Схемы подключения трансформаторов: Схемы подключения трансформатора | Полезные статьи

Содержание

Схемы подключения трансформаторов напряжения

Общие сведения

Трансформаторами напряжения, как правило, называют разновидность трансформаторов, которые предназначены не для передачи мощности, а для гальванического разделения высоковольтной стороны от низковольтной.

Такие трансформаторы предназначены для питания измерительных и управляющих приборов. На «высокой» стороне различных трансформаторов напряжения, естественно, напряжение  может быть разным, это и 6000, и 35000 вольт и даже много более, а вот на «низкой» стороне (на вторичной обмотке) оно не превышает 100 вольт.

Это очень удобно для унификации приборов управления. Если делать измерительные приборы и приборы управления, а это в основном реле, на высокое напряжение, то они, во-первых, будут очень большими, а во-вторых, очень опасными в обслуживании.

Коэффициент трансформации указан на самом трансформаторе и может выглядеть как Кu = 6000/100, либо просто 35000/100. Разделив одно число на другое, получим в первом случае этот коэффициент 60, во втором 350.

Данные трансформаторы бывают как «сухие», в которых в качестве изоляции используется электрокартон. Они применяются, обычно, для напряжений до 1000 вольт. Пример НОС-0,5. Где, Н означает напряжение, имеется ввиду трансформатор напряжения, О – однофазный, С – сухой, 0,5 – 500 вольт (0,5кВ). А так же масляные: НТМИ, НОМ, 3НОМ, НТМК, в которых масло играет роль, как изолятора, так и охладителя. И литые, если быть точным, то с литой изоляцией (3НОЛ – трехобмоточный трансформатор напряжения однофазный с литой изоляцией), в которых все обмотки и магнитопровод залиты эпоксидной смолой.

Устройство трансформаторов напряжения

Как и все трансформаторы, как это было сказано выше, данный тип трансформаторов имеют как первичные обмотки (высоковольтные), так и вторичные (низковольтные). Различают однофазные и трехфазные трансформаторы напряжения.

В каждом из них имеется магнитопровод, к которому предъявляются довольно высокие требования. Дело в том, что чем больше рассеивание магнитного потока в таком трансформаторе, тем больше погрешность измерения.

Кстати. В зависимости от погрешности различают трансформаторы по классу точности различаются (0,2; 0,5; 1; 3). Чем выше число, тем больше погрешность измерений.

К примеру, трансформатор с классом точности 0,2 может допустить погрешность не выше 0,2% от измеряемой величины напряжения, а, соответственно, класса точности 3 – не более 3%.

Обозначения на схемах и натуральное исполнение бывает сильно отличаются друг от друга.

 

Однофазный двухобмоточный трансформатор представлен на рисунке, так, как он выглядит на самом деле.

На схемах он обозначается как:

 

Обратите внимание, трансформатор понижающий, во вторичной обмотке меньше витков, чем в первичной, и это отражено визуально на схеме в данном случае, хотя это и не всегда делается. Кроме того, начала и концы обмоток обозначены на схеме и на самом трансформаторе. Первичные обмотки обозначаются большими (прописными) буквами AиX. Вторичные – малыми (строчными) буквами a и x.

 

Существуют и трехобмоточные однофазные трансформаторы, у которых две вторичных обмотки. Одна из которых является основной, а вторая дополнительной. Дополнительная обмотка служит для контроля изоляции и имеет аббревиатуру КИЗ. Маркировка выводов этой обмотки следующая ад — начало обмотки, хд — конец обмотки.

Трехфазные трансформаторы выпускаются с двумя типами магнитопроводов: трехстержневые и пятистержневые.

 

Начала и концы здесь обозначаются несколько по-другому. На первичных обмотках начала обозначаются буквами A, B иC согласно фазам к которым они будут подключаться, а концы буквами X,Y и Z. Вторичные обмотки, соответственно, малыми буквами a,b,cи x,y,z.

 

 

Магнитные потоки создаваемые катушками AX, BY, CZ компенсируют друг друга при нормальных условиях работы. Но вот в случае пробоя одной из фаз на землю в стержнях магнитопровода создается слишком большой дисбаланс и часть потока будет закольцовываться через воздух, что создает сильный нагрев трансформатора из-за повышения номинального тока в обмотках. Дополнительные стержни, как раз и призваны взять на себя образовавшиеся разбалансированные потоки и не допустить перегрева трансформатора. При этом в нем наматываются дополнительные обмотки, но об этом несколько позже.

Схемы соединений обмоток трансформаторов напряжения

Самым простым способом измерения межфазного напряжения является включение однофазного двухобмоточного трансформатора напряжения по схеме представленной на рисунке слева.

 

При этом на концах вторичной обмотки имеем напряжение соответствующее межфазному ВС, но уменьшенное с учетом коэффициента трансформации.

Все три межфазных напряжения можно измерять при помощи двух однофазных трансформатора подключенных определенным способом.

 

В трехфазных трансформаторах первичные обмотки всегда подключается по схеме «звезда».

 

Вторичные обмотки могут подключаться как по схеме «звезда» так и по схеме «треугольник».

 

При верхнем подключении на точках вывода вторичной обмотки мы имеем возможность измерения межфазных напряжений.

При нижнем подключении, по схеме так называемого разомкнутого треугольника, мы можем выявить факт короткого замыкания или обрыва провода в одной их фаз на высокой стороне. Выводы при этом маркируются 01 и 02, поскольку при нормальных условиях работы между этими точками нет напряжения.

Для подключения реле защиты применяются, как уже было сказано выше дополнительные обмотки в трехобмоточных трансформаторах напряжения. Пот пример подключения таких трансформаторов в трехфазную сеть. При этом концы обмоток заземляются как в первичной, так и во вторичной обмотке.

 

Вот еще несколько вариантов подключения однофазных трансформаторов для измерения межфазных и фазных напряжений, а так же для питания аппаратуры управления.

 

Более сложные варианты подключения трансформаторов напряжения, содержащих большее количество обмоток изучается в специальном курсе электротехники.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Схемы подключения различных трансформаторов напряжения | Электронщик

Общие сведения

Трансформаторами напряжения, как правило, называют разновидность трансформаторов, которые предназначены не для передачи мощности, а для гальванического разделения высоковольтной стороны от низковольтной.

Такие трансформаторы предназначены для питания измерительных и управляющих приборов. На «высокой» стороне различных трансформаторов напряжения, естественно, напряжение  может быть разным, это и 6000, и 35000 вольт и даже много более, а вот на «низкой» стороне (на вторичной обмотке) оно не превышает 100 вольт.

Это очень удобно для унификации приборов управления. Если делать измерительные приборы и приборы управления, а это в основном реле, на высокое напряжение, то они, во-первых, будут очень большими, а во-вторых, очень опасными в обслуживании.

Коэффициент трансформации указан на самом трансформаторе и может выглядеть как Кu = 6000/100, либо просто 35000/100. Разделив одно число на другое, получим в первом случае этот коэффициент 60, во втором 350.

Данные трансформаторы бывают как «сухие», в которых в качестве изоляции используется электрокартон. Они применяются, обычно, для напряжений до 1000 вольт. Пример НОС-0,5. Где, Н означает напряжение, имеется ввиду трансформатор напряжения, О – однофазный, С – сухой, 0,5 – 500 вольт (0,5кВ). А так же масляные: НТМИ, НОМ, 3НОМ, НТМК, в которых масло играет роль, как изолятора, так и охладителя. И литые, если быть точным, то с литой изоляцией (3НОЛ – трехобмоточный трансформатор напряжения однофазный с литой изоляцией), в которых все обмотки и магнитопровод залиты эпоксидной смолой.

Устройство трансформаторов напряжения

Как и все трансформаторы, как это было сказано выше, данный тип трансформаторов имеют как первичные обмотки (высоковольтные), так и вторичные (низковольтные). Различают однофазные и трехфазные трансформаторы напряжения.

В каждом из них имеется магнитопровод, к которому предъявляются довольно высокие требования. Дело в том, что чем больше рассеивание магнитного потока в таком трансформаторе, тем больше погрешность измерения. Кстати. В зависимости от погрешности различают трансформаторы по классу точности различаются (0,2; 0,5; 1; 3). Чем выше число, тем больше погрешность измерений.

К примеру, трансформатор с классом точности 0,2 может допустить погрешность не выше 0,2% от измеряемой величины напряжения, а, соответственно, класса точности 3 – не более 3%.

Обозначения на схемах и натуральное исполнение бывает сильно отличаются друг от друга.

Однофазный двухобмоточный трансформатор представлен на рисунке, так, как он выглядит на самом деле.

На схемах он обозначается как:

Обратите внимание, трансформатор понижающий, во вторичной обмотке меньше витков, чем в первичной, и это отражено визуально на схеме в данном случае, хотя это и не всегда делается. Кроме того, начала и концы обмоток обозначены на схеме и на самом трансформаторе. Первичные обмотки обозначаются большими (прописными) буквами AиX. Вторичные – малыми (строчными) буквами a и x.

Существуют и трехобмоточные однофазные трансформаторы, у которых две вторичных обмотки. Одна из которых является основной, а вторая дополнительной. Дополнительная обмотка служит для контроля изоляции и имеет аббревиатуру КИЗ. Маркировка выводов этой обмотки следующая ад — начало обмотки, хд — конец обмотки.

Трехфазные трансформаторы выпускаются с двумя типами магнитопроводов: трехстержневые и пятистержневые.

Начала и концы здесь обозначаются несколько по-другому. На первичных обмотках начала обозначаются буквами A, B иC согласно фазам к которым они будут подключаться, а концы буквами X,Y и Z. Вторичные обмотки, соответственно, малыми буквами a,b,cи x,y,z.

Магнитные потоки создаваемые катушками AX, BY, CZ компенсируют друг друга при нормальных условиях работы. Но вот в случае пробоя одной из фаз на землю в стержнях магнитопровода создается слишком большой дисбаланс и часть потока будет закольцовываться через воздух, что создает сильный нагрев трансформатора из-за повышения номинального тока в обмотках.

Дополнительные стержни, как раз и призваны взять на себя образовавшиеся разбалансированные потоки и не допустить перегрева трансформатора. При этом в нем наматываются дополнительные обмотки, но об этом несколько позже.

Схемы соединений обмоток трансформаторов напряжения

Самым простым способом измерения межфазного напряжения является включение однофазного двухобмоточного трансформатора напряжения по схеме представленной на рисунке.

При этом на концах вторичной обмотки имеем напряжение соответствующее межфазному ВС, но уменьшенное с учетом коэффициента трансформации.

Все три межфазных напряжения можно измерять при помощи двух однофазных трансформатора подключенных определенным способом.

В трехфазных трансформаторах первичные обмотки всегда подключается по схеме «звезда».

Вторичные обмотки могут подключаться как по схеме «звезда» так и по схеме «треугольник».

При этом подключении на точках вывода вторичной обмотки мы имеем возможность измерения межфазных напряжений.

А при этом подключении, по схеме так называемого разомкнутого треугольника, мы можем выявить факт короткого замыкания или обрыва провода в одной их фаз на высокой стороне. Выводы при этом маркируются 01 и 02, поскольку при нормальных условиях работы между этими точками нет напряжения.

Для подключения реле защиты применяются, как уже было сказано выше дополнительные обмотки в трехобмоточных трансформаторах напряжения. Пот пример подключения таких трансформаторов в трехфазную сеть. При этом концы обмоток заземляются как в первичной, так и во вторичной обмотке.

Вот еще несколько вариантов подключения однофазных трансформаторов для измерения межфазных и фазных напряжений, а так же для питания аппаратуры управления.

Более сложные варианты подключения трансформаторов напряжения, содержащих большее количество обмоток изучается в специальном курсе электротехники.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала.

Схемы соединений обмоток трехфазных трансформаторов

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.
Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети. При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.

Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:

б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.

Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.

Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы

Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:

т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

Устройство и схемы включения измерительных трансформаторов

Страница 31 из 66

Трансформаторы тока.

Назначением трансформаторов тока в установках напряжением до 1000 В является понижение тока до величины, наиболее удобной для подключения измерительных приборов станций и подстанций. В установках более высоких напряжений трансформаторы тока нужны также и для отделения вторичных цепей приборов от цепей первичного высокого напряжения. Вторичный ток стандартных трансформаторов тока принят равным 5 А, что достигается соответствующим подбором отношения витков первичной и вторичной обмоток. Первичные обмотки трансформаторов тока могут быть выполнены на токи до нескольких тысяч ампер. Это дает возможность включать их в цепи с большой нагрузкой и замерять эту нагрузку на вторичной стороне трансформаторов тока, подключая к ним измерительные приборы, отградуированные на первичную нагрузку.
Каждый трансформатор тока характеризуется номинальным коэффициентом трансформации по току, который представляет собой отношение номинальных токов первичного ко вторичному

Так как в большинстве случаев Iном2 = 5 А, то коэффициент трансформации указывают дробью, например:
Вторичная мощность трансформатора тока равна

где Ζ2 — полное сопротивление внешней цепи, включая сопротивление всех катушек приборов и реле. Или, пренебрегая индуктивными сопротивлениями токовых цепей и заменив Ζ2 на R2, получим



Рис. 81. Измерительный трансформатор тока типа ТПОЛ на 10 кВ:
1 — литой корпус, 2 —выводы, 3 — установочная плита, 4 — болт, 5 — крепежные отверстия, 6 — зажимы

Первичная обмотка трансформаторов тока выполняется в виде катушки, насаженной на сердечник. Трансформаторы тока для установок низкого напряжения выполняются с одним сердечником и од- ной вторичной обмоткой, а для установок высокого напряжения с несколькими сердечниками и обмотками.

По числу витков первичной обмотки трансформаторы тока делятся на одновитковые и многовитковые. В одновитковых роль витка играет токоведущий стержень или шина, на которую надевается трансформатор. Многовитковые трансформаторы изготовляют на большие первичные токи порядка сотен ампер.
Наиболее распространенные типы трансформаторов тока, применяемые в сельских электроустановках, следующие: ТКМ, ТПФМ, ТПЛ, ТПШЛ, рассчитанные на первичные токи от 5 до 3000 А и выше. В обозначениях трансформаторов буква Т — означает трансформатор тока, К — катушечный, П — проходного исполнения, Ф — с фарфоровой, а Л — с лигой изоляцией, М — модернизированный.
Трансформаторы проходного исполнения чаще всего применяют в распределительных устройствах, так как они могут заменить собой проходные изоляторы. Трансформаторы с литой изоляцией выполняются в едином блоке (обе обмотки и сердечник заливаются синтетической смолой, что повышает прочность обмоток, и сокращает размеры трансформатора). Трансформаторы типов ТПЛ, ТПОЛ, ТПШЛ имеют малые габариты и повышенную устойчивость к токам короткого замыкания. На рис. 81 показан внешний вид трансформатора тока типа ТПОЛ, лигой корпус 1 которого соединен с установочной плитой 3, имеющей крепежные отверстия 5. Выводами 2 трансформатор включается в первичную цепь, а приборы вторичной цепи подключаются к зажимам 6. Для заземления трансформатора служит болт 4. Основные технические данные трансформаторов тока приведены в приложении 12.


Рис. 82. Схемы включения трансформаторов тока: а — в две фазы, б — в три фазы
Трансформаторы тока могут включаться в одну, две или три фазы. Независимо от способа включения в установках высокого напряжения одна точка вторичной обмотки заземляется по условиям безопасности (на случай пробоя первичной обмотки на вторичную). Для подключения контрольно-измерительных приборов используют схемы включения трансформаторов тока в две или три фазы, соединяя их в неполную или полную звезду соответственно (рис. 82).

Для разовых замеров, например нагрузки по фазам в цепях напряжения выше 1000 В, применяют трансформаторы тока с разъемными сердечниками, выполненными в виде токоизмерительных клещей. Разъемный сердечник со вторичной обмоткой, к которой подключен амперметр, укреплен на изолирующих ручках. Роль первичной обмотки играет охватываемая токоведущая часть или провод. Токоизмерительные клещи часто используют для контроля равномерности нагрузки отдельных фаз электроустановки.
Стационарные трансформаторы тока выбирают по роду установки, номинальным данным, классу точности и нагрузке, а проверяют на термическую и динамическую устойчивость токам короткого замыкания.

Эти измерительные трансформаторы устроены и работают, как обычные небольшие силовые трансформаторы с номинальным коэффициентом трансформации по напряжению

Первичное номинальное напряжение соответствует напряжению установки, а вторичное Uном2=100 В (на это напряжение и выполняются обмотки подключаемых измерительных приборов).

Рис. 83. Измерительный однофазный трансформатор напряжения типа НОМ-10:
1 — трансформатор, 2 — пробка

Рис. 84, Схемы включения двух однофазных трансформаторов напряжения:

а —в открытый треугольник, б — трехфазного пятистержневого трансформатора для измерения напряжения в установках выше 1000 В

Трансформатор напряжения имеет две обмотки: первичную и вторичную, намотанные на одном сердечнике. Сердечник с обмотками помещают в кожух, заполненный маслом (для напряжения 3—35 кВ), или выполняют их сухими для напряжений 0,5 кВ. Трансформаторы выполняют как однофазными, так и трехфазными. На рис. 83 показан однофазный трансформатор НОМ-10 на первичное напряжение 10 кВ и вторичное напряжение 100 В для внутренней установки. На крышке трансформатора 1 расположены изоляторы высокого напряжения с вводами А и X для подключения к сети и выводами а, х низкого напряжения. Масло в бак трансформатора заливается через пробку 2. Трансформаторы напряжения устанавливаются в ячейках распределительных устройств и защищаются предохранителями типа ПКТ. Технические данные трансформаторов для напряжений до 35 кВ приведены в приложении 13.
Линейное напряжение цепи можно измерить однофазным трансформатором, подключенным между фазами. Двумя однофазными трансформаторами, соединенными в открытый треугольник (рис. 84, а), можно намерить три любых линейных напряжения (или три фазных напряжения при создании искусственной нулевой точки). Эту схему включения применяют иа станциях и подстанциях для питания обмоток напряжения самых разнообразных измерительных приборов — вольт- метров, счетчиков, ваттметров. Трехфазные трансформаторы напряжении могут быть выполнены как с трехстержневыми сердечниками и одной вторичной обмоткой, так и  с двумя вторичными обмотками. Дополнительные крайние стержни такого трансформатора играют роль шунтов по отношению к основным стержням. Схема включения в сеть пятистержневого трансформатора с двумя вторичными обмотками w2 и w3 (последняя соединена в открытый треугольник) показана на рис. 84, б. Эта схема является наиболее универсальной, так как она позволяет измерять не только фазные и линейные напряжения, но и осуществить контроль изоляции установки. В этом случае к обмотке w3 подключают вольтметр или реле напряжения, действующие на сигнал при замыкании фазы на землю.
В распределительных устройствах сельских станций и подстанций трансформаторы напряжения подключаются к шинам через разъединители и кварцевые предохранители. Количество измерительных приборов, которое можно подключить ко вторичным обмоткам трансформаторов напряжения, ограничено их мощностью. Нормальная работа трансформатора напряжения гарантирована при условии, если падение напряжения во вторичной цепи не превышает 1 % от номинального.

Схемы соединений трансформаторов тока: схем, звезда, треугольник, параллель

Назначение трансформаторов тока

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Измерительные трансформаторы вносят свою погрешность в измерения. Здесь важно соблюдать правильную схему подключения с соблюдением обозначений. Например, если изменить местами выводы вторичных цепей И1 и И2, то за этим последует существенный недоучёт электроэнергии.

Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Двухфазное КЗ

Однофазное КЗ
Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1.  при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

Схема восьмерки или включение реле на разность токов двух фаз.

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Соединение трансформаторов тока и обмоток реле в неполную звезду

Симметричная нагрузка при трехфазном КЗ.

Двухфазное КЗ Двухфазно КЗ АВ или ВС
При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

Соединение трансформаторов тока в фильтр токов нулевой последовательности

На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

Последовательное соединение трансформаторов тока


На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Во время использования трансформаторов тока малой мощности применяется эта схема.

Параллельное соединение трансформаторов тока


На рис. 2.4.14. представлена схема параллельного соединения трансформаторов тока. Эту схему можно использовать с целью получения разных нестандартных коэффициентов трансформации. Схемы подключения счетчиков электроэнегии, как однофазных, так и 3-х фазных Вы можете найти тут.

СХЕМЫ СОЕДИНЕНИЯ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ

 


Схема соединения трансформаторов напряжения в звезду, приведенная на рис. 6.5, а, предназначена для получения напряжений фаз относительно земли и междуфазных (линейных) напряжений. Три первичные обмотки TV1 соединяются в звезду. Начала каждой обмотки (А, В, C)присоединяются к соответствующим фазам ЛЭП, а концы X, Y, Z объединяются в общую точку (нейтраль N1)и заземляются. При таком включении к каждой первичной обмотке TV1 подводится напряжение фазы ЛЭП относительно земли. Концы вторичных обмоток TV1 (х, у, z на рис.6.5, а) также соединяются в звезду, нейтраль которой N2 связывается с нулевой точкой нагрузки N3 (сопротивления 1, 2, 3). В приведенной схеме нейтраль первичной обмотки (точка N1)жестко связана с землей и имеет потенциал, равный нулю, такой же потенциал будет иметь нейтраль N2 и связанная с ней нейтраль нагрузки N3. При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первичной стороны. Заземление нейтрали первичной обмотки ТН и наличие нулевого провода во вторичной цепи являются обязательным условием для получения фазных напряжений относительно земли.

Соединение обмоток ТН по схеме y/y обычно выполняется по 12-й группе. Эта схема может быть осуществлена посредством трех однофазных ТН или одного трехфазного пятистержневого ТН. Трехфазные трехстержневые ТН для данной схемы применяться не могут, так как в их магнитопроводе отсутствуют пути для замыкания магнитных потоков НП Ф0, создаваемых током I0 в первичных обмотках при замыканиях на землю в сети. В этом случае поток Ф0 замыкается через воздух по пути с большим магнитным сопротивлением. Это приводит к уменьшению сопротивления НП трансформатора и резкому увеличению Iнам. Повышенный Iнам вызывает недопустимый нагрев трансформатора, в связи с чем применение трехстержневых ТН
недопустимо. В пятистержневых трансформаторах для замыкания потоков служат четвертый и пятый стержни магнитопровода (рис.6.6).

Схема соединений обмоток ТН в открытый треугольник изображена на рис.6.7. Она выполняется при помощи двух однофазных ТН, включенных на два междуфазных напряжения, например UAB и UBC . Напряжение на зажимах вторичных обмоток ТН всегда пропорционально междуфазным напряжениям, подведенным с первичной стороны. Между проводами вторичной цепи включаются реле. Схема позволяет получать все три междуфазных напряжения UAB, UBC и UAC.


Схема соединений обмоток однофазных ТН в фильтр напряжения НП выполняется посредством трех однофазных ТН, как показано на рис.6.8. Первичные обмотки соединены в звезду с заземленной нейтралью, а вторичные – последовательно, образуя незамкнутый треугольник. К зажимам разомкнутых вершин треугольника подсоединяются реле. Напряжение Upна зажимах разомкнутого треугольника равно геометрической сумме напряжений вторичных обмоток: Up = Uа + Ub + Uc.

Так как сумма трех фазных напряжений равна утроенному напряжению НП, выражая вторичные напряжения через первичные, получаем

(6.4)

В нормальных условиях напряжения фаз симметричны, Up = 0. При КЗ без земли также Up = 3U0= 0 (см. гл. 1). При КЗ на землю (одно- и двухфазных) на зажимах разомкнутого треугольника ТН появляется напряжение Up= 3U0/KU.

Напряжения прямой и обратной последовательностей образуют симметричные звезды и поэтому при суммировании в цепи разомкнутого треугольника всегда дают нуль на его зажимах.

Рассмотренная схема является фильтром НП. Необходимым условием работы схемы вкачестве фильтра НП является заземление нейтрали первичной обмотки ТН. Применяя однофазные ТН с двумя вторичными обмотками, можно соединить одну из них по схеме звезды, а вторую – по схеме разомкнутого треугольника (рис.6.9). Номинальное вторичное напряжение у обмотки, предназначенной для соединения в разомкнутый треугольник, принимается равным для сетей с заземленной нейтралью 100 В, а для сетей с изолированной нейтралью 100/3 В.

Схема соединения обмоток трехфазных ТН в фильтр напряжения НП. Для получения 3U0 от трехфазного пятистержневого ТН (см. рис.6.6) на каждом из его основных стержней 1, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая по схеме разомкнутого треугольника. Напряжение на выводах этой обмотки появляется только при КЗ на землю, когда возникают магнитные потоки НП, замыкающиеся по четвертому и пятому стержням магнитопровода. Схемы с пятистержневым ТН позволяют получать одновременно с напряжением НП фазные и междуфазные напряжения.

 

 


Узнать еще:

Основные схемы подключения трансформатора

Основные схемы подключения трансформатора

Что такое трансформатор тока?
Трансформатор тока (ТТ) представляет собой индуктивное устройство, преобразующее напряжение в сети. Его первичная обмотка подключается к источнику электроэнергии, а вторичная замыкается на защитный прибор с малым внутренним сопротивлением. Ток протекает через первичную обмотку, преодолевая ее сопротивление.

В процессе движения по виткам первичной обмотки возникает магнитный поток, который улавливается магнитопроводом. Витки вторичной обмотки расположены перпендикулярно виткам первичной обмотки. Под воздействием электродвижущей силы ток во вторичной обмотке преодолевает сопротивление в катушке, в результате чего падает напряжение на зажимах вторичной цепи.

Коэффициент трансформации определяется на стадии проектирования трансформатора, поэтому важно правильно выбрать модель устройства и заказать трансформатор в Бресте в зависимости от назначения и особенностей эксплуатации.

Сфера применения трансформаторов
Трансформаторы тока устанавливаются во многих бытовых электроприборах и промышленном электрооборудовании, для работы которых требуется более высокое или низкое напряжение, чем 220 В или 380 В. Для питания галогенных светильников необходимо напряжение 12 В, то есть почти в 20 раз ниже, чем в сети, и ТТ его понижает до требуемой величины.

Также трансформатор используются для учета электроэнергии. Широко распространены измерительные ТТ, которые подключаются к приборам измерения (вольтметрам, амперметрам и прочим) и осуществляют передачу токов на них. Выпускаются как компактные модели, которые помещаются в корпус бытовых приборов, так и модели для установки под открытым небом на линиях электросетей.

Основные преимущества изделий
Использование трансформаторов тока дает следующие преимущества:

Унификация измерительных приборов, градуировка их шкал в соответствии с измеряемым первичным током;
Повышается уровень безопасности при работе с различными реле и измерительными приборами за счет разделения цепей высшего и низшего напряжения;
Увеличивается максимальный диапазон напряжений и пределов измерения для различных измерительных приборов;
Обеспечивается питание токовых обмоток реле защиты и измерительных приборов;
Надежная изоляция от высокого первичного напряжения.

Параметры для выбора схемы подключения
Подключить самостоятельно трансформатор, предназначенный для бытового использования несложно – достаточно строго следовать схеме подключения. Но для эффективной и безопасной работы электроприборов необходимо правильно подобрать саму схему. При выборе необходимо учитывать:

Количество фаз в сети – трехфазные модели имеют 4 выхода, а однофазные только 2, поэтому схема подключения трехфазного трансформатора имеет ряд отличий;
Тип трансформатора тока – повышающий или понижающий;
Какой параметр тока необходим потребителю – для работы бытовой техники нужен постоянный ток, а в сети – переменный, и для его преобразования требуется подключение вторичной обмотки трансформатора тока через выпрямитель.

Популярные схемы подключения
Если ТТ используется для подключения через них вольтметров, амперметров и других высокочувствительных приборов, измеряющих ток небольшой силы, подключение трансформаторов тока производится по следующей схеме:

Схема подключения трансворматора для тока небольшой силы.

Первичная обмотка Л1-Л2 соединяется с линейным проводом, а вторичная обмотка ТТ И1-И2 соединена с токовой обмоткой измерительного прибора. Выводы Л1, И1 соединены перемычкой и подключены к фазному проводу. Третий зажим соединяется с нулевым проводом.

Для трехфазной электросети чаще всего используются три однофазных трансформатора, которые подключаются по схеме:

Если требуется подключение понижающего устройства, следует руководствоваться схемой:

Схема подключения понижающего трансворматора.

Чаще всего она используется для создания систем освещения. Небольшой размер ТТ дает возможность монтировать их непосредственно в каркасе потолка. Трансформатор располагается между выключателем и светильниками. Светильники подключаются параллельно.

Что важно учитывать при подключении?
Для облегчения монтажа производители наносят на них маркировку: ТАа, ТА1, КА1, что позволяет без ошибок соединить элементы.

При установке трансформатора на трехфазные линии необходимо учитывать, что, если напряжение в сети составляет от 6 до 35 кВ, трансформаторы могут быть установлены только на двух фазах, поскольку в таких сетях отсутствует нулевой провод.

Простое понимание соединений трехфазного трансформатора (треугольник – треугольник, звезда – звезда, треугольник – звезда и звезда – треугольник)

Преобразование трехфазного напряжения

Преобразование трехфазного напряжения может быть выполнено с помощью трехфазных трансформаторов, которые представляют собой одиночные устройства, все обмотки которых построены на одном железном сердечнике. Они также могут быть выполнены с помощью трех однофазных трансформаторов, которые подключены извне, чтобы сформировать трехфазную батарею.

Простое понимание подключения трехфазного трансформатора — треугольник-треугольник, звезда-звезда, треугольник-звезда и звезда-треугольник (на фото: Jefferson Electric трансформатор)

В то время как трехфазные устройства обычно являются более экономичным вариантом, одиночные Опция -phase обеспечивает большую универсальность и может быть привлекательной с точки зрения надежности и обслуживания .Если в одном месте требуется несколько идентичных трансформаторов, однофазный вариант может включать в себя покупку запасного блока, чтобы сократить время простоя в случае отказа.

Эта практика часто наблюдается с критическими батареями автотрансформаторов и повышающими трансформаторами генератора, потому что потеря трансформатора в течение длительного периода имеет очень серьезные последствия.

Соединения, описанные в этой статье , будут реализованы с использованием однофазных блоков .

При соединении однофазных трансформаторов в трехфазную батарею необходимо тщательно соблюдать полярность обмоток. Полярность обозначается точками. Ток, протекающий через точку на первичной обмотке, вызовет ток, исходящий из точки на соответствующей вторичной обмотке.

В зависимости от того, как обмотки подключены к вводам, полярности могут быть добавочными или вычитающими.

Две наиболее часто используемые конфигурации трехфазной обмотки — треугольник и звезда , названные в честь греческой и английской буквы, каждая из которых имеет сходство. В конфигурации треугольником три обмотки соединены встык, образуя замкнутый путь.Фаза подключена к каждому углу дельты.

Хотя обмотки треугольника часто работают без заземления, участок треугольника может быть заземлен по центру или угол треугольника может быть заземлен. В звездообразной конфигурации один конец каждой из трех обмоток соединен с нейтралью. К другому концу трех обмоток подключена фаза. Нейтраль обычно заземлена.

В следующих параграфах описываются трехфазные трансформаторы, в которых используются соединения треугольником и звездой.

  1. Delta-Delta
  2. Wye-Wye
  3. Delta-Wye
  4. Wye-Delta

В следующей части этой статьи будут обсуждаться трехфазные трансформаторы, использующие соединения по схеме «открытый треугольник» и «звезду», где один из Однофазные трансформаторы, составляющие трехфазную батарею, не используются. Ножка трансформатора с отсутствующим трансформатором называется фантомной ногой.


1. Delta – Delta

Delta – delta трансформаторы, как показано на рисунке 1, часто используются для питания нагрузок, которые в основном являются трехфазными, но могут иметь небольшой однофазный компонент .

Рисунок 1 — Трансформатор треугольник-треугольник

Трехфазная нагрузка обычно представляет собой нагрузку двигателя, в то время как однофазный компонент часто представляет собой освещение и низковольтное питание. Однофазная нагрузка может быть запитана путем заземления центрального ответвления на одном из выводов вторичной обмотки треугольником, а затем подключения однофазной нагрузки между одной из фаз на заземленном плече и этой заземленной нейтралью.

На Рисунке 2 показано соединение трансформатора треугольником.

Рисунок 2 — Подключение трансформатора треугольник-треугольник (щелкните, чтобы развернуть диаграмму)

На схеме подключения слева показано, как может быть выполнено подключение дельта-треугольник, либо с тремя однофазными трансформаторами, либо с одним трехфазным трансформатором .

Пунктирными линиями обозначены контуры трансформатора. Реализацию трех однофазных трансформаторов можно увидеть, не обращая внимания на внешний пунктирный контур и метки вводов, показанные на этом контуре, и сосредоточив внимание на трех меньших (однофазный трансформатор) контурах.

Проходные изоляторы однофазных трансформаторов подключаются внешними перемычками, как показано, для выполнения соединения треугольник-треугольник. В случае реализации с одним трехфазным трансформатором три внутренних контура не принимаются во внимание, а перемычки между обмотками выполняются внутри бака трансформатора.Для подключения доступны шесть вводов на контуре трехфазного трансформатора.

Схематическую диаграмму в правом верхнем углу, возможно, легче анализировать, поскольку четко видны дельта-соединения.

Векторная диаграмма в правом нижнем углу показывает геометрические соотношения между токами цепи высокого напряжения и токами цепи низкого напряжения , а уравнения внизу в центре показывают эти отношения математически.

Когда нагрузка на трансформатор треугольник-треугольник становится несбалансированной, в обмотках треугольника могут циркулировать большие токи, что приводит к дисбалансу напряжений.Сбалансированная нагрузка требует выбора трех трансформаторов с равными отношениями напряжения и одинаковыми импедансами .

Кроме того, величина однофазной нагрузки должна быть низкой, поскольку трансформатор с центральным отводом должен обеспечивать большую часть однофазной нагрузки. По мере увеличения однофазной нагрузки трансформатор с центральным отводом будет увеличивать свою нагрузку больше, чем два других трансформатора, и в конечном итоге приведет к перегрузке.

При выходе из строя одного из однофазных трансформаторов в группе треугольник-треугольник, банк может работать только с двумя трансформаторами, образующими конфигурацию разомкнутого треугольника.Номинальная мощность банка в кВА снижается, но трехфазное питание по-прежнему подается на нагрузку.

Вернуться к содержанию ↑


2. Трансформаторы звезда-звезда

Трансформаторы звезда-звезда, как показано на Рисунке 3, могут обслуживать как трехфазные, так и однофазные нагрузки. Однофазная нагрузка должна распределяться как можно более равномерно между каждой из трех фаз и нейтралью.

Рисунок 3 — Трансформатор звезда-звезда

На рисунке 4 показано соединение звезда-звезда, либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока.Показаны метки вводов и точки полярности.

Рисунок 4 — Схема соединений трансформатора звезда-звезда (щелкните, чтобы развернуть диаграмму)

Одной из проблем, присущих трансформаторам звезда-звезда, является распространение токов и напряжений третьей гармоники . Эти гармоники могут вызывать помехи в близлежащих цепях связи, а также другие проблемы с качеством электроэнергии.

Другая проблема заключается в том, что существует возможность возникновения резонанса между шунтирующей емкостью цепей, подключенных к трансформатору, и намагничивающей способностью трансформатора, особенно если цепи включают изолированный кабель.Из-за этих проблем трансформаторы «звезда-звезда» должны быть тщательно определены и реализованы.

Добавление третьей (третичной) обмотки, соединенной треугольником, снимает многие из упомянутых проблем.

Вернуться к содержанию ↑


3. Соединение треугольником-звездой

Соединение треугольником-звездой является наиболее часто используемым соединением трехфазного трансформатора . Вторичная обмотка, соединенная звездой, позволяет распределить однофазную нагрузку между тремя фазами и нейтралью вместо того, чтобы размещать все на одной обмотке, как в случае четырехпроводной вторичной обмотки треугольником.

Это помогает поддерживать сбалансированную фазную нагрузку на трансформатор и особенно важно, когда величина однофазной нагрузки становится большой . Устойчивая нейтральная точка также обеспечивает хорошее заземление, чтобы обеспечить критическое демпфирование системы и предотвратить колебания напряжения.

При выходе из строя одного из однофазных трансформаторов в группе треугольник-звезда, вся батарея выходит из строя.

Кроме того, поскольку трансформатор треугольник-звезда вводит сдвиг фазы на 30 ° от первичной к вторичной, как видно из символов фазировки на рисунке 5, его нельзя проводить параллельно с трансформаторами треугольник-звезда и звезда-звезда, которые не производят фазового сдвига. .

Рисунок 5 — Трансформатор треугольник-звезда

На рисунке 6 показано соединение треугольник-звезда, либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока. Показаны метки вводов и точки полярности.

Рисунок 6 — Соединения трансформатора треугольник-звезда

Анализ трансформатора треугольник-звезда иллюстрирует многие важные концепции, касающиеся работы многофазных трансформаторов. Анализ может проводиться как по напряжению, так и по току. Поскольку напряжение (разность потенциалов или вычитание двух векторных величин) довольно абстрактно и трудно визуализировать, ток (или поток заряда) будет использоваться в качестве основы для анализа, поскольку ток легко концептуализировать.

Токи, возникающие в обмотках трансформатора треугольник-звезда, показаны на рисунке 7. Обратите внимание, что стрелки указывают мгновенные направления переменного тока и соответствуют условным обозначениям точек.

Рисунок 7 — Обмотки, соединенные треугольником и звездой

Анализ должен начинаться в одной из двух электрических цепей: цепи высокого напряжения, соединенной треугольником, или цепи низкого напряжения, соединенной звездой.

Поскольку в качестве основы для анализа используется ток, схема, соединенная звездой, выбирается в качестве отправной точки, поскольку в схеме соединения звездой линейные токи (выходящие из трансформатора) и фазные токи (возникающие в трансформаторе) обмотки) равны.Эта взаимосвязь между линейным и фазным токами упрощает анализ.

Анализ начинается с маркировки всех линейных и фазных токов. Это показано на рисунке 8.

Рисунок 8 — Трансформатор треугольник-звезда с токами, обозначенными

Обратите внимание, что нижние индексы в нижнем регистре указывают линейные токи в цепи низкого напряжения, а нижние индексы в верхнем регистре указывают линейные токи в цепи высокого напряжения. В цепи низкого напряжения фазные токи идентичны соответствующим линейным токам, поэтому они также имеют обозначения I a , I b и I c .Когда обмотки трансформатора нарисованы, конкретная обмотка высокого напряжения соответствует обмотке низкого напряжения, нарисованной параллельно ей.

Другими словами, обмотка высокого напряжения и обмотка низкого напряжения, которые протянуты параллельно друг другу, составляют однофазный трансформатор или две обмотки на одном плече магнитопровода трехфазного трансформатора .

Фазовый ток высокого напряжения, соответствующий I a , обозначен как I a ‘ .Направление I a ′ относительно направления I a должно соответствовать условию точки. Величина I a ′ относительно I a является обратной величиной отношения витков трансформатора «n» или

При анализе трансформатора с использованием единицы измерения n = 1 , поэтому получается:

I a ′ = I a

Итак,

I a ′ = I a (на единицу)
I b ′ = I b (на единицу)
I c ′ = I c (на единицу)
(Ур.1)

Далее, текущий закон Кирхгофа может быть применен к каждому узлу дельты:

I A = I a ′ — I b ′ = I a — I b
I B = I b ′ — I c ′ = I b — I c
I C = I c ′ — I a ′ = I c — I a
(Уравнения 2)

Уравнения, приведенные выше, выражают токи линии высокого напряжения через линейные токи цепи низкого напряжения .На этом этапе числовые значения могут быть заменены на I a , I b и I c . Принимая во внимание, что I a , I b и I c представляют сбалансированный набор векторов , произвольные значения на единицу выбраны для представления последовательности фаз a-b-c :

Eqs. 3

Необходимо использовать положительную последовательность фаз (a-b-c) , поскольку стандарты IEEE для силовых трансформаторов (серия IEEE C57) основаны на положительной последовательности фаз.

Подставляя уравнения. 3 в уравнения. 2:

Ур. 4

При сравнении I a с I A , разница величин √3 и угловая разница 30 ° очевидны .

IEEE Std. C57.12.00 определяет направление, в котором углы вектора должны изменяться от одной электрической цепи к другой. В стандартном трансформаторе треугольник-звезда (или звезда-треугольник) токи прямой последовательности и напряжения на стороне высокого напряжения опережают токи прямой последовательности и напряжения на стороне низкого напряжения на 30 °.

Когда векторы высокого напряжения отстают от векторов низкого напряжения, соединение считается нестандартным. Иногда нестандартные соединения необходимы для согласования фаз в двух разных системах, которые должны быть электрически связаны, но обычно указываются стандартные соединения.

Обратите внимание, что соглашение для определения стандартного соединения требует, чтобы векторы высокого напряжения опережали векторы низкого напряжения на 30 ° . Нет ссылок на первичный или вторичный.Первичные обмотки трансформатора — это те обмотки, на которые подается напряжение. На вторичные обмотки прикладывается наведенное напряжение.

Обычно первичными обмотками являются обмотки высокого напряжения, но это не всегда так. Хорошим примером исключения является повышающий трансформатор генератора.

Вернуться к содержанию ↑


4. Звезда – треугольник

Трансформатор звезда – треугольник, показанный на рисунке 9, иногда используется для обеспечения нейтрали в трехпроводной системе, но также может обслуживать нагрузку от вторичной обмотки .

Рисунок 9 — Трансформатор звезда-треугольник

Первичная обмотка звезды обычно заземляется. Если вторичная обмотка представляет собой четырехпроводной треугольник, четвертый провод, идущий от центрального ответвления на одном из выводов треугольника, заземляется.

На рисунке 10 показано соединение звезда-треугольник, либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока. Обе метки вводов и точки полярности показаны .

Рисунок 10 — Подключение трансформатора звезда-треугольник (щелкните, чтобы развернуть диаграмму)

Вернуться к содержанию ↑

Продолжение будет продолжено…

Ссылка // Промышленное распределение электроэнергии от Ralph E.Fehr

Подключение трехфазного трансформатора | Electrical Academia

В этом разделе мы рассмотрим рабочие характеристики основных соединений трансформатора по схеме треугольник, звезда-звезда, треугольник-звезда и звезда-треугольник.

Конструкция трехфазного трансформатора может быть представлена, как показано на Рисунок 1 . Сердечник оболочечного типа имеет три набора первичной и вторичной обмоток. Способ соединения этих обмоток определяет конфигурацию трансформатора (треугольник, звезда и т. Д.).

Рисунок 1: Конструкция трехфазного трансформатора

Соединенный трансформатор типа звезда-звезда (Y-Y)

Трансформатор на рисунке 1 может быть представлен так, как показано на рисунке , рисунок 2 . T 1, T 2, и T 3 представляют те же три пары первичной / вторичной катушек, показанные на сердечнике кожухового типа. Линии, обозначенные ΦA 1 , ΦB 1 и ΦC 1 , представляют собой проводники первичной линии, которые подключаются к первичным катушкам, а линия, обозначенная N 1 , представляет собой нейтральный проводник.Точно так же линии с обозначениями ΦA 2 , ΦB 2 и ΦC 2 представляют собой проводники вторичной линии, а N 2 представляют собой нейтральный проводник.

Рисунок 2: Элементы электрической схемы трансформатора.

При подключении, как показано на Рисунок 3 , трансформатор кожухового типа образует схему Y-Y (звезда-первичная-звезда-вторичная). Таким образом, соотношение первичного и вторичного тока и напряжения трансформатора выглядит следующим образом:

$ \ begin {matrix} {{E} _ {L}} = \ sqrt {3} \ times {{E} _ {P}} = 1.732 \ times {{E} _ {P}} & {} & {{I} _ {L}} = {{I} _ {P}} \\\ end {matrix} $

$ \ begin {matrix } {{E} _ {P}} = \ frac {{{E} _ {L}}} {\ sqrt {3}} = \ frac {{{E} _ {L}}} {1.732} & { } & {{I} _ {N}} = {{I} _ {A}} + {{I} _ {B}} + {{I} _ {C}} = 0 \\\ end {matrix} $

Где E L и I L — значения строки, а E P и I P — значения фазы. Эти отношения предполагают, что схема Y-Y сбалансирована (перед чтением найдите момент, чтобы проследить соединения схемы на рисунке 3, чтобы убедиться, что схема представляет ту же схему).

Рисунок 3: Схема трансформатора YY и схема подключения

Необходимо сделать два момента:

• Схема подключения на Рисунок 3a может быть реализована с использованием банка (группы) из трех однофазные (1Ф) трансформаторы.

• Y-Y трансформаторы используются в промышленности и предпочтительнее, чем трансформаторы ∆-∆, когда критически важно иметь нейтральное соединение во вторичной цепи.

Трансформатор, подключенный по схеме треугольник-треугольник (∆-∆)

При подключении, как показано на рис. 4 , трансформатор образует схему ∆-∆ (первичный треугольник — вторичный треугольник).Обратите внимание, что на схеме подключения нет нейтральной линии. Трансформатор, первичный и вторичный ток и напряжение имеют следующие соотношения:

$ \ begin {matrix} {{E} _ {L}} = {{E} _ {P}} & {} & {{I} _ {L}} = \ sqrt {3} \ times {{I} _ {P}} = 1,732 \ times {{I} _ {P}} \\\ end {matrix} $

$ \ begin {matrix } {{I} _ {P}} = \ frac {{{I} _ {L}}} {\ sqrt {3}} = \ frac {{{I} _ {L}}} {1.732} & { } & {{I} _ {N}} = {{I} _ {A}} + {{I} _ {B}} + {{I} _ {C}} = 0 \\\ end {matrix} A $

Где E L и I L — линейные значения, а E P и I P — значения фазы.Эти отношения предполагают, что ∆-∆ схема сбалансирована (прежде чем читать дальше, найдите время, чтобы проследить соединения схемы на Рисунке 4, чтобы убедиться, что диаграммы представляют одну и ту же схему).

Рисунок 4: Схема трансформатора треугольник-треугольник (∆-∆) и электрические схемы.

Как и в случае схемы Y-Y, электрическая схема на рис. 4a может быть реализована с использованием группы однофазных трансформаторов. Обратите внимание, что трансформаторы ∆-∆ чаще всего используются в промышленности.

Соединенный трансформатор звезда-треугольник (Y-∆) Подключенный трансформатор

При подключении, как показано на рис. 5 , трансформатор образует схему Y-∆ (звезда-треугольник, вторичная). Обратите внимание, что в первичной цепи есть нейтраль, а во вторичной — нет. (Прежде чем читать дальше, найдите время, чтобы отследить соединения схемы на рисунке 5, чтобы убедиться, что схемы представляют одну и ту же схему).

Рисунок 5 Схема трансформатора звезда-треугольник (Y-∆) и электрические схемы.

Как и в случае с предыдущими схемами, подключение на схеме рис. 5а может быть (и часто реализуется) с использованием блока однофазных (1Ф) трансформаторов. Обратите внимание, что трансформаторы, подключенные по схеме Y-∆, чаще всего используются в системах передачи высокого напряжения.

Delta-Wye (∆ Y) Подключенный трансформатор

При подключении, как показано на Рисунок 6 , трансформатор кожухового типа образует ∆-Y (треугольник первичная — звезда вторичная) цепь.Обратите внимание, что во вторичной цепи есть нейтраль, а в первичной — нет. (Прежде чем читать дальше, найдите время, чтобы отследить соединения цепи на рисунке 6, чтобы убедиться, что схема представляет ту же цепь).

Рисунок 6 Схема трансформатора ∆-Y (треугольник-звезда) и электрическая схема

Как и в случае с предыдущими схемами, схема на рис. 6a может быть реализована с использованием одной фазы (1Φ ) трансформаторы.Обратите внимание, что трансформаторы с соединением ∆-Y чаще всего встречаются в коммерческих и промышленных приложениях.

Зачем нужны блоки однофазных трансформаторов?

Как упоминалось ранее, каждый трансформатор, представленный в этом разделе, может быть сконструирован с использованием группы (группы) однофазных трансформаторов. Такой блок трансформаторов показан на рис. 7 .

Рисунок 7 Три однофазных трансформатора, подключенных как трехфазный трансформатор

Зачем использовать три однофазных трансформатора вместо одного трехфазного трансформатора? Две причины : удобство и практичность.

Самым частым отказом в любой трехфазной системе является замыкание на землю, когда одна фаза выходит из строя (короткое замыкание) на землю. Когда используется один трехфазный трансформатор, выход из строя одной фазы требует замены всего трансформатора. Однако , когда используется группа однофазных трансформаторов, отказ любой фазы требует замены только этого фазного трансформатора; и легче и дешевле заменить однофазный трансформатор, чем трехфазный трансформатор.

Кроме того, группа из трех однофазных трансформаторов может быть подключена как любое из соединений, которые были представлены в этом разделе. Трехфазные трансформаторы изготавливаются в определенных конфигурациях и поэтому не обладают такой гибкостью.

Обрыв фаз в трехфазных трансформаторах

При размыкании одной из фазных дросселей в цепи , соединенной звездой , вся цепь фактически сводится к однофазной цепи. Этот принцип проиллюстрирован на рис. 8а .Когда L 1 открывается, ΦA изолирован от цепи. Когда это происходит, ток через L 1 отсутствует, и только E BC остается неизменным. Фактически трехфазная цепь была уменьшена до однофазной.

Рисунок 8 Напряжения в цепи звезды (Y) и треугольника (∆).

Когда один из фазных дросселей в цепи , соединенной треугольником, размыкается, цепь по-прежнему работает как трехфазная цепь (с пониженной мощностью).Этот принцип проиллюстрирован на рис. 8b . При размыкании L 1 ни один из фазовых входов не изолирован от цепи, поэтому трехфазная работа продолжается. Однако , ток через L 1 отсутствует, что влияет на общую работу схемы треугольника. Номинальная мощность трансформатора в кВА снижается, поскольку допустимая мощность L 1 снижается до 0 Вт. Даже в этом случае схема может продолжать трехфазную работу с пониженной непрозрачностью.

Открытое соединение треугольником

Как было сказано ранее, трансформатор, подключенный треугольником, может работать с пониженной мощностью, если одна из его фаз размыкается. Этот принцип позволяет создать трехфазную схему, используя всего два однофазных трансформатора. Это открытое дельта-соединение, которое теперь встречается редко, показано на рис. .

Обратите внимание, что номинальная мощность в кВА при подключении по схеме открытого треугольника ограничена приблизительно 87% от суммы номинальных значений , указанных на паспортной табличке, двух однофазных трансформаторов.Например, если каждый трансформатор имеет номинальную мощность 100 кВА, то номинальная мощность сети открытого треугольника составляет 200 кВА × 87% = 174 кВА. Это связано с тем, что только два трансформатора несут нагрузку трех.

Рисунок 9 Схема трансформатора с разомкнутым треугольником и схема подключения

Диаграммы соединений трехфазного трансформатора

Соединения трехфазного трансформатора

Трехфазный трансформатор предназначен для конкретного соединения и преобразования напряжения и на блоке будет паспортная табличка с указанными внутренними соединениями.Когда используется один блок или группа из трех, существует четыре типа подключений. Четыре основных соединения: Y-Y, Y-∆, ∆-Y и ∆-∆. Первый символ указывает на подключение первичного, а второй символ — на вторичный. Для трехфазного трансформатора клеммы фазы высокого напряжения обозначены буквой H. Клеммы стороны низкого напряжения обозначены аналогичным образом, используя X вместо H.

Трехфазные трансформаторы довольно широко используются в энергосистемах для преобразовать сбалансированный набор трехфазных напряжений на определенном уровне напряжения в сбалансированный набор напряжений на другом уровне.Трансформаторы, используемые между генераторами и системой передачи, между системой передачи и подсистемы передачи, а также между системами передачи и распределения, являются трехфазными трансформаторами. Для большинства коммерческих и промышленных нагрузок требуется трехфазный трансформатор для преобразования трехфазного распределительного напряжения до максимального уровня использования.

Трехфазный трансформатор предназначен для определенного подключения и преобразования напряжения, и на блоке будет указана паспортная табличка с показанными внутренними подключениями.

Трехфазные трансформаторы формируются двумя способами. Первый метод заключается в соединении трех однофазных трансформаторов в трехфазную батарею. Второй метод заключается в изготовлении трехфазной трансформаторной батареи, в которой все три фазы расположены на общем мультиплексированном сердечнике. Что касается анализа; нет никакой разницы между двумя методами.

Первичные и вторичные обмотки трехфазных трансформаторов могут быть независимо соединены как по схеме Y, так и по схеме треугольника (∆).Как результат. Обычно используются четыре типа трехфазных трансформаторов:

  1. звезда-звезда (YY)

  2. звезда-треугольник (Y-∆)

  3. треугольник-звезда (∆-Y)

  4. Дельта-треугольник (∆-∆)

Рис.1 (a): Подключение трехфазного трансформатора звезда-звезда

Рис.1 (a): Y (звезда) — Y (звезда), трехфазный Фазорная диаграмма трансформатора

Преимущества соединения YY
  • Доступны два уровня напряжения
  • Ступенчатая высоковольтная изоляция
  • Сбалансированное соединение при питании нагрузок 1-φ и 3-φ

Недостатки соединения YY
  • Наличие 3-й гармонической составляющей в незаземленном соединении YY.
  • Тепловой перегрев

Рис.1 (b): Подключение трехфазного трансформатора звезда-треугольник

Преимущества соединения Y-
  • На первичной стороне имеется нейтраль, которую можно заземлить во избежание искажения.
  • Доступны два уровня напряжения (однофазный и трехфазный).
  • Улавливатели токов 3-й гармоники

Недостатки соединения Y-
  • Поскольку первичная и вторичная обмотки не совпадают по фазе, они не могут работать параллельно с другими трансформаторами YY или ∆-∆
  • Требуется полная изоляция на Сторона ∆

Следует отметить, что для образования звездообразного соединения незаштрихованные концы трех обмоток (три первичных или три вторичных) соединяются вместе и образуют нейтральную точку, а пунктирные концы становятся тремя линейными выводами.При соединении треугольником три обмотки, принадлежащие одной стороне, соединяются последовательно таким образом, что сумма фазных напряжений в замкнутом треугольнике равна нулю ; затем выводы линии снимаются с соединений обмоток.

Соединение Y-∆ обычно используется для перехода от высокого напряжения к среднему или низкому уровню напряжения, как в распределительных трансформаторах. И наоборот, соединение ∆-Y используется для повышения напряжения, как в трансформаторе подстанции.

Рис.1 (c): Подключение трехфазного трансформатора Delta-Wye

Рис.1 (c): Диаграмма фазового сигнала трехфазного трансформатора Delta-Wye

Преимущества соединения Delta-Wye
  • Сбалансированное соединение при питании нагрузок 1-φ и 3-φ.
  • Нейтральная точка доступна на стороне Y.
  • Улавливает 3-ю гармонику

Недостатки соединения треугольник-звезда
  • Требуется полная изоляция обмотки трансформатора треугольником

Рис.1 (d): Подключение трехфазного трансформатора Delta-Delta

Рис. 1 (d): Диаграмма трехфазного трансформатора Delta-Delta

Преимущества соединения Delta-Delta
  • Идеально для трехпроводных нагрузок двигателя
  • Легко выдерживает одинарные шорты без каких-либо перерывов.
  • Улавливает 3-ю гармонику (циркулирующие токи)

Недостатки соединения треугольник-треугольник
  • Требуется полная изоляция обмотки высокого напряжения
  • Поскольку нейтраль недоступна, ее несимметричное подключение при подаче питания на 1-φ и 3- φ нагрузки

Соединение YY используется редко из-за возможных дисбалансов напряжений и проблем с напряжениями третьей гармоники.Соединение ∆-∆ используется из-за того преимущества, что один из трех однофазных трансформаторов может быть снят для ремонта или обслуживания. Остальные два трансформатора продолжают функционировать как трехфазный блок, хотя рейтинг кВА банка снижен до 58% от первоначального рейтинга трехфазного блока. Этот режим работы известен как соединение с открытым треугольником или соединение V-V.

Соединение с открытым треугольником также используется, когда нагрузка в настоящее время мала, но ожидается, что в будущем она будет расти.Таким образом, вместо того, чтобы сразу устанавливать трехфазный блок из трех однофазных трансформаторов, для преобразования трехфазного напряжения используются только два однофазных трансформатора. Третий однофазный трансформатор служит резервным и подключается позже, когда нагрузка возрастет.

В соединениях Y –Y или ∆-∆ соответствующие фазные напряжения совпадают по фазе. Точно так же соответствующие линейные напряжения в первичной и вторичной обмотках находятся в фазе. Другими словами, V AN находится в фазе с V и , а V AB находится в фазе с V ab .С другой стороны, как для соединений Y-∆, так и для ∆-Y, в Соединенных Штатах принято иметь вывод первичной фазы или линейного напряжения на 30 o ; таким образом, V AN опережает V и на 30, или , а V AB опережает V ab на такую ​​же величину фазового сдвига.

Анализ цепи с использованием трехфазного трансформатора в сбалансированных условиях может выполняться для каждой фазы. Это следует из соотношения, что пофазная активная мощность и реактивная мощность составляют одну треть от общей реальной мощности и реактивной мощности, соответственно, батареи трехфазного трансформатора.Удобно проводить расчеты по фазе «звезда-нейтраль».

Когда присутствуют соединения ∆-Y или Y-∆, параметры относятся к стороне Y. При работе с соединениями ∆-∆, импедансы, соединенные по схеме ∆, преобразуются в эквивалентные сопротивления, соединенные по схеме Y. Формула преобразования импеданса ∆-Y:

\ [{{Z} _ {Y}} ~ = \ frac {1} {3} {{Z} _ {\ Delta}} \]

Подключение трехфазного трансформатора | electricaleasy.com

Подключение трехфазного трансформатора В трехфазной системе три фазы могут быть подключены по схеме звезды или треугольника.Если вы не знакомы с этими конфигурациями, изучите следующее изображение, которое объясняет конфигурацию звезды и треугольника. В любой из этих конфигураций между любыми двумя фазами будет разница в 120 °.

Подключение трехфазного трансформатора

Обмотки трехфазного трансформатора могут быть соединены в различных конфигурациях: (i) звезда-звезда, (ii) треугольник-треугольник, (iii) звезда-треугольник, (iv) треугольник-звезда, (v) открытый треугольник и (vi) Связь со Скоттом. Эти конфигурации объясняются ниже.
Звезда-звезда (Y-Y)
  • Соединение звезда-звезда обычно используется для небольших высоковольтных трансформаторов. Из-за соединения звездой количество необходимых витков на фазу уменьшается (поскольку фазное напряжение при соединении звездой составляет только 1 / √3 раз от напряжения сети). Таким образом, уменьшается и количество необходимой изоляции.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Линейные напряжения на обеих сторонах синфазны.
  • Это соединение можно использовать только в том случае, если подключенная нагрузка сбалансирована.
Дельта-дельта (Δ-Δ)
  • Это соединение обычно используется для больших низковольтных трансформаторов. Количество необходимых фаз / витков относительно больше, чем для соединения звезда-звезда.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Это соединение можно использовать даже при несимметричной нагрузке.
  • Еще одно преимущество этого типа подключения состоит в том, что даже если один трансформатор отключен, система может продолжать работать в режиме открытого треугольника, но с уменьшенной доступной мощностью.
Звезда-треугольник ИЛИ звезда-треугольник (Y-Δ)
  • Первичная обмотка соединена звездой звезда (Y) с заземленной нейтралью, а вторичная обмотка соединена треугольником.
  • Это соединение в основном используется в понижающем трансформаторе на стороне подстанции линии передачи.
  • Отношение вторичного напряжения к первичной в 1 / √3 раза больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Дельта-звезда ИЛИ треугольник-звезда (Δ-Y)
  • Первичная обмотка соединена треугольником, а вторичная обмотка соединена звездой с заземленной нейтралью. Таким образом, его можно использовать для обеспечения 3-фазной 4-проводной связи.
  • Этот тип подключения в основном используется в повышающих трансформаторах в начале линии передачи.
  • Отношение вторичного напряжения к первичному в √3 раз больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Вышеуказанные конфигурации подключения трансформатора показаны на следующем рисунке.

Открытое соединение треугольником (V-V)

Используются два трансформатора, а первичные и вторичные соединения выполняются, как показано на рисунке ниже. Открытое соединение треугольником может использоваться, когда один из трансформаторов в группе Δ-Δ отключен, и обслуживание должно продолжаться до тех пор, пока неисправный трансформатор не будет отремонтирован или заменен.Его также можно использовать для небольших трехфазных нагрузок, когда нет необходимости в установке полной трехтрансформаторной батареи. Общая допустимая нагрузка при подключении по схеме «открытый треугольник» составляет 57,7%, чем при подключении по схеме «треугольник».

Скотт (Т-Т) соединение

В этом типе подключения используются два трансформатора. Один из трансформаторов имеет центральные отводы как на первичной, так и на вторичной обмотке (который называется главным трансформатором). Другой трансформатор называется трансформатором-тизером.Соединение Скотта также можно использовать для преобразования трех фаз в двухфазное. Подключение выполняется, как показано на рисунке ниже.

Подключение трехфазного трансформатора

— Circuit Globe

Трехфазный трансформатор состоит из трех трансформаторов, отдельных или объединенных одним сердечником. Первичная и вторичная обмотки трансформатора могут быть независимо соединены звездой или треугольником. Существует четыре возможных варианта подключения 3-фазной трансформаторной батареи.

  1. Подключение Δ — Δ (треугольник — треугольник)
  2. Υ — Υ (звезда — звезда) Подключение
  3. Δ — Υ (треугольник — звезда) соединение
  4. Υ — Δ (звезда — треугольник) соединение

Выбор подключения трехфазного трансформатора зависит от различных факторов, таких как наличие нейтрали для защиты заземления или подключения нагрузки, изоляция от земли и напряжения, наличие пути для прохождения третьей гармоники и т. Д.Ниже подробно описаны различные типы подключений.

1. Соединение треугольник-треугольник (Δ-Δ)

Соединение треугольником трех одинаковых однофазных трансформаторов показано на рисунке ниже. Вторичная обмотка a 1 a 2 соответствует первичной обмотке A 1 A 2 , и они имеют одинаковую полярность. Полярность клеммы a , соединяющей a 1 и c 2 , такая же, как и при соединении A 1 и C 2 .На рисунке ниже показана векторная диаграмма для отстающего коэффициента мощности cosφ .

Ток намагничивания и падение напряжения на импедансах не учитывались. В сбалансированном состоянии линейный ток в √3 раз больше тока фазной обмотки. В этой конфигурации соответствующие линейное и фазное напряжение идентичны по величине как на первичной, так и на вторичной стороне.

Линейное напряжение вторичной обмотки находится в фазе с линейным напряжением первичной обмотки с отношением напряжений, равным отношению витков.

Если соединение фазных обмоток поменять местами с обеих сторон, между первичной и вторичной системами получается разность фаз 180 °. Такое соединение известно как соединение 180º.

Соединение треугольником с фазовым сдвигом 180 ° показано на рисунке ниже. На векторной диаграмме трехфазного трансформатора показано, что вторичное напряжение находится в противофазе с первичным напряжением.

Трансформатор дельта-треугольник не имеет связанного с ним сдвига фазы и проблем с несимметричными нагрузками или гармониками.

Преимущества подключения трансформатора треугольник-треугольник

Ниже приведены преимущества конфигурации трансформаторов треугольником.

  1. Трансформатор дельта-треугольник подходит для симметричной и несимметричной нагрузки.
  2. В случае отказа одного трансформатора оставшиеся два трансформатора продолжат подавать трехфазное питание. Это называется открытым дельта-соединением.
  3. Если присутствует третья гармоника, то она циркулирует по замкнутому пути и, следовательно, не появляется в волне выходного напряжения.

Единственный недостаток соединения треугольник-треугольник — отсутствие нейтрали. Это соединение полезно, когда ни первичная, ни вторичная обмотка не требуют нейтрали, а напряжение низкое или умеренное.

2. Звезда-звезда (Υ-Υ) Подключение трансформатора

Соединение звезда-звезда трех идентичных однофазных трансформаторов на каждой из первичной и вторичной обмоток трансформатора показано на рисунке ниже. Векторная диаграмма аналогична схеме соединения треугольником.

Фазный ток равен линейному току, и они синфазны. Напряжение сети в три раза превышает фазное напряжение. Между линией и фазным напряжением существует разделение фаз на 30º. Сдвиг фазы на 180º между первичной и вторичной обмотками трансформатора показан на рисунке выше.

Проблемы, связанные с соединением звезда-звезда

Соединение звезда-звезда имеет две очень серьезные проблемы. Их

  1. Соединение Y-Y не подходит для несимметричной нагрузки при отсутствии нейтрального соединения.Если нейтраль не предусмотрена, тогда фазные напряжения становятся несимметричными при несимметричной нагрузке.
  2. Соединение Y-Y содержит третью гармонику, и в сбалансированных условиях эти гармоники равны по величине и фазе с током намагничивания. Их сумма в нейтрали звездообразного соединения не равна нулю, и, следовательно, это будет искажать магнитную волну, которая будет создавать напряжение, имеющее гармоники в каждом из трансформаторов
  3. .

Проблемы несимметрии и третьей гармоники соединения Y-Y могут быть решены путем использования сплошного заземления нейтрали и использования третичных обмоток.

3. Соединение Delta-Star (Δ-Υ)

Соединение ∆-Y трехобмоточного трансформатора показано на рисунке ниже. Напряжение первичной линии равно напряжению вторичной фазы. Соотношение между вторичными напряжениями V LS = √3 V PS .

Векторная диаграмма соединения ∆-Y трехфазного трансформатора показана на рисунке ниже. Из векторной диаграммы видно, что напряжение вторичной фазы V и опережает напряжение первичной фазы V AN на 30 °.Аналогично, V bn выводит V BN на 30º и V cn выводит V CN на 30º. Это соединение также называется соединением + 30º.

Путем изменения направления подключения с любой стороны можно сделать так, чтобы напряжение вторичной системы отставало от первичной системы на 30 °. Таким образом, соединение называется соединением -30 °.

4. Соединение звезда-треугольник (Υ-Δ)

Схема подключения трехфазного трансформатора звезда-треугольник показана на рисунке выше. Напряжение первичной линии в √3 раз больше напряжения первичной фазы.Напряжение вторичной линии равно напряжению вторичной фазы. Коэффициент напряжения каждой фазы составляет

Следовательно, линейное напряжение соединения Y-∆ равно

.

Векторная диаграмма конфигурации показана на рисунке выше. Между соответствующими фазными напряжениями существует фазовый сдвиг на 30 выводов. Точно так же между соответствующими фазными напряжениями существуют выводы под углом 30 °. Таким образом, соединение называется соединением + 30º.

Фаза показывает соединение трансформатора звезда-треугольник для сдвига фазы 30 °.Это соединение называется — соединение 30 °. Это соединение не имеет проблем с несимметричной нагрузкой и гармониками третей. Соединение треугольником обеспечивает сбалансированную фазу на стороне Y и обеспечивает сбалансированный путь для циркуляции третьих гармоник без использования нейтрального провода.

Открытое соединение треугольником или V-V

Если один трансформатор соединения треугольник поврежден или случайно разомкнут, неисправный трансформатор удаляется, а оставшийся трансформатор продолжает работать как трехфазный блок.Рейтинг трансформаторного банка снижен до 58% от рейтинга реального банка. Это известно как открытая дельта или дельта V-V. Таким образом, в трансформаторе с открытой обмоткой используются два трансформатора вместо трех при трехфазном режиме работы.

Пусть V ab , V bc и V ca будет напряжением, приложенным к первичной обмотке трансформатора. Напряжение, индуцируемое во вторичной обмотке трансформатора или на его обмотке, составляет V ab . Напряжение, индуцированное на второй обмотке низкого напряжения, составляет V bc .Между точками а и с нет обмотки. Напряжение можно найти, применив KVL вокруг замкнутого пути, состоящего из точек a, b и c. Таким образом,

Лет,

Где V p — величина линии на первичной стороне.

Подставляя значения V ab и V bc в уравнение, мы получаем

V ca равно по величине от напряжения на вторичной клемме и на 120º по времени от них обоих.Сбалансированное трехфазное линейное напряжение создает сбалансированное трехфазное напряжение на вторичной стороне.

Если три трансформатора соединены по схеме треугольник-треугольник и обеспечивают номинальную нагрузку, и если соединение становится трансформатором V-V, ток в каждой фазной обмотке увеличивается в √3 раза. Полный линейный ток протекает в каждой из двух фазных обмоток трансформатора. Таким образом, каждый трансформатор в системе V-V перегружен на 73,2%.

Следует отметить, что нагрузка должна быть уменьшена в √3 раза в случае трансформатора с открытым треугольником.В противном случае может произойти серьезный перегрев и поломка двух трансформаторов.

Выбор схемы подключения трансформатора

Выбор схемы подключения трансформатора:

Другой выбор схемы подключения трансформатора:

Звезда / звезда:

Это экономично для небольших высоковольтных трансформаторов, поскольку сводит к минимуму количество витков / фаз и изоляцию обмоток. Возможно нейтральное подключение.Однако соединение Y / Y используется редко из-за трудностей, связанных с возбуждающим током.

дельта / дельта:

Подходит для больших низковольтных трансформаторов, так как требует большего количества витков на фазу меньшего сечения. Допускается большой дисбаланс нагрузки. Отсутствие точки звезды может быть недостатком. Это соединение может работать с нормальным номиналом 58% как разомкнутый треугольник, когда один из трансформаторов батареи снимается для ремонта или технического обслуживания.

Звезда / треугольник:

Это наиболее часто используемое соединение для энергосистем.На уровнях передачи данных соединение звездой находится на стороне ВН, то есть Δ / Y для повышения и Y / Δ для понижения. Имеющаяся таким образом нейтраль используется для заземления на стороне ВН. На уровне распределения трансформатор Δ / Y используется звездой на стороне низкого напряжения, что позволяет смешивать трехфазные и однофазные нагрузки, в то время как треугольник позволяет протеканию циркулирующего тока для компенсации тока нейтрали на стороне звезды (рис. 3.50). ).

Соединение Y / Δ имеет соответствующий сдвиг фазы ± 30 °, который необходимо учитывать при соединении энергосистемы.

Гармоники:

Уже было замечено, что когда ток третьей гармоники разрешается течь по условиям схемы вместе с синусоидальным током намагничивания в трансформаторе, поток сердечника является синусоидальным, как и наведенная ЭДС. С другой стороны, когда цепь не позволяет протекать току третьей гармоники, то есть ток намагничивания является синусоидальным, поток имеет плоскую вершину, содержащую «подавляющую» третью гармонику, и, как следствие, присутствуют напряжения третьей гармоники. в наведенных ЭДС.Теперь рассмотрим эту проблему в трехфазных трансформаторах.

Здесь следует отметить, что разность фаз токов и напряжений третьей гармоники в трехфазной системе составляет 3 x 120 ° = 360 ° или 0 °, что означает, что они синфазны. Следовательно, токи и напряжения третьей гармоники (обычно гармоники порядка 3n, называемые троек ) не могут присутствовать на линиях трехфазной системы, поскольку они не дают в сумме нуля.

Фазовый сдвиг и полярность — нарушение напряжения

Фазовый сдвиг и полярность фаз между двумя обмотками однофазного трансформатора зависит от того, как обмотки намотаны на сердечник.Фазовый сдвиг трансформатора и полярность трансформатора необходимо учитывать для многих приложений, некоторые из которых:

  • Формирование трехфазного трансформатора с использованием однофазных трансформаторов
  • Параллельная работа трансформаторов
  • Присоединения трансформатора напряжения для учета
  • Трансформаторы напряжения для проверки синхронизма между двумя источниками, защиты и т. Д.

В этой статье обсуждаются основы полярности трансформатора. Обсуждается метод проверки полярности трансформатора напряжения (PT или VT) и предоставляются фактические результаты испытаний.

Фазовый сдвиг трансформатора

Существует четыре различных способа подключения однофазных трансформаторов для образования трехфазных батарей. Это:

Трансформаторы

типа «звезда-звезда» и «треугольник-треугольник» не вызывают сдвига фазы от первичной к вторичной. Трансформаторы Delta-Wye имеют фазовый сдвиг 30 градусов, который обсуждается ниже.

Сдвиг фазы трансформатора, треугольник, звезда или звезда, треугольник

Мы знаем, что через трансформатор треугольник-звезда (звезда) или звезда-треугольник между линейными напряжениями будет сдвиг фазы на 30 градусов.При этом есть два варианта: треугольник может опережать сторону звезды на 30 градусов или сторона звезды может опережать дельту на 30 градусов.

Что определяет фазовый сдвиг трансформатора и с какой стороны трансформатора треугольник-звезда опережает или запаздывает?

Ответ : То, как дельта «закрыта», определяет, какая сторона опережает или отстает. Возможны две комбинации, которые обсуждаются ниже:

  1. Дельта-закрытие — тип DAB

Это один из методов закрытия дельта-треугольника.В этой связи сторона полярности фазы A соединена со стороной неполярности фазы B. Схема подключения трехфазного трансформатора с использованием этого метода представлена ​​ниже.

Замыкание по треугольнику — Тип DAB

На рисунке выше показано соединение треугольником-звездой с соединением «DAB». В этом случае сторона треугольника будет опережать сторону звезды на 30 0 . Это нормальное соединение для трансформатора треугольником с треугольником на первичной обмотке. Согласно североамериканским стандартам, первичная сторона опережает вторичную сторону низкого напряжения на 30 0 .

2) Замыкание по треугольнику — тип DAC

Это еще один метод закрытия дельта-треугольника. В этом случае сторона полярности фазы A подключена к стороне неполярности фазы C. Схема подключения трехфазного трансформатора с использованием этого метода представлена ​​ниже.

Замыкание по треугольнику — тип DAC

На рисунке выше показано соединение треугольником-звездой с соединением «DAC». В этом случае сторона треугольника будет отставать от стороны звезды на 30 0 . Или, другими словами, сторона звезды будет опережать сторону треугольника на 30 0 . Это нормальное соединение для трансформатора звезда-треугольник со звездой на первичной обмотке.

Обратите внимание, что эти углы фаз относятся к напряжениям прямой последовательности. Метод определения полярности по соединениям обмоток приведен в [1].

DAB против DAC Delta Connection

Полярность трансформатора

Существует два стандарта полярности трансформаторов. Это вычитающее и добавочное , как показано ниже. Маркировка полярности обозначена знаком «X».

Однофазные силовые трансформаторы (в Северной Америке) могут быть аддитивными или вычитающими в зависимости от кВА и класса напряжения. В других регионах мира также может использоваться сочетание аддитивного и вычитающего трансформаторов полярности. Два правила полярности трансформатора:

  1. Ток, протекающий «внутрь» с обозначением полярности одной обмотки, течет «вне» отметки полярности другой обмотки. Оба тока будут синфазными.
  2. Падение напряжения от полярности к неполярности на одной обмотке по существу синфазно с падением напряжения от полярности к неполярности на другой обмотке.

Аддитивная полярность : Для силовых распределительных трансформаторов, которые подпадают под категорию, указанную в стандарте IEEE ниже, имеет аддитивную полярность. В основном это однофазные распределительные трансформаторы.

IEEE Std C57.12.00-2000 Стандарт для жидкостных распределительных, силовых и регулирующих трансформаторов гласит: «Однофазные трансформаторы мощностью 200 кВА и ниже и с номинальным высоковольтным напряжением 8660 В и ниже (напряжение обмотки) должны иметь аддитивную полярность. .Все остальные однофазные трансформаторы должны иметь вычитающую полярность ».

Вычитающая полярность: Большие силовые трансформаторы и измерительные трансформаторы обычно имеют вычитающую полярность.

Маркировка полярности обозначается точкой или знаком «X» или может обозначаться стандартизованной маркировкой клемм. Ниже представлен еще один способ указания полярности трансформатора. Вторичная полярность определяется расположением «X1» относительно «h2». Если h2 и X1 находятся на одной стороне, то трансформатор имеет вычитающую полярность и наоборот.

Вот инструментальный трансформатор с вычитающей полярностью. Обратите внимание, что помимо белой «точки», указывающей полярность, на нем также есть маркировка h2 и X1. Схема для этого VT или PT будет такой же, как на рисунке, показанном выше для вычитающей полярности.

Трансформатор напряжения [Квадратный D]

Как проверить полярность трансформатора?

Иногда требуется проверить полярность однофазного трансформатора или трансформатора напряжения (VT или PT) для тестирования или поиска неисправностей.Один из способов проверить ТН с известным коэффициентом трансформации напряжения — подключить источник переменного тока, как показано на рисунке ниже.

Схема проверки полярности трансформатора / трансформатора напряжения (вверху) Упрощенная испытательная схема (внизу)

Примечание. При подключении напряжения следует соблюдать осторожность, поскольку в зависимости от номинального напряжения и клемм, на которых выполняются подключения, может появиться опасное напряжение. Подключение при 120 В переменного тока или меньше должно применяться к клеммам высокого напряжения, а не к клеммам низкого напряжения.

На рисунке выше +, — служат для иллюстрации, обозначают клеммы с одинаковым потенциалом в любой момент времени и не представляют напряжение постоянного тока.

Для обмотки с аддитивной и вычитающей полярностью клеммы h2 и X1 всегда будут иметь одинаковую полярность. Эти знания помогут создать фигуру выше. В приведенном выше примере теста коэффициент трансформации составляет 120 В / 12 В. Если трансформатор напряжения (ТН) имеет аддитивную полярность, мультиметр покажет 132 В. Если ТН имеет вычитающую полярность, то мультиметр покажет 108 В.

Проверка полярности трансформатора напряжения

Ниже представлена ​​испытательная установка для проверки трансформатора напряжения или проверки полярности трансформатора напряжения . Измерительные провода подключаются, как описано в разделе выше . Технические характеристики VT:

Первичный 480 В

Вторичный 120 В

Коэффициент трансформации = 480/120 = 4

h2 и X1 находятся на одной стороне трансформатора (аналогично изображению ТН, показанному выше).Следовательно, VT имеет вычитающую полярность. После выполнения соединений, как показано на схеме выше . Измеренное напряжение на h3 и X2 составляет 90 В.

Это подтверждает, что полярность VT является вычитающей. Напряжение, приложенное к h2 h3, составляет 120 В. В зависимости от коэффициента трансформации, на X1 X2 будет наведено 120/4 = 30 В. Поскольку обмотки подключены для вычитания полярности, сетевое напряжение, измеренное на h3 X2, составляет 120–30 = 90 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *