с приварной разводкой с двух сторон. Металлический ящик справа — реле. Под реле видны концы конденсаторов фильтра.

Конструкция из кордового дерева использовалась для высокой плотности в приложениях от авиакосмической отрасли до компьютера Cray CDC 6600. Во время полета проводка AGC была покрыта эпоксидной смолой, защищающей ее от вибрации.

Поскольку блоки питания должны были быть легкими и эффективными, они были импульсными блоками питания, что было необычно. технология для того времени.В то время в большинстве компьютеров использовались линейные источники питания, которые были проще, но слишком неэффективны для АРУ из-за избыточного напряжения. превращается в отходящее тепло. Импульсный источник питания, с другой стороны, включает и выключает входное напряжение с высокой частотой. Это дает желаемое выходное напряжение с очень небольшими потерями энергии.

Источники питания AGC использовали общую схему переключения, называемую понижающим преобразователем, которая преобразует входное напряжение. на более низкое напряжение. На приведенной ниже схеме показаны основные компоненты: переключатель (транзистор), катушка индуктивности, диод и конденсатор. Ключевой идеей является то, что если переключатель замкнут на большее время, большее входное напряжение появится на нагрузке. Таким образом, выходное напряжение контролируется временем переключения. Катушка индуктивности накапливает энергию и высвобождает ее при разомкнутом переключателе, обеспечивая относительно стабильный выходной сигнал.

Понижающий преобразователь быстро переключается между включенным и выключенным состоянием. Когда он включен, ток течет от источника напряжения (V) через переключатель и индуктивность к нагрузке (справа). Когда переключатель разомкнут, энергия, накопленная в катушке индуктивности, продолжает обеспечивать ток нагрузке через диод.(Источник: Сирил Баттай, CC BY-SA 2.5).

Импульсный источник питания требует сложного механизма управления для включения и выключения в нужное время. В AGC используется метод, называемый ШИМ (широтно-импульсная модуляция), при котором питание включается и выключается с фиксированной частота (например, 20 килогерц), но изменяя долю времени, в течение которого питание включено, чтобы регулировать напряжение.

Схема ниже показывает источник питания AGC. (Не беспокойтесь о прочтении подробностей; щелкните, чтобы увеличить версию.) Сам понижающий преобразователь (обведен в правом нижнем углу) имеет ожидаемый переключающий транзистор, диод, катушку индуктивности и конденсаторы.Однако в блоке питания есть намного больше компонентов для реализации схемы управления ШИМ.

Схема блока питания АРУ. Выделены основные сигналы: вход 28 В (красный), выход 4 В (оранжевый), опорное напряжение (зеленый), выход компаратора для управления PWM (фиолетовый), и выход ШИМ (коричневый). (источник)

Подводя итог работе источника питания, 28 вольт (красный) подается вверху слева и фильтруется. Понижающий преобразователь в выходной цепи (справа) снижает напряжение до 4 вольт (оранжевый). На стороне управления (слева) выходное напряжение используется для обратной связи.Двухтранзисторный компаратор (внизу слева) сравнивает выходное напряжение с опорным напряжением (зеленый), установленным стабилитроном и цепью резисторов. Выход компаратора (фиолетовый) проходит через схему управления ШИМ, где он изменяет ширину импульсов. (коричневый), произведенный схемой ШИМ. Эти импульсы приводят в действие переключающий транзистор в понижающем преобразователе, замыкая цепь обратной связи. Тактовый сигнал компьютера обеспечивает синхронизацию схемы ШИМ.7

Астронавты взаимодействовали с AGC через дисплей / клавиатуру (DSKY).Кнопка STBY (внизу справа) переводит компьютер в режим ожидания, на что указывает световой индикатор STBY (слева). Фото с сайта Virtual AGC.

Блок питания также имеет резервную цепь. При нажатии клавиши STBY на дисплее / клавиатуре (DSKY) реле отключит большую часть питания компьютера. Это снижает энергопотребление, когда компьютер не нужен 8

На схеме ниже показана верхняя часть модуля блока питания с обозначенными основными компонентами. Обратите внимание на большой размер транзисторов, катушек индуктивности и конденсаторов фильтра по сравнению с плотно упакованными схема дрова слева. Переключающий транзистор для понижающего преобразователя имеет диаметр почти дюйм.

Основные компоненты источника питания AGC. Компоненты понижающего преобразователя намного крупнее схемы управления.

Транзисторы 1960-х годов едва могли поддерживать импульсные источники питания, так как они требовали силовой транзистор, который мог работать как на высокой скорости, так и на высокий ток, что было сложно в то время. (Современные транзисторы (MOSFET) дешевы и могут работать с гораздо более высокими напряжениями, что приводит к повсеместному распространению недорогих зарядных устройств для телефонов и ноутбуков, которые отключиться от розетки переменного тока.) Переключающий транзистор требовал сильноточного управляющего сигнала, который обеспечивался тремя управляющими транзисторами (в «дополнительной конфигурации Дарлингтона»).

Крупный план транзисторов в блоке питания. Большой транзистор справа — это сильноточный переключающий транзистор. Для его управления потребовались три транзистора слева.

Мы тщательно протестировали компоненты AGC перед включением системы. Для блока питания сначала проверили все танталовые конденсаторы. поскольку танталовые конденсаторы склонны к короткому замыканию.Мы обнаружили, что все конденсаторы были в хорошем состоянии с надлежащей емкостью. В этом отличие от современных конденсаторов, которые часто дают утечку или выходят из строя через несколько лет. НАСА использовало дорогие конденсаторы аэрокосмического класса и просвечивало каждый из них на предмет неисправностей, и это имело большое значение.

Подключение каждого блока питания для тестирования (см. Ниже) оказалось более сложным, чем вы могли ожидать. В AGC использовались два идентичных источника питания на 4 или 14 вольт. Выходное напряжение выбиралось с помощью разводки на задней панели, соединяющей разные резисторы в цепи резисторов обратной связи.Мы воспроизвели эти подключения на макете, а также подключили вход и выход. Нагрузкой служили некоторые высокомощные резисторы (внизу справа).

Установка, которую мы использовали для тестирования блока питания. Подключения были сделаны к контактам в нижней части модуля. Эти контакты подключают модуль к остальной части АРУ. На этом изображении вы можете увидеть белые провода на боковой стороне модуля, которые соединяли схему наверху модуля с контактами внизу.

Мы запитали модули AGC напряжением 28 В, используя источник с ограничением тока, чтобы ограничить возможное повреждение. от любых неисправностей.Мы провели измерения и обнаружили, что источник питания 4 В выдавал 4,09 вольт, а источник питания 14 В — 14,02 вольт. Качество питания было хорошим, пульсации около 30 мВ. Несколько удивило то, что оба блока питания по прошествии 50 лет проработали безупречно.

Заключение

В навигационном компьютере Apollo использовались передовые импульсные блоки питания, которые были легкими и эффективными. В то время как импульсные источники питания были экзотикой в ​​1960-х годах, улучшенные полупроводники сделали их дешевыми и повсеместно. В настоящее время переключения транзистора, опорное напряжение с высокой точностью, и управляющая логика могут быть объединены на одном кристалле. Современный эквивалент блока питания AGC: крошечный понижающий преобразователь на 5 А за 1,50 доллара на eBay (ниже). Хотя я бы не поверил, что этот преобразователь попадет на Луну, не говоря уже о том, что он будет работать через 50 лет, он иллюстрирует резкое улучшение коммутируемой мощности. поставка техники. (Я уже писал об истории импульсных источников питания.)

Современный понижающий преобразователь на 5 А компактен и стоит 1 доллар.50.

Чтобы узнать больше о нашей реставрации AGC, см. Серию видеороликов Марка по AGC; на видео ниже показано, как мы тестируем блоки питания. Я анонсирую свои последние сообщения в блоге в Твиттере, так что подписывайтесь на меня @kenshirriff, чтобы увидеть будущие статьи. Еще у меня есть RSS-канал. Спасибо Майку Стюарту за фотографии.

Примечания и ссылки

Как создать усилитель мощности класса D

Мощный усилитель класса D — соберите его сами и поразитесь его эффективности. Радиатор едва нагревается!

Вы всегда хотели создать свой собственный усилитель мощности звука? Электронный проект, в котором вы не только видите результаты, но и слышите их?

Если ваш ответ «да», вам следует продолжить чтение этой статьи о том, как создать свой собственный усилитель класса D.Я объясню вам, как они работают, а затем шаг за шагом проведу вас, чтобы волшебство произошло самостоятельно.

Теоретические основы

Что такое усилитель мощности звука класса D? Ответ может быть длинным предложением: это коммутирующий усилитель. Но чтобы полностью понять, как он работает, мне нужно научить вас всем его закоулкам и закоулкам.

Начнем с первого предложения. Традиционные усилители, такие как класс AB, работают как линейные устройства. Сравните это с переключающими усилителями, так называемыми потому, что силовые транзисторы (MOSFET) действуют как переключатели, меняя свое состояние с ВЫКЛ на ВКЛ.Это обеспечивает очень высокий КПД, до 80 — 95%. Благодаря этому усилитель не выделяет много тепла и не требует большого радиатора, как это делают линейные усилители класса AB. Для сравнения, усилитель класса B может достичь максимальной эффективности только 78,5% (теоретически).

Ниже вы можете увидеть блок-схему базового усилителя ШИМ класса D, точно такого же, как тот, который мы строим.

Входной сигнал преобразуется в сигнал прямоугольной формы с широтно-импульсной модуляцией с помощью компаратора.В основном это означает, что входной сигнал кодируется в рабочем цикле прямоугольных импульсов. Прямоугольный сигнал усиливается, а затем фильтр нижних частот дает более мощную версию исходного аналогового сигнала.

Существуют и другие методы преобразования сигнала в импульсы, такие как ΔΣ (дельта-сигма) модуляция, но для этого проекта мы будем использовать ШИМ.

Широтно-импульсная модуляция с использованием компаратора

На графике ниже вы можете увидеть, как мы преобразуем синусоидальный сигнал (входной) в прямоугольный сигнал, сравнивая его с треугольным сигналом.

Нажмите для увеличения

На положительном пике синусоидальной волны коэффициент заполнения прямоугольного импульса составляет 100%, а на отрицательном пике — 0%. Фактическая частота треугольного сигнала намного выше, порядка сотен кГц, так что мы можем позже извлечь наш исходный сигнал.

Настоящий фильтр, а не идеальный, не имеет идеального «кирпичного» перехода от полосы пропускания к полосе задерживания, поэтому мы хотим, чтобы треугольный сигнал имел частоту как минимум в 10 раз выше 20 кГц, что соответствует верхнему уровню человеческого слуха. предел.

Силовой каскад — все кажется хорошим в теории

Теория — это один аспект, а практика — другой. Если мы захотим применить предыдущую блок-схему на практике, мы столкнемся с некоторыми проблемами.

Две проблемы — это время нарастания и спада устройств в силовом каскаде и тот факт, что мы используем транзистор NMOS для драйвера верхнего плеча.

Поскольку переключение полевых МОП-транзисторов происходит не мгновенно, а больше похоже на подъем и спуск с холма, время включения транзисторов будет перекрываться, создавая низкоомное соединение между положительной и отрицательной шинами питания.Это вызывает прохождение сильноточного импульса через наши полевые МОП-транзисторы, что может привести к отказу.

Чтобы предотвратить это, нам нужно добавить некоторое время запаздывания между сигналами, которые управляют полевыми МОП-транзисторами с высокой и низкой стороны. Один из способов добиться этого — использовать специализированный драйвер MOSFET от International Rectifier (Infineon), например IR2110S или IR2011S. Кроме того, эти ИС обеспечивают повышенное напряжение затвора, необходимое для высокоскоростного NMOS.

Фильтр нижних частот

Для стадии фильтрации один из лучших способов сделать это — использовать фильтр Баттерворта.

Фильтры этого типа имеют очень ровный отклик в полосе пропускания. Это означает, что сигнал, которого мы хотим добиться, не будет слишком сильно ослаблен.

Мы хотим отфильтровать частоты выше 20 кГц. Частота среза рассчитывается как -3 дБ, поэтому мы хотим, чтобы она была немного выше, чтобы не фильтровать звуки, которые мы хотим слышать. Лучше всего выбирать от 40 до 60 кГц. Фактор качества \ [Q = \ frac {1} {\ sqrt {2}} \].

Это формулы, используемые для расчета значений индуктивности и конденсатора:

\ [L = \ frac {R_ {L} \ sqrt {2}} {2 \ cdot \ pi \ cdot f_ {c}} \]

\ [C = \ frac {1} {2 \ sqrt {2} \ cdot \ pi \ cdot f_ {c} \ cdot R_ {L}} \]

Создание усилителя своими руками (Luke-The-Warm)

Теперь, когда мы знаем, как работает усилитель класса D, давайте построим его.

Прежде всего, я назвал этот усилитель Luke-The-Warm, потому что радиатор едва нагревается, в отличие от усилителя класса AB, у которого радиатор может сильно нагреваться, если не будет активно охлаждаться.

Ниже вы можете увидеть схему разработанного мной усилителя. Он основан на эталонном дизайне IRAUDAMP1 от International Rectifier (Infineon). Основное отличие состоит в том, что вместо ΔΣ-модуляции у меня используется ШИМ.

Нажмите для увеличения

Теперь я расскажу вам о некоторых вариантах дизайна и о том, как компоненты взаимодействуют друг с другом. Начнем с левой стороны.

Входная схема

Для входной схемы я решил, что лучше всего использовать фильтр верхних частот, а затем фильтр нижних частот.Это так просто.

Генератор треугольников

В качестве генератора треугольников я использовал LMC555, который представляет собой КМОП-вариант знаменитого чипа 555. Зарядка и разрядка конденсатора дает красивый треугольник, который не идеален (он растет и спадает экспоненциально), но если время нарастания и спада равны, он работает отлично.

Значения резистора и конденсатора устанавливают частоту примерно 200 кГц. Если значение выше, то мы столкнемся с проблемами, потому что компаратор и драйвер MOSFET не самые быстрые устройства.

Компаратор

В качестве компаратора вы можете использовать любой компонент, который вам нужен — он просто должен быть быстрым. Я использовал то, что у меня было, LM393AP. Время отклика 300 нс — не самый быстрый и, безусловно, можно улучшить, но он выполняет свою работу. Если вы хотите использовать другие микросхемы, просто убедитесь, что контакты совпадают, иначе вам придется изменить конструкцию печатной платы.

Теоретически операционный усилитель можно использовать в качестве компаратора, но на самом деле операционные усилители предназначены для других типов работы, поэтому убедитесь, что вы используете настоящий компаратор.

Поскольку нам нужны два выхода компаратора, один для драйвера верхнего плеча и один для драйвера нижнего уровня, я решил использовать LM393AP. Это два компаратора в одном корпусе, и мы просто меняем входы для второго компаратора. Другой подход — использовать компаратор с двумя выходами, например LT1016 от Linear Technology. Эти устройства могут предложить несколько улучшенную производительность, но они также могут быть более дорогими.

Эти компараторы питаются от биполярного источника питания 5 В, обеспечиваемого двумя стабилитронами, которые регулируют напряжение от основного источника питания, которое составляет ± 30 В.

Драйвер MOSFET

Для драйвера MOSFET я выбрал IR2110. Альтернативой является IR2011, который используется в эталонном дизайне. Эта интегральная схема обязательно добавляет то мертвое время, о котором я говорил в предыдущем разделе.

Поскольку вывод VSS микросхемы подключен к отрицательному источнику питания, нам необходимо выровнять смещение сигналов от компаратора. Это делается с помощью транзистора PNP и диодов 1N4148.

Для управления полевыми МОП-транзисторами мы запитываем IR2110 12 В относительно отрицательного напряжения источника питания; это напряжение генерируется с помощью BD241 в сочетании с стабилитроном 12 В. Полевой МОП-транзистор верхнего плеча должен управляться напряжением затвора, которое примерно на 12 В выше коммутирующего узла VS. Для этого требуется напряжение выше положительного напряжения питания; IR2110 обеспечивает это напряжение возбуждения с помощью конденсатора начальной загрузки C10.

Фильтр

Наконец-то фильтр.Частота среза составляет 40 кГц, а сопротивление нагрузки — 4 Ом, потому что у нас есть динамик на 4 Ом (значения, используемые здесь, также будут работать с динамиком на 8 Ом, но лучше всего настроить фильтр в соответствии с динамиком. твой выбор). Имея эту информацию, мы можем рассчитать номиналы индуктора и конденсатора:

\ [L = \ frac {4 \ sqrt {2}} {2 \ cdot \ pi \ cdot 40000} H = 22,508 \ mu H \]

Мы можем безопасно округлить до 22 мкГн.

\ [C = \ frac {1} {2 \ sqrt {2} \ cdot \ pi \ cdot 40000 \ cdot 4} F = 0.703 \ mu H \]

Ближайшее стандартное значение — 680 нФ.

Примечания к сборке

Теперь, когда вы знаете все о внутреннем устройстве, все, что вам нужно сделать, это внимательно прочитать следующие несколько строк, загрузить файлы ниже, купить необходимые компоненты, протравить печатную плату и начать сборку.

Фильтр низких частот

Для фильтра нижних частот вы можете использовать конденсатор 680 нФ, чтобы максимально приблизиться к расчетному значению, но вы также можете без проблем использовать конденсатор 1 мкФ (я спроектировал печатную плату так, чтобы вы могли использовать два конденсатора параллельно смешивать и сочетать).

Эти конденсаторы должны быть полипропиленовыми или полиэфирными — в общем, использование керамических конденсаторов для звуковых сигналов — не лучшая идея. И вам нужно убедиться, что конденсаторы, которые вы используете для фильтрации, рассчитаны на высокое напряжение, по крайней мере, 100 В переменного тока (больше не повредит). Остальные конденсаторы в конструкции также должны иметь соответствующее номинальное напряжение.

Я сконструировал этот усилитель для выходной мощности около 100–150 Вт. Вам следует использовать биполярный источник питания с шинами ± 30 В.Вы можете установить более высокое значение, но для напряжений около ± 40 В необходимо убедиться, что вы изменили номиналы резисторов R4 и R5 на 2K2.

Не обязательно, но настоятельно рекомендуется использовать радиатор для BD241C, поскольку он сильно нагревается.

МОП-транзисторы

Что касается силовых полевых МОП-транзисторов, я предлагаю использовать IRF540N или IRFB41N15D. Эти полевые МОП-транзисторы имеют низкий заряд затвора для более быстрого переключения и низкое R DS (включено) для снижения энергопотребления.Вам также необходимо убедиться, что MOSFET имеет соответствующее максимальное значение V DS (напряжение сток-исток). Вы можете использовать IRF640N, но R DS (on) значительно выше, что приводит к усилителю с более низким КПД. Вот таблица, в которой сравниваются эти три полевых МОП-транзистора:

МОП-транзистор Макс В DS (В) I D (А) Qg (нКл) R DS (вкл. ) (Ом)
IRFB41N15D 150 41 72 0.045
IRF540N 100 33 71 0,044
IRF640N 200 18 67 0,15
Индуктор

Теперь индуктор. Вы можете купить уже сделанный, но я бы посоветовал вам намотать свой собственный — в конце концов, это проект DIY.

Купите тороид Т106-2. Это должен быть железный порошок; феррит может работать, но для этого потребуется зазор, иначе он пропитается.Используя указанный тороид, намотайте 40 витков медного эмалированного провода диаметром 0,8-1 мм (AWG20-18). Вот и все. Не волнуйтесь, если это не идеально — просто затяните.

Резисторы

Наконец, все резисторы, если не указано иное (R4, R5), имеют номинал 1/4 Вт.

Тестирование

Когда я проектировал печатную плату, я сделал ее так, чтобы ее было очень легко протестировать. Входной сигнал имеет собственный разъем и две плоские клеммы для заземления: одну для источника питания и одну для динамика.

Чтобы удалить гудение (50/60 Гц от частоты сети), я использовал конфигурацию «звезда-земля»; это означает подключение всех заземлений (заземления усилителя, заземления сигнала и заземления динамика) в одной и той же точке, предпочтительно на печатной плате источника питания, после схемы выпрямителя.

Полный список материалов можно найти в файлах ниже, где вы также можете найти файлы печатной платы как в формате PDF, так и в виде файлов KiCAD.

Goodies.zip

Заключительные мысли

Я надеюсь, что информации в этой статье достаточно для того, чтобы вы смогли создать свой собственный усилитель мощности звука.Я надеюсь, что это также вдохновит вас на создание собственного усилителя.

Есть много вещей, которые можно улучшить в этом проекте. У вас есть вся необходимая информация и файлы, но вам не нужно следить за ними до буквы.

Вы можете использовать SMD-компоненты, улучшить схему компаратора, используя дополнительный выход, или попробовать IR2011S вместо IR2110. Просто запустите этот паяльник, протравите печатную плату и приступайте к работе.Неважно, не получится ли с первого раза.

Все дело в методе проб и ошибок. Когда вы наконец услышите четкий звук, исходящий из динамика, это того стоит.

Если у вас возникли проблемы с вашей сборкой, оставьте комментарий здесь или разместите сообщение на форуме, используя как можно больше информации. Мы будем работать над этим.

Попробуйте этот проект сами! Получите спецификацию.

Схема

SMPS: какую частоту переключения использовать? | Блог о проектировании печатных плат

Захария Петерсон

| & nbsp 1 декабря 2019 г.

Блок питания на сетевом коммутаторе

Разработчики силовой электроники и импульсных источников питания (SMPS) должны знать, что работа с более высокими частотами переключения может привести к более высоким потерям переключения в вашей системе.Однако стремление к миниатюризации источников питания и компонентов, которые в них входят, вынуждает разработчиков работать с более высокими частотами переключения в своих схемах SMPS. Это создает проблемы, когда коммутационные потери и шум могут стать серьезными в вашей системе.

Как и большинство инженерных решений, выбор правильной частоты переключения представляет собой набор компромиссов, которые включают уменьшение размера компонентов, снижение потерь и удаление шума; достичь всех трех одновременно может быть сложно или невозможно. Тем не менее, с помощью некоторых разумных решений по компоновке печатной платы вы можете сбалансировать потребность в более высоких частотах и ​​фронтах в цепи SMPS с необходимостью свести шум к минимуму.

Оптимизация частоты, потерь и шума в цепи SMPS

Для того, чтобы SMPS мог работать с меньшими компонентами, импульсный ШИМ-сигнал должен работать с более высокой частотой. Выходная катушка индуктивности, конденсатор и диод предназначены для пропускания мощности постоянного тока через выход при фильтрации шума переключения, любых остаточных пульсаций входного напряжения (например,g., от выпрямительной схемы), и любые паразитные гармоники, которые могут присутствовать на входе. Другими словами, выходной сигнал действует как фильтр нижних частот (на самом деле это полосовой фильтр RLC) в пределах определенной полосы пропускания. Мы можем определить частоту спада для этого фильтра (не путать с частотой излома цифрового сигнала переключения).

Чтобы предотвратить распространение шума переключения ШИМ через выход, частота переключения ШИМ должна быть больше, чем частота спада схемы. Независимо от того, работаете ли вы с понижающей или повышающей топологией в схеме SMPS, частота спада на выходе будет обратно пропорциональна выходной емкости и индуктивности. Другими словами, вы можете использовать меньшие компоненты в вашей цепи SMPS, если вы используете достаточно высокую частоту переключения PWM.

Схема понижающего импульсного ИИП

Обычно предполагается, что частота переключения сигнала ШИМ в вашей цепи SMPS будет основным определяющим фактором потерь, которые затем преобразуются в тепло.Эта проблема с использованием более высокой частоты верна, но частота — не единственный параметр, определяющий потери в полевом МОП-транзисторе. В действительности, с силовыми полевыми МОП-транзисторами, используемыми в схемах SMPS, скорость фронта является важным фактором, определяющим потери на нагрев в цепи SMPS.

Ни один элемент схемы не является идеальным, но мы склонны относиться к ним как к таковым, когда это неуместно. То же самое относится к MOSFET, показанному выше. Когда сигнал ШИМ падает до 0 В, полевой МОП-транзистор может не отключиться полностью и продолжать проводить, когда частота фронта слишком низкая.Если вы увеличите частоту фронта ШИМ-сигнала, полевой МОП-транзистор может полностью переключиться, и в выключенном состоянии он будет проводить меньше. Это фактически снижает потери мощности, даже если частота переключения установлена ​​на более высокое значение.

Комбинация более высокой частоты ШИМ и более высокой скорости фронта ШИМ позволяет использовать меньшие компоненты в цепи SMPS. Поскольку потери мощности (т.е. тепловыделение) ниже, можно использовать радиатор меньшего размера. Однако более высокочастотный ШИМ-сигнал излучает сильно, а более высокая частота фронтов приводит к переходной характеристике в схеме.Такое поведение полностью связано с паразитной емкостью и индуктивностью на уровне корпуса MOSFET и платы. Вам необходимо убедиться, что ваша схема SMPS построена таким образом, чтобы паразитная индуктивность была минимальной.

Уменьшите всплески шума SMPS с помощью интеллектуального выбора макета

Паразитная индуктивность в цепи SMPS (которая включает в себя PDN ниже по потоку) будет определять размер скачка напряжения в цепи SMPS. Паразитная емкость также способствует скачкам напряжения / тока в цепи SMPS, но это не доминирует, пока вы не работаете на уровнях кВ.Этот конкретный скачок напряжения из-за паразитной индуктивности занимает контуры схемы в вашей схеме SMPS, что может привести к перегрузке компонентов до точки отказа.

Если вы используете более высокую скорость фронта, вы вызовете больший переходный ток в цепи SMPS. Даже относительно короткий след (несколько мм) на FR4 стандартной толщины будет иметь паразитную индуктивность ~ 10 нГн. Быстрый нарастающий фронт сигнала ШИМ с током включения в несколько ампер может вызвать всплеск в несколько вольт. Со временем это вызывает нагрузку на компоненты и приводит к отказу ИИП.

Благодаря более высокой частоте переключения и более высокой скорости фронта ШИМ вы можете использовать меньшие компоненты, чем эта катушка индуктивности и эти конденсаторы.

Преодоление этой проблемы может быть трудным, поскольку требует устранения паразитных факторов в цепи SMPS. Типичная стратегия при проектировании одной из этих схем состоит в том, чтобы запустить моделирование из вашей схемы для проверки функциональности с последующим тестированием после создания прототипа. Надеюсь, с помощью изложенных здесь рекомендаций вы сможете уменьшить количество запусков прототипа, необходимых для получения работающего устройства.

Инструменты проектирования в Altium Designer® идеально подходят для проектирования схемы SMPS и создания надежной компоновки, которую можно использовать для изготовления и сборки. С помощью инструментов моделирования перед макетом и после макета вы можете изучить свою конструкцию перед тем, как перейти к производству. Теперь вы можете загрузить бесплатную пробную версию Altium Designer и узнать больше о лучших в отрасли инструментах компоновки, моделирования и планирования производства. Обратитесь к эксперту Altium сегодня, чтобы узнать больше.

Конструкция сверхпроводящей системы электропитания вигглера для HEPS-TF

Сверхпроводящие магниты очень чувствительны к колебаниям тока, и чрезмерные колебания тока могут привести к потере сверхпроводящей катушки сверхпроводимости.Это серьезно влияет на нормальную работу сверхпроводящих магнитов и даже разрушает их. Следовательно, строго требуются стабильность выходного тока, пульсации, точность регулировки и способность динамического отклика сверхпроводящего источника питания возбуждения. Эти приложения требуют, чтобы выходной ток источника питания имел высокую стабильность и мог быстро реализовать защиту от перегрузки. Максимальный рабочий ток основной катушки сверхпроводящего магнита вигглера 3W1 составляет 400 А, энергия магнита — 288 кДж, индуктивность — 3.6 H. Схема рассеяния энергии схемы защиты от гашения интегрирована в сверхпроводящий источник питания возбуждения. После гашения источник питания быстро отключается, а цепь рассеивания энергии включается через переключатель IGBT [11]. Выдерживаемое напряжение IGBT превышает 1500 В, а напряжение на обоих концах катушки может поддерживаться на уровне 1000 В во время процесса ослабления тока. Основные технические характеристики схемы защиты от тушения приведены в таблице 2.

Таблица 2 Основные технические характеристики схемы защиты от тушения

Когда схема защиты от гашения получает сигнал неисправности от схемы обнаружения, схема защиты от гашения должна за очень короткое время снизить ток в сверхпроводящей катушке до безопасного значения тока. Этот процесс выполняется путем включения резисторов для извлечения энергии и подключения ломовой цепи и одновременного отключения питания через систему защиты от гашения.Принципиальная схема униполярной схемы защиты от тушения (QPA) показана на рис. 4.

Рис. 4

Принципиальная схема униполярной схемы закалочной защиты

Когда источник питания получает сигнал гашения, IGBT отключается в шкафу выделения энергии. Энергия в катушке высвобождается через два разных контура высвобождения энергии, а именно коробку гашения и коробку высвобождения энергии, чтобы быстро высвободить энергию и защитить катушку. На этом этапе SCR закрыт.Если IGBT QPA не включается вовремя, резервная схема SCR также может реализовать выделение энергии. После выключения IGBT батарея накопительных конденсаторов заряжается до 1100 В, а затем энергия сверхпроводящей катушки высвобождается за счет быстрой проводимости. Напряжение холостого хода 1100 В может не только предотвратить неправильное срабатывание тринистора, но и обеспечить своевременное выделение энергии, тем самым защищая катушку. Принципиальная схема цепи резервного SCR показана на рис. 5.

Рис.5

Принципиальная схема цепи резервного SCR

Разработка силовой электроники

с помощью NI Multisim

В Multisim мы добавили большое количество компонентов, которые считаются строительными блоками любой силовой цепи. В этом разделе эти части рассматриваются более подробно

Трансформаторы

Этот компонент основан на общей модели, которую можно настроить для различных приложений. Он реализован с использованием концептуального магнитного сердечника и строительных блоков катушки без сердечника, а также резисторов и индукторов.Используя этот трансформатор, вы можете моделировать физические эффекты, такие как нелинейное магнитное насыщение, потери в первичной и вторичной обмотке, индуктивности первичной и вторичной утечки и геометрические размеры сердечника.

Все эти возможности моделирования дают Multisim большое конкурентное преимущество перед другими инструментами. Трансформатор также позволяет моделировать несколько обмоток.

Переключатели

База данных

Multisim включает множество моделей переключателей MOSFET и IGBT от ведущих производителей полупроводников, таких как NXP, International Rectifier и Texas Instruments. Модели предоставлены производителем и проверены командой Multisim R&D. NI налаживает прочные отношения с этими партнерами для постоянного улучшения базы данных Multisim.

Также Multisim поставляется с более чем 500 новыми полевыми МОП-транзисторами Infineon с тремя уровнями сложности модели для сложных энергетических приложений, таких как тепловое моделирование.

Примеры этих переключателей находятся в группе транзисторов в базе данных Multisim.

Кроме того, Multisim включает общие модели для переключателей MOSFET и IGBT.Эти компоненты моделируют транзисторы для моделирования на уровне системы в случае, если модели производителя недоступны.

В Multisim 13.0 были добавлены новые настраиваемые компоненты диодов, IGBT и MOSFET с информацией о тепловых характеристиках. Эти компоненты позволяют точно оценивать потери на проводимость и переключение, а также тепловое поведение цепей SMPS.

В дополнение к универсальным моделям переключателей, Multisim включает модели для кремниевых выпрямителей (SCR) и переключателей выключения затвора (GTO). С помощью этих компонентов вы можете точно моделировать работу схемы управления переменным током или схемы выпрямления большой мощности.

Драйверы ворот

Библиотека

Multisim обновлена ​​множеством компонентов драйверов затвора, необходимых для использования с любыми переключателями питания. Самые сложные модели от ON Semiconductor и International Rectifier.

Пассивные компоненты (RLC)

Паразитное поведение пассивных компонентов играет важную роль в работе силовых цепей.Вот почему в Multisim были созданы компоненты для моделирования паразитных характеристик резисторов, конденсаторов и катушек индуктивности. Эти компоненты можно найти в базе данных компонентов в группе Basic в семействе NON_IDEAL_RLC

Моторы

Многие инженеры, работающие над электромеханическими системами, считают сложной задачей прогнозирование характеристик электрической цепи с механическими деталями, такими как машины постоянного тока, шаговые двигатели и асинхронные машины. Чтобы завершить силовое электронное решение, обычно используемое для привода двигателей, которые потребляют очень большой ток или питаются от 3-фазных генераторов, Multisim включает компоненты, моделирующие такие механические части системы.

Группа компонентов Electro_Mechanical в базе данных Multisim содержит модели машин, датчиков скорости, контроллеров движения и других частей, которые могут быть использованы для этой цели.

Дизайн контроллера

в Multisim

SMPS без обратной связи полагаются на подачу постоянного напряжения на вход трансформатора или катушки индуктивности и предполагают, что выход будет правильным.Этот тип конструкций SMPS непрактичен и больше не используется в промышленных приложениях.

ИИП с замкнутым контуром представляют собой более практичные конструкции, в которых контроллер представляет собой цепь обратной связи, которая контролирует выходное напряжение и сравнивает его с заданным опорным напряжением. Основываясь на требованиях к конструкции и результатах этого сравнения, контроллер может принимать решения о переключении и подавать входной сигнал обратно в аналоговую схему, чтобы либо включить / выключить транзистор, либо активировать / деактивировать определенные его части.В зависимости от конструкции и требований безопасности, контроллер может содержать изолирующий механизм для изоляции его от выхода постоянного тока.

В оставшейся части этого раздела обсуждаются различные варианты конструкции контроллера в Multisim.

Генераторы сигналов произвольной формы

Поведение контроллера можно смоделировать на самом базовом уровне с помощью произвольных генераторов цифровых сигналов. Multisim включает в себя множество этих частей, которые позволяют пользователю моделировать сигнал обратной связи для управления переключением аналоговой схемы.

Универсальные контроллеры

Широтно-импульсная модуляция (ШИМ) обычно используется для логики контроллера. При переключении входного напряжения с соответствующим рабочим циклом выходное напряжение будет приближаться к желаемому уровню.

Multisim включает в себя трехфазные генераторы с ШИМ, комплементарной ШИМ и ШИМ. Эти компоненты моделируют простые генераторы ШИМ. Модель компонента PWM состоит из компаратора и генератора треугольных сигналов.

Семейство компонентов Power Controllers включает следующие контроллеры переключения:

  • Регулятор фазового угла
  • Двухпульсный регулятор фазового угла
  • Контроллер фазового угла, шестиимпульсный
  • Компоненты широтно-импульсной модуляции
  • ШИМ, синусоидальный трехфазный

Пример источника ШИМ в Multisim:

ON Полупроводниковые контроллеры

ON Semiconductor предлагает контроллеры и регуляторы для различных сложных топологий, что позволяет разрабатывать высокоэффективные источники питания.Multisim комплектуется большим количеством стандартных моделей для этих контроллеров SMPS. Все модели проверены и протестированы, чтобы гарантировать точную оценку поведения системы. Типы контроллеров включают:

  • Контроллеры прямого и обратного ШИМ с фиксированной частотой, включая устройства, работающие в режиме тока и напряжения
  • Автономные импульсные регуляторы, включая режимы тока, напряжения и стробированные генераторы
  • Контроллеры переменного коэффициента мощности CRM, CCM и DCM, обеспечивающие коррекцию коэффициента мощности
  • Вторичная сторона, контроллеры синхронного выпрямления

Совместное моделирование LabVIEW и Multisim

В связи с недавним развитием отрасли возобновляемых источников энергии, технология программируемых вентильных матриц (FPGA) становится самой мощной технологией управления SMPS.NI LabVIEW предлагает графическую среду для разработки ПЛИС, которая интегрируется с широким спектром встраиваемых платформ NI, которые удовлетворяют практически всем требованиям встроенных приложений с использованием современных микросхем ПЛИС от Xlinx.

До развертывания аппаратного обеспечения системы чрезвычайно ценной является возможность точного моделирования систем управления FPGA с помощью SPICE-моделей аналоговой установки. Multisim и LabVIEW обеспечивают беспрецедентное системное моделирование аналоговых схем и управления ПЛИС на рабочем столе.Оба механизма моделирования работают по точкам, согласовывая моделирование с переменным шагом по времени и позволяя точно прогнозировать поведение системы.

Отметьте это применение трехфазных инверторов с обратной связью для моделирования и создания прототипов систем возобновляемой энергии.

Чтобы узнать больше о решении NI для проектирования и тестирования силовой электроники, посетите страницу сообщества разработчиков питания NI.

Превратите компьютерный блок питания в настольный блок питания

[youtube https: // www.youtube.com/watch?v=5TJaREOi1SY]

Есть много способов перепрофилировать и повторно использовать старую электронику. Например, компьютерный блок питания может стать отличным настольным блоком питания для вашей мастерской. В Интернете уже есть много руководств, в которых показано, как преобразовать блок питания старого компьютера в настольный блок питания, но для большинства этих проектов требуется, чтобы вы постоянно его модифицировали.

Такая конструкция внешнего адаптера позволяет использовать блок питания без его модификации.К адаптеру можно подключить любой блок питания ATX. В результате получился источник питания большой емкости, который может выдавать 3,3 В, 5 В, 12 В и -12 В.

Прежде чем мы начнем, вот некоторая справочная информация о компьютерных блоках питания.

Блок питания компьютера преобразует мощность переменного тока от настенной розетки в меньшее напряжение постоянного тока, которое питает различные компоненты компьютера. Он регулирует напряжения путем быстрого включения и отключения цепи нагрузки (импульсный источник питания).Большинство современных компьютерных блоков питания следуют соглашению ATX: они выдают + 3,3 В, + 5 В, + 12 В и -12 В по серии проводов с цветовой кодировкой.

Блоки питания

для компьютеров обладают рядом функций безопасности, которые помогают защитить вас и сам блок питания. Вот пара, о которой вам нужно знать:

  • Включение источника питания Он не включается, если он не подключен к материнской плате компьютера. Это контролируется зеленым проводом включения. Подключение этого провода к земле (любой черный провод) позволит включить питание.
  • Требования к минимальной нагрузке Многие источники питания требуют минимального тока нагрузки, чтобы оставаться включенными. Без этой нагрузки выходное напряжение может значительно отличаться от указанного напряжения или источник питания может отключиться. В компьютере ток, используемый материнской платой, достаточен для удовлетворения этих требований. Если ваш источник питания имеет минимальные требования к выходной мощности, вы можете удовлетворить это, подключив большой силовой резистор к выходным клеммам. Это обсуждается ниже.

00001240G.

indd

% PDF-1.3 % 1 0 obj >] / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> endobj 2 0 obj > поток 2019-03-07T13: 36: 07-08: 002019-03-07T13: 36: 37-08: 002019-03-07T13: 36: 37-08: 00 Adobe InDesign CC 14.0 (Macintosh) uuid: ea5ca8da-853b-704e -8a49-7d16a4ef6955adobe: docid: indd: f639f48d-3a64-11de-971c-bb864ab18f90xmp.id: c39324b1-f3db-4e53-9b1c-8c0f7867a467proof: pdf1xmp. -4ff5-bc20-fb5c6069ee02adobe: docid: indd: f639f48d-3a64-11de-971c-bb864ab18f90 по умолчанию

  • преобразовано из приложения / x-indesign в приложение / pdfAdobe InDesign CC 14.0 (Macintosh) / 2019-03-07T13: 36: 08-08: 00
  • application / pdf
  • 00001240G.indd
  • Библиотека Adobe PDF 15.0FalsePDF / X-1: 2001PDF / X-1: 2001PDF / X-1a: 2001 конечный поток endobj 3 0 obj > endobj 15 0 объект > endobj 16 0 объект > endobj 17 0 объект > endobj 19 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject >>> / TrimBox [0. 0 0,0 612,0 792,0] / Тип / Страница >> endobj 20 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject >>> / TrimBox [0.0 0.0 612.0 792.0 ] / Тип / Страница >> endobj 21 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject >>> / TrimBox [0.0 0,0 612,0 792,0] / Тип / Страница >> endobj 22 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject >>> / TrimBox [0.0 0.0 612.0 792.0 ] / Тип / Страница >> endobj 23 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / TrimBox [0. 0 0,0 612,0 792,0] / Тип / Страница >> endobj 24 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject >>> / TrimBox [0.0 0.0 612.0 792.0 ] / Тип / Страница >> endobj 25 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Shading> / XObject >>> / TrimBox [0.0 0,0 612,0 792,0] / Тип / Страница >> endobj 26 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Type / Страница >> endobj 27 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Тип / Страница >> endobj 28 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text] / Shading >>> / TrimBox [0.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *